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Abstract

State of the art reservoir monitoring delivers numerous property data with high resolution. Especially the consis-
tent interpretation of pressure data with different geophysical methods requires multi-physical modelling and inversion
workflows. Such a workflow is developed based on the reservoir monitoring concept of the Ketzin pilot site for CO2

storage, Germany. The workflow consists of three physical models, (i) a single phase hydraulic model, (ii) a multi-
phase CO2 migration model and (iii) a geoelectrical model. Calibration is carried out to match observation data groups
hydraulic pressure, CO2 pressure, CO2 arrival time and geoelectrical cross-hole observations. Calibration parameters
are spatially distributed hydraulic permeability and porosity, compressibility, the relative permeability function and the
geoelectrical saturation exponent. Geoelectrical measurements with low coverage that can not be inverted with tradi-
tional methods could be included, since the multiphysical reservoir model acts as physical regularisation. The indirect
nature of geophysical data is overcome by implementation of petrophysical relations between permeability and porosity
and between CO2 saturation and electrical resistivity. Stability against field data is increased by reducing the impact
of structural noise through preprocessing the observation data. Stability against the overparameterisation is added by
Tikhonov regularisation and singular value decomposition, the latter combined with super parameter definition reducing
the problem dimensions and simulation time by three quarters. A synthetic case study demonstrates that the model re-
solves the spatial permeability and identifies the petrophysical relation between CO2 saturation and electrical resistivity.
The weighting scheme balances different observation data groups and measurement intervals. The model to measure-
ment misfit is reduced proprotionally for all observation data groups, while the geoelectrical data are most difficult to
match.

Keywords: Multi-physical, Hydrogeophysical, Inverse reservoir modelling, Weighting, Pumping tests, Pressure,
Geoelectrical monitoring, Barrier, Mulit-layer CO2 storage, Ketzin

1. Introduction

A thorough comprehension of a geological reservoir
and of changes within the reservoir is required to ensure
safe and reliable storage and is demanded by regulating
authorities (Jenkins et al., 2015). Numerical flow and
transport simulations support reservoir comprehension and
provide predictive capabilities to accompany operational
decisions. Traditionally, flow model calibration is per-
formed in the frame of a manual history matching process,
where selected parameters are adjusted by the experienced
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modeller to match corresponding field observations. Sev-
eral CO2 storage related field studies have demonstrated
that manual history matching produces good fits of arrival
times (e.g. Kempka et al., 2010) and reservoir pressure
(e.g. Lengler et al., 2010; Pamukcu et al., 2011b; Stran-
dli et al., 2014). However, manual history matching ap-
proaches are time-consuming, not suitable for large num-
bers of parameters, and poor in the assessment of uncer-
tainty (Oliver and Chen, 2010). Inverse reservoir flow
models overcome these problems and are therefore ap-
plied for oil reservoirs (e.g. Floris et al., 2001; Li et al.,
2003; Seiler et al., 2009) but rarely for CO2 storage (Class
et al., 2015; Doetsch et al., 2013).

State of the art reservoir monitoring is not any more
based on pressure data only but extended by an increas-
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ing number of geophysical methods. Multi-physical mod-
elling and inversion concepts are required to generate data
consistent as well as plausible reservoir realisations. Elec-
trical resistivity tomography (ERT) is a well established
method in near-surface geophysics (Binley and Kemna,
2005; Loke et al., 2013) and has also received consid-
eration as a permanent reservoir monitoring tool due to
its high sensitivity to fluid displacement processes with
comparably high spatial and temporal resolution (Ramirez
et al., 2003; Christensen et al., 2006).

To this end, several near-surface applications in the
emerging field of hydrogeophysics (Binley et al., 2015)
have successfully demonstrated the inclusion of ERT data
within coupled hydrogeophysical inversion frameworks to
directly estimate hydrogeological parameters of interest
(e.g. Hinnell et al., 2010; Kowalsky et al., 2011; Hercken-
rath et al., 2013; Camporese et al., 2015). Since, to date,
only three CO2 storage sites are equipped with permanent
electrode installations worldwide, namely the Cranfield
site in Mississippi, USA (Carrigan et al., 2013), the Ket-
zin site in Germany (Schmidt-Hattenberger et al., 2016),
and the Hontomín site in Spain (Vilamajó et al., 2013), we
could not find previous studies, where geoelectrical data
are directly used to constrain CO2 reservoir simulations.

Petrophysical relations allow to transform geoelectri-
cal tomograms into distributions of CO2 saturation, al-
though this process is known to be associated with inversion-
related uncertainties (Yang et al., 2014). Direct multi-
physical integration requires high quality data and real-
istic model assumptions otherwise the petrophysical re-
lations may be transferred into unrealistic model param-
eters. The problem gains importance with the number
of integrated datasets. On the other hand, multi-physical
modeling has the methodological advantage that no min-
imum geoelctrical coverage is required since the multi-
phase reservoir model provides an effective regularisation.

