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Abstract1

The static Coulomb stress hypothesis is a widely known physical mechanism for2

earthquake triggering, and thus a prime candidate for physics-based Operational Earth-3

quake Forecasting (OEF). However, the forecast skill of Coulomb-based seismicity mod-4

els remains controversial, especially in comparison to empirical statistical models. A5

previous evaluation by the Collaboratory for the Study of Earthquake Predictabil-6

ity (CSEP) concluded that a suite of Coulomb-based seismicity models were less in-7

formative than empirical models during the aftershock sequence of the 1992 Mw7.38

Landers, California, earthquake. Recently, a new generation of Coulomb-based and9

Coulomb/statistical hybrid models were developed that account better for uncertainties10

and secondary stress sources. Here, we report on the performance of this new suite of11

models in comparison to empirical Epidemic Type Aftershock Sequences (ETAS) mod-12

els during the 2010-2012 Canterbury, New Zealand, earthquake sequence. Comprising13

the 2010 M7.1 Dar�eld earthquake and three subsequent M ≥ 5.9 shocks (including14

the February 2011 Christchurch earthquake), this sequence provides a wealth of data15

(394 M ≥ 3.95 shocks). We assessed models over multiple forecast horizons (1-day,16

1-month and 1-year, updated after M ≥ 5.9 shocks). The results demonstrate substan-17

tial improvements in the Coulomb-based models. Purely physics-based models have a18

performance comparable to the ETAS model, and the two Coulomb/statistical hybrids19

perform better or as well as the corresponding statistical model. On the other hand,20

an ETAS model with anisotropic (fault-based) aftershock zones is just as informative.21

These results provide encouraging evidence for the predictive power of Coulomb-based22

models. To assist with model development, we identify discrepancies between forecasts23

and observations.24

Introduction25

Recent earthquakes in Italy, New Zealand, Japan and Nepal have demonstrated that fore-26

casts of the space time evolution of seismic sequences provide information that can expand27

seismic risk reduction strategies beyond building codes, and enhance preparedness and re-28
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silience. This is the main goal of Operational Earthquake Forecasting (OEF) introduced by29

the International Commission on Earthquake Forecasting (Jordan et al., 2011) appointed by30

the Italian government after the 2009 L'Aquila, Italy, earthquake.31

For these applications, forecasts should be consistent with future seismicity and they32

should be the most skilful amongst alternatives (i.e. perform better than other forecasts,33

according to well de�ned quantitative measures such as the information gain). The evaluation34

of consistency and skill of forecast models is the main goal of the Collaboratory for the Studies35

of Earthquake Predictability (CSEP, Jordan (2006); Zechar et al. (2010)).36

To date, the �rst results of a prospective CSEP experiment (Nanjo et al., 2012), retro-37

spective CSEP experiments (Woessner et al., 2011; Rhoades et al., 2016), and applications38

to ongoing earthquake sequences (Marzocchi et al., 2017; Kaiser et al., 2017) showed that39

statistical models of clustered seismicity like the epidemic-type aftershock sequence mod-40

els (ETAS, Ogata, 1998) and the short-term earthquake probability models (Gerstenberger41

et al., 2005, STEP) provide informative forecasts of future seismicity. In our view, these rep-42

resent the �rst generation of earthquake forecasting models, and a benchmark for measuring43

any improvements in forecasting capability.44

Ongoing model development aims to improve the skill of the forecasts (e.g. Field et al.,45

2015; Segou et al., 2013). One of the most promising approaches is based on Coulomb stress46

transfer, the most widely accepted mechanism for aftershock triggering (e.g. Stein et al.,47

1992; King et al., 1994; Toda et al., 1998). The predictive power of this hypothesis, however,48

remains a subject of debate (Hardebeck et al., 1998; Marsan, 2003). To date, most evalu-49

ations of the Coulomb hypothesis are retrospective, with stress changes often calculated at50

the locations of subsequent events without considering locations which experienced positive51

