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Abstract 

The purpose of Probabilistic Seismic Hazard Assessment (PSHA) at a construction site is to provide the 

engineers with a probabilistic estimate of ground-motion level that could be equaled or exceeded at least 

once in the structure’s design lifetime. A certainty on the predicted ground-motion allows the engineers 

to confidently optimize structural design and mitigate the risk of extensive damage, or in worst case, a 

collapse. It is therefore in interest of engineering, insurance, disaster mitigation, and security of society at 

large, to reduce uncertainties in prediction of design ground-motion levels.  

In this study, I am concerned with quantifying and reducing the prediction uncertainty of regression-

based Ground-Motion Prediction Equations (GMPEs). Essentially, GMPEs are regressed best-fit formulae 

relating event, path, and site parameters (predictor variables) to observed ground-motion values at the 

site (prediction variable). GMPEs are characterized by a parametric median (𝜇) and a non-parametric 

variance (𝜎) of prediction. 𝜇 captures the known ground-motion physics i.e., scaling with earthquake rup-

ture properties (event), attenuation with distance from source (region/path), and amplification due to 

local soil conditions (site); while 𝜎 quantifies the natural variability of data that eludes 𝜇. In a broad sense, 

the GMPE prediction uncertainty is cumulative of 1) uncertainty on estimated regression coefficients (un-

certainty on 𝜇, 𝜎𝜇), and 2) the inherent natural randomness of data (𝜎). The extent of 𝜇 parametrization, 

the quantity, and quality of ground-motion data used in a regression, govern the size of its prediction 

uncertainty: 𝜎𝜇 and 𝜎.  

In the first step, I present the impact of 𝜇 parametrization on the size of 𝜎𝜇 and 𝜎. Over-parametrization 

appears to increase the 𝜎𝜇, because of the large number of regression coefficients (in 𝜇) to be estimated 

with insufficient data. Under-parametrization mitigates 𝜎𝜇, but the reduced explanatory strength of 𝜇 is 

reflected in inflated 𝜎. For an optimally parametrized GMPE, a ~10% reduction in 𝜎 is attained by dis-

carding the low-quality data from pan-European events with incorrect parametric values (of predictor 

variables).  

In case of regions with scarce ground-motion recordings, without under-parametrization, the only way to 

mitigate 𝜎𝜇 is to substitute long-term earthquake data at a location with short-term samples of data across 

several locations – the Ergodic Assumption. However, the price of ergodic assumption is an increased 𝜎, 

due to the region-to-region and site-to-site differences in ground-motion physics.  𝜎 of an ergodic GMPE 

developed from generic ergodic dataset is much larger than that of non-ergodic GMPEs developed from 

region- and site-specific non-ergodic subsets - which were too sparse to produce their specific GMPEs. 

Fortunately, with the dramatic increase in recorded ground-motion data at several sites across Europe 

and Middle-East, I could quantify the region- and site-specific differences in ground-motion scaling and 

upgrade the GMPEs with 1) substantially more accurate region- and site-specific μ for sites in Italy and 

Turkey, and 2) significantly smaller prediction variance 𝜎. The benefit of such enhancements to GMPEs is 

quite evident in my comparison of PSHA estimates from ergodic versus region- and site-specific GMPEs; 

where the differences in predicted design ground-motion levels, at several sites in Europe and Middle-

Eastern regions, are as large as ~50%.  

Resolving the ergodic assumption with mixed-effects regressions is feasible when the quantified region- 

and site-specific effects are physically meaningful, and the non-ergodic subsets (regions and sites) are 

defined a priori through expert knowledge. In absence of expert definitions, I demonstrate the potential 

of machine learning techniques in identifying efficient clusters of site-specific non-ergodic subsets, based 

on latent similarities in their ground-motion data. Clustered site-specific GMPEs bridge the gap between 

site-specific and fully ergodic GMPEs, with their partially non-ergodic 𝜇 and, 𝜎 ~15% smaller than the 

ergodic variance.  

The methodological refinements to GMPE development produced in this study are applicable to new 

ground-motion datasets, to further enhance certainty of ground-motion prediction and thereby, seismic 
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hazard assessment. Advanced statistical tools show great potential in improving the predictive capabili-

ties of GMPEs, but the fundamental requirement remains: large quantity of high-quality ground-motion 

data from several sites for an extended time-period.   
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Zusammenfassung 

Der Zweck der probabilistischen seismischen Gefährdungsbeurteilung (PSHA) auf einer Baustelle besteht 

darin, den Ingenieuren eine probabilistische Schätzung des Bodenbewegungspegels zu liefern, die 

mindestens einmal in der Entwurfslebensdauer der Struktur erreicht oder überschritten werden könnte. 

Eine Gewissheit über die vorhergesagte Bodenbewegung erlaubt es den Ingenieuren, das strukturelle 

Design sicher zu optimieren und das Risiko von weitreichenden Schäden oder im schlimmsten Fall eines 

Zusammenbruchs zu minimieren. Es liegt daher im Interesse des Ingenieurwesens, der Versicherung, der 

Katastrophenvorsorge und der Sicherheit der Gesellschaft insgesamt, die Unsicherheiten bei der 

Vorhersage der Bodenbewegungs des Entwurfs zu reduzieren. 

In dieser Studie, beschäftige ich mich mit der Quantifizierung und Reduzierung der 

Vorhersageunsicherheit von Regressions-basierten Bodenbewegungsvorhersage-Gleichungen (GMPEs). 

Im Wesentlichen sind GMPEs am besten angepasste Formeln, die Ereignis-, Pfad- und Standortparameter 

(Prädiktorvariablen) auf beobachtete Bodenbewegungswerte an der Stelle (Vorhersagevariable) 

beziehen. GMPEs sind gekennzeichnet durch einen parametrischen Median ( 𝜇 ) und eine 

nichtparametrische Varianz (𝜎) der Vorhersage. 𝜇 erfasst die bekannte Bodenbewegungs-Physik, d. h. 

Skalierung mit Erdbebenbrucheigenschaften (Ereignis), Dämpfung mit Abstand von der Quelle 

(Region/Pfad) und Verstärkung aufgrund lokaler Bodenbedingungen (Standort); während 𝜎  die 

natürliche Variabilität von Daten quantifiziert, die sich dem 𝜇 entziehen. In einem weiten Sinne ist die 

GMPE-Vorhersageunsicherheit kumulativ von 1) Unsicherheit bezüglich der geschätzten 

Regressionskoeffizienten (Unsicherheit in 𝜇; 𝜎𝜇) und 2) der inhärenten natürlichen Zufälligkeit von Daten 

(𝜎). Das Ausmaß der 𝜇-Parametrisierung, die Menge und die Qualität der Bodenbewegungsdaten, die in 

einer Regression verwendet werden, bestimmen die Größe der Vorhersageunsicherheit: 𝜎𝜇 und 𝜎.  

Im ersten Schritt stelle ich den Einfluss der 𝜇 -Parametrisierung auf die Größe von 𝜎𝜇  und 𝜎  vor. 

Überparametrisierung scheint 𝜎𝜇  zu erhöhen, da die große Anzahl von Regressionskoeffizienten (in 𝜇) 

mit unzureichenden Daten geschätzt werden muss. Unterparametrisierung mindert 𝜎𝜇 , aber die 

reduzierte Erklärungsstärke von 𝜇 spiegelt sich in erhöhtem 𝜎 wider. Für eine optimal parametrisierte 

GMPE wird eine ~ 10% ige Verringerung von 𝜎  erreicht, indem die Daten niedriger Qualität aus 

paneuropäischen Ereignissen mit inkorrekten Parameterwerten (von Prädiktorvariablen) verworfen 

werden. 

In Regionen mit wenigen Bodenbewegungsaufzeichnungen, ohne Unterparametrisierung, besteht die 

einzige Möglichkeit, 𝜎𝜇 abzuschwächen, darin, langfristige Erdbebendaten an einem Ort durch kurzzeitige 

Datenproben an mehreren Orten zu ersetzen - die Ergodische Annahme. Der Preis der ergodischen 

Annahme ist jedoch aufgrund der Unterschiede in der Bodenbewegungsphysik von Region-zu-Region und 

von Ort-zu-Ort ein erhöhtes 𝜎 . 𝜎  einer ergodischen GMPE, die aus einem generischen ergodischen 

Datensatz entwickelt wurde, ist viel größer als die von nicht-ergodischen GMPEs, die aus regions- und 

standortsspezifischen nicht-ergodischen Teilmengen entwickelt wurden - die zu dünn waren, um ihre 

spezifischen GMPEs zu erzeugen. Durich den dramatischen Anstieg der erfassten Bodenbewegungsdaten 

an mehreren Standorten in Europa und im Nahen Osten konnte ich die regions- und standortspezifischen 

Unterschiede bei der Bodenbewegungsskalierung quantifizieren und die GMPE mit 1) wesentlich 

genauerer regions verbessern, und standortspezifische 𝜇  für Standorte in Italien und der Türkei 

verbessern, und 2) signifikant kleinere Vorhersagevarianz 𝜎  erreichen. Der Vorteil solcher 

Verbesserungen für GMPEs ist ziemlich offensichtlich in meinem Vergleich von PSHA-Schätzungen von 

ergodischen gegenüber regions- und standortsspezifischen GMPEs; wo die Unterschiede in den 

prognostizierten Bodenbewegungsebenen an verschiedenen Standorten in Europa und im Nahen Osten 

bis zu ~ 50% betragen. 
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Die Lösung der ergodischen Annahme mit gemischten Regressionen ist machbar, wenn die quantifizierten 

regions- und standortsspezifischen Effekte physikalisch sinnvoll sind und die nicht-ergodischen 

Teilmengen (Regionen und Standorte) a priori durch Expertenwissen definiert werden. In Ermangelung 

von Expertendefinitionen demonstriere ich das Potential von maschinellen Lerntechniken bei der 

Identifizierung effizienter Cluster von standortsspezifischen nicht-ergodischen Untergruppen, basierend 

auf latenten Ähnlichkeiten in ihren Bodenbewegungsdaten. Geclusterte standortsspezifischen GMPEs 

überbrücken die Lücke zwischen standortsspezifischen und vollständig ergodischen GMPEs mit ihrem 

teilweise nicht-ergodischen 𝜇 und ~15% kleiner als die ergodische Varianz. 

Die methodischen Verbesserungen der GMPE-Entwicklung, die in dieser Studie heransgearbeitet wurden, 

sind auf neue Bodenbewegungsdatensätze anwendbar, um die Sicherheit der 

Bodenbewegungsvorhersage und damit die Bewertung der seismischen Gefährdung weiter zu 

verbessern. Fortgeschrittene statistische Werkzeuge zeigen ein großes Potenzial bei der Verbesserung 

der Vorhersagefähigkeiten von GMPEs, aber die grundlegende Anforderung bleibt: eine große Menge an 

hochwertigen Bodenbewegungsdaten von mehreren Standorten für einen längeren Zeitraum. 
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1  
Introduction 

Probabilistic Seismic Hazard Assessment (PSHA) is a procedure to estimate the annual frequency of ex-

ceeding (AFE) a ground-motion level at a site (𝑌𝑟𝑒𝑓), provided models describing nearby seismicity, and 

attenuation of ground-motion with distance from the earthquake rupture. The first component constitut-

ing a Seismic Hazard Model, referred to as Seismic Source Models, are usually derived from the seismicity 

in a region. For example, in the frame of the European Commission project “Seismic Hazard Harmoniza-

tion in Europe” (SHARE), a homogeneous, European parametric earthquake catalogue is compiled into 

SHARE European earthquake catalogues in the period 1000-2006 by Stucchi et al., 2013. Using the seis-

mological, geological, tectonic and geodetic information, the parametric catalog is used to construct seis-

mic source models for use in European seismic hazard model, which describe the frequency, size, location, 

and other rupture parameters. Figure 1-1 is an illustration of PSHA procedure, where the seismic source 

model is shown in the left-most panel, as a collection of seismic sources capable of producing earthquakes. 

A sketch of recurrence model of ruptures is shown in the second panel of Figure 1-1, associated with the 

source seismic source model in the first panel.  

 

Figure 1-1: Workflow of PSHA 

The second component of a seismic hazard model are the Ground-motion Models (GMM), describing the 

scaling of ground-motion intensity with rupture parameters such as magnitude (𝑀), source-to-site dis-

tance (𝑅), and local soil conditions (𝑆). For example, Woessner et al. (2015) selected 14 GMMs for the 

European hazard model, to characterize the expected ground-motions for all magnitude, depth and dis-

tance ranges, and for all geological conditions in Europe. The center-right panel of Figure 1-1 shows the 

scatter-plot of recorded ground-motion data (points) from which the GMMs (lines) are derived. Typical 

GMMs characterize the expected ground-motions not as a unique value, but a Gaussian distribution con-

ditioned on the source and site parameters (𝑀, 𝑅 and 𝑆) – i.e. a median ground-motion (𝜇) and variability 

(𝜎) for each combination (𝑀, 𝑅, 𝑆). Given a seismic source model and GMM, the hazard integral (Eq. 1) 

cumulates the annual frequency of exceedance, AFE of 𝑌𝑟𝑒𝑓 at a site, from all prospective ruptures defined 

in the seismic source model. 1 −  𝑃(𝑦 < 𝑌𝑟𝑒𝑓|𝑀, 𝑅, 𝑆) component of  eq. (1) estimates the probability of 

exceeding a reference ground-motion level as described the GMM ~ Ɲ(𝜇, 𝜎2). A more elaborate formula-

tion of eq. (1) contains 1 −  𝑃(𝑦 < 𝑌𝑟𝑒𝑓|𝑀, 𝑅, 𝑆, 𝜎) as an integrand, with an additional 𝑑𝜎 differential term. 

AFE calculated for a suite of 𝑌𝑟𝑒𝑓  at a site represent the hazard estimate as an exceedance probability 

curve, commonly referred to as the Hazard Curve. The right-most panel of Figure 1-1 shows the hazard 

curve for the site in the left panel of Figure 1-1.

𝐴𝐹𝐸(𝑦𝑆 ≥ 𝑌𝑟𝑒𝑓) = 𝜈 ∬𝑃(𝑀)𝑃(𝑅) (1 −  𝑃(𝑦 < 𝑌𝑟𝑒𝑓|𝑀, 𝑅, 𝑆))

 

𝑀,𝑅

𝑑𝑀𝑑𝑅 (1) 

Empirically developed parametric seismic source models and GMMs contain uncertainties in choice of 

parametrization and assigned parametric values. Eq. (1) integrates the model-specific uncertainties into 

total uncertainty in hazard estimates. For example, Figure 1-2 illustrates the impact of GMM uncertainties 

on the hazard curves: AFE of a suite of ground-motion levels at a hypothetical site. An incorrect GMM 
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median 𝜇 leads to an over/under-estimation of hazard at a site, while a large variability 𝜎 (with 𝜇 un-

changed) results in higher frequency of exceeding of large ground-motion levels (e.g. Bommer and Abra-

hamson, 2006). In combination, a biased 𝜇 and large 𝜎 dramatically over-estimate hazard at a site, which 

leads to over-conservative design of structures at the site. Therefore, it is of key engineering interest to 

curtail GMM uncertainties.  

1.1 Purpose of the study 
In this study, I investigate the uncertainties related to GMMs, through a review of the fundamental as-

sumptions made in their development, and the resulting impact on PSHA. A prevalent approach to devel-

oping parametric GMMs is to derive predictor functions explaining the observed attenuation of ground-

motion from past earthquakes. Such regression based GMMs are called the Ground-Motion Prediction 

Equations (GMPEs). GMPEs relate the observed ground-motion (e.g. Peak Ground Acceleration, PGA) to 

the earthquake rupture size (e.g. Moment Magnitude, 𝑀𝑤), source-to-site distance (Joyner-Boore dis-

tance, 𝑅𝐽𝐵) and site local geological conditions (e.g. time averaged shear-wave velocity, 𝑉𝑆). GMPEs char-

acterize the observed ground-motion (𝑌) in terms of a median prediction (𝜇) and residuals (휀 = ln(𝑌) −

ln(𝜇)). Since the observed ground-motions are assumed to be lognormally distributed, the regression re-

siduals 휀 follow a normal distribution with zero-mean and variance 𝜎2 – therefore, ln(𝑌) = Ɲ(ln(𝜇) , 𝜎2). 

Figure 1-3 shows a typical GMPE prediction plotted against the observed ground-motion intensity (here, 

PGA) scaling with distance (𝑅𝐽𝐵) and magnitude (𝑀𝑤). The markers show the ‘scatter’ of observed PGA 

values (𝑌). The solid black lines represent the median (𝜇) of the GMPE, while the density distribution 

silhouettes illustrate normal variability (𝜎). The grey ribbon illustrates the GMPE regression uncertainty 

(𝜎𝜇) due to insufficient data. Natural variability of observations, efficiency of parametrization, and regres-

sion method regulate the size of GMPE standard deviation 𝜎 and median uncertainty 𝜎𝜇. Since µ, 𝜎 and 𝜎𝜇 

are critical parameters in estimating the AFE of 𝑌𝑟𝑒𝑓 at a site, the focus of this study is on improving the 

accuracy and precision of a GMPE.  

Incorrect median 𝜇 

Ground-motion Level  

A
n

n
u

al
 

F
re

q
u

en
cy

 
o

f 

E
xc

ee
d

an
ce

 (
1

/y
ea

r)
 

 

Ground-motion Level  A
n

n
u

al
 

F
re

q
u

en
cy

 
o

f 

E
xc

ee
d

an
ce

 (
1

/y
ea

r)
 

 

Increasing variability 𝜎 

Figure 1-2: Impact of GMM on hazard curves at a site. (left panel) An incorrect median 𝝁 prediction effects the 

hazard estimates at all return periods, (right panel) A larger variability 𝝈 increases the probability of large 

ground-motions.
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Figure 1-3: Attenuation of Peak Ground Acceleration (PGA) with distance (left) and magnitude (right). Black line 

represents the GMPE median (𝝁) and the kernel distribution illustrates lognormal variability (𝝈) of observed 

PGA. The grey ribbon visualizes the uncertainty on median (𝝈𝝁). 

1.1.1 Development of GMPEs 

GMPEs are essentially regressed formulations of observed ground-motion scaling. The procedure in de-

riving one involves a series of steps, each with relevant assumptions and associated impact on 𝜇, 𝜎 and 𝜎𝜇: 

Step 1. Compilation of ground-motion datasets 

Development of a GMPE is subject to availability of good quality ground-motion data in a region. For this 

purpose, seismically hazardous regions, where strong earthquakes in the past are known to have caused 

extensive damage to infrastructure and loss of life, are densely instrumented with accelerometric and 

seismological stations. Seismologists use the data from such networks to approximate the location, size, 

geometry, and other rupture parameters, constituting the ‘event metadata’. While Geotechnical experts 

parametrize the geological conditions at each station, and formulate the ‘site metadata’. Each event-site 

combination in the dataset has an associated seismogram, which contains the information on ground-

motion attenuation required in GMPE development. 

Processed seismograms from the ground-motion networks are compiled into a ground-motion dataset 

with event and site metadata, and the per-record ground-motion values. In Engineering Seismology, Spec-

tral Amplitude (SA) is the preferred scale to measure ground-motion intensity. SA is the maximum re-

sponse amplitude (acceleration/velocity/displacement) of a 5% (or any other damping level) damped 

Single Degree of Freedom (SDOF) oscillator with a fundamental resonance period 𝑇, when excited with a 

ground-motion recording. For 𝑇 = 0, the peak acceleration response of an ‘infinitely stiff’ SDOF oscillator 

would be Peak Ground Acceleration (PGA), and for other periods (e.g. 𝑇 = 0.1s, 1s, 2s etc.) the accelera-

tion responses are the Spectral Accelerations (SA). A vector of SAs, i.e. responses of a suite of 5% damped 

SDOF oscillators with different fundamental periods, is called the Response Spectrum. A ground-motion 

dataset contains event and site metadata, and the 5% damped response spectrum for each strong motion 

recording. 

The preliminary contributors to GMPE uncertainty are the inconsistencies in event and site metadata (e.g. 

Fig. 4 in Ktenidou et al., 2017). For instance, erroneous event location translates into incorrect event-site 

distance measurement, biasing the distance-scaling component of GMPE 𝜇. While erroneous moment-

magnitude (𝑀𝑤 ) effects the median scaling of ground-motion with rupture size. Similarly, with site 
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metadata, site parameters may contain errors from measurement (e.g. array size and inversion tech-

niques) and inference techniques (e.g. spatial extrapolation of subsurface soil conditions). In essence, un-

certainties in predictor variables (𝑀, 𝑅 and 𝑆), if not accounted during GMPE development, bias the me-

dian prediction 𝜇 and contribute to variability 𝜎.  

Step 2. Choice of parametrization 

Given the event and site metadata, GMPE developers perform a non-parametric analysis to understand 

the scaling of SAs with different event, path, and site parameters. It is then a choice of the developer to 

select a few efficient parameters to model the observed SA scaling. However, the availability of suitable 

parameters is limited by the quality/absence of metadata, in which case the GMPE developer is forced to 

under-parametrize the attenuation phenomenon. If a known physical process cannot be modelled due to 

lack of parametrization, the resulting GMPE is limited in its explanatory power, which translates into the 

𝜎 (e.g. Bindi et al., 2017). 

Step 3. Regression method 

Regression refers to a family of predictive modelling techniques. In GMPE development, the prevalent 

method is Linear/Nonlinear Regression, where a continuous dependent/prediction variable (SA or other 

measures) is related to a set of continuous or discrete independent/predictor variables (𝑀, 𝑅, 𝑆, etc.) 

through a best-fit line. Based on the non-parametric analysis, the GMPE developer frames a set of predic-

tor functions to serve as the median 𝜇 of GMPE. Regression is then performed to obtain the best-fit, which 

is essentially a weighted combination of predictor variables constituting 𝜇, that minimizes the residual 

variability 𝜎. The weights, technically the regression coefficients, are conditional estimates reflecting the 

relative contribution of each predictor variable in explaining the observed SA scaling. Indeed, the choice 

of predictor variables regulates the size of 𝜎, but there is an additional uncertainty on regression coeffi-

cients. 

Uncertainty in 𝜇 is quantified as 𝜎𝜇, which is distinct from the GMPE total standard deviation 𝜎. For GMPEs 

developed from densely instrumented high seismicity regions, where large varieties of earthquake sce-

narios were recorded, 𝜎𝜇 is relatively small compared to 𝜎. In case of GMPEs for low seismicity regions, 

where recorded data is insufficient to constrain the regression coefficients, 𝜎𝜇 is comparable in size to 𝜎. 

To overcome the data insufficiency and to reduce 𝜎𝜇, a typical practice in GMPE development is to make 

the so-called ‘Ergodic Assumption’ in Compilation of ground-motion data – the core topic of this study. 

However, the price of ergodic assumption is increased variability in data, and a consequently large resid-

ual variability 𝜎. 

Contributions to the total standard deviation 𝜎 of GMPE appear in every step of its development. The 

natural randomness inherent to compiled ground-motion data that cannot be explained with available 

event, path, and site parameterization is considered as Aleatory Variability. The uncertainty in event and 

site parametrization, choice of parameters (predictor variables) in GMPE, and regression coefficients as-

sociated with the chosen parameters, are consolidated as Epistemic Uncertainty. Efforts made in the Com-

pilation of ground-motion data stage to achieve precise and exhaustive parametrization of event and site 

metadata reduce both the aleatory and epistemic uncertainty. However, the ergodic assumption made to 

reduce 𝜎𝜇  comes at the cost of increased aleatory variability 𝜎. The purpose of this study is to decompose 

and reduce 𝜎, which means to relax the ergodic assumption. 

1.1.2 Ergodic assumptions in GMPEs 

The aim of PSHA is to predict hazard as the annual frequency of exceedance of a design ground-motion 

level at a site in a region. Prediction requires the probable location and size of a future earthquake, and in 

addition, the probable ground-motion intensity (at the site) given such an event occurs. It is customary in 

PSHA to extrapolate the location and size of future events based on the observed seismicity in region. Such 

spatiotemporal extrapolation of seismicity (through seismic source models) requires that GMPEs predict 
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the ground-motions for events that were rarely/never observed in the region, solely based on recorded 

ground-motion from a few past earthquakes in the region. GMPEs derived from the very limited ground-

motion data in a moderate-low seismicity region become inapplicable for extraordinary scenarios, be-

cause of the very large 𝜎𝜇, i.e. the regression coefficients are poorly constrained for parametric values 

outside the range of recorded parameters in a region. 

To overcome this limitation, a necessary ergodic assumption is made in the Compilation of ground-motion 

data step of GMPE development. The purpose of the ergodic assumption is to assemble ground-motion 

data with a wide range of event, path and site metadata, in order to keep the 𝜎𝜇 reasonably small for every 

credible combination of parameters. Essentially, the ergodic assumption allows substituting the (ideal) 

temporal sampling of ground-motion recordings in a region (or a site) with spatial sampling from several 

regions with similar tectonics. For example, in deriving a GMPE for Active Shallow Crustal (ASC) regions, 

ground-motion data from multiple ASC regions is compiled into a unique global ASC dataset (e.g. Ancheta 

et al., 2014). Any differences in strong motion attenuation across the various ASC regions are assumed 

negligible (e.g. Douglas, 2004). When theoretically plausible regional differences in the compiled data are 

not accounted in the empirical model (GMPE), all region-specific physical effects are rendered as generic 

natural variability, implying an inaccurate 𝜇 and large 𝜎 for all constituent regions. 

Several studies discussed the many levels of ergodic assumption in GMPE development (e.g. Anderson and 

Brune, 1999; Al Atik et al., 2010; Lin et al., 2011). Some of the dominant contributors to the ergodic 𝜎 were 

identified, and methods were proposed for their quantification in non-ergodic GMPEs. However, to iden-

tify and quantify the systematic differences requires repeated measurements of the physical effects. With 

sufficient data, appropriate parametrization and regression technique, the ergodic assumption can be re-

laxed and the 𝜎 reduced. 

1.2 Approach of the study 
Purpose of this study is to improve the accuracy and precision of GMPE by relaxing the ergodic assump-

tion(s) in its development: measured as reduction of ergodic bias in 𝜇, and removal of ergodic variability 

from 𝜎. Therefore, in the study, I use global strong motion datasets compiled of data from many regions, 

investigate various ergodic hypotheses, quantify non-ergodic biases, develop partially non-ergodic 

GMPEs and measure the impact of reduced GMPE ergodicity on hazard estimates. 

1.2.1 Ergodic hypotheses in GMPEs 

The three steps in GMPE development effect the GMPE performance: (1) incorrect estimates of event and 

site metadata during Compilation of ground-motion data, (2) inefficient Choice of parametrization, and 

(3) ergodic assumption in GMPE Regression method. Recent and ongoing research in source and site char-

acterization significantly improved the quality of event and site metadata, thereby curtailing the first con-

tribution to 𝜎. Extensive parametrization allowed GMPE developers to test combinations of predictor var-

iables that best capture the attenuation of SAs, thus subduing the second source of variability. The third, 

requiring an ergodic assumption to constrain the regression coefficients, remains the key focus of re-

search. In fact, there are multiple ergodic hypotheses made in compiling global strong motion datasets, of 

which a few are extensively studied in the literature given their dominance on 𝜎: 

1. Regional ergodicity is a holistic ergodic hypothesis, where the event, path, and site physics, are con-

sidered independent of any region-specific peculiarities. NGA-West2 dataset by Ancheta et al. (2014) 

was compiled specifically for development of NGA-West2 GMPEs for use in PSHA in Western United 

States (WUS). However, the dataset contains Active Shallow Crustal (ASC) events from several regions 

across the globe. Figure 1-4 illustrates the distribution of event magnitude (𝑀𝑤) and Joyner-Boore 

distance from the recording site (𝑅𝐽𝐵) in the NGA-West2 dataset. It is interesting to note that, since 

California lacks data from large  𝑀𝑤 ≥ 7.5, data from ASC events occurring in Taiwan, China and 
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Alaska were used to populate the sparse 𝑀-𝑅 ranges of the dataset. The resulting GMPEs become re-

gionally ergodic, unless region-specific differences in ground-motion scaling are identified and ac-

counted. Theoretically, regional differences in ground-motion scaling can be expected from the 

macro-spatial dissimilarities in crustal thickness, velocity, rigidity, and other structural properties. 