It is not satisfying that the reservoir model and each
geophysical dataset are inverted separately and compared,
again manually, at a later stage (Chadwick and Noy, 2015;
Lüth et al., 2015; Zhu et al., 2015). A notable exception is
the work of Doetsch et al. (2013). The authors invert ERT
data to obtain a time-dependent resistivity distribution. In
a second inversion step, the flow model is calibrated using
gas tracer data and the previously obtained resistivity dis-
tribution. The intermediate step of a conventional resistiv-
ity inversion was introduced because the fully coupled in-
version of ERT measurements impaired convergence, pos-
sibly due to data quality limitations or structural noise that
is inherent to a model representation of field conditions.
Doetsch et al. (2013) conclude that fully coupled reser-

voir model inversions including time-lapse ERT data for
will be an important follow-up to their work. Rinaldi and
Rutqvist (2013) already run a fully coupled multi-physical
model combining a CO2 flow model with geomechanical
deformation but calibrate it to ground uplift data only. In
the present paper a multi-physical framework is developed
in which multiple physical models are inverted fully cou-
pled (i.e. without manual result comparison or intermedi-
ate inversion steps).

The framework consists of three components: (i) the
multi-physical reservoir model that generates simulated
values for corresponding measurements, (ii) the constrain-
ing conditions that are defined based on field measure-
ments (iii) the inversion framework that minimises the
misfit between simulated values and field measurements.

The term hydrogeophysical modelling is often used
in near surface applications that are coupled to hydraulic
models. Due to the greater depth and the integration of a
multiphase reservoir model in the present work, we prefer
to use the term multi-physical reservoir modelling as it
appears to be more intuitive to geologists and the CO2

community.
The first part of this two-part paper describes the multi-

physical workflow that is developed with emphasis to sta-
bility, especially with regard to typical field data errors. It
includes the petrophysical coupling concept, data pretreat-
ment with reduction of structural noise, objective func-
tion weighting, and the reduced order inversion concept.
A synthetic case study following Ketzin operation, mea-
surement structure and well based stratigraphy is inverted
to assess convergence behaviour and parameter identifia-
bility. The second part of the paper comprises the case
study on field data, in which the workflow is applied to
the multi-physical dataset of the Ketzin test site for CO2

storage and conclusions on the reservoir is drawn (Wagner
and Wiese, 2018, this issue).

2. Multi-physical reservoir model

The integrated modelling approach developed and ap-
plied in this study is depicted in Figure 1. Starting point
of the workflow is a conceptual geological model based on
Beutler (2002) that consists of a high permeable sandstone
facies and a low permeable mudstone facies. The model
permeability is layerwise isotropic as wellbore measure-
ments suggest only weak vertical permeability constrasts
(Norden et al., 2010). Further, vertical anisotropy is in-
sensitive as the flow direction is predominantly horizontal.
The initial flow and migration of CO2 is simulated with a
homogeneous permeability for each of both facies. The
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hydraulic simulation relies only on the permeability field
and generates hydraulic pressure. The multiphase simu-
lation additionally requires porosity, relative permeability
and capillary pressure and generates the CO2 saturation
distribution over time and generates arrival times and CO2

pressure. The flow model and the multiphase model share
the same model grid, permeability and wells. The geo-
electrical simulation includes a petrophysical transforma-
tion of the CO2 saturation into reservoir resistivity and
solves for the measured changes in apparent resistivity
with different electrode configurations. Four types of data
are generated by the three models, compared to their cor-
responding observations, weighted and transformed to the
objective function. The regularisation is calculated based
on the deviation from the initial parameter field (no con-
nection arrow shown in Figure 1) and included as a fifth
type of data to the objective function.

2.1. Geological model

The geological model represents the Stuttgart Forma-
tion at the Ketzin anticline (Figure 2). The models hori-
zontal extent is 5 x 5 km and the thickness is 90 m. Due
to the anticlinal shape, the depth ranges between 554 m
and 956 m below ground level. The model consists of
two facies types, a sandstone facies with high hydraulic
permeability and potentially good reservoir properties and
a mudstone facies with poor reservoir properties (Förster
et al., 2006) with permeability smaller than 1 mD. The fa-
cies distribution is simplified from a multi-layered fluvial
channel system (Norden et al., 2010) to four horizontal
layers with spatially variable permeability. The geologi-
cal model follows the shape of the anticline and honours
the facies found as intersected by the Ketzin wells.

In wells Ktzi200 and Ktzi201, four sandstone layers
are present. Layers 1 and 2 (Figure 2) are the main reser-
voir layers and have a model thickness of 6 m each. These
are separated by a 1.25 m thick anhydritic layer (layer
Anh). To the north, in Ktzi202, only one sandstone layer
is found. Stratigraphically, it is located at the mean depth
of layers 1 and 2 and is hydraulically connected to layer
2. The interface between both regions is assumed to be
curve-shaped as depicted in Figure 2. Below layer 2 and
2a, a mudstone facies of about 9 m is present followed
by another sandstone layer with a model thickness of 6 m
(layer 3). The lowest sandstone layer (layer 4) has a model
thickness of 2 m and is located 10 m above the lower model
boundary.

The mean effective permeability is derived from field
measurements of horizontal permeability at different ver-

tical positions (Norden et al., 2010) at the wellbores. These
are used to constrain the mean horizontal permeability at
the wellbores. The constraint is introduced via a ratio
between the different wellbores instead of native obser-
vations because previous reservoir models show that the
measured wellbore permeabilities are about one order of
magnitude higher than the effective reservoir permeabil-
ities (Wiese et al., 2010; Lengler et al., 2010; Kempka
et al., 2010; Pamukcu et al., 2011a). The ratio for layers
3 and 4 are further reduced to one third of the measured
value since both layers contain more clay than layers 1
and 2 and recent measurements suggest the permeability
discrepancy occurs because the impact of the clay con-
tent is underestimated in the permeability measurements
((Zemke and Liebscher, 2017) and Norden, personal com-
munication).