Coulomb stress changes without an increase in seismicity. There is a need to rigorously eval-52

uate the Coulomb hypothesis (Strader and Jackson, 2014; Toda and Enescu, 2011). When53

coupled with Dieterich's rate-state friction formulation (or another framework for convert-54

ing stress to seismicity), Coulomb-based models can generate probability forecasts, enabling55

evaluations of forecast reliability and skill against alternative models.56
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A previous CSEP evaluation of the predictive skills of forecast models during the 199257

Mw7.3 Landers earthquake sequence found that the Coulomb-based models performed worse58

than statistical models (Woessner et al., 2011), even though they were comparable at short59

times after the mainshock. Subsequent studies have con�rmed that physical models have a60

lower overall performance than statistical ones, but they can be comparable for at short times61

after the mainshock, and beyond the near-source region (Segou et al., 2013). To increase our62

understanding of the physics of triggering, it is important to understand whether the poor63

performance is due to a failure of the Coulomb stress hypothesis - i.e., static stress changes64

are not an important mechanism for aftershock triggering - or whether the implementations65

of the hypothesis involved inappropriate model choices. For instance, large uncertainties66

exist in Coulomb stress calculations, due to errors in the slip models and receiver fault67

orientations (e.g. Steacy et al., 2005; Hainzl et al., 2010, 2009). Here, we test recently68

developed Coulomb models designed to address some of these issues (Cattania et al., 2014).69

We investigate the forecasting consistency and skill of this new generation of physics-70

based forecasting models, as well as new non-parametric models and hybrid Coulomb/statistical71

models, during the 2010-2012 Canterbury earthquake sequence. The September 3, 2010,72

M7.1 Dar�eld earthquake initiated a vigorous and damaging aftershock sequence, including73

the damaging M6.2 Christchurch earthquake in February 2011 (Fig. 1).74

CSEP Experiment Design75

Before submitting models, participants agreed on forecast formats, target data and perfor-76

mance measures. Three forecast horizons were considered (1-day, 1-month, 1-year); models77

update their forecasts at the end of each forecast horizon, and after each of the fourM ≥ 5.978

earthquakes of the sequence (Fig. 1). We test the e�ect of data quality with three data-79

availability scenarios. In the �rst scenario, most interesting scienti�cally, models were pro-80

vided best-available data (a reviewed earthquake catalog, focal mechanisms, and published81

slip models) to generate forecasts. In the second scenario, the slip models were provided with82

a 10-day delay to mimic delays in �nalising a slip model; no slip models were provided in83
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the �rst 10 days. In the third scenario, only preliminary data were made available, namely84

preliminary slip models and catalogs, to mimic the real-time situation of operational earth-85

quake forecasting. All scenarios were evaluated against the best available earthquake catalog86

data. For brevity, here we focus on the results from the two extreme setups (scenario 1 and87

3), and present all results in the electronic supplement.88

Forecasts were speci�ed as numbers of earthquakes in space and magnitude bins (Schor-89

lemmer et al., 2007). The spatial region extends between 170.5◦ and 174.0◦ longitude, and90

−44.5◦ and−42.5◦ latitude, and a single layer extending to 40 km depth. Spatial cells are91

0.05◦ by 0.05◦ wide. Magnitude bins are 0.1 units wide, starting from M 3.95; the last bin92

has no upper bound.93

Data94

The data sets associated with the three data-input scenarios (best-available, delayed best-95

available, and near real-time) are summarized in Table: 1 and shown in Fig. 2 and Fig.S1,96

S2 of the electronic supplement. The target data set comprises 394 M ≥ 3.95 earthquakes97

between the September 3, 2010 (UTC),M7.1 Dar�eld earthquake and the end of the experi-98

ment at midnight on February 29, 2012 (the last date of reviewed data available at experiment99

conception). The catalog was later reviewed by GeoNet; magnitudes were initially given as100

local magnitudes, and later replaced by moment magnitudes when available. The input data101

sets for the scenario with best available data comprise (i) the reviewed GeoNet catalog, (ii)102

published slip models of the four large earthquakes (Beavan et al., 2012), and (iii) a GeoNet103

focal mechanism catalog. The same data sets are provided in the second scenario, except104

that slip models are provided to models 10 days after each of the four largest quakes. The105

data sets of the near-real-time data scenario include (i) a very preliminary GeoNet cata-106

log that was downloaded intermittently by one of us during the sequence (Christophersen,107

private communication) and (ii) preliminary slip models (Holden et al., 2011, ; Beaven and108