However, in order to quantify statistically significant regional differences, repeated observations sam-

pling the crust within each region are required, along with parametrization of relevant crustal char-

acteristics.  

 
2. Event ergodicity is typically a within-region ergodic hypothesis, where earthquake ruptures identi-

fied with similar parametric values are assumed to produce similar ground-motions. Events with the 

same magnitude (usually 𝑀𝑤) and focal mechanism (SoF) are treated as producing identical ground-

motions. In terms of event location, ruptures with identical size and geometry, but occurring on dif-

ferent fault systems are assumed to produce identical ground-motions. Both the assumptions are de-

batable given the spatial variability of stress-fields and near-fault geology. Since the available rupture 

parametrization is insufficient, customary practice in GMPE development is to quantify (1) event-to-

event variability for well recorded ruptures (e.g. Brillinger and Preisler, 1984; Joyner and Boore, 1993) 

and (2) location-to-location variability for well sampled fault systems (e.g. Lin et al., 2011; Villani and 

Abrahamson, 2015). 

3. Path ergodicity is another within-region ergodic hypothesis in which the attenuation of ground-mo-

tion is assumed identical across every conceivable wave propagation path between events and sites. 

The basis for path ergodicity is an idealization of Earth’s crust as a homogeneous and isotropic half-

space, and the point-source approximation of finite ruptures. However, to identify path-specific pecu-

liarities in a GMPE requires path parametrization (e.g. Spudich, 2013) and repeated observations 

along each path. A few studies attempted parametrizing the path based on geographical indices and 

crustal properties, while others introduced event-to-site azimuth (along with distance) as an addi-

tional parameter in GMPEs to quantity path-to-path variability (e.g. Lin et al., 2011; Villani and Abra-

hamson, 2015). 

4. Site ergodicity is the third within-region ergodic hypothesis, which allows ground-motion data from 

several sites in a region to be compiled for GMPE regressions (Anderson and Brune, 1999). Local site 

conditions, such as soil stratum, topography, geology, etc., are known to dramatically amplify/atten-

uate (up to 10 times) specific ranges of ground-motion frequencies (e.g. Boore, 2004; Thompson and 

Wald, 2016). Such site dependent modifications are usually referred to as ‘site response’. Despite this, 

site ergodicity in GMPEs assumes that all sites characterized by similar parametric values (site 

metadata) show identical response to seismic excitation (e.g. Boore et al., 2011; Thompson et al., 2012; 

Figure 1-4: Regional diversity of strong ground-motion data in NGA-West2 dataset 
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Puglia et al., 2015). A shortcoming of this hypothesis is concerning the parametrization of site re-

sponse. Several site response studies proposed various parameters as optimal predictor variables to 

capture the complex site behavior (e.g. Allen and Wald, 2009; Luzi et al., 2011; Héloïse et al., 2012; 

Derras et al., 2017). Given the definition of PSHA is to predict ground-motion levels at a specific site, 

site ergodicity is a rather strong assumption – thus a key focus of this study. 

Region level ergodic assumption is the overarching hypothesis encompassing event, path, and site level 

ergodic assumptions. Therefore, resolving the latter three partially breaks the region level hypothesis. 

Although our goal is to achieve a fully non-ergodic GMPE capable of predicting accurate event-path-site 

specific μ with minimal 𝜎, empirical and theoretical limitations allow only a partially non-ergodic GMPE. 

1.2.2 Quantification of non-ergodic biases 

An ergodic dataset is composed of several non-ergodic subsets. A non-ergodic bias is the mean deviation 

of non-ergodic observations from the mean of ergodic observations. Robust estimates of non-ergodic bi-

ases can be used to adjust the (generic) ergodic 𝜇 to obtain a (specific) non-ergodic 𝜇0 for any well-popu-

lated subset (i.e. region/event/path/site-specific subset of data). Removing non-ergodic biases from the 

residuals ‘narrows’ their scatter, and thereby reduces the residual standard deviation 𝜎.  

In order to estimate non-ergodic biases, repeated measurements sampling the non-ergodic physical char-

acteristics are necessary. For instance, to resolve site ergodicity requires each site to have recorded mul-

tiple nearby earthquakes, i.e., sufficient site-specific data to quantify site-specific non-ergodic biases. A 

non-zero bias also implies that the site parameters used in developing a functional form for 𝜇 are ineffi-

cient in explaining the site response. Therefore, non-ergodic biases can be analyzed to derive additional 

site parameters, which can be then introduced into 𝜇 as new predictor variables. However, over-para-

metrization while improving the explanatory strength of a GMPE often reduces its predictive capability 

(e.g. Shmueli, 2010; Bindi, 2017). Additionally, if accurate site-specific parametric values are not available, 

e.g. for new sites not in the regressed dataset, then the applicability of GMPE is limited only to appropri-

ately parametrized sites (e.g. Thompson et al., 2012). Similar is the case with event and path ergodicity – 

only that sampling and parametrization of path effects is considerably more difficult. While all ergodic 

assumptions are made in the data compilation stage, partial non-ergodicity in GMPEs can be achieved at 

regression stage by properly accounting non-ergodic biases. 

1.2.3 Partially non-ergodic GMPEs 

A generic GMPE median is composed of predictor functions for magnitude, distance, site dependent scal-

ing of ground-motion, as in ln(𝜇) = 𝐹𝑀 + 𝐹𝑅 + 𝐹𝑆 (e.g. Brillinger and Preisler, 1984). 𝜇 is an ergodic pre-

diction because the GMPE is derived over a compendium ground-motion dataset assuming all events, 

paths, and sites with similar parametric values as identical. In this perspective, a fully non-ergodic predic-

tion would require multiple recordings for every set of parametric values from every possible, past and 

future, combinations of event, path, and site parameters – which is impractical, because the choice of par-

ametrization is itself an uncertainty. Under-parameterization decreases explanatory strength and in-

creases ergodicity, while over-parametrization may explain better the observations but at the price of 

decreased predictive capability (e.g. Bindi, 2017). It is unlikely that any number of predictor variables can 

fully explain the natural variability. Therefore, parametrization to remove ergodicity is perhaps beyond 

the capacity of current scientific knowledge. 

A more practical alternative is to quantify and use the non-ergodic biases as adjustments to ergodic pre-

dictions, to yield non-ergodic predictions. For this purpose, a widely used regression technique in GMPE 

development is the linear/nonlinear mixed-effects regression (LME/NLME, e.g. Brillinger and Preisler, 

1984; Abrahamson and Youngs, 1992; Stafford, 2014). As a regression method, NLME produces a GMPE 

median 𝜇 and a residual standard deviation 𝜎. An additional benefit crucial to our goal is that, NLME can 

estimate the non-ergodic biases for any user defined non-ergodic subsets. In the NLME terminology, the 
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non-ergodic biases are called Random-Effects (RE), in the sense that no physically meaningful combina-

tion of predictor variables can explain/predict characteristics specific to the non-ergodic subsets. The 

physics of ground-motion scaling that can be explained by a combination of predictor functions (𝜇), is 

handled by the Fixed-Effects (FE) – thus the name mixed-effects regressions. Essentially, FE alone gives 

the generic ergodic 𝜇, and the combination FE + RE gives a specific non-ergodic median 𝜇0, where RE is a 

group-specific non-ergodic bias/adjustment. 

The key NLME benefit is that the GMPE’s FE and RE together constitute the 𝜇0, while the residuals, filtered 

for non-ergodic biases as RE, quantify the non-ergodic variability 𝜎0. Note that fully non-ergodic GMPEs 

are hard to achieve due to empirical and theoretical limitations, so 𝜇0 and 𝜎0 are at best partially non-

ergodic. Also, 𝜇0 is a generic symbol for non-ergodic median, whose subscript changes depending on the 

level of non-ergodicity. For example, a site-specific non-ergodic prediction would be 𝜇𝑠, 𝑠 being the site 

index. 

In this study, I mentioned four ergodic hypotheses in GMPE development: region, event, path, and site 

level ergodicity. Considering region level ergodicity as the holistic hypothesis, REs can be estimated at the 

event, path and site levels. In addition, NLME allows defining groups of non-ergodic subsets to investigate 

if groups of regions/events/paths/sites with similar parameters, collectively, show a significant bias. A 

few relevant grouping levels are as follows: 

Event-to-event: Ruptures with similar parameters (e.g. magnitude, focal mechanism) are often observed 

to produce very different ground-motions (e.g. Joyner and Boore, 1981; Brillinger and Preisler, 1984); pos-

sibly, from dissimilar physical characteristics that could not be parametrized and predicted (e.g. rupture 

velocity, slip distribution). However, for a well-recorded event, the event-specific ground-motion data can 

be viewed as the event-specific non-ergodic subset. The mean deviation of event-specific SAs from the 

ergodic GMPE prediction for given event-specific parameters, is the event-specific non-ergodic bias, com-

monly referred to as event-term 𝛿𝐵𝑒 . For a dataset featuring several well-recorded events, 𝛿𝐵𝑒  is esti-

mated for each. The resulting random distribution of 𝛿𝐵𝑒 represents the event-to-event variability.  

NLME estimates 𝛿𝐵𝑒 (of all events in the dataset) as a normally distributed random variable with zero-

mean and an event-to-event variance 𝜏2. Thus 𝛿𝐵𝑒~𝑁(0, 𝜏
2) describes the between-event variability of 

the dataset with respect to the parametric GMPE. The ergodic μ can be adjusted with an event-specific 𝛿𝐵𝑒, 

to yield a partially non-ergodic event-specific prediction ln(𝜇𝑒) = ln(𝜇) + 𝛿𝐵𝑒, in which case the GMPE 

variability would be a partially non-ergodic 𝜎0 devoid of event-to-event variability. In cases where 𝛿𝐵𝑒 for 

a prospective event cannot be predicted, it is necessary to use the ergodic 𝜇, with 𝜏 reintroduced into 

GMPE variability, as in 𝜎 = √𝜎0
2 + 𝜏2. 

Event location-to-location: NLME allows grouping multiple non-ergodic subsets to estimate a group-spe-

cific bias. Given a dataset with several well-recorded events, and/or several events occurring within a 

seismogenic zone, e.g. a fault system, seismic source depth, or other seismic localization, a GMPE devel-

oper may be interested in studying a location-to-location variability of observed ground-motions (e.g. Lin 

et al., 2011; Villani and Abrahamson, 2015). As with event-to-event variability, a location-to-location var-

iability can be estimated as 𝛿𝐿2𝐿~𝑁(0, 𝜏𝐿
2). The location-specific 𝛿𝐿2𝐿 is a repeatable effect with better 

predictability than the 𝛿𝐵𝑒, provided an a priori regionalization of events is available. Otherwise, spatial 

distribution of 𝛿𝐵𝑒 can be queried for evidence of event regionalization. 

Path-to-path: The wave propagation path from the event to site is a complex geometry with multiple in-

ternal reflections, refractions and scattering. Prior to attempting path parametrization, defining path is 

itself a complex issue (e.g. Scherbaum et al., 2004). In GMPEs however, a 3D wave path is simplified into a 

straight-line connecting event location (e.g. epicenter) and the site location. For small magnitude events, 

a point-source approximation of rupture allows at least two definitions of path: epicenter to site, hypo-
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center to site. For larger finite ruptures, the alternatives are several, including a few accounting the hypo-

central depth. Irrespective of definition, the only path parameter used in GMPEs is the event-to-site dis-

tance (in km). 

Path ergodicity assumes the rate of attenuation (per unit distance) as constant across the region, which is 

a rather strong assumption given the spatial variability of crustal properties. Path-to-path variability 

(𝛿𝑃2𝑃) is therefore a large contributor to 𝜎. To estimate 𝛿𝑃2𝑃, a few studies grouped paths connecting 

seismogenic zones and network of sites, while others attempted azimuth-dependent grouping of paths 

connecting a single event to network of sites (e.g. Dawood and Rodriguez‐Marek, 2013; Villani and Abra-

hamson, 2015; Landwehr et al., 2016). Despite, there are a very few datasets that facilitate investigat-

ing 𝛿𝑃2𝑃. 

Site-to-site: As with 𝛿𝐵𝑒, site-terms can be estimated for well-recorded sites with sufficient strong motion 

data from multiple nearby earthquakes. Assuming the local site conditions do not change over time or 

with successive earthquakes, site-specific deviation from ergodic 𝜇 is the site-term 𝛿𝑆2𝑆𝑠 (e.g. Rodriguez‐

Marek et al., 2013). Since 𝛿𝑆2𝑆𝑠 are NLME estimated random-effects, 𝛿𝑆2𝑆𝑠~𝑁(0,𝜙𝑆2𝑆
2 ) where 𝜙𝑆2𝑆 is the 

between-site variability of the ergodic dataset. Compared to the 𝛿𝐵𝑒 and 𝛿𝑃2𝑃 terms, which are difficult 

to parametrize and predict, the site-specific 𝛿𝑆2𝑆𝑠 are highly repeatable terms. Given sufficient time, any 

instrumented site in a seismically active region can accumulate enough ground-motion data to constitute 

its site-specific non-ergodic subset. The ease of estimation, time-independent repeatability, and relative 

ease of parametrization, makes site non-ergodicity a widely practiced concept in PSHA. 

Region-to-region: Regional ergodicity is partially broken when any of the above non-ergodic biases are 

filtered from the overall variability. On the other hand, if any of the above cannot be quantified (due to 

lack of sufficient data); macro-spatial regional differences can be resolved by grouping events, paths and 

sites into encompassing regions. However approximate, region-specific RE quantify regional differences 

in geology, crustal properties, lithography, and other macro-spatial features that are likely to have a cu-

mulative effect on the attenuation process. 

Along with the above, multiple non-ergodic subsets can be grouped together to estimate group-specific 

random-effects. For example, it is a common practice to group several soft soil sites to estimate the aver-

age amplification factors with respect to a rock site group. Similarly, events can be grouped based on their 

hypocentral depth, and paths based on their traversal or not, across large crustal asperities. Such pre-

defined groups allow the GMPE developers to investigate the extent of (average) group-specific deviations 

from ergodic predictions.  

1.2.4 Partially non-ergodic Probabilistic Seismic Hazard Assessment 

Probabilistic Seismic Hazard Assessment for a site in a region can be performed given a seismic source 

model and a GMPE. If the GMPE used is applicable to the region’s tectonic regime and is ergodic, the re-

sulting PSHA is ergodic as well: a non-ergodic GMPE results in a non-ergodic PSHA. Non-ergodic GMPEs 

predict group-specific median ground-motions with a smaller variability, which means the physics of 

ground-motion scaling is better explained. However, to measure the practical benefit of shifting from er-

godic to non-ergodic GMPEs is preferable in terms of change in hazard level at a site. In this study, I make 

use of peer-reviewed seismic source models and open-source PSHA software to illustrate the benefit of 

shifting from ergodic to non-ergodic GMPEs. 

1.3 Presentation of the study 
In describing the purpose of and approach in the study, I identified the key ergodic assumptions in GMPEs, 

and introduced our approach to estimate the non-ergodic biases and the impact of GMPE non-ergodicity 

on PSHA. The outcomes of this study are presented in chapters, wherein the concepts are further elabo-

rated. 
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Chapter 2: In this chapter, we worked with the high quality NGA-West2 dataset (Ancheta et al., 2014) 

with qualified metadata – thus, subduing the initial contribution to 𝜎 from incorrect metadata. NGA-West2 

is an ergodic dataset compiled of strong motion data from several high seismicity Active Shallow Crustal 

regions across the globe. The event, path, and site metadata are extensively parameterized, allowing the 

GMPE developers to model the highly sophisticated NGA-West2 GMPEs. Using these models as bench-

mark, we: (1) develop a new under-parametrized GMPE for application in low seismicity regions, (2) eval-

uate the impact of under-parametrization on 𝜎, and (3) demonstrate the dependence of 𝜎𝜇 on data suffi-

ciency and parametrization. 

Chapter 3: The pan-European dataset, RESORCE (Akkar et al., 2014), was compiled of strong motion data 

from large 𝑀7 events in Iran and Turkey together with smaller 𝑀4.5-𝑀5.5 events in Italy. Regionally er-

godic GMPEs derived from this dataset, were thus capable of predicting ground-motions for events 4.5 ≤

𝑀𝑤 ≤ 7 at distances 0km ≤ 𝑅𝐽𝐵 ≤ 300km. If only the Italian data were used to derive a GMPE, 𝜎𝜇 would 

be too large for 𝑀7 scenarios – and vice versa for smaller 𝑀5 events, if only Turkish data were used. As-

suring that 𝜎𝜇 is relatively small for our choice of parametrization; we look at the other two contributors 

to 𝜎: incorrect metadata and regional ergodicity. In this chapter, using NLME (Bates et al., 2014) we de-

velop a new region-specific GMPE to demonstrate the reduction in 𝜎 from, (1) accounting regional differ-

ences in attenuation between Italy and Turkey, and (2) discarding data with incorrect event metadata. 

Chapter 4: The partially non-ergodic region-specific GMPE developed in previous chapter predicts re-

gion-specific ground-motions for Italy and Turkey, and is accompanied by a 𝜎 smaller than its ergodic 

counterpart. In this chapter, we go a step further and develop a region- and site-specific GMPE, i.e. a non-

ergodic GMPE capable of predicting site-specific ground-motions. Since region- and site-specific non-er-

godic biases are removed from the residual variability, the 𝜎 is reduced to a significantly smaller 𝜎0. In 

process, we devise a framework to perform region- and site-specific PSHA, which we then use to illustrate 

the practical benefit of shifting from ergodic to region- and site-specific PSHA.  

Until this point, we focused on isolating the non-ergodic biases/trends from the 𝜎 and introducing them 

into 𝜇, thereby improving the accuracy and precision of GMPE in predicting partially non-ergodic region- 

and site-specific response spectra. In the later chapters, we focus more on practical application of non-

ergodic GMPEs. 

Chapter 5: In engineering applications, especially in earthquake resistant building design, a practical ne-

cessity is to predict site-specific response spectra for future events. An accurate prediction is possible 

with site-specific GMPEs involving 𝛿𝑆2𝑆𝑠. Ideally, if a site has enough strong motion data in its non-ergodic 

subset, one could estimate the 𝛿𝑆2𝑆𝑠, use it to adjust the non-ergodic GMPE median 𝜇0, and predict site-

specific ground-motions as in ln(𝜇𝑠) = ln(𝜇0) + 𝛿𝑆2𝑆𝑠. However, most sites are either unsuitable for in-

strumentation or there is not enough time to gather site-specific strong motion data, and estimate 𝛿𝑆2𝑆𝑠. 

Therefore, for sites with no strong motion data, we need to predict a 𝛿𝑆2𝑆𝑠. 

In this chapter, we tackle an engineering approach to predicting 𝛿𝑆2𝑆𝑠 for new sites: site classification. 

Site classification relies on the ergodic assumption that sites with similar parametric values also show 

similar response to seismic excitation. In this context, the response is measured in terms of 𝛿𝑆2𝑆𝑠. Since 

a new site has no recorded strong motion data, site classification is a practical approach to predicting an 

approximate 𝛿𝑆2𝑆𝑠 based solely on its parametric values. However, there are a few challenges in this ap-

proach regarding: (1) optimal number of site classes, (2) efficient site parameters that define site classes, 

(3) between- and within-class site response variability compared to single-site and ergodic variability. In 

response, we propose a novel approach to site classification, where we estimate 𝛿𝑆2𝑆𝑠 for several sites in 

Japan (using KiK-net dataset), classify sites through spectral clustering technique, and test various site 

parameters for efficiency in distinguishing the classes. This new approach is possible only with the region- 

and site-specific GMPEs developed in previous chapters. 
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Chapter 6: In the previous chapter, we established a method to predict 𝛿𝑆2𝑆𝑠 from site metadata. The 

approximate 𝛿𝑆2𝑆𝑠 can be used to estimate site-specific response spectrum at sites with no strong motion 

data, which is significantly more accurate and precise than an ergodic RS response spectrum. However, 

more advanced Earthquake Engineering applications require not just the response spectra but the Condi-

tional Spectra (Baker, 2011).  

Conditional spectrum describe the distribution of SAs at 𝑇 ≠ 𝑇0, on the condition that SA at 𝑇 = 𝑇0 ex-

ceeds a certain ground-motion level, where 𝑇0is the fundamental period of resonance of a structure at the 

site. To determine the conditional spectra, empirical correlation of peak spectral amplitudes for a period 

range are needed. The basis for correlation of SAs (across a range of 𝑇 values) is that, within each ground-

motion record the ground-motion amplitudes at different frequencies are correlated. Since GMPEs ignore 

such within-record correlation of SAs, empirical correlation of SAs are determined from the random-ef-

fects and residuals. For instance, empirical correlation of SAs in source (event) spectrum are derived 

from 𝛿𝐵𝑒, and those related to path are derived from residuals corrected for source and site effects. Es-

sentially, a record with larger than predicted median SA at 𝑇 = 𝑇1 will also show a systematically larger 

SA at 𝑇 = 𝑇2 depending on the correlation coefficient 𝜌𝑇1,𝑇2.  

Traditionally, correlation of 𝛿𝐵𝑒 are assumed independent of any rupture characteristics, which is an er-

godic hypothesis stating that all ruptures produce identical distribution of SAs. Similar is the case with 

path terms 𝛿𝑃2𝑃, where relative attenuation of different SAs is assumed to be identical across any path 

or region. In this chapter, we challenge these assumptions to develop non-ergodic correlation models. 

  



 
12 

2  
Application-driven Ground-Motion Prediction Equa-
tion for Seismic Hazard Assessments in non-Cratonic 
Moderate-Seismicity Areas 

D. Bindi1, F. Cotton1, 2, S. R. Kotha1, 2, C. Bosse1, D. Stromeyer1 and G. Grünthal1 

1German Research Centre for Geosciences GFZ, Potsdam, Germany 

2 University of Potsdam, Potsdam, Germany 

Abstract 

We present a Ground-Motion Prediction Equation (GMPE) for probabilistic seismic hazard assessments 

(PSHA) in low-to-moderate seismicity areas, such as Germany. Starting from the NGA-west 2 flat-file (An-

cheta et al., 2014), we develop a model tailored to the hazard application in terms of data selection and 

implemented functional form. In light of such hazard application, the GMPE is derived for hypocentral 

distance (along with the Joyner-Boore one), selecting recordings at sites with 𝑣𝑆30 ≥ 360m/s, distances 

within 300 km, magnitudes in the range 3 to 8 (being 7.4 the maximum magnitude for the PSHA in the 

target area). Moreover, the complexity of the considered functional form is reflecting the availability of 

information in the target area. The median predictions are compared with those from the NGA-west 2 

models and with one recent European model, using the Sammon’s map constructed for different scenar-

ios. Despite the simplification in the functional form, the assessed epistemic uncertainty in the GMPE me-

dian is of the order of those affecting the NGA-west2 models for the magnitude range of interest of the 

hazard application. On the other hand, the simplification of the functional form led to an increment of the 

apparent aleatory variability. In conclusion, the GMPE developed in this study is tailored to the needs for 

applications in low-to-moderate seismic areas and for short return periods (e.g., 475 years); its applica-

tion in studies where the hazard is involving magnitudes above 7.4 and for long return periods is not 

advised. 

Keywords: Ground-Motion Prediction Equations; moderate seismicity region; NGA-West2  
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2.1 Introduction 
Since 2003, the Pacific Earthquake Engineering Research Center (PEER) is conducting a large research 

program to develop the next generation of ground-motion prediction equations (GMPEs) for shallow crus-

tal earthquakes in active tectonic regions. The second phase of this project (called NGA-West2) concluded 

in 2014 and provided important results, including a strong motion database of recorded ground-motions 

(Ancheta et al., 2014) and a set of peer-reviewed GMPEs (Abrahamson et al., 2014). 

Several recent hazard projects have shown that the models developed by NGA-west projects may be of 

interest not only for active regions but also for non-cratonic and lower seismicity regions. NGA-west 

ground-motion models have been selected as part of ground-motion logic tree to compute recent proba-

bilistic seismic hazard assessments (PSHA) in Europe (Delavaud et al., 2012), Switzerland (Edwards et al., 

2016) and Germany (Grünthal et al., 2017). These models are also widely used in regions where active 

faults have not been identified for most seismic sources , which means that rock hazard computations 

have to be conducted for distributed seismicity (area sources or zoneless approach) without taking into 

account the refinements introduced by recently developed GMPEs (directivity and hanging wall effects, 

non-linear site effects, basin effects). 

These projects show that existing NGA-west2 GMPEs, despite their high quality, are then not fully fitting 

the needs of regional hazard computations in moderate seismicity areas. The main problems encountered 

in the application of the NGA-west2 models in low-to-moderate seismic areas are the following: 

1) Modern GMPEs use definitions of the source-to-site distance that reflect the dimensions of the fault 

rupture for larger earthquakes better than point-source measures relative to the epicenter or hypo-

center. This is a positive development since it more realistically reflects the fact that energy is released 

from the crust around the entire fault rupture during a large earthquake. However, seismic source 

configurations defined for PSHA in low-to-moderate seismicity areas almost invariably include areas 

of distributed point-source seismicity. Point-source simulations can be enhanced to include simula-

tions of virtual extended ruptures. These adaptations are computationally demanding and not easily 

implemented. As suggested by Bommer and Akkar (2012), there is a need to compute pairs of equa-

tions, one using an extended-source distance metric, the other a point-source measure. To our 

knowledge, such pairs of equations have not been performed by the NGA-west 2 project. 

2) A problem often encountered in the application of the NGA-west 2 GMPEs based on complex func-

tional forms is related to the availability of suitable metadata in the target region. In low to moderate 

seismicity regions the source and site characterizations are generally not as detailed as in the data set 

used to derive the GMPE (host region). In such cases, the GMPEs are applied in simplified forms, where 

one or several variables (e.g., basin depth, hanging wall foot wall effects) are constrained to default 

values. This operation should be accompanied by either a proper handling of the epistemic uncer-

tainty introduced when fixing some variables, or by propagating the uncertainty to the aleatory com-

ponent. Both choices imply some additional work and expert decisions. 

3) The hazard computed at a given location depends on both the seismic source model and on the 

ground-motion model. Hazard computations in low-to-moderate seismicity areas are particularly de-

pendent on the GMPE magnitude scaling around magnitude 5.5-6. Some NGA-west 2 models have 

chosen functional forms with a magnitude hinge around 𝑀 = 5.5. Such a choice has a low impact on 

hazard computations in high seismicity regions but a larger one in moderate seismicity regions. This 

application-driven practical issue motivates the development of functional forms adapted to moder-

ate seismicity areas. 

To overcome these problems, we derived a new GMPE using the high quality PEER flat file but tuning the 

complexity of the model to the information available in moderate seismicity regions. This development is 

also motivated by the needs of hazard computations in low-to-moderate seismicity areas: pairs of equa-

tions (one using an extended-source distance metric, the other a point- source measure), focus on stiff soil 

and rock site conditions, specific magnitude-scaling analysis in the magnitude range 5.5-6. 
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The use of simpler GMPEs (point source distance metric, lower number of input parameters) has however 

two main drawbacks, which will be analyzed in the following: 

1) The aleatory variability of GMPEs (𝜎) has a strong impact on the results of PSHA at long return peri-

ods. The 𝜎 values are indeed an estimate of the apparent aleatory variability since they are evaluated 

with respect to the chosen model. The use of simpler models implies larger 𝜎 and the impact of such 

increase has to be carefully evaluated. 

2) GMPEs are used as part of a logic tree or selected as a backbone equation. In both cases, it is important 

to evaluate the GMPEs epistemic uncertainty of the median (particularly in the magnitude range of 

interest) and the proximity of the model with other published models, e.g., using Sammon’s maps 

(Scherbaum et al., 2010). 