The underlying assumption that leads to using ratios
is that within each layer the clay content affects perme-
abilities in a similar manner. The reduced permeability
in layer 3 and 4 is reasonable since the simulated CO2

content would be much higher than observed PNG mea-
surements in both observation wells Ktzi200 and Ktzi202
(Baumann et al., 2014).

2.2. Porosity and permeability characteristics

The geological context of the sandstone facies sug-
gests a maximum permeability of 1000 mD (Norden and
Frykman, 2013). The porosity is coupled to permeability
using one empirical function for each facies from Fig. 15
in Norden and Frykman (2013). The main permeability
range of the sandstone with 10, 100 and 1000 mD cor-
responds to porosities of 14, 21 and 31%, respectively.
However, the correlation coefficient R2 is only 0.66 and
0.59 for sandstone and mudstone wherefore for a given
porosity the permeability may vary by up to one and two
orders of magnitude for sandstone and mudstone, respec-
tively (Norden and Frykman, 2013).

The model grid discretisation is 10 x 10 m in horizon-
tal direction in the near-wellbore area, gradually increas-
ing to 50 x 50 m close to the boundary. The sandstone lay-
ers 1, 2, 2a and 3 have a vertical discretisation of 1 m,
layer 4 has a vertical discretisation of 2 m. The observa-
tion wells are screened at different layers. Well Ktzi200 is
screened to layers 1, 2, and 4, well Ktzi201 is screened to
layers 1, 2, and 3, and well Ktzi202 is screened to layers
2a and 3. The field generatation interpolates pilot points
to permeability and porosity distributions using linear ra-
dial basis functions, that allow for distributions with lo-
cal maxima and minima that are not necessarily located
at the pilot point positions. The fields are generated on

Originally published by Elsevier Ltd. under https://doi.org/10.1016/j.ijggc.2018.05.013 Page 3

https://doi.org/10.1016/j.ijggc.2018.05.013


Wiese et al. (2018) Fully Coupled Inversion on a Multi-Physical Reservoir Model - Part I

Constraining conditions

Inversion

(PEST)

Multi-physical reservoir model

Geological 

facies model

Porosity

CO2 simulation

(E300)
Hydraulic simulation

(E100)

Geoelectrical

simulation

(pyGIMLi)

CO2

saturation

Permeability
Parameter 

upgrade

Hyd. pressure CO2 pressure CO2 arrival App. resistivity
Regularisation,

Permeability ratio

Objective

function

Field generation

(PLPROC)

Singular value

decomposed

Jacobi matrix

Hyd. pressure CO2 pressure CO2 arrival App. resistivity

Pilot point grid Numerical grid
Model parameters

Figure 1: Main workflow components illustrating the integrated multi-physical modelling and inversion approach. Solid arrows indicate data
transfer and transformation, double lined arrows indicate petrophysical conversions. Round cornered field indicate user supplied input, rectangles
indicate a operations, hexagons indicate parameter fields on the eclipse grid and parallelograms indicate model generated time series. Blue, yellow
and red fields show hydraulic, CO2 and geoelectrical data, respectively.

a cartesian grid that forms the computational grid for the
hydraulic and the CO2 migration model. The geoelectri-
cal simulation is carried out on an unstructured tetrahedral
grid.

2.3. Hydraulic model

The reservoir has a temperature of 34◦ C and a brine
salinity of 230 g/l (Würdemann et al., 2010). Pressure-
volume-temperature properties of CO2 and brine, includ-
ing solubility of CO2 in brine, are calculated based on
the equation of state by Peng and Robinson (1976). The
upper and lower model facies are representing no-flow
boundaries, in horizontal direction lateral flow is facil-
itated by application of a pore volume multiplier. Hy-
draulic simulation is based on a subset of the CO2 mi-
gration model formed by the same model grid, boundary
conditions, intrinsic permeability, brine viscosity. Simu-
lations are carried out with E100, a blackoil reservoir sim-
ulator (Schlumberger, 2015).

2.4. CO2 migration model

CO2 migration is simulated with the compositional
reservoir simulator E300 (Schlumberger, 2015). Relative
permeabilities are based on unpublished core measure-
ments as used in previous models (Lengler et al., 2010;

Kempka et al., 2010) and parameterised using a Brooks-
Corey formulation

κr,i =

(
si − sr,i

1− sr,i − sr,j

)ni
Ci (1)

with κr,i as the relative permeability, si as saturation, sr,i
as residual saturation, respectively. The equation is ap-
plied for both, aqueos and gaseous phases with i as the
actual phase an j the other phase, respectively.

The constant Ci scales the endpoint for full saturation
of the respective phase. Theoretically this should be 1, but
is often lower in simulations as fully saturated non wetting
conditions are typically not reached.