Holden, private communication). The preliminary model and best slip model were computed109

from the same dataset of near-source strong motion data. The preliminary models are based110
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on a single fault inversion, while the best models invert for kinematic parameters for three111

newly-de�ned fault planes. These models provide more details about the overall rupture112

process and better overall waveform �ts (see Fig. S1 in the electronic supplement).113

Evaluation Metrics114

We evaluated the model forecasts with several CSEP methods (Rhoades et al., 2011; Schor-115

lemmer et al., 2007; Zechar et al., 2010; Werner et al., 2011), which test for consistency116

of the observations with the probabilistic forecasts and compare the predictive skills of the117

models. We focus here on the comparison of the forecast skills and on a qualitative con-118

sistency check between the numbers of observed and forecast earthquakes. The electronic119

supplement contains remaining results.120

We measure the skill of forecasts with the information gain per earthquake, which com-121

pares a model's predictive skill against a benchmark (Rhoades et al., 2011). The benchmark122

is a time-independent and spatially-uniform Poisson (SUP) process with a Gutenberg-Richter123

magnitude distribution (b = 1). The SUP model is updated at each time step, so that the124

total forecast rate for the next time step matches the average rate over the past catalog125

in the test region. The information gain per earthquake calculates the average di�erence,126

per earthquake, of the log-likelihood scores of a model and the benchmark. We use 95%127

con�dence bounds estimated by Rhoades et al. (2011) to assess statistical signi�cance.128

Models129

Modelers submitted a total of sixteen models as software to the CSEP testing center, which130

generated and evaluated forecasts. Due to a bug in STEP-c�, the �rst 1-day forecast was131

produced o�ine. Here, we focus on the results of eight representative models (table 2),132

described next.133
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Non-parametric kernel smoothing models: K2, K3134

Models K2 and K3 represent statistical end-members on the spectrum of competing models.135

None of the usual assumptions about earthquake clustering are explicitly included, such as136

the Omori law or the Utsu-Seki clustering law (large earthquakes generate exponentially137

more aftershocks). Instead, the models employ Gaussian kernels to estimate seismicity as138

a function of time, space and magnitude (Helmstetter and Werner , 2014). K2 does assume139

a Gutenberg-Richter magnitude distribution with b = 1, while K3 uses kernels to estimate140

the (space-time dependent) magnitude distribution. The widths of the kernels adapt to the141

activity level: sparse seismicity (in space and time) widens kernels; concentrated seismicity142

narrows kernels. The models thereby adjust to the current seismicity rate, which is ex-143

trapolated over the forecast horizon. These non-parametric kernel models o�er maximum144

�exibility, at the cost of dispensing with commonly observed empirical laws. Further details145

can be found in the Supplementary Material.146

ETAS implementations: ETAS, ETAS-fault, ETAS-c�147

The empirical ETAS model and its hybrid model versions (ETAS-fault, ETAS-c�) are imple-148

mented in an identical framework for the setup and parameter estimation which is explained149

in detail in the Supplementary Material. Any di�erence in the performance is therefore150

directly related to the ignorance or use of additional source information and stress calcu-151

lations. In particular, the only di�erence is the spatial triggering kernel which is in the152

case of the ETAS model one or a sum of isotropic power-law kernels centered at the loca-153

tion of the preceding events. In contrast, for events with available slip models, ETAS-fault154

uses an anistropic power-law kernel as a function of the nearest distance to the mainshock155

fault plane and ETAS-c� uses a probability distribution based on calculated Coulomb stress156

changes (Bach and Hainzl , 2012).157
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STEP and STEP-c�158

The hybrid model proposed by Steacy et al. (2014) is based on the STEP (Short-Term159

Earthquake Probability) model, a purely statistical approach proposed by Gerstenberger160

et al. (2005). STEP is a weighted sum of models with increasing spatial complexity, includ-161

ing background seismicity and Omori decay. In addition, STEP-c� redistributes seismicity162

according to the sign of the Coulomb stress change: 93% and 7% of events in regions of163

positive and negative stress changes respectively. More details can be found in the electronic164

supplement.165

Coulomb-rate-state models166

We focus here on two of the submitted Coulomb/rate-state (CRS) models, with the following167

features:168

• CRS-oop: uses Coulomb stresses imparted by the mainshocks (M ≥ 5.95) on planes169

optimally oriented with respect to the total Coulomb stress (optimally oriented planes,170