This article is organized as follow. First, we discuss the motivations that led us to derive a GMPE tailored 

to our specific hazard application (Grünthal et al., 2017). Then, after describing the functional form and 

the data considered for the GMPE development, we discuss the epistemic uncertainty in the median and 

the aleatory variability. Finally, the comparisons of the median predictions with NGA-West2 GMPEs are 

presented in terms of Sammon’s map and Trellis charts. 

2.1.1 Towards an application driven GMPE: Hazard assessment in a moderate 
seismicity area (Germany) and associated needs 

This study is part of the German Hazard map project accomplished on behalf of the Deutsches Institut für 

Bautechnik (DIBt; The Centre of Competence in Civil Engineering). The new version of the national PSHA 

should predict uniform hazard spectra (UHS) for any site within Germany, hazard maps for spectral ac-

celerations, peak ground accelerations, and disaggregation for the hazard levels of 10%, 5% and 2% ex-

ceedance probability within 50 years (Grünthal et al., 2017). All hazard calculations had to be performed 

for 𝑣𝑆30 = 800 m/s, where 𝑣𝑆30 is the time-averaged shear-wave velocity of the top 30 m. Induced events 

are excluded from the study. Epistemic uncertainties have been explored both for the seismicity and 

ground-motion model part.  

The tectonic context of Germany (Grünthal et al., 2017) is complex with active structural elements mainly 

along the chain of the Rhine Graben up to rather stable parts towards the north and northeast. Because of 

this complexity, GMPEs logic tree used in past seismic hazard studies for this part of the West European 

Platform (e.g. Delavaud et al., 2012) included equations for active crustal regions (ACR). 

The use of ACR models calibrated to the NGA-west database was also motivated by recent stochastic mod-

els and GMPE testing performed in Western Europe. In France, Beauval et al. (2012) tested several GMPEs: 

the NGA-west 1 Abrahamson and Silva (2008) model was ranked as one of the best models. Drouet and 

Cotton (2015) developed and tested a new stochastic model based on data recorded in the French Alps 

and their resulting model is consistent with GMPEs derived for active crustal regions (e.g. Boore and At-

kinson, 2008). In Switzerland, Edwards and Fäh (2013) and Cauzzi et al. (2015a) proposed stochastic 

ground-motion models of the Swiss Foreland and the Swiss Alpine region. They also showed that Swiss 

stochastic ground-motion models are broadly consistent with the NGA-west-1 Chiou and Youngs (2008) 

model. 

The GMPEs logic tree implemented for updating the seismic hazard in Germany is composed by three 

main branches, each of them including one or more models derived from different data sets. In particular, 

while the first branch includes models derived for Europe using the RESORCE data set (Akkar et al., 2014), 

the other two branches are relevant to GMPEs calibrated considering global ACR data sets (Grünthal et al., 

2017). The model of Cauzzi et al. (2014b), calibrated over a data set mostly populated by Japanese earth-

quakes, is considered for one of the two branches while the other was reserved to a GMPE derived from 

the NGA2-west flat file (Ancheta et al., 2014). The seismicity model used to derive the German hazard map 

is based mainly on area sources. Disaggregation analyses have been performed over magnitude and dis-

tance scenarios for preliminary hazard assessments for several representatives sites (Figure 2-1). The 
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hazard (for the return period 𝑅𝑃 = 475 years) is controlled mainly by earthquakes of moderate magni-

tude (𝑀 < 5.5) at distance below 25 km. The disaggregation results suggest a significant impact of the 

functional form chosen to define the magnitude scaling between 𝑀 = 5 and 𝑀 = 6 (Figure 2-1). For ex-

ample, the kink in the magnitude scaling of the BSSA14 model (Boore et al., 2014) around the hinge mag-

nitude 𝑀𝑤 = 5.5 increases the relative contribute to hazard of scenarios for magnitude between 5 and 6 

and distances around 20 km. In the following, we use the PEER-NGA2 flat file to derive a new GMPE whose 

functional form is selected for the specific hazard study of interest. 

 

2.1.2 NGA-west2 data and GMPE development 

To develop a global GMPE for logic tree implemented in the hazard assessment for Germany, we consider 

the PEER-NGA2 flat file (Ancheta et al., 2014). In particular, starting from the Campbell and Bozorgnia 

(2014) data selection, further selection criteria related to the specific application are applied to the data 

set. We selected only recordings for distances less than 300 km and stations with 𝑣𝑆30 computed or esti-

mated from shear wave measurements (i.e., 𝑣𝑆30 code either 0 or 1; Ancheta et al., 2014). Moreover, since 

the hazard application is performed for rock condition, only 𝑣𝑆30 ≥ 360 m/s are selected in order to limit 

possible bias in the median due to not properly modelled site effects for soft sites (i.e., neglecting non-

linear effects). Figure 2-2 shows the scatterplot for the distribution of magnitude with hypocentral dis-

tance. The selected data set is composed by 4692 recordings from 242 earthquakes and 1025 stations. 

The [16th, 50th, 84th] percentiles of the magnitude, Joyner-Boore and hypocentral distributions are [3.7, 

4.3, 6.7], [43.8, 111.9, 209.5] km, and [49.7, 117.2, 217.8] km, respectively. In particular, for magnitudes 

above 4.5, hypocentral distances below 10 km are almost not sampled. Regarding the selected stations, 

the percentiles for 𝑣𝑆30 are [393, 511, 786] m/s, while the number of recordings for Eurocode8 class A 

and B are 689 and 4013, respectively (Figure 2-2). 

Figure 2-1: Disaggregation over 

magnitude and distance scenarios 

for preliminary hazard assessment 

at a representative site in Germany. 

(a) BSSA14 (Boore et al., 2014) 

model; (b) Cauzzi et al. (2015b) 

model (CAU14); (c) Bindi et al. 

(2014) model (RES14). In panel (d), 

the PGA magnitude scaling for the 

three GMPEs is compared consider-

ing a vertical strike slip earth-

quakes at 30 km (𝑽𝑺𝟑𝟎 = 𝟖𝟎𝟎m/s). 
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Regarding the functional form, the involved explanatory variables should reflect the metadata availability 

in the target region and the requirements of the specific hazard assessment. For example, since the hazard 

is computed for rock site conditions (𝑣𝑆30 = 800 m/s) and in a low-to-moderate seismicity area, only the 

linear site effect is implemented, without correction for basin effects. Also, since the hazard assessment is 

based on source area models, the hypocentral distance is preferred, although the model is also derived 

for the Joyner-Boore distance, following (Bommer and Akkar, 2012). Moreover, extended source effects 

such as hanging-wall/foot-wall terms are not modelled. For the aforementioned reasons, the following 

functional form is considered: 

ln 𝑌 = 𝑒1 + 𝐹𝐷(𝑅,𝑀) + 𝐹𝑀(𝑀) + 𝐹𝑆 (1) 

Where the distance 𝐹𝐷 and magnitude 𝐹𝑀 functions are given by: 

𝐹𝐷(𝑅𝐽𝐵,𝑀) = [𝑐1 + 𝑐2(𝑀 −𝑀𝑟𝑒𝑓)]𝑙𝑛 (√𝑅𝐽𝐵
2 + ℎ2/𝑅𝑟𝑒𝑓) + 𝑐3 (√𝑅𝐽𝐵

2 + ℎ2 −𝑅𝑟𝑒𝑓) (2) 

𝐹𝐷(𝑅ℎ𝑦𝑝𝑜,𝑀) = [𝑐1 + 𝑐2(𝑀 −𝑀𝑟𝑒𝑓)]𝑙𝑛(𝑅ℎ𝑦𝑝𝑜/𝑅𝑟𝑒𝑓) − 𝑐3(𝑅ℎ𝑦𝑝𝑜 − 𝑅𝑟𝑒𝑓) (3) 

𝐹𝑀(𝑀) = {
𝑏1(𝑀 −𝑀𝑟𝑒𝑓) + 𝑏2(𝑀 −𝑀𝑟𝑒𝑓)

2
,𝑀 < 𝑀ℎ

𝑏3(𝑀 −𝑀ℎ) + 𝑏1(𝑀ℎ −𝑀𝑟𝑒𝑓) + 𝑏2(𝑀ℎ −𝑀𝑟𝑒𝑓)
2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

𝐹𝑆 = 𝑠𝐴 ln(𝑉𝑆30/800) (5) 

In Eq. (2) and (3), the Joyner-Boore (𝑅𝐽𝐵) and hypocentral (𝑅ℎ𝑦𝑝𝑜) distances are considered, respectively. 

The reference distance 𝑅𝑟𝑒𝑓 have be set equal to 1 km, the reference magnitude 𝑀𝑟𝑒𝑓 to 4.5 (i.e., close to 

the 50th percentile of the cumulative number of recordings versus magnitude). The hinge magnitude 𝑀ℎ 

introduced to handle the saturation in the magnitude scaling, is set equal to 6.5, that is, slightly above the 

values suggested by data (6-6.2), to move the kink in the magnitude scaling at a magnitude larger than 

those controlling the hazard (Figure 2-1). After preliminary tests, the style of faulting term is not consid-

ered because not justified in term of bias-variance trade-off, using the AIC parameter (Akaike, 1973). The 

regression is performed using a mixed effect approach (Abrahamson and Youngs, 1992; Bates et al., 2014), 

accounting for the between-event residuals as random effect on the offset depending on the earthquake 

grouping level. The models are calibrated for 5%-damped pseudo-acceleration response spectra, consid-

ering 90 periods ranging between 0.01 and 4s. 

Figure 2-2: Distribution of 

magnitude versus hypocen-

tral distance for the consid-

ered recordings. In the left 

panels, the distributions for 

classes A and B of Eurocode 8 

are shown separately.
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2.2 Results 
In the following paragraphs, we discuss the results in terms of: fixed effects, epistemic uncertainty in the 

median and aleatory variability. 

2.2.1 Fixed effects (median 
model) 

The obtained coefficients are listed in Ta-

bles 1 and 2 included in the Electronic Sup-

plements. Figure 2-3 shows the variability 

with period of the coefficients obtained for 

the GMPE implementing the Joyner-Boore 

distance. The trends of the parameters with 

periods determine the scaling of the model 

with respect to the explanatory variables. 

For example, the decrease (in absolute 

value) of coefficient 𝑐3 with period reflects 

the decrease of the attenuation propor-

tional to distance, sometimes referred to as 

anelastic attenuation term, although this 

interpretation is strictly valid only in the 

Fourier domain, e.g. Bora et al. (2016), 

which almost vanishes above 2s. The effect 

of this term is largest at 0.1s and, for peri-

ods smaller than 0.03s, it is constant. The 

coefficient 𝑐2 in Eq.  (2) and (3) controls the 

magnitude dependence of the attenuation 

with the logarithm of distance (sometimes 

referred to as geometrical spreading, in 

analogy with a model for Fourier). As 

shown in Figure 2-3, 𝑐2  is positive and al-

most constant. Its effect on ln 𝑌 depends on the sign of (𝑀-𝑀𝑟𝑒𝑓): for 𝑀 > 𝑀𝑟𝑒𝑓, the 𝑐2 term reduces the 

attenuation with distance while, for 𝑀 < 𝑀𝑟𝑒𝑓, it increases the attenuation with distance. Then, the dis-

tance attenuation is more significant for small magnitudes. This effect is more evident for short periods 

(below 0.05s) and almost vanishes between 0.1 and 0.6s. Another example is the site coefficient 𝑠𝐴 (Eq.  

5). For velocity lower than 800m/s, the term ln(𝑉𝑆30/800) is negative. Then, the trend of 𝑠𝐴 in Figure 2-3 

implies that the site amplification effects are larger between 0.03 and 0.1s for velocities larger than 

800m/s and between 0.2 and 1s for velocities smaller than 800m/s. Since the different terms in Eq. (2) 

through (5) could be affected by mutual trade-offs, Figure 2-4 shows the overall dependencies of the pre-

dictions on magnitude and distance, i.e., by grouping all terms depending on these explanatory variables. 

In the top panel, the period dependence of the term 𝐹𝑀 given by Eq.  4 is shown for two different magni-

tudes (i.e., 4 and 6). Since also the 𝑐2 term includes the magnitude, the plot is repeated for two different 

distances (continuous line for 𝑅 = 30km; dashed lines for 𝑅 = 100km). The dependence on the source 

recalls the shape of the response spectra, with a sharper increase with decreasing period for smaller mag-

nitude. For short periods, the curve flattens and it is almost independent on the frequency of the oscillator. 

The dependence on distance is weak, that is the role of the 𝑐2 term with respect the terms with 𝑏1, 𝑏2 and 

𝑏3, and only appreciable for short periods (see the discussion above about 𝑐2). The period dependence of 

𝐹𝐷 (Eq.  3) is shown in the bottom panel of Figure 2-4, for four scenarios defined by 𝑀6 and 𝑀4 at 30 and 

100km. By comparing the curves for 𝑅 = 30 and 100km, we see that the overall effect of 𝑐1 is to scale the 

Figure 2-3: Coefficients of 

the GMPE calibrated for the 

Joyner-Boore distance. 
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prediction. For a given distance, the impact of the magnitude (through the term with 𝑐2) becomes signifi-

cant for periods below 0.15s, where large magnitude are less attenuated than the small ones, as previously 

discussed for the period dependence of 𝑐2. 

  

2.2.2 Epistemic variability in the median 

The variance-covariance matrix of the model quantifies the uncertainties of coefficients (diagonal ele-

ments) and their mutual trade-offs (off-diagonal elements). Following Al Atik and Youngs (2014), the var-

iance-covariance matrix and the matrix of the gradients of the model with respect to the coefficients can 

be used to assess the epistemic uncertainty in the median model (see Al Atik and Youngs (2014) for a 

detailed discussion of the methodology): 

𝑣𝑎𝑟[𝑙𝑛𝑌̅̅ ̅̅̅]𝑥0 = 𝐽0
𝑇[𝑣𝑎𝑟𝐶𝑜𝑣𝑥𝑖]𝐽0 (6) 

Where, the Jacobian matrix 𝐽0  is evaluated in the predictive location 𝑥0  and the variance-Covariance 

matricx 𝑣𝑎𝑟𝐶𝑜𝑣 is evaluated in the data points 𝑥𝑖 used to develop the model. Figure 2-5 shows the ingre-

dients to assess the variance of ln(𝑆𝐴) at 0.1s. For graphical reasons, the variances of the model coeffi-

cients and the correlation matrix are shown instead of 𝑣𝑎𝑟𝐶𝑜𝑣. The standard deviation 𝜎𝜇 of the median 

(i.e., the square root of the left hand side term in Eq.  (6) quantifies the epistemic uncertainty in the median 

due to the combined effects of limited data availability and implemented functional form. 

The largest variances are those of 𝑒1 and 𝑏3 (Figure 2-5, panel a), while the largest trade-off occurs be-

tween 𝑐1 and 𝑐3, between 𝑒1 and 𝑐1, between 𝑏1 and 𝑐2, and between 𝑒1 and 𝑐3 (Figure 2-5, panel b), re-

flecting of the trade-off between the source and attenuation terms. Following Eq.  (6), the uncertainty on 

the median is controlled by the product of these terms with the values of the gradient of the model with 

respect to the coefficients, evaluated for the predictive scenarios. Figure 2-5, panel (c), shows the gradi-

ents for different magnitude and distance combinations, and for 𝑣𝑆30 = 600m/s. It is worth noting that, in 

the case of hypocentral model, the model is linear with respect to the coefficients and therefore the gra-

dients are period independent. The dependence of 𝜎𝜇 on period eventually arises from the variance-co-

variance matrix. On the contrary, for the Joyner-Boore model, the derivative of 𝐹𝐷 in Eq.  (2) with respect 

to the coefficients 𝑐1, 𝑐2, 𝑐3, and ℎ depends on the model coefficients, making the gradients period depend-

ent.   

Figure 2-4: Top: Period dependence of the magnitude terms.  controlled by parameters 𝒃𝟏, 𝒃𝟐, 𝒃𝟑 and 𝒄𝟐 (𝑭𝑴
𝟏  is 

given by the 𝑭𝑴 term in equation 4 plus the 𝒄𝟐 term of equation 3), for magnitude 6 (gray) and 4 (black), and two 

distances (𝑹 = 30km, continuous line; 𝑹 = 100km, dashed lines). Bottom: Period dependence of the distance 

terms controlled by 𝒄𝟏, 𝒄𝟐 and 𝒄𝟑 (𝑭𝑫 term, see equation 3), for magnitude 6 (gray) and 4 (black) and two dis-

tances (𝑹 = 30km, continuous lines; 𝑹 = 100km, dashed lines).
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Figure 2-6 shows 𝜎𝜇 for different magnitude and distance scenarios. Panels (a) and (b) show that 𝜎𝜇 for 

magnitude 6 and 𝑣𝑆30 = 800m/s (i.e., a typical scenario of interest for our application) is weakly depend-

ent on distance and is of the order of 𝜎𝜇 modelled for NGA2 GMPEs (Al Atik and Youngs, 2014). For dis-

tances shorter than 10 km, 𝜎𝜇 slightly increases with decreasing distance, reflecting the fact that short 

distances are weakly constrained by data. In the magnitude range from 4 to 6 (and for a distance of 25 km 

and 𝑉𝑆30 = 800m/s), 𝜎𝜇 is weakly dependent on magnitude, while it increases outside this range, in par-

ticular above magnitude 7. The bump around magnitude 6.5 is a consequence of introducing the hinge 

magnitude for handling the saturation with magnitude. The overall dependence on period is weak, as 

shown in panel (c). For magnitude 6, 𝜎𝜇 is between the models for normal and reverse faulting derived 

for NGA2 while, as already shown in panel (b), larger values are obtained for magnitude 8. The increases 

of 𝜎𝜇 for periods longer than 2s is stronger for small magnitudes, which less constrain the ground-motion 

at low frequencies. Regarding the dependence of 𝜎𝜇 on 𝑣𝑆30 (here not shown), it is negligible. Finally, the 

overall contribution of 𝜎𝜇 to the mean response spectra uncertainty are shown in panel (d), for different 

magnitudes, at a distance of 25 km and for 𝑣𝑆30 = 800m/s. 

Figure 2-5: Variance, correlation and gradi-

ent of coefficients. (a) Variance of the coeffi-

cients for 𝑻 =  0.1s, considering the model 

for hypocentral distance. (b) Correlation of 

the coefficients at 0.1s, evaluated at the data 

points used to develop the model. (c) each 

column includes the gradient of the model 

with respect to one coefficient (from 𝒆𝟏  to 

𝒔𝑨, see equations 2 through 5), evaluated at 

a given magnitude and distance (for exam-

ple, the column 𝑴4.0 R20 is evaluate for 

magnitude 4 at 20km, 𝑴7.0 R60 for magni-

tude 7 at 60, and so forth). The 𝒗𝑺𝟑𝟎 velocity 

is fixed to 600 m/s. Please note that the 

square root of variance for 𝒄𝟑 (panel a) and 

the square root of the derivative with re-

spect to 𝒄𝟑 (panel c) are considered.



 
20 

 

2.2.3 Aleatory variability 

Figure 2-7 shows the aleatory variability in terms of period dependent 𝜏  (between-event), 𝜙  (within-

event) and 𝜎 (total aleatory variability). To provide a term of comparison, Figure 2-7 also reports the 

models for BSSA14 (Boore et al., 2014) and RES14 (Bindi et al., 2014). Since BSSA14 is heteroscedastic, its 

standard deviations are evaluated for magnitudes 4 and 7 (representing the range of main interest for the 

hazard application in Germany), at a distance of 40km, and for 𝑣𝑆30 = 800m/s.  

Figure 2-6: Uncertainty in the mean computed for the Joyner-Boore model. (a) Dependence of  on distance, for 

different periods (colors); (b) Dependence of  on magnitude, for different periods; (c) Dependence of  on pe-

riods for different magnitude (colors) at a distance of 25 km; (d) overall effect of  on the mean response spectra, 

for three different magnitudes at a distance of 25 km (𝑽𝒔𝟑𝟎=800 m/s). In panels (a), (b), and (c) the continuous and 

dotted lines represent the models proposed by Al-Atik and Youngs (2014) for NGA2 for normal and reverse or 

strike faults, respectively.
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Considering the simplification applied to the functional form, 𝜎 values larger than those of BSSA14 were 

expected. Indeed, for short periods, 𝜎 is very close to the values of BSSA14 for 𝑀4 while, for longer peri-

ods, it approaches the values of RES14 (which was calibrated for Europe). The main differences among 

the models are observed for 𝜏. For periods shorter than 0.3s, 𝜏 is larger than the values of the other models 

while for longer periods it overlaps to BSSA14 evaluated for magnitude 4. The values for RES14 are 

smaller, probably as a consequence of a more regional composition, since it is manly composed by earth-

quakes occurred in Italy and Turkey. Regional differences are also present in the European data but they 

are mainly affecting the distance scaling and site effects (e.g., Kotha et al., 2016). The largest contribution 

to 𝜎 is coming from 𝜙. Below 0.2s, 𝜙

smaller than RES14 and close to the BSSA14 one evaluated for magnitude 7. In conclusion, the aleatory 

variability of the derived model is close to the variability of BSSA14 for low magnitude and, since we do 

not allowed 𝜎 to be heteroscedastic, larger than the BSSA14 one for large magnitude. The simplifications 

applied to the functional form mainly affect the source variability for periods below 0.4s and the record-

to-record variability for the longer periods. 

2.3 Discussions 
In the following, the derived model is discussed in terms of residuals analysis and by comparing the pre-

dictions with those from previous models. 

2.3.1 Analysis of residuals 

The explanatory power of the models is evaluated through the analysis of the residual distributions. Fig-

ure 2-8 shows the prediction versus distance for PGA and PGV, considering magnitudes 4 and 6.7, and 

𝑣𝑆30 = 800m/s. The predictions are compared to observations selected in ±0.2 range with respect the 

magnitude used for the prediction, and considering all available stations (circles for stations with 𝑣𝑆30 ≥

800m/s, triangles for 𝑣𝑆30 < 800m/s).  

Figure 2-7: Within-event (ϕ), between-event (τ), 

and total (σ) standard deviations versus periods 

for the Joyner-Boore model (black lines) and 

comparison with BSSA14 (Boore et al., 2014) 

and RES14 (Bindi et al., 2014) GMPEs.
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The model captures well the trend and the variability in the data, with perhaps the tendency of overesti-

mating the ground-motion for large magnitude at large distances. To quantify the overall agreement be-

tween data and predictions, the within and between residuals are shown in Figure 2-9 against distance 

and magnitude, respectively. Generally, the within event residuals (left panels) for both selected periods 

(i.e., 0.1 and 1.0s) do not show any significant trend with distance, except for a slight tendency to under-

estimate the spectral acceleration at distance smaller than 20 km for 𝑇 = 0.1s. Regarding the between 

event residuals (right panels), they are shown accordingly to their focal mechanism. The data set is dom-

inated by strike-slip (SS) events (181 earthquakes), shown as black circles, while the number of events 

with normal (NF) and reverse (RF) mechanisms are 16 and 45, respectively. While the between event 

distribution is unbiased when considered as a whole, the average residuals computed separately for the 

three style of faulting classes [SS, NF, RF] are [0.007, -0.116, 0.013] at 0.1s, and [0.005, -0.096, 0.009] at 

1s. Therefore, the model tends to slightly overestimate the spectral acceleration for normal events, alt-

hough the large standard deviations (of the order of 0.4) make all these values not significantly different 

from zero.  

 

 

Figure 2-8: Prediction versus data for PGA (a) and PGV (b), for the hypocentral distance model. The median (con-

tinuous lines) ± 1 (dashed lines) are computed for magnitude 4 and 6.7, and vs30=800 m/s. Symbols are obser-

vations for M=4.0±0.25 (white) and 6.7±0.25 (gray), considering stations with vs30≥800 m/s (circles) and <800 

m/s (triangles).

Figure 2-9: Within-event residuals 

versus distance and magnitude. 

Top. Within event residuals versus 

distance (left) and between event 

residuals versus magnitude (right), 

for spectral acceleration at 0.1s. The 

symbols in the between event plot 

indicate different focal mechanisms 

(circle: strike slip; square: normal; 

diamonds: reverse). In the bottom 

panels, the same distributions are 

shown but for 1s.
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2.3.2 Comparison with NGA2 and RES14 models 

The median predictions of the model calibrated in this study are compared to four different NGA2 models 

and to one European model. The models considered are: BSSA14 (Boore et al., 2014), CY14 (Chiou and 

Youngs, 2014), ASK14 (Abrahamson et al., 2014), CB14 (Campbell and Bozorgnia, 2014), RES14 (Bindi et 

al., 2014). The Idriss (2014) model is not used here because its application is suggested above magnitude 

5 which does not fit with the needs of hazard computations in moderate seismicity areas. Both the hypo-

central and Joyner-Boore versions of the model derived in the present study are discussed here. The com-

parison is performed in terms of Sammon’s map (Scherbaum et al., 2010) and Trellis plot. Since the im-

plemented GMPEs use different distance definitions, the comparison is performed for a set of a-priori 

defined source scenarios (Figure 2-10).  

 

In particular, 7 different fault configurations are adopted varying the dip 𝛿 and the rake 𝜆 angles (Figure 

2-10 shows the list of the 7 considered combinations). For each fault model, 4 different magnitudes are 

selected to generate the fault extension (i.e., 4, 5, 6, and 7). Regarding the station locations, they are ar-

ranged along a line orthogonal to the strike, located over the hanging wall at distances equal to ∆=[0.01, 

0.1, 0.2, 0.5, 1, 2] degrees. For all stations, 𝑣𝑆30 = 800m/s is used. For each models, those parameters of 

NGA2 GMPEs like 𝑍𝑡𝑜𝑟, 𝑍2.5, 𝑍10, etc., are set equal to default values suggested by the GMPE’s authors and 

no regional attributes are considered. For each source-station combination, the distances required by the 

GMPEs are computed (i.e., rupture distance 𝑅𝑟𝑢𝑝 , Joyner-Boore distance 𝑅𝐽𝐵 , and hypocentral distance 

𝑅ℎ𝑦𝑝𝑜, being the latter computed locating the hypocenter in the middle of the fault). In total, 168 source-

station combinations are generated, which are used to compile the multi-dimensional vectors for the Sam-

mon’s maps. In order to provide a reference in the Sammon’s map, the mixture of the 4 considered NGA2 

GMPEs is computed with equal weights, and indicated with MIX in. Moreover, artificial scaling with dis-

tance and magnitude are applied to MIX, to add further reference points in the maps. In particular, M+ and 

M++ in Figure 2-11 refer to MIX with added the term 0.25(𝑀-𝑀𝑟𝑒𝑓) and 0.5(𝑀-𝑀𝑟𝑒𝑓), respectively. Similar 

definitions apply to M- and M--, but the artificial scaling is in this case subtracted. Regarding the distance 

scaling, R+ and R- correspond to adding 0.25ln(𝑅𝑟𝑢𝑝) or subtracting 0.25ln(𝑅𝑟𝑢𝑝) to MIX, respectively. To 

make it easier the comparison between different maps, we have applied translation and rotation to the 

Sammon’s maps in order to locate MIX always in the origin of the coordinate system and R+ along the 

positive x-axis (Figure 2-11). If necessary, a reflection with respect to the x-axis is finally applied.  

Figure 2-10: Geometries used to generate 

the scenarios for the Sammon’s map. For 

each source, the distances required by the 

considered GMPEs are computed for six sta-

tions located at different distances along a 

line perpendicular to the strike direction, 

being all stations located on the hanging 

wall. The combinations between the dip 𝜹 

and rake 𝝀  angles are given in the figure. 