The capillary pressure follows a so called lambda for-
mulation

pc = pe

(
sw − sr,w
1− sr,w

)−1
λ

(2)

with pc as the capillary pressure, pe as the capillary entry
pressure, sw as wetting phase saturation, sr,w as residual
wetting phase saturation. The pore size distribution pa-
rameter λ determines the shape of the capillary pressure
curve. Furthermore, Leverett scaling (Leverett, 1941) of
capillary pressure is applied to prevent unphysical CO2

migration into regions of low permeability. Equations 1
and 2 are parameterised as listed in Table 1.
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Figure 2: (a) Shape and facies distribution of the reservoir model with a horizontal extent of 5 x 5 km and a model thickness of 90 m. The upper
layer consisting of mudstone facies and the southwestern part of the model are transparent. The yellow colour indicates the facies with potentially
good reservoir properties predominantly formed by sandstone. The brown colour indicates the facies with poor reservoir properties consisting
predominantly of mudstone. (b) Zoomed section of the near-well region. Names in circles indicate different lithological units with layer "1" and
"2" as main reservoir layers, divided by the anhydrite layer "Anh". The upper layer is not present in the northern model part, the continuation of
layer "2" there is called layer "2a". Layer "3" and "4" are minor reservoir layers with lower permeability. Wells are indicated by purple vertical
lines.

Originally published by Elsevier Ltd. under https://doi.org/10.1016/j.ijggc.2018.05.013 Page 5

https://doi.org/10.1016/j.ijggc.2018.05.013


Wiese et al. (2018) Fully Coupled Inversion on a Multi-Physical Reservoir Model - Part I

Table 1: Observed and initial pore function parameters.

Symbol sr,w sr,g pe λ nw ng

Value 0.25 0.1 0.1 bar 1.01161 5 1.2

The CO2 migration model generates the spatiotempo-
ral distribution of CO2 that serves as the input for the geo-
electrical modelling.

2.5. Geoelectrical model

During each iteration of the workflow described in
Figure 1, several runs of the CO2 simulation are carried
out, which provide spatial CO2 distributions at each timestep.
With a salinity equivalent of 220 g l−1 NaCl (Baumann
et al., 2014), the electrolytic conduction exerts the dom-
inant effect on the electrical medium properties and the
influence of pressure and surface conduction can be ne-
glected. Reservoir temperature is constant as CO2 tem-
perature equilibrates already in the injection well (Wiese,
2014). Therefore, the 2nd empirical relation by Archie
(1942) is applied.

ρt
ρ0

=
1

Sw(t)n
=

1

(1− SCO2(t))n
(3)

Equation 3 assumes a three-phase system with an insu-
lating rock matrix and a mixed pore fluid of conductive
brine and gaseous, resistive CO2 (Sw + SCO2 = 1) and
directly links changes in saturation to changes in the elec-
trical bulk resistivity of the medium ρ(t)

ρ(0) under considera-
tion of a saturation exponent n.

A simplified three layer model derived from induction
logs (Kiessling et al., 2010) is used to generate the base-
line ρ0. This baseline model is laterally extrapolated to the
far field. The variable near field resistivity distributions
at each timestep ρ(x, y, z, t) are calculated from the CO2

saturations and interpolated to a refined tetrahedral mesh
used to solve the geoelectrical forward problem yielding
apparent resistivity ratios for all measurement configura-
tions as a function of time. For the sake of computa-
tional efficiency, all modelled timesteps are solved in par-
allel distributed over 64 CPUs using the flexible interface
of the Geophysical Inversion and modelling Library (py-
GIMLi) by Rücker et al. (2017). The geoelectrical for-
ward modelling operator uses unstructured discretisations
and quadratic shape functions (Rücker et al., 2006).

Rather than fixing the exponent n to a specific value,
the limited petrophysical data available are used to de-
fine lower and upper bounds and calibrate n during the
coupled inversion. A common value for sandstones of

n = 2.0 is used as the initial value and n may vary be-
tween 1.6 and 2.6 which is a typical range for saturation
exponents (Tiab and Donaldson, 2016) and also the range
of Ketzin cores (Kummerow and Spangenberg (2011) and
(Wagner and Wiese, 2018, this issue)). While this allows
some flexibility to the electrical reservoir properties, the
assumption of a constant saturation exponent throughout
the entire reservoir remains. Geoelectrical heterogeneity
is hence forced to be represented by the spatially vary-
ing distribution of gaseous CO2. The saturation exponent
is the only petrophysical parameter that is calibrated dur-
ing the inversion. (Wagner and Wiese, 2018, this issue)
provide a detailed discussion on the saturation-dependent
electrical properties for the Ketzin reservoir.

3. Fully-coupled inversion

3.1. Model parameterisation

The model is parameterised with four groups of pa-
rameters describing different physical processes. The main
parameter group is the intrinsic permeability which is cou-
pled to the porosity (Figure 1). It is spatially defined by pi-
lot points (e.g. Certes and de Marsily, 1991). That means
the permeability is estimated at selected discrete points in
space and interpolated to the simulation grid, here based
on linear radial basis functions. This approach is preferred
over classical zonation, as it avoids sharp parameter tran-
sitions and results in a smooth permeability distribution,
which is more likely to approximate the reservoir geol-
ogy.

Figure 3 shows the distribution of pilot points within
each layer of the underlying geological model (Figure 2).

The density of the pilot points is adjusted to the ex-
pected information density, i.e. high density close to the
wells and decreasing density towards the model bound-
aries. The number of parameters is reduced in the lower
sandstone layers (layers 3 and 4 in Figure 2), which play
a minor role for CO2 migration. The horizontal and ver-
tical model grid resolution of permeability and porosity
is finer than the distance between the observation wells
(50 to 112 m) and the vertical electrode spacing (typically
9 m). Generally, pilot points are set very dense such that
the model is overparameterised to allow to determine the
sensitive areas during the inversion.