OOPs).171

• CRS-unc: in addition to mainshocks, this model includes stress changes from smaller172

earthquakes. Instead of using OOPs, CRS-unc accounts for the variability of receiver173

fault orientations by resolving stress changes on a set of faults from the regional focal174

mechanisms catalog (electronic supplement and Cattania et al. (2014))175

For both model versions, seismicity rates are calculated by considering the response176

of a population of faults with rate-and-state dependent friction (Dieterich, 1994), where177

parameter setting and estimations are done in an identical manner. Both models use an178

internal grid with a higher resolution than the output grid. CRS-oop is similar to earlier179

implementations (Woessner et al., 2011), except for the use of an internally re�ned grid,180

while the additional features in CRS-unc are new.181
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Results182

Temporal performance183

Most models successfully forecast the total number of events and the main features of day-184

by-day evolution (Fig. 3a). All ETAS models, the STEP models and CRS-unc forecast the185

total event number to within (Poissonian) uncertainty. Models K2 and K3 underpredict by a186

factor of about two, while CRS-oop strongly overpredicts. K2 and K3 heavily underestimate187

the number of triggered earthquakes during the �rst day of each sequence, but they otherwise188

forecast the rates well. Since these models do not include mainshock magnitude, but estimate189

aftershock number from the observed seismicity, starting the forecast exactly at the time of190

each mainshock (before aftershocks have occurred) hinders their performance on the �rst191

day. This is a weakness in the present experimental design.192

All models underestimate the number of events triggered by the three large quakes that193

followed Dar�eld. The STEP models and, more so, the CRS models, forecast a slower decay194

after the large shocks than is observed. We note that both CRS models tend to select high195

values of the aftershock duration ta (close to 27 yrs, the upper end of the parameter search196

range): lower ta values, which would give a faster decay, give a worse �t during the inversion197

period and are not selected. CRS-oop severely overestimates the number of shocks after the198

Dar�eld earthquake, and it does not predict any aftershocks of the last mainshock: this is199

because the model only considers stress sources from events above a user-de�ned minimum200

magnitude, which was set to a value 5.95 (greater than the last large shock's magnitude201

M5.9). The use of a prede�ned �mainshock� magnitude has been eliminated in later versions202

of the code (Cattania and Khalid , 2016).203

The ETAS models match the temporal evolution most closely. They forecast identical204

numbers because they di�er only in their spatial densities. Their success is a result of an205

Omori p-value p > 1 (one of the models' free parameters) and a rather high α value, which206

reduces the relative importance of secondary triggering by smaller events.207
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Spatio-temporal performance208

The largest di�erences between model forecasts occur during the �rst day after each main-209

shock (e.g. Fig. 4). The expression of the Coulomb component appears remarkably di�erent210

between CRS-unc and the hybrid models ETAS-c� and STEP-c�, illustrating the sensitivity211

of these forecasts to the speci�c implementation of the hypothesis. ETAS-c� and STEP-c�212

display the more commonly expected Coulomb lobes of a predominantly strike-slip earth-213

quake, while CRS-unc displays much smoother lobes. For ETAS-c�, seismicity rates are214

linearly related to stress changes; STEP-c� considers only the sign of the stress change, and215

hence it presents sharp transitions along the nodes, not seen in ETAS-c� (Fig. 4); CRS216

models are strongly nonlinear in stress, due to the rate-state equations. Moreover, the dif-217

ferent treatment of uncertainties (such as receiver faults and subgrid variability) introduces218

additional di�erences. The overall pattern for model CRS-oop (not shown) is similar to219

CRS-unc. The four Coulomb-based models forecast the �rst day of seismicity much more220

successfully along the Dar�eld rupture than the three statistical models; ETAS-fault model221

forecasts the seismicity about as well, and indeed better after the �rst few days (Fig. 3).222