For each combination, four different magni-

tudes are generated (i.e., 4, 5, 6, and 7). 𝒗𝑺𝟑𝟎 

is fixed to 800m/s.
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The inter-point distances in Figure 2-11 are an estimate of the GMPEs proximity in predicting similar 

ground-motion levels (Scherbaum et al., 2010), assessed from the feature vectors constructed considering 

the scenarios in Figure 2-10. Considering the distances among the NGA-west2 GMPEs shown in Figure 

2-11, the model derived in this study for the Joyner-Boore distance (GERjb) and for periods up to 1s, is 

close to the NGA-west2 group. On the contrary, GERjb for longer periods (i.e., 4s in Figure 2-11) and the 

hypocentral model (GERhypo) for all periods predict significant different ground-motion. In particular, 

GERhypo and GERjb show a stronger magnitude scaling with respect to MIX, being the differences more 

evident for GERhypo.  This is confirmed by the magnitude scaling shown in Figure 2-12, in particular for 

short distances and 𝑇 = 0.1s. Regarding the scaling with distance, the Sammon’s maps show a stronger 

decay of Rhypo than MIX (i.e., Rhypo is along the R- direction) at 𝑇 = 0.02 and 0.1s while the attenuation 

is weaker (R+ direction) at 0.1 and 4s. The Trellis plots in Figure 2-13 confirm these overall trends, alt-

hough with differences depending on specific scenarios (e.g., at 𝑇 = 0.1s for 𝑀6.5, Rhypo shows a 

stronger attenuation than MIX). The Sammon’s maps also provide information for the other models. For 

example, RES14 shows a weaker magnitude scaling than MIX for 0.02 and 0.1s (see also Figure 2-11) and 

a general weaker attenuation with distance than MIX (see also Figure 2-13). It is worth noting that 4s is 

beyond the range of applicability of RES14 suggested by the authors.  

Figure 2-11: Sammon’s maps for 𝑻 = 0.02, 0.1, 1, and 4s, considering the source scenarios described in Fig. 10. The 

considered GMPEs are represented by colored circles while MIX is the reference model computed as mixture of the 

four considered NAGA2 GMPEs with equal weights. M+, M++, M−, M−−, R+, and R− are GMPEs where artificial either 

magnitude or distance scaling are added to MIX (see text for details). 
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Figure 2-14 summarizes the results of the Sammon’s map analysis, showing the distance between each 

considered model and the reference one (i.e., the mixture of the NGA2 models), as function of periods. The 

predictions from the model derived in this study for the Joyner-Boore distance are close to the NGA-west2 

ones, in particular for short periods. For long periods, the Joyner-Boore model is close to CY14 and BSSA14 

while between 0.3 and 2s, the predictions are closer to the pan European model (RES14). Figure 2-14 

confirms that the hypocentral model derived, where a point source is considered for computing the dis-

tances, shows larger differences in the prediction of the ground shaking for the considered scenarios. 

2.4 Conclusions 
Motivated by its application in the update of the seismic hazard assessment for Germany, we developed a 

ground-motion prediction equation (GMPE) in this study tailored to such specific needs. Starting from the 

high quality NGA-west2 flat file, we constructed our model taking into consideration the requirements 

from the specific hazard application in a low-to-moderate seismicity area, being the following the main 

ones: a model implementing a point source measure of distance (i.e. hypocentral) along with an extended 

source metric (Joyner-Boore in our case); develop a model for a reference rock condition of 𝑣𝑆30 =

800m/s, avoiding possible bias due to low velocities (see also the discussions in Idriss, 2014); a GMPE 

with a smooth magnitude scaling around magnitude 5.5, which control the hazard at short return period 

in the target area; a complexity of the model suitable for its application in a low-to-moderate seismic area, 

that is, a functional form not requiring a-priori assumptions of variables not known in the target area, that 

would imply additional assumptions for refining the aleatory variability model. 

Figure 2-12: Magnitude scaling for different GMPEs at 𝑻 = 0.02, 0.1, 1.0, and 4.0s, considering two different dis-

tances (i.e., 30 and 100km), 𝑽𝒔𝟑𝟎 = 800m/s, and a vertical strike slip earthquake. The model MIX is the mixture of 

the four considered NGA2 models considered with equal weights (see text for details). 
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The simplification in the functional form with respect to the NGA-west2 GMPEs had the effect of increasing 

𝜎. Indeed, the obtained values of 𝜎 are close to the NGA-west2 values for small magnitudes and periods 

shorter than about 0.6s whereas, for longer periods, 𝜎 increases to the values observed for the Bindi et al. 

(2014) Pan European model (RES14). This increased variability level for large magnitudes hamper the 

applicability of the model derived in this study for those applications where long mean return periods are 

of concern, such as site-specific hazard assessments. On the other hand, the followed approach can be of 

interest for many other applications, such as shake maps or earthquake early warning, as well as for the 

development of GMPEs for new intensity measure (e.g. Koufoudi et al., 2015). The comparison between 

the median predictions with those from the NGA-west2 and RES14 models in terms of Sammon’s map 

shows that the predictions from our GMPE derived for the Joyner-Boore distance are closer to the NGA-

west2 ones than the RES14 model whereas, for the GMPE implementing the hypocentral distance, larger 

differences are observed in the magnitude and distance scaling. Furthermore, the analysis of the covari-

ance matrix shows that the epistemic uncertainty in the median of the model calibrated for the hypocen-

tral distance, controlled by both the functional form and the data availability, is of the order of those af-

fecting the NGA-west 2 models for magnitudes smaller than 7.5. 

Figure 2-13: Distance scaling for different GMPEs at 𝑻 = 0.02, 0.1, 1.0, and 4.0s, considering two different magni-

tudes (i.e., 4.5 and 6.5), 𝑽𝒔𝟑𝟎 = 800m/s, and a vertical strike slip earthquake. The model MIX is the mixture of the 

four considered NGA2 models considered with equal weights (see text for details). 
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In conclusion, the suggested ranges of applicability for the GMPE derived in this study for the Joyner-

Boore distance are between magnitude 3 and 8, distances shorter than 300 km and 𝑣𝑆30  larger than 

360m/s (i.e., class A and B of Eurocode 8); for the hypocentral distance GMPE, the suggested ranges are 

from 10 to 300 km and magnitudes between 3 and 7. 
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Abstract 

The ergodic assumption considers the time sampling of ground shaking generated in a given region by 

successive earthquakes as equivalent to a spatial sampling of observed ground-motion across different 

regions. In such cases the estimated aleatory variability in source, propagation, and site seismic processes 

in ground-motion prediction equations (GMPEs) is usually larger than with a non-ergodic approach. With 

the recently published datasets such as RESORCE for Europe and Middle-East regions, and exploiting al-

gorithms like the Non-Linear Mixed Effects Regression it became possible to introduce statistically well-

constrained regional adjustments to a GMPE, thus ‘partially’ mitigating the impact of the assumption on 

regional ergodicity. In this study, we quantify the regional differences in the apparent attenuation of high 

frequency ground-motion with distance and in linear site amplification with 𝑉𝑆30, between Italy, Turkey, 

and rest of the Europe-Middle-East region. With respect to a GMPE without regional adjustments, we ob-

tain up to 10% reduction in the aleatory variability 𝜎, primarily contributed by a 20% reduction in the 

between-station variability. The reduced aleatory variability is translated into an epistemic uncertainty, 

i.e. a standard error on the regional adjustments which can be accounted for in the hazard assessment 

through logic-tree branches properly weighted. Furthermore, the between-event variability is reduced by 

up to 30% by disregarding in regression the events with empirically estimated moment magnitude. 

Therefore, we conclude that a further refinement of the aleatory variability could be achieved by choosing 

a combination of proxies for the site response, and through the homogenization of the magnitude scales 

across regions. 

 

Keywords: Ground-Motion Prediction Equations, Europe and the Middle-East, RESORCE, Regional varia-

tions, Non-ergodicity, Nonlinear Mixed Effects Regression 
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3.1 Introduction 
Reliability of the ground-motion predicted by empirical models mostly depends on the characteristics of 

the underlying calibration dataset. In the framework of seismic hazard assessment, the motivation behind 

compilation of a large strong motion dataset which includes recordings from different regions is twofold: 

first, to improve the magnitude-distance data distribution, and sampling different source characteristics 

and site conditions; second, to allow the calibration of models complex enough to describe the main phys-

ical processes contributing to the variability of the ground-motion. The current practice for computing 

the seismic hazard is based on an ergodic assumption, where the aleatory variability, i.e. the standard 

deviation sigma (𝜎) of ground-motion prediction equation (GMPE), includes the regional differences in 

ground-motion. If on one hand the ergodic assumption allows to replace the time sampling of ground 

shaking generated in a given region by successive earthquakes with a spatial sampling of ground shaking 

observed across different regions, on the other hand it increases the aleatory variability associated with 

source, propagation, and site seismic processes. Allowing regional differences in the GMPE ‘partially’ re-

moves this ergodicity by translating the aleatory variability into epistemic uncertainty which, in statistical 

sense, is the modelling uncertainty in region-specific adjustments. 

The collection of data from different regions with similar tectonic features (e.g. shallow crustal active re-

gions, stable continental regions, etc.) was performed in the past under the assumption that the trans-

regional and between-country variability of the ground-motion was either negligible or otherwise diffi-

cult to model due to the limitation in the sampling properties of the compiled datasets e.g. Douglas (2004a, 

2004b). As an example, the NGA-West models (Abrahamson and Silva, 2008a) were derived from a dataset 

including recordings from multiple regions (mainly California, Taiwan, Japan) without modelling the re-

gional effects. Later studies on the applicability of the NGA models to Europe (e.g. Stafford et al., 2008) 

highlighted the general agreement between predicted median values and the observations. The main dif-

ference was a faster distance attenuation observed in European data with respect to California; in agree-

ment with previous findings (Douglas, 2004a). Moreover a detailed comparison between the NGA models 

and strong motion data recorded in Italy (Scasserra et al., 2009) confirmed that it was possible to improve 

the predictive performance of NGA models for Europe by applying regional corrections to the attenuation 

with distance terms and to the overall scaling parameters (offset and pseudo-depth). 

Extension of the NGA database into NGA-West2 (Ancheta et al., 2014) with introduction of several small 

magnitude events mainly from California, and moderate to large size earthquakes from other regions of 

the world, promoted the interest in evaluating regional effects in the ground-motions. As a consequence, 

the most recent GMPEs developed from NGA-West2 include correction terms accounting for regional ef-

fects. Many authors (e.g. Boore et al., 2014; Chiou and Youngs, 2014) introduced regional differences in 

the anelastic attenuation coefficient and the site term related to depth of basin. Regional differences in the 

Vs30 scaling were also considered (e.g. Abrahamson et al., 2014), while information available in the da-

taset is not enough to constrain correction factors for other parameters. 

RESORCE strong motion database (Akkar et al., 2014a) was compiled with recordings from different Eu-

ropean and Middle-East countries, and was used to derive several GMPEs (Douglas et al., 2014). While 

these models do not account for regional differences in ground-motion scaling, recent studies highlighted 

the presence of regional effects either between selected countries (e.g. between Turkey and Iran by Kale 

et al., 2015), or among different tectonic regions in Europe (Gianniotis et al., 2014). Ignoring the regional 

differences in ground-motion scaling may result in an inflated residual standard deviation, and correction 

for regional bias in the median ground-motion can be a first step towards ‘partially non-ergodic’ region-

specific PSHA. With such a goal in mind, this study focuses on identification of systematic regional differ-

ences in ground-motion scaling in Europe. Following the previous efforts of developing GMPE using 

RESORCE dataset (Douglas et al., 2014 and reference therein), we derive a new GMPE based on a relatively 

simple functional form which will still be able to capture the main features of ground-motion-scaling 

(Bindi et al., 2014). However, unlike in previous studies, a non-linear mixed effect regression (NLMER by 
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Bates et al., 2014) approach is applied where the regional differences are estimated as random effects 

applied to different model parameters. The advantages of using NLMER in place of the traditional random 

effect algorithm by Abrahamson and Youngs (1992) are discussed by Stafford (2014). For example, group 

specific adjustments can be estimated for any of the regression coefficients in a statistically correct way 

making NLMER much more extendable than traditional approaches. We identify the statistically signifi-

cant random effects and the regional adjustments for relevant parameters are provided as final result. 

3.2 Dataset and selection criteria 
The most recent Pan-European GMPEs (Douglas et al., 2014) are based on the RESORCE strong motion 

dataset (http://www.resorce-portal.eu/). RESORCE extends the previous pan-European strong motion 

dataset (Ambraseys et al., 2004) with recently compiled Greek, Italian, Swiss and Turkish accelerometric 

archives (Akkar et al., 2014a). In this study, starting from the 2013 release of RESORCE, we performed a 

preliminary data selection to exclude the poor quality or unprocessed records, or those records lacking 

the three components of ground-motion; then, we applied the following criteria to select the input data 

for regression: 

 Given the recent interest in considering small magnitude earthquakes for assessing the hazard in sev-

eral regions of Europe (http://projet-sigma.com/ScientificObjectives.html), records from events with 

moment magnitudes larger than or equal to 4 are considered. 

 Only focal depths shallower than 35km, and distances (Joyner-Boore, 𝑅𝐽𝐵, or epicentral 𝑅𝑒𝑝𝑖) shorter 

than 300km are selected. The epicentral distance, 𝑅𝑒𝑝𝑖 is used to approximate 𝑅𝐽𝐵 when the latter is 

unspecified, but only when 𝑀 ≤ 5 and 𝑅𝑒𝑝𝑖 ≥ 10 km. For larger magnitudes and smaller epicentral 

distances, records without 𝑅𝐽𝐵 are disregarded. 

 For each oscillator period 𝑇 , only those recording filtered with high pass corner frequency (𝑓ℎ𝑝) 

smaller than or equal to 1/(1.25 𝑇), i.e. 𝑓ℎ𝑝 ≤ 0.8 𝑓𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 (Abrahamson and Silva, 1997). For exam-

ple, for 𝑇 = 1s (𝑓𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 = 1Hz), we considered only recordings with 𝑓ℎ𝑝 smaller than or equal to 

0.8Hz; for 𝑇 = 4s (𝑓𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 = 0.25Hz), we chose 𝑓ℎ𝑝 ≤ 0.2 Hz. Single recorded earthquakes are not 

selected. 

 We consider only recordings from sites with known or inferred 𝑉𝑆30.  

In RESORCE, the moment magnitude is provided either as directly computed (e.g. from the moment tensor 

solutions), or converted from other magnitude scales (e.g. local magnitude or surface wave magnitude) 

using country-based empirical regressions (see Akkar et al., 2014a, for details). Earthquakes with 𝑀𝑤 de-

rived through empirical regressions are not considered in this study. Considering the unbalanced compo-

sition of the dataset, we categorize the contributing regions into three groups: Italy, Turkey, and Others, 

where the latter collects data from all the countries contributing to RESORCE with less than 200 selected 

records. Although a regionalization based on the tectonic settings (e.g. Delavaud et al., 2012) could be 

more appropriate to explore regional differences in ground-motion, we opt for a country-based categori-

zation that reflects the structure followed for data compilation. The filtered dataset is composed of 1251 

recordings, with 659 recordings from Turkey (TR), 378 from Italy (IT), 214 in Others group; primarily 

contributed to by Greece, Montenegro, Iran, and France. 
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In terms of magnitude range, distance range, and site characterization, the dataset is unbalanced among 

the regions. Douglas (2007) showed that the predicted median ground-motions are not well-constrained 

away from the centroid of data, especially for sparse datasets. Figure 3-1 shows the magnitude – distance 

distribution of recordings in our dataset, categorized according to different regions and soil classes. For 

example, there are very few recordings from Turkey in site class A (rock with 𝑉𝑆30 > 800m/s), which 

means that when a GMPE is derived from the compendium dataset without regional distinction, the esti-

mated site response for class A could be controlled by contributions from Italy and Other regions, even 

though the class A rock response in Turkey could be significantly different. Similarly, for distances larger 

than 100km and empirical site response of class B (stiff soil with 800m/s > 𝑉𝑆30 >= 360m/s) and Class C 

(soft soil with 360m/s > 𝑉𝑆30 >= 180m/s) the predictions could be controlled by strong motion record-

ings from Turkey. Moreover, preliminary non-parametric analysis (here not shown) suggest that the av-

erage slope of distance scaling is different among the regions, hinting for possible regional differences in 

the distance scaling of high-frequency ground-motions, which we could quantify as a regional variation 

during the GMPE regression. Based on these evidences, in the following we seek for ground-motion re-

gional variations related to the scaling with distance and to the site response. 

3.3 Regression approach 
Different models were derived from RESORCE dataset performing either a parametric regression (e.g. 

Akkar et al., 2014b; Bindi et al., 2014) or following non-parametric approaches (e.g., Derras et al., 2012; 

Hermkes et al., 2014). The parametric regression approaches were applied using the random effects meth-

odology of Abrahamson and Youngs (1992), where the residuals are split into between-event (𝛿𝐵𝑒), and 

within-event (𝛿𝑊𝑒𝑠) residuals. The GMPE functional forms used were relatively simple with respect to 

those implemented within the NGA-West2 project (e.g. Abrahamson et al., 2014), reflecting the detail of 

information available in the RESORCE metadata. With the aim of investigating the presence of regional 

effects in ground-motion variability, we also follow a parametric regression approach but using a non-

Figure 3-1: Scatter plot showing the distribution of observed data in Magnitude-Distance ranges for different EC8 

site classes for each region Italy (IT), Others, and Turkey (TR). The red markers correspond to events without a 

computed moment magnitude but only an empirically estimated/converted moment magnitude, and consequently 

excluded from the regression. Green markers show the final distribution of records that are used for PGA regres-

sion. 
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linear mixed effect approach (NLMER, e.g. Bates et al., 2014). Following Bindi et al. (2014), we consider 

the following functional form: 

ln(𝐺𝑀) = 𝑒1 + 𝐹𝐷(𝑅,𝑀) + 𝐹𝑀(𝑀) + 𝛿𝐵𝑒 + 𝛿𝐵𝑠 + 휀 (1) 

𝐹𝐷(𝑅,𝑀) = [𝑐1 + 𝑐2(𝑀 −𝑀𝑟𝑒𝑓)] ln (
√𝑅2 + ℎ2

𝑅𝑟𝑒𝑓
) + (𝑐3 + ∆𝑐3,𝑟) (√𝑅

2 + ℎ2 − 𝑅𝑟𝑒𝑓) (2) 

𝐹𝑀(𝑀) = {
𝑏1(𝑀 −𝑀ℎ) + 𝑏2(𝑀 −𝑀ℎ)

2

𝑏3(𝑀 −𝑀ℎ)

for 𝑀 < 𝑀ℎ, where 𝑀ℎ = 6.75
for 𝑀 ≥ 𝑀ℎ

 (3) 

In Eq. (1), 𝑒1 is the global off-set parameter; 𝐹𝐷, and 𝐹𝑀 are the distance and magnitude scaling compo-

nents as defined in Eq.  (2) and (3), respectively; 𝛿𝐵𝑒 and 𝛿𝐵𝑠 are random effects on 𝑒1 describing the be-

tween-event and between-station variability, respectively (Stafford, 2014; Al Atik et al., 2010); 휀 is the re-

sidual distribution accounting for the aleatory variability. In the following, the standard deviation of the 

between-event and residual distributions are indicated with the symbols 𝜏 and 𝜙0, respectively. The hinge 

magnitude 𝑀ℎ is fixed at 6.75 and the parameter 𝑏3, which controls the saturation with magnitude, is not 

constrained to be positive (i.e. the over-saturation at magnitudes greater than 6.75 is allowed). As in Bindi 

et al. (2014), the reference moment magnitude 𝑀𝑟𝑒𝑓 and reference Joyner-Boore distance 𝑅𝑟𝑒𝑓 are set at 

𝑀5.5 and 1km, respectively. 

The major contributor to ‘Others’ group in terms of recordings is Greece (137), followed by Montenegro 

(35), and Iran (20). We performed several preliminary regressions considering different number of geo-

graphical categories, including attempts of isolating the Greek recordings from Others. In order to get 

reliable regional adjustments for the anelastic attenuation, a minimum number of recording per category 

(i.e., per country) was needed. Since the adjustment factor for Greece, once isolated from Others, was not 

significantly different from zero at 95% confidence interval, we kept the Greece recordings inside the 

Others category. 

It is worth noting that we only introduced a regional adjustment factor for the apparent anelastic attenu-

ation coefficient (i.e .𝑐3 in Eq.  1), but the magnitude scaling component (𝐹𝑀 in Eq.  1) is constrained by 

the data from all regions. When asked for a random-effect on a regression parameter (e.g. regional adjust-

ment to 𝑐3 in Eq.  1) for each level in the group (levels being Italy, Turkey, and Others), the NLME algorithm 

estimates scalar additive adjustments which follow a standard-normal distribution. Therefore, the GMPE 

regression-coefficient 𝑐3 without any regional-adjustments (i.e. without adding ∆𝑐3,r to 𝑐3), is a generic 

anelastic attenuation coefficient without a regional bias. 

3.3.1 Regional variability in apparent anelastic attenuation term 

In Eq.  (2), we introduce a country-based random effect ∆𝑐3,𝑟 on parameter 𝑐3, where 𝑟 represents the 

three selected regions, i.e., 𝑟 = IT, Others, TR. Coefficients 𝑐1, 𝑐2 and 𝑐3 in the scaling with distance 𝐹𝐷, cor-

respond to the geometrical spreading, magnitude-dependent geometrical spreading, and apparent ane-

lastic attenuation, respectively, although these names should be strictly used only for a model based on 

Fourier spectral amplitudes. Coefficient 𝑐3 is constrained to being less than or equal to 0 for all spectral 

periods to disallow oversaturation at longer distances as in Bindi et al. (2014). Preliminary trials showed 

that for long periods (> 1s), 𝑐3 is taking a positive value and has a large negative correlation with 𝑐1, and 

a positive correlation with 𝑒1. Since a Student’s 𝑡-test confirms that it is anyway losing is significance, 𝑐3 

and the associated regional variations are fixed at zero for periods longer than 1s. 

3.3.2 Style of faulting terms 

Dependence of the median ground-motion on style of faulting (SoF) is generally accounted through a pe-

riod-dependent SoF specific adjustment to the median. Trial regressions including SoF adjustment factors 
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on the offset showed that the estimates were not well constrained and had large standard errors. In 

RESORCE the distribution of recorded focal mechanisms among different regions is strongly unbalanced 

since in Italy most of the events are normal and very few strike-slip events, unlike in Turkey. Moreover, 

reverse faulting events are very few in the dataset. Considering that the odd distribution of SoF among 

the regions could result in a trade-off with the regional random effects on the offset, and also based on a 

preliminary non-parametric analysis of the dataset that showed no clearly distinguishable differences 

among the distance scaling of ground-motion between different SoF, we chose to drop the SoF term from 

the functional form.  

3.3.3 Regional variability in site-response as a function of 𝑽𝑺𝟑𝟎 

In the model described by Eq.  (1), site effects are captured by the between-station terms, which account 

for the systematic station-specific deviation in offset with respect to the generic prediction for the popu-

lation. Figure 3-2 shows that 𝛿𝐵𝑠 scales with 𝑉𝑆30 indicating that 𝑉𝑆30 is a first order proxy for describing 

site response. Large scatter around the best fit model suggests that a combination with other proxies is 

needed to better capture the complexity of site response (e.g. Cadet et al., 2008; Luzi et al., 2011). Besides 

the clear region-dependent scaling with 𝑉𝑆30, Figure 3-2 suggests that the distributions of velocities for 

three regions are compatible with the assumption of a region-dependent reference velocity (i.e., the value 

of 𝑉𝑆30 corresponding to zero-crossing of 𝛿𝐵𝑠). Hence, we perform a further mixed-effect regression con-

sidering the following model: 

𝛿𝐵𝑠 = (𝑔1 + ∆𝑔1,𝑟) + (𝑔2 + ∆𝑔2,𝑟)  ln(𝑉𝑆30) +  𝛿𝑆2𝑆𝑠 (4) 

Regional effects on site term are captured by the random effects ∆𝑔1,𝑟 on offset 𝑔1, and ∆𝑔2,𝑟 on the slope 

with 𝑉𝑆30. In Eq.  (4), 𝛿𝑆2𝑆𝑠 represents the systematic deviation of recordings for individual station with 

respect to the model accounting also for the scaling with 𝑉𝑆30. The standard deviation of 𝛿𝑆2𝑆𝑠 is the be-

tween-station variability (𝜙𝑆2𝑆) in the GMPE. It is worth noting that non-linear site amplification effects 

are not considered in the present study. Moreover, since the attenuation of high frequency ground-motion 

can be a result of both anelastic attenuation and site effects, it is worth checking for a possible correlation 

(or a trade-off) between the parameters 𝑐3 and 𝑔2, as well as between the estimated regional variations 

Figure 3-2: Between station residuals (PGA in left panel, SA (2s) in right panel) plotted against 𝑽𝑺𝟑𝟎 (m/s) with 

stations separated into regions. The blue line is a regression fit of residuals as a function 𝒍𝒏(𝑽𝑺𝟑𝟎). The grey ribbon 

shows the standard error on regression fit. Difference in slope of the regression fit shows regional difference in 

linear site-amplification (𝒈𝟐), difference in x-intercept shows the regional difference in reference 𝑽𝑺𝟑𝟎 (𝑽𝒓𝒆𝒇). 
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∆𝑐3,𝑟 and ∆𝑔2,𝑟. The results (here not shown) do not highlight any significant correlation among these 

parameters.  

3.4 Results 
The presence of ground-motion regional variations in RESORCE dataset are modelled by allowing the site 

response component and the decay of ground-motion with distance to be region specific. The fixed and 

random effects parameters relevant to regression (1) and (4) are listed in Table 3-1 and Table 3-2. At each 

period, the mixed effect regression provides both the global 𝑐3 value and the estimated deviation ∆𝑐3,𝑟 for 

each region (𝑟), computed as random effect on 𝑐3 in a region group. Figure 3-3 shows the random effects 

at different periods along with the associated 95th percent confidence interval, the standard error (grey 

ribbon). Regional variations in 𝑐3 are shown only until spectral period of 1s beyond which, along with 𝑐3, 

they are constrained to zero. The apparent anelastic attenuation is higher for Italy than for Turkey or 

Others regions; a trend similar to that observed by Boore et al. (2014) in their within-event residuals 

which showed a faster distance-decay in Italy (and Japan) compared to Turkey (and China). The physical 

interpretation of the differences between the attenuation in Italy and Turkey is beyond the aim of our 

paper. A comparison of results available in literature for those physical properties that can influence the 

anelastic attenuation (e.g. velocity and attenuation topographic maps; heat flow distribution; etc.) is not 

straightforward because of the different implemented methodologies, the different investigated spatial 

scales, and the different data analyzed In any case the standard errors on ∆𝑐3,𝑟 are small enough to indi-

cate that the regional corrections at short periods are statistically significant. These standard errors rep-

resent the modelling uncertainty of regional adjustments to anelastic attenuation component and can be 

handled through ground-motion logic trees. The ∆𝑐3,𝑟 random effects for different periods are listed in 

Table 3-1 along with their standard errors. 

 

Regarding the site response term, by allowing the offset 𝑔1 to vary among regions, we can account for 

regional differences in the reference 𝑉𝑆30 while with 𝑔2 we quantify the regional differences in scaling 

with 𝑉𝑆30. Figure 3-4 shows the random effects ∆𝑔1,𝑟 and ∆𝑔2,𝑟 for different periods, along with the esti-

mation errors. A larger value of 𝑔1 (and a smaller 𝑔2) indicates a smaller reference 𝑉𝑆30 for that region 

according to Eq.  (4). Figure 3-1showed that the largest fraction of recordings from Turkey come from 

EC8 soil class B and C stations compared to Italy and Others groups where the stations are more evenly 

distributed across soil classes. This means the ‘centroid’ 𝑉𝑆30 (modal 𝑉𝑆30 value) of the data is lower for 

Turkey as indicated by the higher positive ∆𝑔1 value for Turkey in Figure 3-4. Also seen in Figure 3-2 is 

the stronger scaling with 𝑉𝑆30 for Turkey indicated by a larger negative value for 𝑔2 in Figure 3-4. It is 

worth noting that by allowing regional variations in these two components of GMPE we move a fraction 

of the aleatory variability into epistemic uncertainty, quantified through the standard error on ∆𝑐3,𝑟 , ∆𝑔1,𝑟 

Figure 3-3: ∆𝒄𝟑 for the three regions across dif-

ferent spectral time periods. Beyond spectral 

period of 1s, 𝒄𝟑 in the regression is constrained 

to 0 with no regional variations. Grey-ribbon 

shows the 95% confidence interval about the 

median. 
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and ∆𝑔2,𝑟. These standard errors can be reduced by collecting more ground-motion data from the regions.