The permeability of pilot points at the wellbore loca-
tions is constrained to a fixed ratio honouring borehole
observations from field and laboratory measurements (see
section subsection 2.1). Since the absolute value of these
borehole measurements is subject of discussion (subsec-
tion 2.1) only the permeability ratio between the boreholes
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Figure 3: Layer-wise parameter resolution of the lithological units shown in Figure 2. Black dots indicate spatially distributed pilot points and
white circles indicate well perforations. Grey shaded areas indicate non-existence of the respective layer. (a) The reservoir layer 1 is discretised
with 158 pilot points partitioned to an upper and a lower part with 79 points each. (b) The anhydrite layer is discretised by 25 pilot points. (c) The
reservoir layer 2 is discretised with 244 pilot points. Analogue to (a) it is partitioned to an upper and a lower part. (d+e) The reservoir layers 3 and
4 consist of 15 pilot points each. The pilotpoints close to the boundaries are tied to each other. The lower row (f-j) represents zoomed sections of
the upper row (a-e).

is constrained. This ensures that similar geology is popu-
lated with similar permeability. All pilot points are subject
to a Tikhonov regularisation (layer 1 and 2 with 100 mD,
layer 3 with 30 md, layer 4 with 10 mD. These values
are plausible considering pumping tests, previous models,
flowthrough and NMR measurements. See also the dis-
cussion in subsection 2.1. The parameters rock compress-
ibility, pore volume multiplier of the lateral boundaries
and saturation exponent are inverted with a single value
implying a homogeneous distribution.

3.2. Data pretreatment

The aim of data pretreatment is to enhance the mod-
els ability to match the signal in the input data and reduce
the impact of structural noise. The latter always arises
since the model is an imperferct representation of real-
ity and may be increased by potential measurement er-
rors. As shown in Figure 1, four different datasets serve
as the input to the coupled inversion, specifically, the input
dataset consists of 9 hydraulic time series, one CO2 pres-
sure time series, 2 CO2 arrival times (for wells Ktzi200
and Ktzi202), and 1008 electrical resistivity time series.
The measured data are pretreated and become model ob-
servations.

3.2.1. Hydraulic data
The data are converted to the differential pressure ∆pk

with respect to the reference level of each observation se-
ries

∆pk = mk −mref (4)

with mk as measured value and mref as the initial pres-
sure. It is good practice for pumping test analysis to use
the differential pressure (also called drawdown) relative
to initial pressure level. Aside from technical reasons this
procedure orthogonalises out measurement errors of the
reference level. The model is forced to follow the dynamic
which prevents a pseudo fit through the moving average of
observed values (Doherty and Welter, 2010).

3.2.2. CO2 pressure
Observed and simulated data are converted to long

and short-term differential pressure. The long term dif-
ferential pressure is calculated with respect to the initial
CO2 pressure, the short-term differences are calculated
between each consecutive interval of equal injection rate.
Doherty and Welter (2010) and Doherty (2015) recom-
mend using differences within datasets for cancelling out
structural noise. The current procedure separates the phys-
ical processes of long term reservoir pressure build up and
short-term near well pressure dynamic due a well skin,
which frequently occurs and may have many different rea-
sons. This parameterisation is analogue to applying hy-
draulic drawdown. The model is forced to follow the dy-
namic which prevents a pseudo fit through the moving av-
erage of observed values (Doherty and Welter, 2010).

3.2.3. CO2 arrival times
Although the reservoir is multi layered, only the first

arrival is available for each well. The values are directly
calibrated without preconditioning. However, arrival times
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require special attention for weighting (section 3.5), may
determine the model runtime (section 3.4) may prevent
convergence if non-arrival model runs occur.

3.2.4. Geoelectrical data
For reducing structural noise, resistivities measured at

a given point in time ρ(t) are normalised with its corre-
sponding baseline apparent resistivity ρ(t0) observed prior
to CO2 injection.

ρa(t) =
ρ(t)

ρ(t0)
(5)

The resulting time-series of apparent resistivity ratios serve
as input for the inversion. For the field application, geo-
electrical data requires additional pre-processing as dis-
cussed in Wagner and Wiese (2018, this issue).

3.3. Inversion approach

The model is overparameterised, with the consequence
that some parameters can be well defined by observation
data while others remain insensitive. To counterbalance
the deteriorating effect of insensitive parameters on the
inversion, both Tikhonov regularisation and truncated sin-
gular value decomposition (that provides also a certain
form of regularisation) are applied. The latter identifies
the sensitive principal components and the corresponding
super parameters based on the initial problem. By omit-
ting the insensitive components from the linear case, the
following nonlinear parameter estimation steps are sped
up by factor four in the present study. This effectively
reduces the dimension of overparameterised problems, as
parameters without linear independent information are ex-
pressed as a linear combination of the problem dimension
spanned by the super parameters. Tikhonov regularisation
(in this study applied as preferred value) ensures a mini-
mum error variance of the permeability set, i.e. that large
variations from the expected value occur only when neces-
sary to fit the observations. The observation contribution
φo and the regularisation contribution φr add up to the to-
tal objective function. The weighting wr is automatically
adjusted in each iteration such that parameters insensitive
to observation data receive a small weight through the reg-
ularisation to ensure that the numerical scheme remains
stable.