As already discussed, K2 and K3 do not use the mainshock magnitude to forecast after-223

shocks and therefore forecast very low seismicity on the �rst day (Fig. 4). On the second224

day, however, they forecast a spatial pattern similar to the ETAS model and consistent with225

observations. This highlights the ability of these models to adapt quickly once enough quakes226

have occurred (about 10 events).227

ETAS-based models are the most successful at reproducing the spatial distribution of228

seismicity with distance from the fault integrated over the entire time period (Fig. 5). Mod-229

els K2 and K3 underestimate seismicity, but they have an overall trend similar to the catalog,230

with most seismicity within cells centered at 0.5-10km from the mainshock fault. (Fig. 3).231

Both CRS-models underestimate seismicity rates within the �rst few kilometers from the232

fault, and overestimate rates beyond 5 km from the fault. ETAS-c� also tends to overesti-233

mate rates beyond 10 km from the mainshock faults, while ETAS and ETAS-fault predict a234

faster spatial decay. In contrast, the di�erence between STEP and STEP-c� is minimal.235
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236

Model ranking237

The STEP models and the hybrid models ETAS-c� and ETAS-fault generated the most238

informative forecasts across all three (1-day, 1-month, 1-year) forecast horizons (see Fig. 6,239

best-available data scenario). CRS-unc and CRS-oop performed slightly less well, but they240

were quite close to the hybrid models, and better than the simple ETAS model over longer241

forecast horizons. Nonetheless, the Coulomb component as implemented in STEP-c� a�ected242

its performance very slightly (lowering the information gain), and the ETAS-c� model did243

not provide additional skill over the ETAS-fault model. CRS-oop consistently performed244

slightly worse than CRS-unc, to some extent because CRS-oop did not use the last large245

shock as a stress source (see Fig. 3b).246

K2 and K3 presented the lowest information gains, because they performed poorly dur-247

ing the �rst time window after each mainshock (Fig. 4). Because the log-likelihood score248

is dominated by earthquake occurrences rather than empty bins, the slower-than-observed249

decay predicted by most models did not a�ect their ranking signi�cantly.250

251

Most models (except the STEP models, and the 1-month forecasts of K2 and K3) per-252

formed better when they were provided the best-available input data, due to either a more253

complete and accurate catalog (K2, K3 and ETAS) and also to better slip models (CRS and254

hybrid models). We found that even the CRS models were more sensitive to the quality of255

the catalog than to the slip models (�g. S10). Models ETAS-c� and ETAS-fault performed256

identically to the simple ETAS model in the near-real-time data scenario: in the absence of257

preliminary slip models (not provided until day 10), these models reverted to simple ETAS258

models, and the �rst 10 days heavily dominated the information gain. For a few models, the259

di�erence in information gain with best and preliminary data is smaller than 95% con�dence260

intervals (Fig. 6); and even with preliminary data, all models do signi�cantly better than261

the SUP model, as previously observed for Japanese sequences (Omi et al., 2016).262
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We can gain some insight into the model performance from the spatial distribution of263

information gains (Fig. 7). Near the Dar�eld fault, ETAS-c� was the best performing model,264

followed by the CRS models. ETAS-c� also better forecasted the few aftershocks to the265

north-west of the Dar�eld earthquake, but it overpredicted in the remainder of this enhanced266

Coulomb lobe (region (1)). ETAS performed worse than its hybrid counterparts, except for267

the aforementioned lobe of ETAS-c� and a small region near the epicenter of the Dar�eld268

earthquake (since its isotropic kernel leads concentrates the forecast for the �rst day in this269

area; region (2) in Fig. 7). STEP and STEP-c� present small di�erences in information270

gains, indicating that the Coulomb mask has only a subtle e�ect; this occurs because most271

of the events forecasts by the STEP model already occur in regions where stress changes272

resolved on OOPs are positive, so that the redistribution of events does not change the rates273

signi�cantly. We veri�ed that few points of negative information gains for STEP-c� fall into274

cells where STEP-c� calculated negative stress changes (region (4) in Fig. 7), near a node of275

the stress �eld; in contrast, ETAS-c� does not present a stress shadow and performed better276

than ETAS in the same cells. This can be due to two reasons: ETAS-c� considers stresses277

at multiple depth layers, and resolves it on a set of receiver faults; and since STEP-c� only278

considers the sign of the stress change, it overestimates its e�ects near nodes of the stress279