 

3.5 Discussion 
In the previous sections, we derived a GMPE from the European-Middle-East dataset (RESORCE), includ-

ing regional (i.e. country-based) adjustments. Following recent studies, we introduced corrections for the 

ground-motion decay and for the scaling with Vs30 in terms of random effects. 

3.5.1 Region dependent distance scaling and 𝑉𝑆30 based site response  

The regionalization of distance attenuation has been described by a region-dependent apparent anelastic 

attenuation model (Figure 3-3). As also observed by Chiou (2012), the geometric spreading (term depend-

ent on logarithm of distance) and of the anelastic (term dependent on distance) contribution to the atten-

uation show a high degree of correlation. Studies dealing with the parametrization of Fourier amplitude 

decay with distance in terms of geometrical spreading and anelastic attenuation shows that the trade-off 

between these two terms cannot be resolved using only the spectral amplitude information (e.g. Oth et al., 

2011; McNamara et al., 2014). Although the model for Fourier spectral amplitude is not strictly applicable 

to response spectra (Bora et al., 2014), a similar situation arises with the GMPE, where the period-de-

pendent terms controlling the linear decay with distance (i.e. 𝑐1 and the magnitude correction 𝑐2) are in 

trade-off with 𝑐3, controlling the decay with the logarithm of distance. Since different wave types (body 

waves and surface waves) and phases (direct waves and reflect waves as SmS) contribute to the attenua-

tion with distance over different distance and period ranges, the geometrical terms could be affected by 

regional bias related, for example, to differences in focal depths and crustal thickness (Cotton et al., 2006; 

Douglas, 2007). Therefore, we tested a model including a correlated regional variation on the parameters 

controlling the distance scaling (𝑐1, 𝑐2 and 𝑐3), or considering combination of them (e.g. 𝑐1 and 𝑐3). Statis-

tical tests using ANOVA (R Core Team, 2013; Chambers and Duval, 2008) do not show appreciable im-

provements in prediction power of GMPE (e.g., comparing the Akaike Information Criterion values, per-

forming significance tests, or analyzing the residual distributions). The estimated regional variations in 

anelastic attenuation (∆𝑐3,𝑟) are similar to the ones in the simpler model discussed in previous section, 

and the random effects on 𝑐2 (∆𝑐2,𝑟) either have 0 values at high frequencies or large standard errors (en-

compassing 0) at low frequencies, which makes it not a well constrained regression parameter. We finally 

preferred not to include regional variations in 𝑐1 and 𝑐2 in our model. 

By considering region specific reference 𝑉𝑆30, we observed remarkable differences in the site term scaling 

with 𝑉𝑆30. In particular, Figure 3-2 shows that the slope of the between station random effects with 𝑉𝑆30 

is larger in Turkey than in the other two regions, both at short and long periods. Regional effects in the 

site term were already recognized in the NGA-West2 models. For example, Abrahamson et al. (2014) in-

cluded regional corrections in the 𝑉𝑆30 scaling for Taiwan, Japan and China with respect to California. As 

discussed in Boore et al. (2014), the observed regional variability of the site effects can be a consequence 

Figure 3-4: Random effects on 𝒈𝟏 and 𝒈𝟐 along with their standard errors. ∆𝒈𝟏 and ∆𝒈𝟐 are estimated as a corre-

lated-random effects. Grey-ribbon shows the 95% confidence interval about the median. 
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of using a simplified proxy (i.e. 𝑉𝑆30) to capture the site amplification which in fact depends on many other 

factors, such as the soil depth. Previous studies showed that regional differences in the depths of typical 

soil profiles lead amplification functions with peaks occurring at different period also for site sharing sim-

ilar 𝑉𝑆30 (e.g. Atkinson and Casey, 2003; Ghofrani et al., 2013), as observed when comparing sites in Japan 

with those in California. Previous work (e.g. Boore et al., 2011) showed that the correlation of 𝑉𝑆30 with 

the shear-wave velocity at different depths (either shallower or deeper than 30m) is regional dependent. 

In particular, Boore et al. (2011) suggested that the differences in the correlation observed for Japan with 

respect to California, or Europe, could be ascribed to differences in the selection of the strong motion sites, 

since Japanese stations are mostly installed on stiff or rock material. Similar considerations could be ap-

plied also to discuss the differences observed for Italy and Turkey. Anyway, without any detailed analysis 

of the velocity profiles for the analyzed stations, any conclusion would be speculative and we left this 

investigation for future studies. 

Finally, in the NGA-West2 models the soil depth effect is considered through ∆𝑍1.0 (depth of basin to rock 

with 𝑉𝑆30 of 1000m/s), and a regionalization for this term is also considered. The site information in-

cluded in RESORCE does not allow including soil depth in the model for site effects. 

3.5.2 Impact of the regionalization on the median predictions 

The impact of regional adjustments on distance scaling (Figure 3-5) and magnitude scaling (Figure 3-6) 

obtained with and without allowing the regional corrections in the regressions are compared. Included in 

these figures is an ‘Initial’ model which is a GMPE without any regional variations with functional form as 

in Eq.  (5). Note that in Eq.  (1) the regional variability in site-response is left to be examined using Eq.  (4), 

while for the ‘Initial’ GMPE without regional variability a generic site response term 𝑔 ∗ ln(𝑉𝑆30) is in-

cluded in the median (Eq.  5). 

 

Figure 3-5: Distance scaling for PGA  and SA (2s), at site with 𝑽𝑺𝟑𝟎 = 450m/s (above panels), and 𝑽𝑺𝟑𝟎 = 800m/s, 

for 𝑴5 and 𝑴7. Comparison of distance scaling with GMPE accounting regional variations in anelastic attenua-

tion (slope of the curves) and 𝑽𝑺𝟑𝟎 scaling (offset of the curves), against the ‘Initial’ GMPE obtained from regres-

sion without accounting regional variations. 
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In the left panel of Figure 3-5, regional differences in high frequency ground-motion are observed as dif-

ference among the offset of the curves, and in slope of the curve at distances greater than 50km, which 

are a combination of 𝑉𝑆30 scaling and anelastic attenuation effects. In the right panel however, which is 

for lower frequency ground-motion, the differences are solely due to variations in 𝑉𝑆30 scaling, more pro-

nounced for rock sites (800m/s). Similarly, in magnitude scaling (Figure 3-6) the differences in offset of 

the curves are a combination of regional variations in anelastic attenuation and 𝑉𝑆30 scaling.  

ln(𝐺𝑀) = 𝑒1 + 𝐹𝐷(𝑅,𝑀) + 𝐹𝑀(𝑀) + 𝑔 ∗ ln(𝑉𝑆30) + 𝛿𝐵𝑒 + 𝛿𝐵𝑠 + 휀 (5) 

Cumulative effect of all regional adjustments across spectral periods is shown in the response spectra 

(Figure 3-7). For a site with 𝑉𝑆30 of 450m/s at distance 10km, regional variations in anelastic attenuation 

and site response are negligible at all spectral periods. On the other end is a site with 𝑉𝑆30 of 800m/s lo-

cated 100km from the seismic source; in this case both anelastic attenuation and site response terms are 

significantly different across the regions. At the same site, for spectral periods larger than 1s the regional 

differences are solely contributed to by differences in site response. The two intermediate scenarios, 𝑉𝑆30 

of 450m/s at distance 100km, and 𝑉𝑆30 of 800m/s at distance 10km show effect of regional differences in 

anelastic attenuation, and site response scaling with 𝑉𝑆30  respectively. For example, at a rock site 

(800m/s) located 25km from a rupture of magnitude 𝑀6.5 the predicted ground-motion at spectral fre-

quency of 3Hz is 1.51𝑚/𝑠2 in Italy, 1.47𝑚/𝑠2 in Turkey, and 1.96𝑚/𝑠2 in Others region. The differences 

in predicted ground-motion are significant across regions after correcting the GMPE median for regional 

bias. 

 

Figure 3-6: Magnitude scaling for PGA and SA (2s) at site with 𝑽𝑺𝟑𝟎  = 450m/s (above panels), and 𝑽𝑺𝟑𝟎  = 

800m/s, for Joyner-Boore distances 20km, and 100km. Comparison of magnitude scaling with GMPE account-

ing regional variations in anelastic attenuation and 𝑽𝑺𝟑𝟎 scaling (offset of the curves), against the ‘Initial’ GMPE 

obtained from regression without accounting regional variations. 
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3.5.3 Impact of the regionalization on the model uncertainty  

Introducing regional differences reduced the aleatory variability at the cost of an increased epistemic un-

certainty in GMPE. The increase in modelling uncertainty is captured by standard errors on regional ad-

justments, while the reduction of variability is captured by decrease in standard deviation of GMPE given 

by Eq.  (6) 

𝜎 = √τ2 + 𝜙s2s
2 + 𝜙0

2 (6) 

Figure 3-8 shows the comparison of standard deviations between the model with and without regional 

variations ‘Initial’. There is a 5-10% reduction in the total standard deviation (𝜎) by introducing regional 

variations, primarily from the reduction of between-station variability (𝜙s2s) by 13-20%. Reduction in 

residual (𝜙0) standard deviation is small (<2%). There is no noticeable change in between-event standard 

deviation (𝜏).  

 

Improvement in median prediction of the GMPE by correcting regional bias with regional adjustments is 

quantified in terms of Akaike Information Criterion (AIC), which is a measure of the relative quality of a 

statistical model for a given set of data penalized by the number of model parameters. Introducing the 

regional variations in this case increases the number of regression parameters by 3, yet a smaller AIC 

value of the model with regional variations justifies its increased complexity. 

 

Figure 3-7: Response spectra showing the cumulative effect of regional adjustments to the GMPE. Most signif-

icant differences are observed for rock sites (𝑽𝑺𝟑𝟎 = 800m/s) at distances larger than 50km. 
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3.5.4 Potential regional differences in magnitude scale 

The between-event residual 𝛿𝐵𝑒 can be used to evaluate the impact of considering earthquakes with con-

verted moment magnitude from other magnitude scales (local magnitude, surface-wave magnitude, and 

body-wave magnitude). In Figure 1, the recordings relevant to these earthquakes are shown in red and 

mainly correspond to magnitude smaller than 5 in Turkey. Figure 3-9 is a box-plot of 𝛿𝐵𝑒 at SA(1s) for 

each country in the regressed dataset. The scatter in 𝛿𝐵𝑒 from considering events with both computed 

(from moment tensor solutions) and empirically estimated 𝑀𝑤 is larger than that when considering only 

those with computed 𝑀𝑤 (refer to Akkar et al., 2014a, for details on empirical estimation of 𝑀𝑤). In Figure 

3-9, this reduction in scatter can be seen as a shift of the country-wise median towards 0, from left to right 

panel. Within-country scatter shown as the height of the box-plot has also reduced, especially in case of 

Turkey. Filtering out events with empirically estimated 𝑀𝑤 reduced the between-event standard devia-

tion of the GMPE (𝜏) by an average of 10% (and a maximum of 30%) across the periods, without losing 

constrain on other regression parameters (i.e., increase in standard error of estimate of coefficients). We 

note that this filter primarily removes small magnitude events from Turkey (less than 𝑀5), which could 

also be the reason for decrease in 𝜏. A further study could be focused on examining the regional differ-

ences in moment tensor solutions based computed 𝑀𝑤 which, once homogenized, may allow analyzing 

other regional differences in source physical parameters. 

Figure 3-8: Comparison of individual components of 

aleatory variability in GMPE (standard deviations) 

between the model with regional variations (solid 

line) and without regional variations 'Initial' (dashed 

lines). 
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3.6 Conclusions 
RESORCE database and the Non-linear mixed effects regression tools allowed analyzing and quantifying 

regional variations in ground-motion data for Europe – Middle-East regions. The GMPE is developed spe-

cifically for active crustal earthquakes in Europe – Middle-East regions, and we do not recommend using 

it elsewhere without a prior compatibility check. The dataset is strongly unbalanced across the contrib-

uting regions in terms of magnitude, distance and recording station site classification. If separate GMPEs 

were to be developed for each of the regions, then the applicability of each GMPE would be strongly lim-

ited in magnitude, distance, and site 𝑉𝑆30 range. By allowing regional variability only on specific terms 

(anelastic attenuation and site response), and estimating all the regression coefficients (magnitude scal-

ing, geometric spreading) using the entire dataset we overcome this limitation. In its current form, the 

GMPE is recommended to be used for following scenarios: 

 Active crustal earthquakes magnitude range from 4 to 7.6: since the magnitude distribution is sym-

metric around the median magnitude of 𝑀5.5, neither the small nor the large events are likely to bias 

the prediction. 

 Sites with 𝑉𝑆30 from 180 to 1000m/s: Even though the range of 𝑉𝑆30 used in regression is 90m/s to 

2000m/s, the bulk of data is within 200-600m/s. We suggest using the GMPE in a range narrower 

than its underlying dataset, and especially not to extrapolate beyond the suggested 𝑉𝑆30 limits. 

 Joyner-Boore (𝑅𝐽𝐵) distances up to 200km: The GMPE is calibrated with data up to 300km with the 

bulk of data from within 150km. 

 Partially non-ergodic region specific seismic hazard assessment by adjusting the GMPE median (Table 

3-1) and linear site-amplification model (Table 3-2) with the provided regional adjustments. The re-

ported standard errors are estimated as square-root of conditional variances estimated by the Mar-

kov Chain Monte Carlo bootstrap method available in LME4.0 package in 𝑅 (Bates et al., 2014). These 

values can also be used as epistemic uncertainty on the regional adjustments. Since the underlying 

distribution is not known, the epistemic uncertainty can be assumed to be normally distributed and 

modeled using a three-point distribution that maintains the mean and the standard deviation of the 

original distribution. Under such an assumption the upper and lower limits on regional adjustments 

Figure 3-9: Regional variation of between event residuals at SA (1s). Box-plot the median (50th) and the quartiles 

(5th, 25th, 75th and 95th). The left panel shows residuals from all the events whose 𝑴𝒘 is either computed (as 

calculated from moment tensor solutions) or empirically estimated (for details refer to Akkar et al., 2014a). Right 

panel shows the residuals from only the events whose 𝑴𝒘 is computed, and not empirically estimated/converted. 

The decrease in height of the box plots reflects a decrease in between event variability within and across regions. 

𝝉 = 0.50 𝝉 = 0.35 
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can be set as ±1.6 times the standard error, with logic tree weights 0.2, 0.6 and 0.2 for upper, middle 

and lower branches respectively. 

At the moment statistically significant regional variations in apparent anelastic attenuation, and 𝑉𝑆30 

scaled linear site response could be captured and accounted in the new GMPE; thereby correcting median 

for regional bias and deflating the total variability by 5-10% depending on the spectral period. Regional 

differences in distance scaling found in this study are in agreement with recently published studies. The 

largest reduction in GMPE standard deviation comes from allowing regional variations in the site re-

sponse component. This variability could be further reduced by using a combination of site-response 

proxies, instead of 𝑉𝑆30 alone. Another large reduction in standard deviation comes from using only the 

events with moment tensor solutions based moment magnitude in regression, at the cost of losing many 

small magnitude events. It is desirable to plug such data losses by homogenizing the magnitude scale 

across regions. In summary, a decrease in aleatory variability of ground-motion prediction as demon-

strated in this study is accompanied by a new epistemic uncertainty on estimated regional adjustments, 

which in turn may only be reduced by improving the underlying datasets. 
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Table 3-1: Coefficient table for GMPE 

Table 3-2: Coefficient table for 𝑽𝒔𝟑𝟎 

based site response 
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Abstract 

The increasing numbers of recordings at individual sites allows quantification of empirical linear site-

response adjustment factors (𝛿𝑆2𝑆𝑠) from the Ground-Motion Prediction Equation (GMPE) residuals. The 

𝛿𝑆2𝑆𝑠 are then used to linearly scale the ergodic GMPE predictions to obtain site-specific ground-motion 

predictions in a partially non-ergodic Probabilistic Seismic Hazard Assessment (PSHA). To address key 

statistical and conceptual issues in the current practice, we introduce a novel empirical region- and site-

specific PSHA methodology wherein, (1) site-to-site variability (𝜙𝑆2𝑆) is first estimated as a random-vari-

ance in a mixed-effects GMPE regression, (2) 𝛿𝑆2𝑆𝑠 at new sites with strong motion are estimated using 

the a-priori 𝜙𝑆2𝑆, and (3) the GMPE site-specific single-site aleatory variability 𝜎𝑠𝑠,𝑠 is replaced with a ge-

neric site-corrected aleatory variability 𝜎0. Comparison of region- and site-specific hazard curves from 

our method against the traditional ergodic estimates at 225 sites in Europe and Middle-East shows an 

approximate 50% difference in predicted ground-motions over a range of hazard levels - a strong moti-

vation to increase seismological monitoring of critical facilities and enrich regional ground-motion da-

tasets. 

Keywords: Site-specific Ground-Motion Prediction Equations, Europe and the Middle-East, Nonlinear 

Mixed Effects Regression  
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4.1 Introduction 
Current site-specific seismic hazard analyses are generally performed using probabilistic methods. When 

dealing with a specific site, the typical methodology involves using a Ground-Motion Prediction Equation 

(GMPE) to estimate the rock ground-motion at depth and its associated variability. Ground-motions are 

then propagated to the ground surface by site response analysis. Recent studies have shown difficulties: 

(1) in adjusting GMPEs calibrated on soft surface rock motions to hard-rock conditions at depth, (2) in 

simulating complex 2D/3D site response using geotechnical information which may be only 1D, and (3) 

in correctly evaluating the site-specific variability (e.g. Baturay and Stewart, 2003; Goulet and Stewart, 

2009; Thompson et al. 2009, Afshari and Stewart, 2015). 

Along with the development of strong motion networks in the last twenty years, multiple recordings from 

several events recorded at individual sites are becoming readily available. The rapid increase of the num-

ber of records at a single site is a strong motivation for the development of new strategies to compute 

region- and site-specific PSHA (e.g. Bradley, 2013; Faccioli et al., 2015; Villani and Abrahamson, 2015; 

Douglas and Aochi, 2016). Several GMPE residual analysis studies, performed at sites where many earth-

quakes were recorded, identified repeatable site-specific effects and a better estimate of «single-site» 

ground-motion variabilities (e.g. Atkinson, 2006; Lin et al., 2011; Rodriguez-Marek et al., 2011; Afshari and 

Stewart, 2015). The within-event residuals can be regarded as the sum of a site factor (𝛿𝑆2𝑆𝑠), and event-

and-site corrected residual (𝛿𝑊𝑆𝑒𝑠,𝑠) (e.g. Al Atik et al., 2010; Rodriguez-Marek et al., 2013). The site factor 

represents the systematic deviation of the observed linear amplification at this site from the median am-

plification predicted by the model using simple site classification such as the time-averaged shear-wave 

velocity in the uppermost 30 meters at the site, 𝑉𝑆30. 

The resulting approach is commonly referred to as partially non-ergodic. This approach is attractive be-

cause it allows one to compute PSHA taking into account site-specific and data-driven (empirical) linear 

amplification factors without the cost of adjusting rock-GMPEs at depth or computing complex site re-

sponses. However, the development of partially non-ergodic PSHA is not straightforward, and several key 

questions need to be addressed: 

1) Rodriguez-Marek et al. (2013) and Faccioli et al. (2015) identified as key requirements for application 

in PSHA that the median value of 𝛿𝑆2𝑆𝑠 must be properly estimated, along with the epistemic uncer-

tainty in site term 𝛿𝑆2𝑆𝑠 and the single-site sigma 𝜎𝑠𝑠,𝑠.  

2) Stafford (2014) suggested that the mixed-effects algorithm of Abrahamson and Youngs (1992) used 

to estimate between-event random-effects and within-event residuals of a GMPE, may not support 

the subsequent step of manipulating within-event residuals to obtain site term 𝛿𝑆2𝑆𝑠 - without con-

sistently updating the GMPE median. Here we assess the benefit of using a more sophisticated Non-

linear Mixed Effects Regression algorithm (NLME, Bates et al., 2014) to simultaneously estimate be-

tween-site (𝛿𝑆2𝑆𝑠) and between-event random-effects, and the impact of such residual decomposi-

tion on the GMPE median. 

3) Only sites with a certain minimum number of records are eligible for site-specific PSHA. The defini-

tion of this threshold and the impact of the number of recordings on the reliability of 𝛿𝑆2𝑆𝑠 are still 

open questions in the GMPE community. Consequently, partially non-ergodic site-specific PSHA has 

been performed for only a few well-recorded sites, while comparisons with standard ergodic ap-

proaches for multiple-sites over a wide spatial scale has not yet been attempted. 

In this work, we refine the partially non-ergodic PSHA framework to better meet these requirements. We 

first compare two different approaches for estimating the linear only site-response adjustment 𝛿𝑆2𝑆𝑠 and 

its uncertainty for sites featuring in the GMPE strong motion dataset. We then extend this comparison to 

the estimation of 𝛿𝑆2𝑆𝑠 for new sites whose strong motion data were not included in the GMPE regression. 

In the process, we discuss the need for a minimum number of records and the uncertainties to be ac-

counted for a reliable site-specific hazard assessment. Finally, we apply our partially non-ergodic region- 

and site-specific PSHA approach to 225 sites in pan-Europe, taking advantage of the recent dissemination 
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of RESORCE pan-European strong-motion dataset (Akkar et al., 2014). The hazard curves obtained for the 

225 sites using a classical ergodic PSHA are compared with region- and site-specific hazard curves com-

puted using the partially non-ergodic approach proposed in this study. 

4.2 Dataset and Ergodic Ground-Motion Prediction Equations 
In this study, we use the Europe and Middle Eastern strong motion dataset RESORCE. The RESORCE pro-

ject dataset includes 5882 recordings from 1814 earthquakes occurring in Europe and the Middle East 

with magnitude range from 3.0 to 7.8. Turkey and Italy are the two main contributors of crustal earth-

quakes in this dataset; the rest of the Europe and Middle East regions (labeled ‘Others’ hereon) contribute 

smaller numbers. For example, France, Georgia, Greece, Iran, and Montenegro contribute fewer than 50 

records individually to the dataset. In total, there are 225 sites in the dataset with known 𝑉𝑆30 and at least 

two recordings. 

The most recent pan-European GMPEs (Douglas et al., 2014) are based on the RESORCE strong motion 

dataset (http://www.resorce-portal.eu/). The GMPE developed by Bindi et al. (2014), whose functional 

form for median peak spectral acceleration is shown in Eq. (1), is one such model calibrated using records 

with 𝑀𝑤 ≥ 4.0, focal depth ≤ 35km, 𝑅𝐽𝐵 ≤ 300km from the RESORCE dataset. Details regarding record 

selection and random-effects regression method (Abrahamson and Youngs, 1992) are available in Bindi 

et al. (2014). We consider Bindi et al. (2014) as an ergodic GMPE, not including any region or site-specific 

adjustments. The ergodic aleatory variability, sigma (𝜎), of the GMPE is estimated as in Eq. (2) where 𝜏 is 

the standard deviation of between-event residuals (𝛿𝐵𝑒), and 𝜙 is the standard deviation of within-event 

residuals (𝛿𝑊𝑒𝑠).  

log10(𝜇) = 𝑒1 + 𝐹𝐷(𝑅,𝑀) + 𝐹𝑀(𝑀) + 𝐹𝑆𝑜𝐹 + 𝑔 ∗ 𝑙𝑜𝑔10 (
𝑉𝑆30
800

) (1) 

𝜎 = √𝜏2 +𝜙2 (2) 

4.3 Partially Non-Ergodic Site-Specific GMPEs 

4.3.1 Current practice: R13 APPROACH 

Previous studies (e.g. Rodriguez-Marek et al., 2014; Faccioli et al., 2015) extensively discussed the site-

specific PSHA procedure. Essentially, the site-specific PSHA begins with a site-specific GMPE, where the 

median and standard deviation of an ergodic GMPE are modified to a site-specific median and standard 

deviation. Since this approach was formalized by Rodriguez-Marek et al. (2013), we refer to it hereafter 

as R13. R13 requires within-event residual processing at a site (𝛿𝑊𝑒𝑠 in Eq. 3) to isolate the ‘mean’ site-

specific residual (𝛿𝑆2𝑆𝑠 in Eq. 3) and event-and-site corrected residuals (𝛿𝑊𝑆𝑒𝑠 in Eq. 3). For well-rec-

orded sites, the 𝛿𝑆2𝑆𝑠 in Eq. (3) can be considered as a site-specific adjustment to the GMPE median. The 

standard deviation of event-and-site corrected residuals at that site is the site-specific aleatory variability 

(𝜙𝑠𝑠,𝑠). Median of the ergodic GMPE in Eq. (1) can be adjusted to obtain a site-specific GMPE median as 

shown in Eq. (4), where the ergodic GMPE is modified with the site-specific adjustment (𝛿𝑆2𝑆𝑠). The site-

specific sigma (𝜎𝑠𝑠,𝑠), estimated through Eq. (5), replaces the ergodic sigma (𝜎) shown in Eq. (2). 

𝛿𝑊𝑒𝑠 =  𝛿𝑊𝑆𝑒𝑠 + 𝛿𝑆2𝑆𝑠 (3) 

𝑙 og10(𝜇𝑠) = 𝑙 og10(𝜇 ) + 𝛿𝑆2𝑆𝑠 (4) 

𝜎𝑠𝑠,𝑠 = √𝜏2 + 𝜙𝑠𝑠,𝑠2  (5) 

In R13, since the site-specific median and sigma are estimated with a small sample of data, usually 10 

recordings or more, standard errors on both the 𝛿𝑆2𝑆𝑠 and 𝜎𝑠𝑠,𝑠 need to be accounted (Abrahamson and 

Hollenback, 2012; Faccioli et al., 2015). The key points discussed in the context of R13 are:  



 
46 

1. Estimation of site term (𝜹𝑺𝟐𝑺𝒔): Site terms are estimated as the mean of site-specific within-event 

residuals (𝛿𝑊𝑒𝑠,𝑠 in Eq. 6), where 𝑛𝑠 is the number of recordings at the site. 

2. Epistemic uncertainty on 𝜹𝑺𝟐𝑺𝒔 is estimated using Eq. (7), where between-site variability (𝜙𝑆2𝑆) is 

the standard deviation of the 𝛿𝑆2𝑆 random variable. 

3. The site-specific variability (𝝓𝒔𝒔,𝒔) used in place of the ergodic within-event 𝜙 is the standard de-

viation of site-specific event-and-site corrected residuals (Eq. 8). Since 𝜙𝑠𝑠,𝑠 is estimated using a lim-

ited site-specific sample of recordings, it is provided with an epistemic uncertainty (Eq. 9), in which 

SD(𝜙𝑠𝑠,𝑠) is the standard deviation of the distribution of 𝜙𝑠𝑠,𝑠. 

𝛿𝑆2𝑆𝑠 =
∑𝛿𝑊𝑒𝑠
𝑛𝑠

 (6) 

𝑆𝐸(𝛿𝑆2𝑆𝑠) =
𝜙𝑆2𝑆

√𝑛𝑠
 (7) 

𝜙𝑠𝑠,𝑠 = 𝑆𝐷(𝛿𝑊𝑆𝑒𝑠) (8) 

𝜙𝑠𝑠,𝑠,𝑒𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐 =
𝑆𝐷(𝜙𝑠𝑠,𝑠)

√𝑛𝑠
 (9) 

The epistemic uncertainty on 𝜙𝑠𝑠,𝑠 translates into epistemic uncertainty on the site-specific sigma (𝜎𝑠𝑠,𝑠). 