φ = φo + wrφr (6)

The applied inversion concept in this study is truncated
singular value decomposition in combination with pilot
points, following the work of Christensen and Doherty
(2008).

Let d be a vector of multi-physical observations and
let m be the model parameter vector. For the sake of a
simpler notation, it is further assumed that there exists a
linear relation between the two such that

d = Gm. (7)

Performing a singular value decomposition on G yields

G = USVT . (8)

The diagonal of matrix S holds the singular values of G
arranged from highest to lowest and U and V denote uni-
tary matrices formed by data and model eigenvectors, re-
spectively. Truncating the system by grouping the low and
zero singular values into a submatrix S2 and substitution
of G in Equation 7 leads to

d = U
(
S1 S2

)(VT
1

VT
2

)
m. (9)

Christensen and Doherty (2008) define a set of super pa-
rameters msup as

msup = VT
1 m. (10)

These super parameters represent a projection of the ac-
tual model parameters into the subspace spanned by the
orthogonal vectors in the columns of the VT

1 matrix. Su-
per parameters are factors through which parameter com-
binations corresponding to the chosen eigenvectors are
multiplied to obtain the actual model parameters (Chris-
tensen and Doherty, 2008). The distinct advantage here
is that the full Jacobian matrix has to be computed only
once, whereas later (finite-difference based) sensitivity cal-
culations are carried out for super parameters only. This
significantly reduces the number of required forward sim-
ulation runs. Fifty super parameters are sufficient to cap-
ture the complexity of the synthetic model in this study,
which effectively reduce the computational effort by a fac-
tor of four to five.

Estimates of the super parameters are computed as

msup
est = (S1U

TUS1)−1S1U
Td = S1

−1UTd. (11)

After solving the reduced inverse problem, actual esti-
mates of the model parameters at pilot point locations are
derived by multiplication with V1

mest = V1m
sup
est . (12)

The inversion procedure is terminated when the decrease
in the objective function stagnates, i.e. exhibits changes
below 3 % for at least three consecutive iterations. This
usually occurred after five to eight iterations.
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3.4. Technical aspects

Model convergence is crucially dependent on high qual-
ity of the derivatives. A thorough technical setup is essen-
tial to avoid corrupt derivatives which are, according to
our experience, the typical cause for poor convergence.
As parameters are typically varied by a single digit per-
cent range, the noise level should be significantly smaller
to avoid unphysical derivatives. The numerical accuracy
of the simulations has to be consistent for different model
runs and partially requires higher precision than for man-
ual simulations. We strongly recommend assuring the in-
tegrity of the derivatives by appropriate tests, e.g. visually
inspecting if certain parameters have unplausible values
or by use of the PEST tool JACTEST.

3.4.1. Time stepping
E300 is equipped with an automatic time stepping con-

trol, that adapts the time stepping to the individual prob-
lem. When model parameters are varied, the time stepping
algorithm may change the number and length of the inter-
vals with the effect that a numerical discontinuity com-
pared to the previous model run compromises the deriva-
tives. Therefore, the automatic time stepping was over-
ridden such that all derivative model runs for one Jaco-
bian matrix have identical time stepping, obtained through
a scheduled prior run. By setting convergence criteria
slightly tighter than the automatically chosen value for the
base run, it is ensured that there is no need for reducing
time steps later during the derivative runs. On the other
side, some convergence criteria, such as residuals during
linear and non linear iterations, could be modified to save
runtime. The solution is then validated with a final run
using Schlumberger recommended convergence criteria.

3.4.2. Arrival times
During model runtime a script monitors the CO2 sat-

uration in both observation wells and terminates model
execution after arrival in all wells. The drawback is that
the simulation time may vary by several orders of magni-
tude and can become very large. Traditionally the model
would be truncated at some period after the last observed
arrival and setting a virtual punishment term in case the
CO2 has not arrived within the simulation period. This is
avoided by increasing the injection rate to a high value
thirty days after the last observed arrival ensuring that
arrival occurs even under unfavourable conditions. This
procedure increases inversion stability through the gener-
ation of smooth derivatives and limits the runtime. As a
small restriction, the arrival times are only valid before the
rate increase.

3.4.3. Discrete boundaries
Many steps of data conversion are carried out using

tools from the PEST suite, batch and Python scripts. Also
these conversions need to be continuously differentiable
during the Jacobian calculation. For example the inverted
Brooks-Corey parameters necessarily have a tabular Eclipse
input format. To avoid gridding effects compromising the
derivative calculation, the tables are generated with La-
grangian intervals that are adapted to actual residual satu-
rations.

The maximum model grid permeability is limited to
1000 mD. It is implemented as a limiting condition dur-
ing the field generation, while the underlying pilot point
model parameters have an upper limit of 10000 mD thus
allowing to circumvent the deteriorating effects of inver-
sion parameters hitting their boundaries during a parame-
ter upgrade. Further technical aspects are described in the
PEST manual (Doherty, 2016).

3.5. Observation weighting
Multi-physical inversion is carried out with different

datasets. For multi-physical inversion it is vital to keep
the weighting well structured to normalise the different
data and in order to obtain a balanced set of observations.
Furthermore an intuitive modellers understanding is bene-
ficial to identify problematic data and estimate the contri-
bution of different datasets. Four types of observation data
are included; two types of pressure data, arrival times and
geoelectrical data. Each type comprises different number
of data time series e.g. 9 pressure observation series for
hydraulic tests, two CO2 arrival times, or 1008 geoelectri-
cal resistivity series. Each of these series then comprises a
number of individual observations. Each series may have
individual duration and amplitude, each individual obser-
vation may have different intervals from the previous and
the following.