�eld, where the absolute value is low.280

While CRS-unc outperformed STEP along much of the Dar�eld fault, STEP better281

captured the Christchurch and Pegasus Bay sequences. As noted above, CRS-oop did not282

consider the Pegasus Bay M5.9 earthquake as a stress source, and it therefore predicted no283

aftershocks (Fig. 3a). Both CRS models did poorly at intermediate distances (& 10km from284

the mainshock faults), where higher seismicity rates were forecasted than observed. The285

good performance of the CRS models along the Dar�eld fault may seem surprising since286

the CRS models predicted lower near-fault rates than others (Fig. 5): this occured because287

the log-likelihood is space and time dependent, and CRS models predicted higher seismicity288

rates than others on the �rst day of the forecast, when about a third of the aftershocks took289

place.290
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Discussion and Conclusions291

The ranking of the models indicates that including physical information, such as fault ge-292

ometry or Coulomb stress changes, can lead to better overall model performance. This is293

particularly clear from the comparison ETAS to ETAS-c� and ETAS-fault, in agreement294

with a retrospective case study for California mainshocks (Bach and Hainzl , 2012).295

Coulomb rate-state models, and in particular CRS-unc, have a performance comparable296

to the hybrid models, in stark contrast to a previous retrospective evaluation (Woessner297

et al., 2011), and in agreement with a comparative study of seismicity in Northern Califor-298

nia (Segou et al., 2013). This result indicates that when resolving Coulomb stresses in more299

detail, by using an internally re�ned grid and including uncertainties and secondary stress300

sources, the overall performance of physics-based models greatly improves. On the other301

hand, their spatial and temporal �t indicate that some aspects of the triggering mechanism302

are not yet captured, as discussed below.303

304

Most of the ETAS-based models (ETAS, ETAS-fault and STEP) prescribe a functional305

form for the spatial decay of seismicity from the mainshock sources (a power law), and they306

reproduce the observed decay reasonably well. The inclusion of Coulomb stress changes in307

ETAS-c� leads to overestimation of o�-fault seismicity, analogous to the CRS models. STEP-308

c�, on the other hand, only considers the sign of the stress change and therefore preserves the309

power-law decay prescribed by STEP, so that the two models exhibit a similar decay (Fig. 5).310

Models K2 and K3, which estimate the spatial distribution directly from the catalog itself,311

also provide a good �t when accounting for the fact that rates are underestimated everywhere312

due to the lack of information on the �rst day.313

A major simpli�cation in the CRS models was to assume spatially uniform background314

rate. With this assumption, the model does not distinguish between areas with fault struc-315

tures capable of hosting seismicity, and areas without pre-existing faults, leading to over-316

estimation in the far-�eld. Moreover, in the rate-state formulation, weakly stressed regions317

contribute to seismicity later in the sequence (Dieterich, 1994; Helmstetter and Shaw , 2006),318
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so that assuming a uniform background rate leads to a slower decay (Cattania et al., 2015),319

consistent with Fig. 3. One of the models submitted for testing (electronic supplement) is320

a variation of CRS-unc, including heterogeneous background rate derived from smoothed321

seismicity (Helmstetter et al., 2007). However, this model has a poorer performance than322

CRS-unc, because before the Dar�eld earthquake the seismic activity was dominated by the323

Alpine fault system, with relative little seismicity in the area of the Dar�eld-Canterbury324

sequence (see model K2 in Fig. 4, �rst day). Estimating the spatially variable background325

seismicity rate, especially when the mainshock hits relatively quiescent regions, remains one326

of the challenges of Coulomb rate-state models (e.g. Bhloscaidh et al., 2014; Cocco et al.,327

2010). Another challenging aspect in modeling Coulomb stress triggering is the heterogene-328

ity in stress, especially in the near �eld. In addition to the variable orientation of receiver329

faults, a source of stress heterogeneity is the small scale variability of seismic slip, gener-330

ating locally high stresses on the fault plane and seismicity within the rupture area, where331

the average stress is negative (Helmstetter et al., 2007). We note that considering multiple332

fault orientations has a similar e�ect in terms of stress shadow reduction (Cattania et al.,333