Faccioli et al. (2015) accommodated this uncertainty by considering a lower and upper percentiles on 𝜎𝑠𝑠,𝑠 

(Eq. 10), where 𝜏 is the standard deviation of between-event residuals (𝛿𝐵𝑒), identical to that in Eq. (5). 

𝜎𝑠𝑠,𝑠
𝑢 = √(𝜙𝑠𝑠,𝑠 + 𝜙𝑠𝑠,𝑠,𝑒𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐)

2
+ 𝜏2 

(10) 𝜎𝑠𝑠,𝑠 = √𝜙𝑠𝑠,𝑠2 + 𝜏2 

𝜎𝑠𝑠,𝑠
𝑙 = √(𝜙𝑠𝑠,𝑠 − 𝜙𝑠𝑠,𝑠,𝑒𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐)

2
+ 𝜏2 

4.3.2 Motivation to revise R13 

Although R13 is a well-established intuitive approach to derive a site-specific GMPE from an ergodic 

GMPE, Stafford (2014) pointed out a few statistical shortcomings in the estimation of the site-specific ad-

justments (𝛿𝑆2𝑆𝑠) following a traditional Abrahamson and Youngs (1992) random-effects regression. In 

the context of GMPE regression analysis, the random effect approach was first introduced by Brillinger 

and Preisler (1985) and Abrahamson and Youngs (1992) to handle imbalanced strong-motion datasets. In 

particular, mixed-effect regressions were proposed to avoid bias in the predicted median when a dataset 

featured well-recorded atypical earthquakes. By introducing a random effect on the earthquake grouping 

level, atypical earthquakes were identified by their large between-event residuals. For site-specific 

GMPEs, and ergodic GMPEs in general, it is also important to consider the dataset from an atypical sites 

viewpoint. Since there is no site-to-site distinction or site-level grouping in the Abrahamson and Youngs 

(1992) random-effects algorithm, the site-response component in the median (scaling with 𝑉𝑆30) and es-

timation of site-specific residuals may be biased by the presence of atypical sites. Such bias in the median 

site-response is not uncommon in GMPEs. GMPEs tend to be centered on the densest part of the dataset, 

and usually the number of rock sites (𝑉𝑆30 ≥ 760m/s) and relevant records are fewer compared to those 

from softer soils (𝑉𝑆30~450m/s). Due to such imbalances in the dataset, in terms of number of records at 

sampled site types, GMPE predictions are less accurate for less recorded yet typical site conditions. Thus, 

large differences among GMPEs tend to occur in rock ground-motion predictions. We are motivated to 

investigate such tendencies with the (strongly imbalanced) RESORCE strong motion dataset, and to revise 

R13 with the aim of deriving a site-specific GMPE. 
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4.3.3 Nonlinear Mixed Effects Approach 

According to Stafford (2014), it is recommended to estimate the site-to-site variability as a between-site 

random-variance during the regression, allowing an ‘interaction’ between coefficient ‘g’ of the 𝑉𝑆30 site-

response scaling (within log10(𝜇) of Eq. 1) and 𝛿𝑆2𝑆𝑠 in Eq. (4), similar to the interaction between mag-

nitude-scaling component and between-event random-effects (𝛿𝐵𝑒) of a GMPE. We call this approach 

NLME approach in this context, abbreviating Non-Linear Mixed Effects. To demonstrate the differences 

between NLME and R13 approaches, we derive two GMPEs with identical median functional form and 

record selection as in Bindi et al. (2014) (Eq. 1 and 2), but with different partitioning of residuals: (1) in 

R13, between-event (𝛿𝐵𝑒) and within-event residuals (𝛿𝑊𝑒𝑠) and, (2) in NLME, between-event, between-

site (𝛿𝑆2𝑆𝑠), and event-and-site corrected residuals (𝛿𝑊𝑒𝑠). From here on, the first GMPE is referred to as 

R13-GMPE to designate it as the first step in the R13 method. The R13-GMPE within-event residuals are 

later partitioned into site-terms and event-and-site corrected residuals to develop site-specific GMPEs. 

The second GMPE, where the site-terms are estimated as random-effects during the regression, is the first 

step of the NLME approach for partially non-ergodic PSHA introduced in this study. In subsequent plots, 

it is labeled as NLME-GMPE. 

4.3.3.1 Comparison of the median response spectra  

Median response spectra from the two GMPEs for typical hazard scenarios are shown in Figure 4-1a. In 

the scenario (𝑀4.5, 10km, 760m/s) of Figure 4-1a, R13-GMPE (blue) predicts 20% higher SA(0.1s) 

ground-motion compared to NLME-GMPE (red). Figure 4-1a shows larger differences in median spectra 

for 𝑉𝑆30 = 760m/s (rock site) compared to 𝑉𝑆30 = 360m/s. Similar but smaller differences are observed 

at sites with 𝑉𝑆30 = 180m/s. Such features are typical of imbalanced datasets where the GMPE is centered 

on the densest part of the dataset which in the case of RESORCE, corresponds to 𝑀5.0-M6.0 and 180m/s 

≤ 𝑉𝑆30 ≤ 760m/s (soil type B and C according to Eurocode8 classification). Note that in Figure 4-1a, alt-

hough the differences observed are smaller than those usually observed across different GMPEs (e.g. NGA-

West2 models), they are solely from the degree of residual partitioning, preserving the GMPE record se-

lection and functional form. 

 

Figure 4-1: Comparison of GMPEs: R13 corresponds to the GMPE where the site-terms are estimated as the mean 

of site-specific within-event residuals, and NLME refers to the GMPE whose site-terms are estimated as site-specific 

random effects during regression. (a) Comparison of predicted medians for typical (𝑴, 𝑹, 𝑽𝑺𝟑𝟎) scenarios (b) Com-

parison of residual standard deviation values. 

(a) (b

) 
(a) (b) 
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4.3.3.2 Comparison of residual standard deviations  

Figure 4-1b shows that the site-corrected total standard deviations 𝜎𝑠𝑠 from the two approaches are very 

similar. By construction, the site-terms (𝛿𝑆2𝑆𝑠), estimated as random-effects in NLME, follow a normal 

distribution (Bates et al., 2014), and those from R13 site-specific GMPE follow a normal distribution by 

virtue of the Central Limit Theorem (CLT). We performed the Shapiro-Wilk normality test (Royston, 1992) 

to confirm that 𝛿𝑆2𝑆 from R13 method follows a normal distribution as well. 𝜙𝑆2𝑆 is the standard devia-

tion of the random variable 𝛿𝑆2𝑆, and quantifies the site-to-site variability of the dataset. Figure 4-1b 

shows that despite using the same set of sites (and records) in both regressions, 𝜙𝑆2𝑆 from NLME is on an 

average 20% smaller than its R13 counterpart. 

4.3.3.3 Comparison of site-terms 

a) Distribution of 𝜹𝑺𝟐𝑺𝒔: Figure 4-2a shows the distribution of 𝛿𝑆2𝑆𝑠 obtained from the two methods 

for the sites in RESORCE dataset. The R13-estimated δS2S (distribution of 𝛿𝑆2𝑆𝑠 at PGA and SA(1s)) 

for sites with fewer than five records shows a wider spread than that from the NLME approach (left 

column of Figure 4-2a). In the right column of Figure 4-4a, corresponding to sites with more than five 

records, NLME yields a marginally wider distribution compared to R13. From these diagrams, we in-

fer that R13 is likely to concentrate the well-recorded sites (in this case, those having more than five 

records) close to the center of the distribution, rendering a large number of sparsely-sampled sites as 

uncharacteristic (outlier) sites. This explains the R13 overestimate of site-to-site variability 𝜙𝑆2𝑆 ob-

served in Figure 4-1b. 

 
b) Standard error on 𝜹𝑺𝟐𝑺𝒔 estimated from R13 is conceptually different from that in NLME. According 

to Eq. (7), the standard error in R13 is statistically ‘an estimate of how far the sample mean is likely 

to be from the population mean’, where the sample mean 𝛿𝑆2𝑆𝑠 belongs to the (𝛿𝑆2𝑆) normal distri-

bution with zero-mean and standard deviation 𝜙𝑆2𝑆.  The 𝛿𝑆2𝑆𝑠 is estimated using a sample of within-

event residuals (Eq. 6); its standard error (Eq. 7) decreases with increasing number of records (𝑛𝑠) at 

the site. Therefore, any two sites in the dataset with the same number of records is attributed the 

same standard error on 𝛿𝑆2𝑆𝑠. The solid lines (color coded for spectral periods) corresponding to R13 

in Figure 4-2b show that SE(𝛿𝑆2𝑆𝑠) decreases as the number of records at a site increases. SE(𝛿𝑆2𝑆𝑠) 

provided by the NLME approach are the conditional variance estimates derived from a Markov-Chain-

Monte-Carlo procedure. The NLME labelled markers in Figure 4-2b are site-specific SE(𝛿𝑆2𝑆𝑠), that 

Figure 4-2: Comparison of 𝜹𝑺𝟐𝑺 from R13 and NLME. (a) Random variable 𝜹𝑺𝟐𝑺 from NLME and R13 for sites with 

fewer than five records (left column), and more than five records (right column) in RESORCE; (b) SE(𝜹𝑺𝟐𝑺𝒔) from 

NLME and R13 against number of recordings at the site. 

(a) (b

) 

(a) (b) 
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is, two sites with the same number of records may have different estimation errors. However, for 

practical purposes and as shown by Figure 4-2b, the differences in SE(𝛿𝑆2𝑆𝑠) from the two methods 

can be considered not significant. We therefore adopt Eq. (7) from R13 in our NLME approach. 

c) Mean 𝜹𝑺𝟐𝑺𝒔 are compared in Figure 4-4 along with their 70% confidence interval (±1 SE(𝛿𝑆2𝑆𝑠)) for 

two well-recorded sites in the RESORCE dataset. We compared the 𝛿𝑆2𝑆𝑠 estimates for 38 sites with 

more than 10 records in the RESORCE dataset, mostly from Italy and Turkey. Our comparison showed 

that in most cases, the (period dependent) differences in mean 𝛿𝑆2𝑆𝑠  are smaller than their 

SE(𝛿𝑆2𝑆𝑠). In a few cases however, for example the site 5401 (𝑉𝑆30 = 412m/s) in Figure 4-4a, the 

differences in 𝛿𝑆2𝑆𝑠 at longer spectral periods (𝑇 = 1s) exceed the SE(𝛿𝑆2𝑆𝑠). In conjunction with the 

negligible differences in median ground-motion at 𝑇 = 1s for sites with 𝑉𝑆30 close to 400m/s (Figure 

4-1a), such non-negligible differences in 𝛿𝑆2𝑆𝑠  can lead to significant differences in site-specific 

ground-motions predicted by the two methods.  

The above comparisons motivate us to estimate 𝛿𝑆2𝑆 as random effects rather than as means of re-

siduals (Eq. 6). The benefit is twofold: (1) to avoid bias in the GMPE median for less sampled site-classes 

(e.g. rock sites and very soft sites) and in the site-terms 𝛿𝑆2𝑆𝑠, and (2) to accurately estimate 𝜙𝑆2𝑆, which 

is necessary in Eq. (7) to estimate SE(𝛿𝑆2𝑆𝑠). 

 

4.3.3.4 Comparison of site-specific variability 

In the R13 approach, the standard deviation of the site-specific event-and-site corrected residuals (𝛿𝑊𝑆𝑒𝑠 

at a site) is the so-called site-specific single-site aleatory variability (𝜙𝑠𝑠,𝑠). Faccioli et al. (2015) consid-

ered an epistemic uncertainty of 𝜙𝑠𝑠,𝑠 governed by the number of records at the site (Eq. 9). However, as 

part of the method refinement, in this study we withdrew from the concept of site-specific single-site ale-

atory variability for the following reasons: 

1) A site may have several recordings sampling spatially similar source-to-site paths. In such cases, the 

resulting 𝜙𝑠𝑠,𝑠 could be an underestimate of the ‘true’ site-specific aleatory variability in case of prop-

agation medium with significant lateral and vertical heterogeneities. 

2) The record-to-record aleatory variability captured by 𝜙𝑠𝑠,𝑠  at any given site is representative of a 

limited magnitude and distance ranges sampled by the available recordings of events occurring in 

the vicinity of the site. Since such limited ranges could not fully explore those considered for a PSHA 

Figure 4-3: Distribution of 𝝓𝒔𝒔,𝒔 for the stations with at least two records in RESORCE dataset at PGA (left) and 

SA(1s) (right). Stations with at least five recordings are shown in red, the others in blue. The event-and-site cor-

rected variability 𝝓𝟎 and the ergodic within-event variability ϕ are also indicated. 

(a) (b) 
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at the site, the site-specific single-site aleatory variability 𝜙𝑠𝑠,𝑠 may not be a valid representation of 

the variability required in the PSHA.  

Along with the above reasons, use of 𝜙𝑠𝑠,𝑠 limits the application of site-specific PSHA only to well-recorded 

sites, where the epistemic uncertainty on 𝜙𝑠𝑠,𝑠 is small (Eq. 10 used in Faccioli et al. 2015). The aim of 

method refinement in this study is to perform site-specific PSHA at as many sites as possible in Europe 

and Middle East, even those with very few records. To avoid issues of misestimating ground-motion var-

iabilities in a site-specific PSHA, we suggest dropping the concept of site-specific single-site aleatory var-

iability (𝜙𝑠𝑠,𝑠). We recommend using a generic event-and-site corrected variability, 𝜙0, common to all re-

gions and sites. The equivalent of 𝜙0 in the R13 method is 𝜙𝑠𝑠, estimated as the standard deviation of the 

𝛿𝑊𝑆𝑒𝑠 distribution (Rodriguez-Marek et al., 2013). Figure 4-3 shows the distribution of 𝜙𝑠𝑠,𝑠 from sites 

with at least two records in RESORCE dataset. In comparison, 𝜙0 is larger than 𝜙𝑠𝑠,𝑠 of majority of sites in 

the dataset. Conceptually, 𝜙0 is the record-to-record aleatory variability associated with propagation and 

other sources of variability across all source – site paths in the dataset. Hereon, we refer to the generic 

site-corrected aleatory variability estimated with 𝜏 and 𝜙0 (instead of 𝜙 in Eq. 2) as 𝜎0, and use it with a 

site-specific GMPE median in Eq. (4). 

 

4.4 Estimation of the site term for new sites 
In the previous sections, we compared the R13 and NLME approaches to derive site-specific GMPEs, pro-

vided the sites and records were already present in the regressed strong motion dataset. The R13 method, 

earlier presented in Abrahamson and Hollenback (2012), can also be applied for new sites and events not 

featured in the GMPE strong motion dataset. As a first step, the between-event random effects (𝛿𝐵𝑒) for 

the new event 𝑒 can be estimated using Eq. (10) of Abrahamson and Youngs (1992), shown as Eq. (11) in 

this study: 

𝛿𝐵𝑒 =
𝜏2∑ (log(𝐺𝑀𝑒,𝑠) − log(µ𝑒,𝑠))

𝑛𝑒
𝑠=1

𝑛𝑒𝜏2 + 𝜙2
 (11) 

In Eq. (11), 𝑛𝑒  is the number of available recordings for event 𝑒; 𝐺𝑀𝑒,𝑠 is the observed ground-motion for 

event 𝑒 recorded at station 𝑠; log(𝜇𝑒,𝑠) is the corresponding predicted median value; 𝜏 and 𝜙 are the be-

tween-event and within-event standard deviations from the GMPE in use. We caution that the Eq. (11) is 

Figure 4-4: Comparison of 𝜹𝑺𝟐𝑺𝒔 obtained by applying the NLME and R13 methods to two well-recorded sites in 

RESORCE. (a) Site 5401 in Turkey, (b) Site AQK in Italy. (mean and 70% confidence interval) 

(b

) 

(a) (a) (b) 
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applicable only when total aleatory variability 𝜎 of the GMPE is homoscedastic. In case of a heteroscedas-

tic 𝜙 model (as in NGA-West2 GMPEs), Eq. (8-11) of Stafford (2012) are more appropriate for estimating 

the between-event residual 𝛿𝐵𝑒. In this study however, we consider Eq. (11) to be sufficient. Once 𝛿𝐵𝑒 for 

all events are removed from the log(𝐺𝑒,𝑠) − log(𝜇𝑒,𝑠), we obtain the 𝛿𝑊𝑒𝑠 for the new site 𝑠, then Eq. (6) 

and (7) from the R13 method can then be applied to compute 𝛿𝑆2𝑆𝑠 and SE(𝛿𝑆2𝑆𝑠). In this study, we pro-

pose an alternative to Eq. (6). Under the assumption that the site-specific adjustment (𝛿𝑆2𝑆𝑠) for any new 

site will be from population of sites (the 𝛿𝑆2𝑆 random variable) used to estimate 𝜙𝑆2𝑆 (as with 𝛿𝑆2𝑆𝑠 and 

𝜏), we suggest using Eq. (12) to estimate 𝛿𝑆2𝑆𝑠 of the new site. 

𝛿𝑆2𝑆𝑠 =
𝛷𝑆2𝑆
2 ∑ 𝛿𝑊𝑒𝑠

𝑛𝑠
𝑒=1

𝑛𝑠𝜙𝑆2𝑆
2 + 𝜙0

2 + 𝜏2
 (12) 

Where, 𝑛𝑠 is the number of records at the new site from events not included in the GMPE regression. Note 

that Eq. (12) is an equivalent of Eq. (11) but to estimate site-terms as between-site random-effects. For 

the NLME approach introduced in this study, we note that SE(𝛿𝑆2𝑆𝑠) can still be estimated using Eq. (7) 

as in R13. It is however important to use an a-priori estimate of 𝜙𝑆2𝑆 in both Eq. (7) and (12). At the time 

of this study, few GMPEs (e.g. Kotha et al., 2016; Luzi et al., 2014) provide the dataset-dependent 𝜙𝑆2𝑆, 

thereby limiting the usage of Eq. (12). In cases where 𝜙𝑆2𝑆 is available for a dataset: 

i. For sites with no strong motion records, 𝛿𝑆2𝑆𝑠 can be set to zero (center of the normal random var-

iable 𝛿𝑆2𝑆) with an SE(𝛿𝑆2𝑆𝑠) equal to 𝜙𝑆2𝑆 (Abrahamson and Hollenback, 2012). This essentially 

means that ergodicity cannot be resolved for sites with no records. Instead, ground response analysis 

based methods, e.g. Rodriguez-Marek et al. (2014), can be used to perform a site-specific PSHA at 

sites with no strong motion recordings. However, using an analytical (not empirical as is in this 

study) estimate of 𝛿𝑆2𝑆𝑠 demands a more thorough analysis of SE(𝛿𝑆2𝑆𝑠), which depends not only 

on the number of records but also on the choice of 1D vs 2D models, the uncertainty in soil shear-

wave velocity profile at the site, and quality of other input parameters. 

ii. For sites with a single strong motion record, a theoretical estimate of 𝛿𝑆2𝑆𝑠 can be obtained using a 

single within-event residual in Eq. (12). Note that in such cases even though the SE(𝛿𝑆2𝑆𝑠) (equal to 

𝜙𝑆2𝑆 when 𝑛𝑠 = 1 in Eq. 7) is large, the median site-specific ground-motion (Eq. 4) may be signifi-

cantly different from the ergodic prediction depending on how positively or negatively large is the 

unique 𝛿𝑊𝑒𝑠 (and 𝛿𝑆2𝑆𝑠). 

iii. With increasing numbers of records, Eq. (6) asymptotically approaches Eq. (12) (Abrahamson and 

Youngs, 1992), while Eq. (7) governs the epistemic uncertainty. In a similar context, Rathje et al. 

(2010) demonstrated that a stable median surface response spectrum could be attained with as few 

as 5 input ground-motions through an equivalent-linear site response analysis. Indeed, it is desirable 

to have a large number of recordings to well-constrain a 𝛿𝑆2𝑆𝑠, but in our proposed methodology, 

we find it reasonable to trade the unavailability of records for a large SE(𝛿𝑆2𝑆𝑠). For instance, the 

uncertainty SE(𝛿𝑆2𝑆𝑠) = 70% of 𝜙𝑆2𝑆 for sites with two recordings, 45% of 𝜙𝑆2𝑆 for sites with 5 re-

cordings, and 32% of 𝜙𝑆2𝑆 for sites with 10 recordings. 

To compare the estimates of 𝛿𝑆2𝑆𝑠 for new sites with new strong motion recordings using Eq. (12) and 

Eq. (6), we performed the following experiment with the RESORCE dataset: 

i. All strong motion data recorded after December 2008 are removed from the RESORCE dataset to 

obtain a temporally truncated dataset RESORCE_2009. As a result, all strong motion data from L’Aq-

uila sequence of 2009 (Italy) and later are removed from RESORCE, leaving the sites in that region 

with very few or no recordings.  

ii. A GMPE is regressed on the truncated dataset using the same record selection criteria, and residual 

partition into between-event, between-site and event-and-site corrected residuals. The new GMPE 

derived from RESORCE_2009 is thus labelled ‘2009’ as opposed to the GMPE using all strong motion 

data, ‘2012’. The GMPE ‘2012’ is the same as the NLME-GMPE derived in previous sections.  
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Figure 4-5a shows that the predicted median response spectra from the two GMPEs (‘2009’ and ‘2012’) 

are identical for all practical purposes despite removing 167 recordings, 34 sites, and 18 events from the 

dataset. Figure 4-5b shows that the between-site variability ϕS2S is largely unchanged from removal of 34 

sites in Italy, while σ0 is identical among the two GMPEs. Interestingly these differences are smaller than 

those noticed in Figure 4-1a and Figure 4-1b. The fraction of data removed from the full dataset seems to 

have no effect on the median prediction and the residual standard deviations of the GMPEs.  

Using the ‘2009’ GMPE and Eq. 11, we first estimate the ev  ent-terms for the 18 events that occurred be-

tween 2009 and 2012. In the next step, to estimate 𝛿𝑆2𝑆𝑠(𝑇) one can use: (1) Eq. (6) of the R13 method, 

(2) Eq. (12) introduced in this study or, (3) re-derive the GMPE introducing the new data into the dataset. 

The first and second approaches do not require a new GMPE regression. The third approach, accessible 

only to the GMPE developers, in this case yields the ‘2012’ GMPE, whose 𝛿𝑆2𝑆𝑠(𝑇) are our benchmark 

estimates. Figure 4-6 compares the 𝛿𝑆2𝑆𝑠(𝑇) estimates from the Eq. (6) and Eq. (12) against the bench-

mark values at two new stations: AQV, located in central Italy close to L’Aquila and MI03, a temporary 

station installed in the same area (Onna village) after the 2009 L’Aquila earthquake. RESORCE_2009 con-

tains one recording for AQV and none for MI03, which increased to 13 and six recordings respectively by 

the end of 2012. The comparisons in Figure 4-6 exemplify the results obtained for all the station consid-

ered in the numerical test. In particular, while 𝛿𝑆2𝑆𝑠  from Eq. (12) always fall within the mean 

±1SE(𝛿𝑆2𝑆𝑠) of the benchmark values, the results from Eq. (6) show trends similar to the benchmark but 

sometimes with large differences in the amplitude. In case of AQV, at 𝑇 = 0.1s Eq. (6) (R13) estimated 

𝛿𝑆2𝑆𝑠 = 0.40, while Eq. (12) (this study) estimated 𝛿𝑆2𝑆𝑠 = 0.32, which implies a site-specific amplifica-

tion from the R13 approach approximately 27% larger than from NLME. 

Figure 4-5: Comparison of GMPEs using data until 2009 and 2012: 2009 corresponds to the GMPE considering only 

recorded strong motion data up to 2009, 2012 corresponds to the GMPE regressed from the full RESORCE dataset 

including the L’Aquila sequence. (a) Comparison of predicted medians for typical (𝑴, 𝑹, 𝑽𝑺𝟑𝟎) scenarios at a site. 

(b) Comparison of residual standard deviations. 

(a) (b

) 
(a) (b) 
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4.5 Development of a Region- and Site-specific PSHA framework 
Following the discussions in the previous sections, we propose a framework for region- and site-specific 

probabilistic hazard assessment (Figure 4-7). The framework is constructed over a GMPE including re-

gional attributes in the model for the median and with variance partitioned into between-event (𝜏), be-

tween-site (𝜙𝑆2𝑆), and event-and-site corrected (𝜙0) components. In the region-specific workflow (black 

and green blocks in Figure 4-7) the hazard calculation is performed in a single step considering the region-

specific median and all the three variance components (𝜎 = √𝜏2 + 𝜙𝑆2𝑆
2 + 𝜙0

22
). In the region- and site-

specific workflow (black and red blocks in Figure 7) the hazard is assessed in two steps. In the first step, 

preliminary hazard curves are estimated using the region-specific median and only two variance compo-

nents (𝜎0 = √𝜏2 + 𝜙0
2 

2
). In a second post-processing step, the reference ground-motions levels of the pre-

liminary hazard curves are multiplied with the site-specific 𝑒δS2Ss to obtain region- and site-specific haz-

ard curves.  

 

Figure 4-6: Comparison of mean site-terms estimated for the new site using R13 and NLME methods: Eq.(6) of R13 

andEq.(12).of this study against the benchmark estimate as random-effect from a GMPE derived with all data until 

2012. 

Figure 4-7: Flowchart for region-spe-

cific PSHA and region- and site-spe-

cific PSHA: Workflow for region-spe-

cific (black and green) and region- 

and site-specific PSHA (black and 

red).

(a) (b) 
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It is important to note that the workflow of Figure 4-7 is only applicable when δS2Ss and SE(δS2Ss) are 

magnitude and distance independent (Iervolino, 2016). Within the scope of this study, using the pan-Eu-

ropean RESORCE dataset, wherein a large fraction of data is from small-moderate magnitude events (𝑀5-

𝑀6) recorded at epicentral distances larger than 10km, it was not possible to observe and empirically 

model a nonlinear site-response model. The obtained δS2Ss are then considered as resulting from linear 

site amplifications independent from magnitude and distance. SE(𝛿𝑆2𝑆𝑠) however could depend on the 

recorded seismicity. For instance, Figure 4-2b shows that sites with equal number of records exhibit un-

equal NLME estimated SE(𝛿𝑆2𝑆𝑠), which implies SE(𝛿𝑆2𝑆𝑠) is not solely dependent on the number of rec-

ords but the sample of records used to estimate 𝛿𝑆2𝑆𝑠. To manage this complexity in our workflow, we 

use Eq. (7) to estimate an approximate magnitude and distance independent SE(𝛿𝑆2𝑆𝑠). For the pan-Eu-

ropean region, we however consider the workflow in Figure 4-7 as a relatively simple and computation-

ally efficient procedure to perform region- and site-specific PSHA at a large number of sites in a region. 

With a significantly larger dataset (e.g. NGA-West2 dataset) with several well-sampled sites recording 

both small and large events at near source distances, the magnitude and distance dependence of both site-

specific linear and non-linear site-response adjustment factors is worth further investigation. 

4.5.1 Partially ergodic region- and site-specific GMPE 

Bindi et al. (2014) is the ergodic GMPE considered in this study. Using the NLME algorithm (Bates et al., 

2014), Kotha et al. (2016) regionalized the Bindi et al. (2014) GMPE for Italy and Turkey. In particular, 

regional adjustments were introduced into the distance decay and linear site-response components of the 

GMPE. Together these regional adjustments account for possible regional differences in crustal attenua-

tion properties and average 𝑉𝑠30 profiles. Consequent of regional adjustments to the 𝑉𝑆30 scaling term is 

that the resulting NLME-estimated 𝛿𝑆2𝑆𝑠 in this study are corrected for regional differences. Note that 

while Bindi et al. (2014) uses the common-log, Kotha et al. (2016) uses the natural-log of SAs. 

4.5.2 Source model 

The source model used in this study is adopted from the SHARE seismic hazard model (Woessner et al., 

2015). The SHARE source model consists of three alternative source models in the source model logic 

tree: (1) an area source model (2) a fault and background source model and (3) a gridded seismicity 

source model. The area source model is a collection of polygonal seismic sources with distributed seis-

micity in Europe and Middle East, and is given the highest weight (50%) in the SHARE source model logic 

tree. For simplicity we only consider the SHARE area source model in this study.  