The objective function components φo and φr from
Equation 6 are calculated as the sum of the weighted squared
residuals

φo,r =
n∑
i=1

(wi ri)
2. (13)

with n as the total number of observation/regularisation
values and ri is the residual defined as the difference be-
tween observed/regularised and simulated values. The in-
dividual weighting factors wi are calculated with a hierar-
chical approach

wi =
√
wtype

√
wseries wj (14)

The first component wtype determines the weight of
the data type (e.g. pressure or arrival time).
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The second component wseries accounts for the num-
ber of series within each data type and is calculated as

wseries =
1

nseries
(15)

The third component wj weights the individual obser-
vations within each series

wj =

√
∆tj∑m

k=1(yk − yref)2 ∆tk
(16)

with m as the number of observations in each series, y is
the observed value and yref is the reference observation
representing the undisturbed system state, e.g. as 0 for
drawdown (4) or 1 for apparent resistivity ratios.

The interval ∆t is the time for which each observa-
tion is representative and calculated from the observation
interval

∆tk =
tk+1 − tk−1

2
(17)

with tk+1 and tk−1 indicating the times of the following
and previous observation. For the first and last observa-
tions they become tk, respectively. Hydraulic and geo-
electrical observations are introduced as time series.

The arrival times and pressure are introduced as in-
dividual incidents with equal weight, whereby ∆t has an
arbitrary, identical value for all observations. While equa-
tion 16 yields an identical objective function contribution
for identical residuals, the arrival times should have higher
weight for lower magnitude of observed values to provide
an identical objective function contribution for the same
mismatch ratio, applying a modified wj as

wj =

√
∆tj

|yk − yref |
∑m

k=1 ∆tk
, (18)

with yref = 0.
The goodness of fit for each observation data type can

be directly read from the objective function value. From
equations 13 to 17 it follows that 100% mismatch of ob-
servations, as e.g. modelled values with ymod = yref , re-
sults in an objective function contribution of 1, for the re-
spective data type. The value decreases with the square
of the residuals, e.g. if all observations have a misfit of
10%, the contribution to the objective function is 10−2.
We propose to generally choose wtype identically for each
data type, to balance the calibration contribution of the
multi-physical components.

Table 2: Objective function components of the initial and the inverted
model.

Observation type Symbol Initial Inverted

Hydraulic φhyd 2.1 10−2 7.8 10−5

CO2 pressure φp 1.9 10−3 2.5 10−4

CO2 arrival φarr 1.8 10−2 1.3 10−5

Geoelectrical φert 1.2 10−1 2.1 10−3

Sum observation φo 1.6 10−1 2.4 10−3

Regularisation wrφr 7.8 10−5 4.9 10−5

3.6. Synthetic case study

The inversion procedure is tested with a synthetic case
study. A forward model with the main features of the Ket-
zin field site is set up. The aquifer structure is adapted
from the geological model, with the modification that aquifers
1, 2, 2a are vertically homogeneous. The permeability and
porosity distribution is generated in a sequential Gaus-
sian simulation for each of the four aquifers and a hy-
draulic barrier is manually added in layer 1 between wells
Ktzi200 and Ktzi201. In this case study, the relative per-
meability parameters are not included in the inversion.
The boundary conditions as hydraulic pumping rates and
CO2 injection rates are identical to the field situation. The
starting model is homogeneous with 100 mD for aquifers
1, 2, 2a and 30 mD for aquifers 3 and 4. To provide a re-
alistic setup the observation dataset is generated based on
the structure of the field dataset, synthetic data is gener-
ated and inverted only for times and locations where Ket-
zin field observations exist.

The inversion is carried out with the above described
approach. The observation objective function φo decreases
by factor 67 (Table 2). A substantial decrease for each ob-
servation data type was obtained although the initial ob-
jective function contributions vary by two orders of mag-
nitude.

The normalisation in the weighting procedure allows a
direct comparison of the different objective function com-
ponents. The CO2 arrival data (φarr) shows the best fit,
probably because this type only consists of 2 observations
and therefore only two degrees of freedom, while other
observation data has much more data points and hence
higher information content. Both pressure data (φhyd and
φp) show a good fit, with a maximum deviation of 0.28
and 0.07 bar for hydraulic and CO2 pressure, respectively.
The misfit of about 1 bar at 11th of July (Figure 5 c) is an
observation effect, because forward and inverse models
exhibit different time stepping.

The φert is the largest component of the observation
objective function. It contributes 75% to the objective
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function before and 88% after calibration. From 1008
configurations, the 34 configurations with the highest re-
sistivity ratio account for 75% of the φert. 94% of these
34 configurations have neighboured AB or MN electrodes
which is a disproportionally high ratio compared to 46%
in the 974 configurations with lower resistivity ratios. Con-
figurations with small dipole lengths (neighboured elec-
trodes) and larger spacings between current and potential
electrodes represent 48% of the configurations but they
have a high geometric factor and therefore contribute to
87% of φert. While 29% of the configurations include
electrodes directly in the plume, these contribute 53% to
φert, reflecting difficult reservoir coupling at high CO2

concentrations.
By way of example, three electrode configurations are

shown in Fig. 6. Crossed bipole configurations (AM-BN)
are generally more robust (Bing and Greenhalgh, 2000).
This applies also to the present inversion, crossed bipole
configurations form 39% of total configurations but con-
tribute only 15% to the objective function. Single hole
configurations (shown in Fig. 6c) appear to be more sen-
sitive to near-well dynamics due to limited current pene-
tration into the rock formation. They also show a less pro-
nounced bias to higher objective function contributions in
the inversion.