2014), leading to reasonable information gains even near the mainshock faults (Fig. 6); how-334

ever, underestimation of near-�eld stresses may contribute to the overall undererstimation335

of seismicity in these regions (Fig. 5).336

The better performance of CRS-unc over CRS-oop is consistent with previous stud-337

ies (Cattania et al., 2014, 2015), and was due to the inclusion of secondary triggering and338

uncertainties due to receiver fault orientation (for a comparison with models including only339

one of these aspects, see electronic supplement). The use of OOPs instead of a �xed re-340

ceiver fault typically leads to a better performance in the near �eld and short time after the341

mainshock (e.g. Hainzl et al., 2009; Woessner et al., 2011; Segou et al., 2013), since they can342

reproduce high rates near the mainshock. Here we �nd that model CRS-unc has a better343

performance than CRS-oop across all temporal and spatial scales (Fig. 3, 5). This result344

suggests that using known information on the local fault geometry (from focal planes, as345

done here; or from mapped faults, when available) may be the optimal forecasting strategy,346
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as long as the variability of fault orientations is also modeled.347

We note that CRS-oop has better scores, relative to statistical models, than a similar348

model tested in the Landers retrospective experiment (Woessner et al., 2011). This is most349

likely due to the use of a re�ned grid for Coulomb stress calculations. Considering multiple350

depth layers, for example, accounts for the fact that stress changes (resolved on the mainshock351

fault plane) are negative within the rupture area and positive above and below it; therefore,352

calculating stresses at a single intermediate depth will likely result in underestimation of353

on-fault rates. Since we did not test a CRS model without grid re�nement, we can not354

directly measure the improvement due to this aspect. An indirect test, however, comes from355

the study by Steacy et al. (2014), who compared STEP, STEP-c� and a classic CRS model356

(using OOPs, and no grid re�nement) for the Canterbury sequence. While the di�erent time357

window and target magnitude prevent us from comparing information gains exactly, we note358

that the overall performance of the CRS model was signi�cantly lower than the STEP model,359

with a di�erence in information gains per event of about 2 − 3. The relative performance360

between STEP and STEP-c�, on the other hand, is close to what we �nd here: a small361

di�erence in information gain per event (< 0.1), with the STEP model performing slightly362

better.363

ETAS-c� shares certain aspects of model implementation with CRS-unc: vertical grid364

re�nement and consideration of receiver fault variability (even though the set of receiver365

faults was di�erent; see Electronic Supplement). The improvement of ETAS over ETAS-c�,366

in contrast with models STEP-c� and STEP, con�rms that these aspects have a �rst-order367

e�ect on information gains.368

369

The relatively good performance of CRS models is encouraging in terms of our physical370

understanding of earthquake triggering. Like earlier versions (Woessner et al., 2011), these371

models are based on two widely accepted concepts: that aftershocks are mainly caused by372

static stress changes, and that time-dependence of their nucleation is controlled by rate-state373

friction (Dieterich, 1994). The drawback of physical models is that several of the quantities374
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involved in Coulomb stress calculations and rate-state seismicity evolution are not known375

precisely. The improvement in performance compared to earlier studies suggests that the376

main issues with physics-based models was not in the fundamental process but rather in377

speci�c details of model implementation.378

379

There are still multiple ways in how physical models can be re�ned: for example, we380

identi�ed the spatial dependence of background seismicity as a particularly challenging as-381

pect. Other improvements such as the inclusion of aseismic stresses or consideration of the382

spatial variability in receiver fault orientations can in the future be tested in the context383

of CSEP. Another important question to address is the practical use of these models in the384

context of operational earthquake forecasting: we note that currently, hybrid models with a385

similar performance require less computation time, making them more suitable for real-time386

applications.387
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Table 1: Overview of data sets.

data type use features
Geonet-Cat catalog target data/model input (mode 1/2) M ≥ 3.95

Preliminary-Cat catalog model input (mode 3) Captured by NZ CSEP Testing Center
Best-Slip slip models model input (mode 1/2) Beaven et al. 2012