4.5.3 Target sites 

We used a subset of the 384 sites with 𝑉𝑆30 provided in the RESORCE dataset. 225 of these sites have at 

least two recordings (green symbols in Figure 4-8), while 80 have more than 5 records (red symbols in 

Figure 4-8), and 38 have 10 or more records. Prior works recommended using at least 5 recordings to 

constrain the linear response at site (e.g. Rathje et al. 2010), but for the purpose of this study, which is to 

demonstrate the shift from ergodic to partially non-ergodic hazard assessment at a large number of sites, 

we perform a region- and site-specific PSHA for all the 225 sites with at least two recordings - using only 

sites with more than 5 recordings did not significantly affect the conclusions of this study. 
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The seismic source, ground-motion and site models are input into the integration-based Classical PSHA 

calculator in OpenQuake (Crowley et al., 2015). We obtained ergodic, region-specific, and region- and site-

specific Peak Ground Acceleration (PGA) hazard estimates for the 225 sites from the RESORCE dataset 

with 𝑉𝑆30 available. 

4.6 Comparison of ergodic and partially non-ergodic PSHA 
We visualized hazard estimates from the three methods using hazard curves for PGA (g) against return 

period (years). Figure 4-9 exemplifies the hazard curves at four well-recorded sites from the three PSHA 

approaches. The epistemic uncertainty on the site-specific hazard curves (red lines) is also considered, 

where SE(𝛿𝑆2𝑆𝑠) translates into the upper and lower percentiles of the site-specific hazard estimates (red 

dashed lines). Although it is important in real applications to consider also the epistemic uncertainty af-

fecting the region-specific hazard curves (green lines), for the sake of graphical clarity the upper and 

lower percentiles of the region-specific hazard estimates are not shown in this figure. Figure 4-9 shows 

that, moving from ergodic to region-specific or to site-specific approaches, the hazard can either increase 

or decrease depending on the trade-off between aleatory variability reduction and site adjustment factor. 

To get a more complete view of the change in the hazard curves when the ergodic assumption is relaxed, 

we show the comparison for the 225 selected sites in Europe and Middle East. 

Figure 4-8: Distribution of sites in RESORCE dataset, with at least two recordings (green) and more than five re-

cordings (red). 
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4.6.1 Region-specific PSHA versus Ergodic PSHA 

To analyze the change in hazard estimates due to shift from ergodic (Bindi et al., 2014) to region-specific 

GMPEs (Kotha et al., 2016); we employ a visually intuitive plot shown in Figure 4-10. In Figure 4-9 it is 

evident that at the same return period, the predicted ground-motions from the ergodic and regional PSHA 

are different. Figure 4-10 highlights these differences in terms of percent change in predicted ground-

motion values (GMV) at different return periods for all 225 sites. The change in predicted GMV is calcu-

lated at each return period using Eq. (13). 

𝛥𝐺𝑀𝑉(%) =  
100 ∗ (𝐺𝑀𝑉𝑟𝑒𝑔𝑖𝑜𝑛 − 𝐺𝑀𝑉𝑒𝑟𝑔𝑜𝑑𝑖𝑐)

𝐺𝑀𝑉𝑒𝑟𝑔𝑜𝑑𝑖𝑐
 (13) 

From Figure 4-10, GMPE regionalization appears to have a significant impact on the hazard estimates at 

a large number of sites. For example, at the site AQK (IT) the 1000 years return period ergodic PGA is 

0.63𝑔, while the region-specific prediction is 0.51𝑔, which is a 20% reduction due to GMPE regionaliza-

tion. We also note that the changes are region-dependent. For example, for the sites in Turkey using a 

Turkey-specific GMPE median (and a smaller 𝜎), the hazard estimates at all return periods for all sites are 

reduced. It is remarkable that predicted ground-motion has decreased by more than 25% at a 1000 year 

return period. 

Figure 4-9: Comparison of ergodic 

hazard curves with partially er-

godic hazard curves. In each panel, 

site name (e.g. 908 in the top left 

panel), country (TR: Turkey, IT: It-

aly), number of records, value of 

𝑽𝑺𝟑𝟎  and site specific adjustment 

factor (AF = 𝒆𝜹𝑺𝟐𝑺) are provided. 
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4.6.2 Region- and site-specific PSHA versus Ergodic PSHA 

We performed region- and site-specific PSHA for the 225 sites in RESORCE dataset with at least two rec-

ords. Similar to Figure 4-10, in Figure 4-11 we provided the difference in predicted GMVs as result of 

shifting from ergodic to region- and site-specific PSHA for the 225 sites. Also indicated in the figure are 

the four well-recorded sites from Figure 4-9 along with their adjustment factors (AF = 𝑒𝛿𝑆2𝑆). While re-

gion-specific PSHA predicts around 25% change in predicted GMVs (depending on the region, site and 

return period), the region- and site-specific PSHA predicts even larger changes, in some cases exceeding 

50%. For example, at the site AQK (IT) the 1000 year return period ergodic PGA is 0.63𝑔 (Figure 4-9) and 

region-specific prediction is 0.51𝑔 (20% decrease), while the region- and site-specific prediction is 46% 

lower at 0.34𝑔.  

 

4.7 Conclusions 
In the framework of Probabilistic Seismic Hazard Assessment, the seismic source model, the ground-mo-

tion model and the site model exhibit inherent natural randomness and modelling uncertainties. For 

Ground-Motion Predictive Equations (GMPEs), the aleatory variability is taken into account by sigma (𝜎) 

which, under the ergodic assumption, is inflated with source, path, and site variabilities across several 

regions. With the availability of large strong motion datasets, it is possible to gradually relax the ergodic 

assumption: increasing strong motion data from various regions allows regionalization of GMPEs, while 

increased amounts of data from individual sites are used to develop site-specific GMPEs. 

Figure 4-10: Percent change in estimated 

ground-motion values at each return period, 

shifting from ergodic to region-specific PSHA. 

The results are color-coded according to the 

region. 

Figure 4-11: Percent change in estimated 

ground-motion values at each return period 

shifting from ergodic to region- and site-specific 

PSHA. The results for 225 sites in Europe-Middle 

East are color coded according to the site re-

sponse adjustment factor (AF = 𝒆𝜹𝑺𝟐𝑺). The black 

curves exemplify the results for the four selected 

sites (FRC and AQK in Italy; 908 and 1001 in Tur-

key) shown in Figure 4-9. 
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Residual analyses show that linear site-response can be empirically quantified as site-specific linear re-

sponse adjustment factors (δS2Ss) with an epistemic uncertainty. 𝛿𝑆2𝑆𝑠 is then introduced into an ergodic 

GMPE whilst replacing the ergodic variability (𝜎) with a single-site site-specific aleatory variability (𝜎𝑠𝑠,𝑠). 

In this study, we introduce a novel region- and site-specific PSHA framework with necessary statistical 

refinements to estimation of 𝛿𝑆2𝑆𝑠 and its epistemic uncertainty. We suggest estimating 𝛿𝑆2𝑆𝑠 for new 

sites as a random effect rather than as means of residuals, which requires a priori estimation of the site-

to-site variability 𝜙𝑆2𝑆. The epistemic uncertainty of 𝛿𝑆2𝑆𝑠 decreases with increasing number of records 

at the site. Both 𝛿𝑆2𝑆𝑠 and its uncertainty estimates require 𝜙𝑆2𝑆, we therefore suggest it to be estimated 

as a (dataset-dependent) between-site random-variance in the mixed-effects regression of a GMPE. 

A large number of strong motion records at a site are required to constrain and use the site-specific single-

site aleatory variability 𝜙𝑠𝑠,𝑠 in a site-specific PSHA. Moreover, it is customary in PSHA applications to 

assume a wider range of possible magnitudes, distances, source – site azimuths, than those recorded at a 

site. In such cases 𝜙𝑠𝑠,𝑠 may be an over- or underestimation depending on the collected sample of strong 

motion recordings at a site. In this study, we aim to apply empirical site-specific PSHA at as many sites as 

possible, even with a very few strong motion recordings. For this purpose, we chose to drop the concept 

of 𝜙𝑠𝑠,𝑠, and replace it with a generic event-and-site corrected variability 𝜙0, common for all sites. The 

refinements to estimation of 𝛿𝑆2𝑆𝑠, its uncertainty, and the introduction of 𝜙0, allows us to apply empiri-

cal site-specific PSHA at any site with a strong motion recording, provided all the uncertainties are carried. 

We evaluated changes in hazard estimates at 225 sites in Europe-Middle East using region-specific and 

region- and site-specific GMPEs instead of an ergodic GMPE. The differences in hazard estimates are com-

puted as percent change in predicted PGA ground-motion for a site and return period due to shift from 

ergodic to region-specific to region- and site-specific PSHA. Based on our observations, we expect around 

25% variation with region-specific GMPEs, and variations as large as 50% with region- and site-specific 

GMPEs. The large changes observed in predicted ground-motion values are a strong motivation to develop 

region- and site-specific GMPEs which in turn require increased seismological monitoring of critical facil-

ities and urban areas, thus driving the shift towards fully non-ergodic PSHA. 
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Abstract 

With increasing amount of strong motion data, Ground-Motion Prediction Equation (GMPE) developers 

are able to quantify empirical site amplification functions (Δ𝑆2𝑆𝑠) from GMPE residuals, for use in site-

specific Probabilistic Seismic Hazard Assessment. In this study, we first derive a GMPE for 5% damped 

Pseudo Spectral Acceleration (𝑔) of Active Shallow Crustal earthquakes in Japan with 3.4 ≤ 𝑀𝑤 ≤ 7.3 

and  0 ≤ 𝑅𝐽𝐵 < 600  km. Using 𝑘 -mean spectral clustering technique, we then classify our estimated 

∆𝑆2𝑆𝑠(𝑇 = 0.01𝑠 – 2𝑠) of 588 well-characterized sites, into 8 site clusters with distinct mean site amplifi-

cation functions, and within-cluster site-to-site variability ~50% smaller than the overall dataset varia-

bility (𝜙𝑆2𝑆). Following an evaluation of existing schemes, we propose a revised data-driven site classifi-

cation characterized by kernel density distributions of 𝑉𝑆30, 𝑉𝑆10, 𝐻800, and predominant period (𝑇𝐺) of 

the site clusters. 

Keywords: Mixed-effects regression, Ground-Motion Prediction Equation, Site classification, Spectral 

Clustering Analysis, Empirical Site Amplification Functions 
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5.1 Introduction 
Current seismic code provisions take into account the significant role of local site conditions on earth-

quake shaking. Their influence is described through appropriate elastic design spectra based on different 

site categories. The main parameter proposed for soil categorization is the 𝑉𝑆30, i.e. the time-based aver-

age value of shear wave velocity (𝑉𝑆) in the upper 30 m of the soil profile. This parameter has been intro-

duced by Borcherdt and Glassmoyer (1992) and Borcherdt (1994) as a means to classification of sites for 

building codes. For example, Eurocode 8 (Code P, 2005) and Rey et al., (2002) recommends a site classifi-

cation based on 𝑉𝑆30, and two families of spectral shapes depending on the seismic activity level of area 

(Type I for active areas, and Type II for moderately active areas). 

A number of authors (Castellaro et al., 2008; Kokusho and Sato, 2008; Lee and Trifunac, 2010, Héloïse et al., 

2012) have drawn attention to the limitations of 𝑉𝑆30 parameter, which is only a proxy and cannot de-

scribe alone the physics of site amplification across a broad period (or frequency) range. A number of 

other proxies (or combinations of proxies) were proposed, coupling information on the shallow imped-

ance and the overall sedimentary thickness. There are several recent studies aimed at developing new 

and more refined site classification schemes taking into account these additional information (e.g., Cadet 

et al., 2008; Gallipoli and Mucciarelli, 2009; Luzi et al., 2011). For example, Pitilakis et al. (2013) intro-

duced a more refined classification using 𝐻800 (depth to seismic bedrock with 𝑉𝑆 = 800m/s), 𝑉𝑆,𝑎𝑣 (aver-

age shear-wave velocity of the soil column) and fundamental period (𝑓0). In total Pitilakis et al. (2013) 

suggested 12 site classes for the two European seismicity classes (Type I and Type II). Defining new clas-

sifications schemes is however highly challenging because of a few technical issues: 

 Only a minimum sufficient number of classes is desirable. The optimal choice of the number of classes 

is however difficult to define. Ideally the site-to-site variability within each site class should be small 

compared to a less resolved site classification which, to our knowledge, was not quantitatively ana-

lyzed. Moreover, enough recorded strong motion data within each class is seldom available to define 

statistically well-constrained amplifications factors. 

 Only few studies (e.g., Derras et al., 2016) tested the relative efficiency of the various site conditions 

proxies (e.g., 𝐻800, 𝑓0, and 𝑉𝑆30) to predict soil amplifications. There is often little consensus on the 

way to choose and combine the site proxies. 

 Site class definitions should avoid unphysical discontinuities in amplification coefficients at the 

boundaries of adjacent classes. However, such discontinuities are to be expected when using discrete 

site classes, as opposed to continuous functions of site-response proxies. 

In order to resolve some of these issues we explore a new approach to derive a new site classification and 

site amplification functions. Our aim is to develop a data-driven classification scheme with minimal a pri-

ori conditions. For this purpose we adopt the following steps: 

1. We take advantage of a high quality dataset featuring several well-characterized sites recordings 

multiple earthquakes in a region. In this study, we use the KiK-net dataset built by Dawood et al. 

(2016), consisting of 1164 shallow crustal events recorded at 644 sites with several geotechnical site 

parameters available – e.g. 𝑉𝑆30 and 𝐻800 values have been directly derived from down-hole meas-

urements of 𝑉𝑆 profile. Further description of the data set is provided in the section titled Data. 

2. The empirical site amplification factors are products of a Ground-Motion Prediction Equation 

(GMPE) mixed-effects analysis. Essentially, we develop a site-specific GMPE from the selected strong 

motion dataset following the steps described in Rodriguez-Marek et al. (2013) and Kotha et al. 

(2017). Details on the GMPE development and mixed-effects analysis is provided in section Ground-

Motion Prediction Equation 

3. The site amplification factors obtained in the second step are subject to spectral clustering analysis 

to identify sites with similar response. An optimal number of classes is chosen to minimize both: the 

site-to-site variability within each site cluster/class and the similarity of their mean amplification 
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functions. In section Spectral Clustering Analysis, we provide a description of the technique and its 

application. 

4. In the final step, we check the compatibility of various site-response proxies with site clusters ob-

tained in the third step. Site-response proxies (𝐻800, 𝑉𝑆30, 𝑉𝑆10) are not used a priori to define the 

classes, but a posteriori to characterize the statistical clustering of site-response. In section Site Clas-

sification, we introduce the revised site classification scheme, mean site amplifications associated 

with each class, and site-to-site variability of amplification within each site class. 

5.2 Data 
In this study, we use the Kiban-Kyoshin network (Okada et al., 2004) database compiled by Dawood et al. 

(2016) for ground-motion studies. A step-by-step automated protocol used to systematically process 

about 157,000 KiK-net strong ground-motion recordings obtained between October 1997 and December 

2011 is elucidated in Dawood et al. (2016) and related appendices. A flatfile with all the metadata and the 

pseudo spectral acceleration (PSA) of the processed records is uploaded to NEEShub 

(https://nees.org/resources/7849). In addition to the waveform processing by Dawood et al. (2016), we 

make a more GMPE specific record selection for our regression: 

1. Dawood et al. (2016) remarked that the hypocentral location and 𝑀𝑤 obtained from the F-net catalog 

are more reliable than the values reported in the KiK-net data files. They matched the KiK-net records 

to F-net earthquakes and classified the match into five categories (A through E) depending on the 

error margins on location and 𝑀𝐽𝑀𝐴. Category A represents the strictest criteria, Category D contains 

earthquakes that were manually matched, and Category E contains earthquakes for which no match 

was found. In our study, we choose only the Category A events, which constitute about 89% of the 

records 

2. While most of the GM records in the dataset correspond to subduction earthquakes, we choose only 

the Active Shallow Crustal (ACRsh) events classified using the Garcia et al. (2012) algorithm. How-

ever, to filter out any subduction intra-slab and deep continental events, we chose only the ACRsh 

events whose F-net reported hypocentral depth is ≤35km (as in the HANSR1 criteria of Garcia et al. 

(2012)) 

3. Most of the KiK-net sites provide 3-component recordings at both surface and borehole sites. In our 

study, we use only choose the surface recordings at sites with measured 𝑉𝑆30 available 

4. Each record is associated with a high-pass corner frequency (𝑓𝑐) which limits the maximum usable 

period 𝑇𝑚𝑎𝑥 ≤
1

𝑓𝑐
 of the record in a GMPE regression. Since the dataset is compiled from an automatic 

recording processing procedure described in Dawood et al. (2016), we applied a more conservative 

limit of 𝑇𝑚𝑎𝑥 ≤
0.5

𝑓𝑐
. First, we choose only those event and site combinations for which all the 6-com-

ponent GMs (at surface and borehole) show a Signal-to-Noise ratio (SNR) ≥ 3 in the bandwidth 𝑓𝑐 –

30Hz. Then, for regression at each spectral period (𝑇) we select only those records whose 𝑇𝑚𝑎𝑥 ≥ 𝑇 

5. Finally, we choose only the earthquakes with at least three usable records after all the selection cri-

teria above are cleared. In doing so, the number of usable records for the GMPE regression at 𝑇 =

0.01s falls from 157,000 to 15,896. The number of usable records further decreases to 6462 at 𝑇 =

2s. The data distribution for GMPE regression at 𝑇 = 0.01s is shown in Figure 1. In all there are 850 

events with 3.4 ≤ 𝑀𝑤 ≤ 7.3, 641 sites with 106 ≤ 𝑉𝑆30 ≤ 2100m/s, and 15,896 records with 0 ≤

𝑅𝐽𝐵 ≤ 543km 

https://nees.org/resources/7849
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5.3 Ground-Motion Prediction Equation 
Using a mixed-effects regression approach (as in Abrahamson and Youngs, 1992; Kotha et al., 2016), we 

derive a GMPE for the geometric-mean of (5% damped) horizontal Pseudo Spectral Acceleration (PSA) at 

33 values of 𝑇 between 0.01s and 2s. 

𝑙𝑛(𝑃𝑆𝐴) = 𝑓𝑅(𝑀𝑤 , 𝑅𝐽𝐵) + 𝑓𝑀(𝑀𝑤) + 𝛿𝐵𝑒 + 𝛿𝑆2𝑆𝑠 + 𝛿𝑊𝑆𝑒,𝑠 (1) 

In Eq. (1), the parametric functions 𝑓𝑅(𝑀𝑤, 𝑅𝐽𝐵)and 𝑓𝑀(𝑀𝑤) capture the scaling of PSAs with distance and 

magnitude, respectively, and they are referred to as fixed-effects. 𝛿𝐵𝑒 is the between-event random-effect 

quantifying the systematic deviation of observed ground-motions associated to an event e with respect to 

the GMPE fixed-effects prediction. 𝛿𝑆2𝑆𝑠 is the site-specific random-effect for a site s, which can be used 

to scale the GMPE prediction to a site-specific prediction (e.g., Rodriguez-Marek et al., 2013; Kotha et al., 

2017a). 𝛿𝑊𝑆𝑒,𝑠 is the regression residual capturing record-to-record variability (combination of 𝑒 and 𝑠), 

and can be investigated for other repeatable effects (e.g., Boore et al., 2014; Kotha et al., 2017b; Baltay 

et al., 2017). The period dependent random-effects and the residuals follow orthogonal normal distribu-

tions as 𝛿𝐵𝑒 = Ɲ(0, 𝜏), 𝛿𝑆2𝑆𝑠 = Ɲ(0,𝜙𝑆2𝑆) and 𝛿𝑊𝑆𝑒,𝑠 = Ɲ(0,𝜙0), where 𝜏 is event-to-event or between-

event variability, 𝜙𝑆2𝑆 captures the site-to-site or between-site variability, and 𝜙0 is the event-and-site 

corrected or residual aleatory variability. Note that the 𝜙0 in this study is the same as the single-station 

standard deviation 𝜙𝑠𝑠 of Rodriguez-Marek et al. (2013). The total aleatory variability of the dataset with 

respect to a GMPE is 𝜎 = √𝜏2 + 𝜙𝑆2𝑆
2 + 𝜙0

2. 

It is worth noting that Eq. (1) does not include any site-response component in its fixed-effects, unlike the 

usual practice of including a parametric function of 𝑉𝑆30. The site-specific random effects 𝛿𝑆2𝑆𝑠 absorb all 

the site-specific response, and serve as the empirical site-specific amplification functions in our proposed 

site classification scheme. Given that the large fraction of data used in constraining 𝛿𝑆2𝑆𝑠 is from events 

with 𝑀𝑤 < 5 and 𝑅𝐽𝐵 > 25km (Figure 1), these empirical amplification functions capture only the average 

linear soil response. Therefore, our site classification is solely based on classification linear soil response. 

To constrain the non-linear soil response in 𝛿𝑆2𝑆𝑠 would require more data from larger and closer events. 

Figure 5-1: Data distribution following the record selection criteria for GMPE regression at 𝑻 = 𝟎. 𝟎𝟏s: (top-left 

panel) Distance distribution of usable records, (top-right panel) number of records per station, (bottom-left panel) 

magnitude distribution of usable records, (bottom-right panel) magnitude-distance scatter plot of usable records. 
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5.3.1 Parametric regression 

We develop a GMPE following a multi-step approach where we first calibrate the magnitude-dependent 

distance scaling function 𝑓𝑅(𝑀𝑤, 𝑅𝐽𝐵) and then use distance-corrected observations to calibrate the mag-

nitude scaling function 𝑓𝑀(𝑀𝑤). At each step, we perform a mixed-effects regression using LMER algo-

rithm of Bates et al. (2014) implemented in R Development Core Team (2010), estimating both the 𝛿𝐵𝑒 and 

𝛿𝑆2𝑆𝑠 random-effects. In doing so, we ensure that the regression coefficients are unbiased by a well-rec-

orded events or sites (e.g. Boore et al., 2014; Kotha et al., 2017a).  

 

5.3.1.1 Distance scaling: 𝒇𝑹(𝑴𝒘, 𝑹𝑱𝑩) 

The first step in our multi-step regression procedure is to derive the distance scaling component 

𝑓𝑅(𝑀𝑤, 𝑅𝐽𝐵) of Eq. (1). Figure 5-2 shows the observed 𝑃𝑆𝐴s at 𝑇 = 0.02s, 0.2s and 2s against the Joyner-

Boore distance metric (𝑅𝐽𝐵). The scatter plot is color coded according to magnitude ranges of the obser-

vations to identify magnitude dependence of distance scaling. 

The distance scaling of 𝑃𝑆𝐴 shows a magnitude-dependent near-source saturation effect, extending to 

about 5km for 𝑀𝑤 ≤ 4.5 and up to 20km for 𝑀𝑤 ≥ 6.5 events. This effect is generally modeled by intro-

ducing the so-called effective-depth or ℎ-parameter in the GMPE distance scaling fixed-effect component. 

For an equivalent point-source simulation of finite ruptures, we adopted the effective-depth formula (Eq. 

2) derived by Yenier and Atkinson (2015) from a global dataset of well-recorded earthquakes (including 

California, Italy, Japan, New Zealand, Taiwan, and Turkey). 

ln ℎ = 2.303 max [(−0.05 + 0.15𝑀𝑤), (−1.72 + 0.43𝑀𝑤)]
  (2) 

Figure 5-2 also suggests that short (0.02s) and intermediate (0.2s) period 𝑃𝑆𝐴s attenuate more rapidly 

beyond 100 km. To capture the apparent anelastic attenuation of high frequency 𝑃𝑆𝐴s, we introduce a 

hinge-distance in the definition of 𝑓𝑅(𝑀𝑤 , 𝑅𝐽𝐵) and model it as in Eq. (3). Note that the only magnitude 

dependence in distance scaling is from ℎ (Eq. 2). The coefficients 𝑐1, 𝑐2, and 𝑐3 estimated in this step are 

held constant for the later steps of GMPE regression. 

𝑓𝑅(𝑀𝑤, 𝑅𝐽𝐵) =  

{
 

 𝑐1 ln√𝑅𝐽𝐵
2 + ℎ2                                                                       𝑅𝐽𝐵 < 100𝑘𝑚

𝑐1 ln√1002 + ℎ2 + 𝑐2 ln (
𝑅𝐽𝐵
100

) + 𝑐3(𝑅𝐽𝐵 − 100)    𝑅𝐽𝐵 ≥  100𝑘𝑚

 (3) 

Figure 5-2: Distance scaling of Geometric Mean of 5% damped horizontal Pseudo Spectral Accelerations at 𝑻 = 

0.02s, 0.2s and 2s. 
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5.3.1.2 Magnitude scaling: 𝒇𝑴(𝑴𝒘) 

The recorded 𝑃𝑆𝐴s corrected for 𝑓𝑅(𝑀𝑤, 𝑅𝐽𝐵) yield the expected 𝑃𝑆𝐴 at reference distance 𝑅𝑟𝑒𝑓 = 1km. 

Per-event averages of distance scaled 𝑃𝑆𝐴, hereafter 𝑃𝑆𝐴𝑅𝑟𝑒𝑓, are the near-source ground-motions cor-

rected for attenuation effects. The GMPE magnitude scaling component 𝑓𝑀(𝑀𝑤) is then derived through a 

weighted mixed-effects regression of the 𝑃𝑆𝐴𝑅𝑟𝑒𝑓.  

Figure 5-3 shows 𝑃𝑆𝐴𝑅𝑟𝑒𝑓 against 𝑀𝑤, color coded according to the focal mechanism of the events. Earlier, 

Zhao et al. (2016) reported that ACRsh events with Normal (NM) focal mechanism produce higher ampli-

tudes compared to Strike-slip (SS) and Reverse events. However, our non-parametric analysis showed no 

clear distinction of observed 𝑃𝑆𝐴𝑅𝑟𝑒𝑓 with rupture focal mechanism. In addition, our parametric mixed-

effects regression showed statistically insignificant variability of magnitude scaling with focal mechanism. 

Therefore, in this GMPE, we chose to not include any focal mechanism term. 

Several recent GMPEs developed for applicability over a wide magnitude range (e.g. 3 < 𝑀𝑤 < 8 ), 

adopted piece-wise linear (or a high degree polynomial) expressions in their magnitude scaling compo-

nents. For example, Campbell and Bozorgnia (2014) allowed three period-independent break-points in 

their magnitude scaling relation at 𝑀𝑤 = 4.5, 5.5 and 6.5, (Boore et al., 2014) used a single period-depend-

ent magnitude break-point ranging from 𝑀𝑤 = 5.5 for 𝑇 ≤ 0.1s up to 𝑀𝑤 = 6.2 for 𝑇 ≥ 0.4s, while Zhao 

et al. (2016) used a single period-independent break-point at 𝑀𝑤 = 7.1. Piece-wise magnitude scaling ex-

pressions allow variability of magnitude scaling gradient in different 𝑀𝑤-ranges. Especially for imbal-

anced datasets with several small events and fewer large events, such artificial break-points in magnitude 

scaling ensure that 𝑃𝑆𝐴s scale differently for small and large magnitude ranges. For instance, in Figure 

5-3, we notice that 𝑃𝑆𝐴𝑅𝑟𝑒𝑓 (𝑇 = 0.02s) scales more gradually (less positive gradient) for 𝑀𝑤 ≤ 4.5 com-

pared to 𝑀𝑤 > 4.5. Similarly, 𝑃𝑆𝐴𝑅𝑟𝑒𝑓 (𝑇 = 2s) scale rapidly for 𝑀𝑤 < 6.5 compared to 𝑀𝑤 ≥ 6.5 range, 

where the scaling gradient is close to zero. 