The inverted permeability reproduces the main fea-
tures of synthetic model (Figure 7). Generally, the over-
all permeabilities of the layers are matched, with values
around 100 mD in layer 1 and 2, and values around 30 mD
for the minor layers 16 and 23. In layer 1 a low perme-
ability barrier (about 2 mD, yellow color) exists between
wells Ktzi200 and Ktzi201. This barrier is structurally
identified in the inverted model. The calibrated perme-
ability of the barrier is around 5 mD directly between the
wells increasing to 50 mD in a larger distance which re-
sults in a higher connectivity between the wells. Although
pilot points are dense enough to represent the structure
and regularisation does not impose a smooth permeabil-
ity, the achieved resolution appears as limited by field ob-
servations. The overestimated permeability between the
wells in turn induces overestimated permeability on the
opposite side of the wells. This is a typical compensation
artefact for cross hole pumping tests, since a connectiv-
ity reduction between two wells has a similar effect on
the well pressure as an increase in the opposite direction
(Leven and Dietrich, 2006). The permeability of the con-
fining anhydrite is only slightly lower than the true syn-
thetic model value of 0.025 mD.

The contribution of regularisation is negligible for the
initial model (table 2) and gains relative importance for

the calibrated model. It is in the order of magnitude as for
hydraulic pressure and CO2 arrival. Nevertheless, regu-
larisation predominantly affects the parameters, which are
not sensitive to observation data. A detailed study about
qualifying and quantifying the worth of different observa-
tion data types and regularisation methods on subsets of
model parameters is beyond the scope of this study. Nev-
ertheless, it is highly relevant to select future monitoring
and modelling methods for CO2 storage.

The geoelectrical saturation exponent is calibrated to
2.02, which is close to the true synthetic model value of 2.
The parameter is sensitive to the calibration data and not
regularised.

In a model variant the relative permeability was in-
cluded in the inversion through Ci for CO2 from 1. The
initial value was 0.5 and the calibration result was with
1.006 very close to the real value of 1. The observation
objective function was slighlty higher with 2.8 10−3. This
suggests that relative permeability can also be determined
by the current model setup.

4. Conclusions

A fully coupled inversion framework is developed that
facilitates inverse reservoir modelling based on multi-physical
observation datasets. The multi-physical dataset consists
of four different observation types from different mea-
surement methods which have different ranges, units and
measurement intervals. The dataset is normalised such
that each observation data type has an equal contribution
to the objective function. As a side effect, the calibra-
tion quality of the different physical models and data can
be directly compared. To reduce structural noise that is
incurred by a model’s inability to represent all details of
a simulated system, pressure data are preconditioned as
differential pressure and geoelectrical data are precondi-
tioned as apparent resistivity ratios.

The inversion is based on the singular value decompo-
sition dimensionality reduction leading to reduced com-
putational effort and therefore allows introduction of over-
parameterisation. The inversion relies on the PEST suite,
the framework runs stable and results in a very well cali-
brated model.

The main geological features such as overall layer per-
meability and a hydraulic barrier between two wells could
be calibrated. Compared to individual inversions or even
manual calibration, the model inherent non-uniqueness could
be significantly reduced and the main reservoir parameters
could be determined, wherefore the presented framework
may be a suitable way for analysis of complex and highly
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Figure 4: Hydraulic drawdown for three cross hole pumping tests of the synthetic forward model (red dots) and the corresponding inverse model
(blue curve). In each plot title, "obs" denotes the observation well and "p" the pumping well. The geometrical layout can be seen in Figure
Figure 2.
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Figure 6: Typical geometric electrode configurations of Ketzin measurements (left-hand side) and associated fit of synthetic input and predicted
apparent resistivity ratios over time (right-hand side).
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Figure 7: Permeability distribution of the synthetic forward model. The aquifer shape is adapted from the geological model. The synthetic
permeability distributions are generated independently of the pilotpoints with a geostatistical approach.

instrumented field sites. Although the inversion condi-
tions for the synthetic case study are very favorable, the
barrier is only weakly reproduced because the multi-layer
geological structure which is a typical feature of CO2 stor-
age sites and other reservoirs introduces a high degree on
non-uniqueness. The crosshole electrical resistivity array
adds spatiotemporal sensitivity to CO2 saturation between
wells and thereby is an important contribution to reduce
the non-uniqueness.

However, the non-uniqueness will grow if calibration
is carried out with field data and more parameters such
as relative permeability functions will be included. Al-
though the presented framework is adapted to the mea-
surement instrumentation and geological features of the
Ketzin CO2 storage site, the data pretreatment, inversion
approach, and observation weighting workflow are appli-
cable for a wide range of multi-physical monitoring sce-
narios. A field study for the Ketzin storage site is pre-
sented in a follow-up contribution to demonstrate the real
world applicability of the developed workflow (Wagner
and Wiese, 2018, this issue).
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