Preliminary-Slip slip models model input (mode 3) Holden et al. 2011 & personal comm.
Focal Mechanisms focal mechanisms model input (mode 1-3) GeoNet

Table 2: Overview of models participating in the test with reference whether or not they
use the Gutenberg-Richter distribution (GR), the Omori-Utsu decay function (OU), an ex-
ponential productivity function (N(M)), fault information (fault), Coulomb Failure Stress
(CFS), rate- and state-dependent frictional response (RS), or focal mechanisms (FM).

empirical relations fault information & physics
index model name GR OU N(M) Fault CFS RS FM reference
0 SUP x Rhoades et al, 2018, this issue
1 K2 x Helmstetter and Werner (2014)
2 K3 Helmstetter and Werner (2014)
3 ETAS x x x Ogata (1988)
4 ETAS-fault x x x x Bach and Hainzl (2012)
5 ETAS-c� x x x x Bach and Hainzl (2012)
6 STEP x x x x Gerstenberger et al. (2005)
7 STEP-c� x x x x x Steacy et al. (2014)
8 CRS-oop x x x Cattania et al. (2014)
9 CRS-unc x x x x Cattania et al. (2014)
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Figure 1: (a) Magnitude vs. time from the reviewed GeoNet catalog. The di�erent colors
indicate the sequences of events with M ≥ 5.9. (b) Map view of the seismic sequence,
colorcoded in agreement with the top panel. Fault lines are from the New Zealand Active
Fault Database, and the thicker line is the Greendale fault. (c) map of new Zealand, with
the boxes marking the forecast area (larger box) and the map on the left.
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Figure 2: Cumulative number of M ≥ 3.95 events in the reviewed reviewed catalog and
real time data. For the real time data, we report the total number of events in the catalog
used on each day: as the catalog is revised, the number of events may vary because the
catalog becomes more complete, or because magnitudes are revised. Magnitude were initially
reported asML, and later replaced byMw; sinceML were systematically overestimated until
the end of 2011, the number of events in the real time catalog can exceed the reviewed
catalog.
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Figure 3: (a) Forecasted and observed temporal evolution. Shaded areas indicate Poissonian
errors; vertical lines are events with M ≥ 5.9. (b) Cumulative di�erence in log-likelihood
with respect to the SUP model, obtained from the sum of the log-likelihood calculated for
(space, time, magnitude) bins.

25



Figure 4: Examples of 1-day forecasts for selected models. The top row is the forecast
starting at the time of the Dar�eld mainshock, and the second line forecasts are the second
day: the di�erence highlights how each model incorporates information from the early part
of the sequence. The dots are the observed events in each time period.
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Figure 5: (a) Cumulative number of earthquakes as a function of distance from the nearest
mainshocks fault trace, based on the location of the cell center. For consistency, the catalog
was also binned into the forecast cells, so that distances does not re�ect exact earthquake
locations but rather the cell to which they are assigned. (b) cumulative di�erence in log-
likelihood from the SUP forecast, obtained from the sum of the log-likelihood calculated
for (space, time, magnitude) bins. The vertical lines indicate the percentage of earthquakes
within cells at a given distance from the faults.
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Figure 6: Information gain per earthquake relative to the SUP model, for real time and best
available data. Each panel shows a forecast horizon. Error bars represent 95% con�dence
levels from a paired student-T test (Rhoades et al., 2011).
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Figure 7: Map of log-likelihood di�erences between pairs of models, for a subset of the model
domain near the mainshock faults. The color indicates ΣnLLn,i − ΣnLLn,j, where i and j
are the row and column index, and the summation is performed over all time steps and
magnitude bins. Note that the values are capped at ±3 for clarity. Positive values along a
row indicate good model performance, and along a column they indicate poor performance.
The ellipses mark the following features, discussed in the main text: (1) a Coulomb stress
lobe; (2) the area near the M7.2 Dar�eld epicenter; (3) the aftershocks of December 23th

M5.9 Pegasus Bay earthquake; (4) few cells near a node of the Coulomb stress �eld, where
STEP-c� predicts a stress shadow.
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