Based on our non-parametric analysis, we formulated our 𝑓𝑀(𝑀𝑤) to have two break-points: 1) at refer-

ence magnitude 𝑀𝑟𝑒𝑓 = 4.5 to separate the numerous small events (𝑀𝑤 < 4.5) from fewer intermediate-

large events (𝑀𝑤 ≥ 4.5), and 2) a period-dependent hinge-magnitude (𝑀ℎ), to allow over-saturation of 

𝑃𝑆𝐴𝑅𝑟𝑒𝑓 for large events. The period-dependence of 𝑀ℎ is inspired by reasoning of Boore et al. (2014), 

where visual inspection of NGA-West2 data suggested 𝑀ℎ to increase with period from 𝑀ℎ = 5.5 at 𝑇 ≤

0.1s to 𝑀ℎ = 6.2 at 𝑇 ≥ 0.4s. However, unlike Boore et al. (2014), we allowed 𝑀ℎ  to monotonically in-

crease beyond 𝑇 = 0.4s to reach 𝑀ℎ = 6.46  at 𝑇 = 2s. Stochastic simulations (e.g. Schmedes and Ar-

chuleta, 2008) and empirical evidence suggest that ground-motions saturate (or even over-saturate) at 

close distances from large magnitude events. To account such physical effects, we formulated  𝑓𝑀(𝑀𝑤) for 

our GMPE as in Eq. (4). 

Figure 5-3: Parametric analysis for magnitude scaling at 𝑻 = 0.02s, 0.2s, 2s. 𝑷𝑺𝑨𝑹𝒓𝒆𝒇 (𝒈) are the per-event averages 

of recorded 𝑷𝑺𝑨𝒔, corrected for distance scaling (Eq. 3). Colors indicate the focal mechanism of events: ALL – un-

known mechanism, NM – Normal faulting, RS – Reverse-slip fault, SS – Strike-slip fault. 
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𝑓𝑀(𝑀𝑤) = 𝑎 + {

𝑏1(𝑀𝑤 −𝑀𝑟𝑒𝑓)                                                        𝑀𝑤 < 𝑀𝑟𝑒𝑓

    𝑏2(𝑀𝑤 −𝑀𝑟𝑒𝑓)                                                  𝑀𝑟𝑒𝑓 ≤ 𝑀𝑤 < 𝑀ℎ

 𝑏2(𝑀ℎ −𝑀𝑟𝑒𝑓)+ 𝑏3(𝑀𝑤 −𝑀ℎ)                                  𝑀ℎ ≤ 𝑀𝑤

 (4) 

5.3.1.3 Random-effects: 𝜹𝑩𝒆 and 𝜹𝑺𝟐𝑺𝒔  

During the regression of 𝑓𝑅(𝑀𝑤, 𝑅𝐽𝐵) and 𝑓𝑀(𝑀𝑤) we allow the algorithm to estimate conditional values 

of 𝛿𝐵𝑒 and 𝛿𝑆2𝑆𝑠. These intermediate estimates are however not the final random-effects of the GMPE, 

but only to prevent a well-recorded event or site from biasing the fixed-effects coefficient estimates (as 

discussed in Kotha et al., 2017, and Stafford, 2014). The final estimate of random-effects are obtained after 

correcting the observed 𝑃𝑆𝐴s for both magnitude and distance scaling effects (as in Boore et al., 2014). 

For a record from eth event at sth site the residual 휀𝑒,𝑠 = ln(𝑃𝑆𝐴𝑒,𝑠) − 𝑓𝑅(𝑀𝑒, 𝑅𝑒,𝑠) − 𝑓𝑀(𝑀𝑒) is split into 

random-effects 𝛿𝐵𝑒 and 𝛿𝑆2𝑆𝑠, and event-and-site corrected residual 𝛿𝑊𝑆𝑒,𝑠. These random-effects and 

residuals can be further investigated to evaluate the GMPE performance and/or to identify new predictor 

variables that can be modelled as fixed-effects. 

Figure 5-4 is the customary residual analysis performed after a GMPE regression to verify if the fixed-

effects components capture well the attenuation of 𝑃𝑆𝐴s at all magnitudes and distances. If in case the 

fixed-effects components are biased by a particularly well-sampled magnitude-distance bin in the dataset, 

then we should expect to see artifacts in the random-effects and the residuals. In the top panels of Figure 

5-4, we plotted 𝛿𝐵𝑒 versus 𝑀𝑤 to evaluate our choice of 𝑓𝑀(𝑀𝑤). We divide the magnitude range 𝑀3.4 – 

𝑀7.3 into 10 magnitude bins, and calculate the mean and 15th-85th percentile error bars on 𝛿𝐵𝑒 within 

each bin. At all periods, the mean 𝛿𝐵𝑒 for each bin falls very close to zero, implying no significant trend 

with 𝑀𝑤 and that 𝑓𝑀(𝑀𝑤) captures the magnitude scaling of 𝑃𝑆𝐴s very well. 

The bottom panels of Figure 5-4 show the event-and-site corrected residuals, 𝛿𝑊𝑆𝑒,𝑠 versus the distance 

metric, 𝑅𝐽𝐵. We recall that 𝑓𝑅(𝑀𝑤, 𝑅𝐽𝐵)is regressed for data with 0km ≤ 𝑅𝐽𝐵 < 600km, which is a consid-

erably larger distance range than any GMPE developed for Active Shallow Crustal environments. Such 

modeling choice is motivated by the need to constrain the site terms with a large amount of data. Never-

theless, our 𝑓𝑅(𝑀𝑤 , 𝑅𝐽𝐵) performs very well at all distances, as indicated by the zero mean 𝛿𝑊𝑆𝑒,𝑠 within 

each distance bin. 

Figure 5-4: Random-effects and residual plots for GMPE evaluation at 𝑻 = 0.02s, 0.2s, and 2s. In each panel, 𝜹𝑩𝒆 is 

plotted against 𝑴𝒘, 𝜹𝑺𝟐𝑺𝒔 against 𝑽𝑺𝟑𝟎, and 𝜹𝑾𝑺𝒆,𝒔 against 𝑹𝑱𝑩 to check if random-effects and residuals show a sys-

tematic trend with predictor variables. 
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The middle panels of Figure 5-4 showing 𝛿𝑆2𝑆𝑠 versus 𝑉𝑆30 (in log-scale) is the most important plot of this 

section. Since a site-response component is deliberately left out of the fixed-effects in GMPE, the random-

effects 𝛿𝑆2𝑆𝑠 show a trend with 𝑉𝑆30. However, at 𝑇 = 0.02s (and 𝑇 = 0.2s) gradient of the LOESS fit (Lo-

cal regression of scatterplots by Cleveland, 1979) of 𝛿𝑆2𝑆𝑠 versus 𝑉𝑆30 is close to zero for 𝑉𝑆30 < 600m/s 

, implying that high frequency soil response is weakly correlated to 𝑉𝑆30  (also in Seyhan and Stewart, 

2014). For longer periods (𝑇 = 2s), although a steeper gradient at 𝑉𝑆30 < 200m/s indicates better rele-

vance of 𝑉𝑆30, it appears that low frequency response of stiffer soils may not be captured with 𝑉𝑆30 alone. 

Our observations suggest that 𝑉𝑆30 may not be an ideal proxy of linear site-response. In the later sections, 

we use these inferences in developing alternative approaches to empirical site-response modelling. 

5.4 Results 
In Figure 5-5 we plot the distance scaling fixed-effects component of the GMPE against the observed 𝑃𝑆𝐴s 

corrected for the between-event and between-site random-effects, i.e. ln(𝑃𝑆𝐴𝛿𝐵𝑒+𝛿𝑆2𝑆𝑠) = ln 𝑃𝑆𝐴𝑒,𝑠 −

𝛿𝐵𝑒 − 𝛿𝑆2𝑆𝑠, where 𝑒 and 𝑠 are the indices of event and site respectively. The scatter of data around the 

GMPE median is the record-to-record variability 𝛿𝑊𝑆𝑒,𝑠. 

 

At all periods, the magnitude-dependent ℎ-parameter appears to capture well the near-source saturation 

of 𝑃𝑆𝐴s. Campbell (1981) observed that the near-source attenuation of high frequency 𝑃𝑆𝐴s (e.g. PGA) is 

weakly dependent on magnitude and distance, which is evident from the minor differences in our GMPE 

median predictions at 𝑅𝐽𝐵 < 10km for 𝑀6.5 and 𝑀7.5 events in Figure 5-5. Secondly, the fixed-effects co-

efficient 𝑐3 forces an exponential decay of GMPE 𝑃𝑆𝐴 predictions to mimic the anelastic attenuation of 

𝑃𝑆𝐴s at far-source distances, 𝑅𝐽𝐵 > 100km. In the panel for 𝑇 = 2s, the bump in the predicted 𝑃𝑆𝐴s at 

100km, which is in agreement with the observations as well, indicates a possibility of post-critical reflec-

tions at crustal discontinuities and/or transition from body waves at near-source distances to surface 

waves at far-source distances. This phenomenon is also in agreement with the kink at about 90km ob-

served by Oth et al. (2011) in the attenuation of Fourier amplitude spectra at low frequencies in Japan. 

Figure 5-6 shows the magnitude scaling of GMPE fixed-effects versus the observed 𝑃𝑆𝐴s corrected for 

random-effects 𝛿𝐵𝑒 and 𝛿𝑆2𝑆𝑠. Despite two break-points, one at 𝑀𝑤 = 4.5 and the other at 𝑀ℎ = 5.5-6.5 

depending on the period, magnitude scaling for 𝑇 = 2s appears to be constant for all events 𝑀𝑤 ≤ 6.5, 

and an over-saturation for 𝑀𝑤 > 6.5. Although the over-saturation appears rather strong, the panels cor-

responding to 𝑇 = 2s, in our non-parametric analysis of Figure 5-3 do exhibit a decreasing trend of 

𝑃𝑆𝐴𝑅𝑟𝑒𝑓, while that in residual analysis of show s no bias for 𝑀𝑤 > 6.5. The strong over-saturation at short 

distances is a combined effect of the ℎ-parameter (Eq. 2) and the period-dependent 𝑀ℎ (Eq. 4).  

Figure 5-5: Distance scaling of the GMPE fixed-effects at 𝑻 = 0.02s, 0.2s, and 2s. Note that the vertical axis shows 

observed PSAs minus the between-event and between-site random-effects. 
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Figure 5-7 shows the GMPE fixed-effects response spectra in the left panel, and random-effects standard 

deviations in the right panel. The GMPE standard deviations in the left panel are in natural-log scale. 𝜙𝑆2𝑆 

is the largest among the three components, indicating a large site-to-site variability in the dataset, and 

also because we chose not to include any site-response parameters (e.g. 𝑉𝑆30) in the GMPE fixed-effects 

component. In the following sections we introduce the clustering approach to site-response modelling, 

which is expected to reduce the 𝜙𝑆2𝑆, and the total aleatory variability σ to a more reasonable value. 

 

In our mixed-effects GMPE, the magnitude and distance scaling are captured by the fixed-effects 𝑓𝑀(𝑀𝑤) 

and 𝑓𝑅(𝑀𝑤, 𝑅𝐽𝐵), event-specific adjustments by random-effects 𝛿𝐵𝑒, and record-to-record variability by 

𝛿𝑊𝑆𝑒,𝑠. Therefore, each site-specific random-effect 𝛿𝑆2𝑆𝑠 essentially captures the empirical mean site-

response of a site in the GMPE regression. For every period at which the GMPE is regressed (𝑇 = 0.01s-

2s), a well-recorded site in the dataset has an associated period-dependent 𝛿𝑆2𝑆𝑠. The scalar 𝛿𝑆2𝑆𝑠 at a 

given period can be used to adjust the generic GMPE 𝑃𝑆𝐴(𝑇) predictions to yield site-specific 𝑃𝑆𝐴𝑠𝑠(𝑇) 

(e.g. Rodriguez-Marek et al., 2013, Kotha et al., 2017a). A vector of site-specific 𝛿𝑆2𝑆𝑠 for a range of 𝑇, no-

tated as ∆𝑆2𝑆𝑠 from hereon, resembles an empirical site amplification function (AF). ∆𝑆2𝑆𝑠 can be used to 

adjust the GMPE PSA response spectra, Conditional Spectra (Baker, 2010, and Kotha et al., 2017b), or even 

the Uniform Hazard Spectra. In this study, the ∆𝑆2𝑆𝑠 vector for well-recorded sites serve as the empirical 

site amplification functions. 

Figure 5-6: Magnitude scaling of the GMPE fixed-effects at 𝑻 = 0.02s, 0.2s, and 2s. Note that the vertical axis shows 

observed 𝑷𝑺𝑨s minus the between-event and between-site random-effects. 

Figure 5-7: Median response spectra, between-event (𝝉), between-site (𝝓𝑺𝟐𝑺), event-and-site corrected standard 

deviations (𝝓𝟎) and the total aleatory variability (𝝈) of the GMPE in natural-log scale. 
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5.5 Spectral clustering analysis 
With increasing amount of strong motion data, ground-motion modelers are adapting advanced statistical 

tools to analyze large amounts of ground-motion data to identify repeatable effects, evaluate parametri-

zation, and quantify better the uncertainties in prediction (e.g. Derras et al., 2012; Ullah et al., 2013; Luzi 

et al., 2011). Among the various tools, spectral clustering analysis, a type of unsupervised machine learn-

ing, refer to a variety of statistical techniques aimed at extracting hidden patterns/structures from large 

amounts of unlabeled multidimensional data. Constituted by n scalar 𝛿𝑆2𝑆𝑠 value for n spectral periods 

(𝑇 = 0.01s-2s), the ∆𝑆2𝑆𝑠 vectors of length n are our multidimensional data points. The steps involved in 

spectral clustering are the following: 

1. Preparing the data: ∆𝑆2𝑆𝑠 vectors of all the sites to be clustered must be of equal length, therefore we 

only select the 588 sites (of the 641 sites with measured 𝑉𝑆30) with 𝛿𝑆2𝑆𝑠 available at all periods in 

the range 𝑇 = 0.01s-2s. ∆𝑆2𝑆𝑠 vectors of the 588 sites are then normalized with the period-depend-

ent 𝜙𝑆2𝑆.  

It is possible to extend the period range of ∆𝑆2𝑆𝑠 vectors, but the number of sites with a reliable esti-

mate of 𝛿𝑆2𝑆𝑠 falls rapidly beyond 𝑇 > 2s, which in turn is controlled by the maximum usable period 

of 𝑇𝑚𝑎𝑥 of a record (in our record selection step). In fact, including long period 𝛿𝑆2𝑆𝑠 (up to 𝑇 = 5s) 

in our analysis resulted in better separation of clusters, but with very few sites in each cluster. 

2. Choice of clustering technique: There are several advanced machine learning techniques depending on 

the amount of supervision (a priori information) that is input and the knowledge that is being queried. 

For our purpose, we chose a basic partitioning algorithm: the 𝑘 -means clustering technique 

(MacQueen, 1967). 𝑘 -means technique splits the ∆𝑆2𝑆𝑠  vectors into 𝑘  groups (clusters), where 𝑘 

must be specified in advance. The clustering algorithm (available in the R library ClusterR by Lampros 

Mouselimis (2017) and factoextra by Kassambara and Mundt (2016)) iteratively partitions the data 

until the Total Within Sum of Squares (WSS) is minimized. 

3. Selection of the number of clusters 𝑘: We use two indices to guide the selection of optimal 𝑘: Total 

Within Sum of Squares (WSS) and the Gap statistic that compares the WSS change with that expected 

under an appropriate null reference distribution of the data (see Tibshirani et al., 2001, for more de-

tails on this statistic). After testing different selections for the number of clusters, we found that 𝑘 =

8 provides an acceptable WSS reduction without introducing large overlaps among the clusters (Fig-

ure 5-8). 

Figure 5-8: Optimal number of clusters based on Total Within Sum of Squares (WSS) and Gap statistic (GS). The 

WSS metric reduces with increasing number of clusters, but the optimal number of clusters is when Gap statistic 

is maximized – in which case the WSS is low and the inter-cluster distance is high. 
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5.6 Site classification from cluster analysis 
In a way our approach is inverse of the current practice, where the number of site classes (e.g. 5 soil clas-

ses - A, B, C, D, E in Eurocode 8 (Code, 2005)), preferred site-response proxy (e.g. 𝑉𝑆30), and parametric 

ranges of selected proxy (e.g. sites with 𝑉𝑆30 > 800m/s as EC8-A) are fixed a priori – and then, the availa-

ble strong motion data is grouped and processed within each class to derive empirical site amplification 

functions. In our approach, we first derived the empirical site amplification functions (∆𝑆2𝑆𝑠) of the 588 

sites, and then classified them into 8 𝑘-means clusters. We now present the site clusters and their mean 

amplification functions. Later, we investigate and identify site-response proxies that can effectively char-

acterize these eight site classes. 

5.7 Site clusters 
 

The eight site clusters partitioning the 588 sites in our dataset are visualized in Figure 5-9, and the num-

ber of sites in each cluster along with within-cluster sum of square (WCSS) are provided in Table 5-1. In 

the left panel is the 2D visualization of the 𝑘-mean clusters. Regarding the two dimensions, the visualiza-

tion algorithm performs a principal component analysis (PCA) in which the higher dimensional ∆𝑆2𝑆𝑠 

vectors are reduced to two principal dimensions (Kassambara and Mundt, 2016). The distance along each 

dimension can be interpreted as how similar or dissimilar are any two cluster means. For instance, cluster 

6 is farthest from cluster 8 along Dim1, and is closest to cluster 7. To interpret this separation, we refer to 

the more familiar plot in the right panel of Figure 5-9. 

Normalized ∆𝑆2𝑆𝑠 vectors of the 588 sites in our dataset are plotted in the right panel of Figure 5-9. Each 

thin translucent lines corresponds to a single site, while the thick overlaid lines represent the cluster-

specific mean normalized ∆𝑆2𝑆𝑠 vectors, for the period range 𝑇 = 0.01s-2s. These are used to develop to 

our empirical site amplification functions associated with the site clusters/classes derived in this study. 

Observing the two plots in Figure 5-9: the mean normalized ∆𝑆2𝑆𝑠 for cluster 8 is well below zero for the 

entire period range. While cluster 7, which is diagonally the farthest from cluster 8 in the left panel of 

Figure 5-9, shows the opposite behavior. The same logic can be applied to cluster 1 and 5, and so on. Since 

the 𝛿𝑆2𝑆𝑠 distributions at each period are normally distributed with zero mean, we expect to see such 

symmetric classification from our procedure. Eventually, these clusters will be validated with geotech-

nical site-response parameters, based on which we assert that the spectral clustering procedure yields 

physically meaningful site classification. The following sections presents the practicality of our clusters as 

site classes.  

Table 5-1: Number of stations within each cluster and within-cluster sum of squares (WCSS) 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

No. of Sites 78 68 101 69 66 45 95 66 

WCSS (%) 12 12 13 10 11 12 19 12 
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5.7.1 Site amplification functions: Mean and variability 

It is customary to present site amplification functions for different site classes with respect to the refer-

ence site conditions. For example, in EC8 the reference site conditions are characterized as outcropping 

rock sites with 𝑉𝑆30 = 800m/s. Probabilistic seismic hazard assessment (PSHA) in a region and associated 

hazard estimates such as hazard curves and hazard maps are first produced for such reference site con-

ditions, and then adjusted to site-specific estimates using the amplification functions. Our first point of 

interest is then to identify reference site conditions derived from the site clusters. 

In this study, we select the reference site cluster as the one with a relatively low and flat mean ∆𝑆2𝑆𝑠 

vector. In the right panel of Figure 9, cluster 8 shows ∆𝑆2𝑆𝑠 ideal to be qualified as reference site condi-

tions, since it shows no selective amplification of any period ranges with respect to other sites in the da-

taset. Note that, until this point we set no a priori criterion on reference site geotechnical conditions (in 

terms of 𝑉𝑆30 or other parameters). Our selection of reference site cluster is solely based on its relatively 

flat empirical mean amplification function. In the left panel of Figure 5-10, we show the empirical site 

amplification functions of the other seven non-reference site conditions with respect to cluster 8. The 

amplification functions in this plot are estimated from following steps:  

1. The normalized ∆𝑆2𝑆𝑠 of Figure 9 are scaled back to their original random-effect estimates by multi-

plying them with period-dependent between-site standard deviations φS2S of Figure 5-7. 

2. The de-normalized ∆𝑆2𝑆𝑠 vectors are scaled with respect to the reference cluster 8, so that the refer-

ence cluster 8 ∆𝑆2𝑆𝑠 vector is now a null vector. 

3. Since our ∆𝑆2𝑆𝑠 are additive random-effects of a mixed-effects GMPE in natural-log scale, the multi-

plicative amplification functions would be 𝐴𝐹 = 𝑒∆𝑆2𝑆𝑠. In this step, the amplification function of ref-

erence cluster 8 becomes a unit vector. For example, if the GMPE predicted 𝑃𝑆𝐴(1s) for the reference 

cluster 8 is 0.1g, and the (multiplicative) amplification factors for cluster 1 through 7 are [0.75, 1.25, 

1.25, 1.75, 3.00, 4.50, 2.00], the scaled ground-motions would be [0.08𝑔, 0.13𝑔, 0.13𝑔, 0.18𝑔, 0.3𝑔, 

0.45𝑔, 0.2𝑔] respectively. 

4. The right panel of Figure 5-10 compares the within-cluster site-to-site variability (𝜙𝑆2𝑆,𝑐) against the 

pre-clustered between-site (𝜙𝑆2𝑆) variability of the dataset (for our GMPE). The average reduction in 

site-to-site variability is approximately 50% with respect to the dataset value, while the reduction for 

a few clusters in at longer period ranges is larger (up to 70%). Such reduction in variability has a 

dramatic effect on total standard deviation (𝜎 in right panel of Figure 5-7). 

Figure 5-9: 2D visualization of k-mean clusters and the k-means amplification functions: (Left panel) Visualization 

of 𝒌-mean clustering, where each polygon is a cluster and each point within is a site (∆𝑺𝟐𝑺𝒔). Dim1 and Dim2 are 

variables derived from a Principal Component Analysis of ∆𝑺𝟐𝑺𝒔 vectors, which together describe 89.9% of data 

variability. (Right panel) Normalized ∆𝑺𝟐𝑺𝒔 of 588 sites in thin lines, and cluster-specific normalized mean ∆𝑺𝟐𝑺𝒔 

overlaid as thick lines – color coded according to cluster number. 
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Looking at the amplification functions in Figure 5-10, it is rather clear that the spectral clustering tech-

nique distinguishes sites based on their peak amplification period (𝑇𝐺 , analogue to H/V spectral ratio 

based predominant period of Zhao et al., 2006) and amplification level at 𝑇𝐺 . However, the within-cluster 

between-site variability 𝜙𝑆2𝑆,𝑐, also reaches its maximum value around its 𝑇𝐺 , indicating a large variability 

in its amplification. For example, cluster 1 shows a peak amplification at its 𝑇𝐺 = 0.08s (𝐴𝐹 = 2.8 in left 

panel of Figure 5-10), which also coincides with the period where its 𝜙𝑆2𝑆,1 is highest (0.45 in right panel 

of Figure 5-10). Such correspondence between peak amplification and peak variability through 𝑇𝐺 was 

reported in Zhao et al. (2006) for K-Net sites, and for EC8 classification in Cauzzi and Faccioli (2017). The 

cause for such a parallel is the primary limitation of discrete site classification, where sites with similar 

𝑇𝐺 but very different AF at 𝑇𝐺 are grouped together, resulting in a large site-to-site variability of amplifi-

cation. In addition, a generic high variability is observed at 𝑇 = 0.1s, which can be partially attributed to 

the highly non-linear transformation from Fourier spectra (frequency domain) to response spectra via 

convolution with a single-degree-freedom oscillator transfer function (discussed in Stafford et al., 2017, 

and Kotha et al., 2017b). Decreasing 𝜙𝑆2𝑆 trend is observed on either sides of 𝑇 = 0.1s, but this can be 

resolved only in Fourier domain, and not with the response spectra used in this study. 

5.7.2 Site-response proxies 

Using the empirical site amplification functions and cluster-specific 𝜙𝑆2𝑆, the GMPE can be adjusted to 

predict site class dependent ground-motions in hazard assessment; the missing link is sufficient and effi-

cient site response proxies to classify new sites in a PSHA. Dawood et al. (2016) provided the time-aver-

aged shear wave velocity at depth 𝑧 (m), 𝑉𝑠,𝑧 for 𝑧 = 0, 5, 10, 20, 30, 50, 100, borehole depth, and 𝐻800–

depth to seismic bedrock with 𝑉𝑆 = 800m/s. In this study, we attempted characterizing the cluster ampli-

fication functions of Figure 5-10 using only the geotechnical site-response parameters available in the 

dataset. In process of developing a new site classification scheme, we first evaluated our eight site clusters 

against the site classification scheme defined in Zhao et al. (2006), Association (1980), and Association 

(1990). For a similar evaluation against the Eurocode 8 site classification, we refer the readers to Kotha 

et al., (2018). 

5.7.2.1 Predominant period of the soil column: 𝑇𝐺 

Current EC8 categorizes five site classes using only 𝑉𝑆30 ranges, while Zhao et al. (2006) classified the K-

Net stations into four sites classes (SC1 through SC4) based on their H/V spectral ratios. Each of these 4 

classes is attributed a 𝑉𝑆30 range, a characteristic range of predominant period 𝑇𝐺 , and corresponding 

NEHRP class (Council, 2000). For reference, we provide the site classification scheme of Zhao et al. (2006) 

in Table 5-2. In this study, we assume that the period at which the cluster amplification functions attain 

their peak values in Figure 5-10, are analogues to H/V spectral ratio based 𝑇𝐺 of Zhao et al. (2006). Under 

Figure 5-10: Site amplification functions and within-cluster site-to-site variability. (Left panel) Site amplification 

functions of each cluster scaled with respect to the reference site conditions: cluster 8. (Right panel) The within-

cluster site-to-site variability 𝝓𝑺𝟐𝑺  of the 8 clusters compared to the overall GMPE 𝝓𝑺𝟐𝑺  prior to clustering (red 

curve). Note that the 𝝓𝑺𝟐𝑺 (red curve) is the same as the 𝝓𝑺𝟐𝑺 (yellow curve) in Figure 5-7. 
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this assumption, we categorize our eight site clusters based on their inferred 𝑇𝐺 (Figure 5-10) in the right 

most column of Table 5-2. 

 

From this comparison of site classification criteria: 

1. Cluster 8 does not fit in any of the Zhao et al. (2006) site classes because it showed no clear 𝑇𝐺 , which 

is also the reason it was chosen as a reference site cluster. 

2. Cluster 7 and 6 show clear peak amplification, and are in accordance with Zhao et al. (2006) proposed 

classes SC2 and SC3 respectively. 

3. Cluster 4 and 5 show a broad amplification plateau beyond 𝑇 > 0.6s, hence grouped into SC4. How-

ever, the amplification levels for these two clusters are significantly different, where also the within-

cluster variability 𝜙𝑆2𝑆,𝑐 is relatively very small (~0.2 for 𝑇 > 0.6s in Figure 5-10). Based on their low 

within-cluster variabilities, we chose not merge cluster 4 and 5 into a single cluster. 

4. Clusters 1, 2 and 3, all show a clearly defined peak amplification at 𝑇𝐺 < 0.2s. Figure 5-10 suggests 

the mean amplification levels for these clusters to be very different in the vicinity of 𝑇𝐺 . Reducing to 

sub-optimal number of clusters (in 𝑘-mean clustering) does not merge these clusters, suggesting the 

need to divide SC1 into three sub-class: C1, C2, and C3 – against merging them into SC1. 

5.7.2.2 Time averaged shear-wave velocity of soil column: 𝑉𝑠10, 𝑉𝑠30 𝑎𝑛𝑑 𝐻800 

Table 5-2 shows the compatibility of our clusters with Zhao et al. (2006) classification based on their 𝑇𝐺 , 

while Figure 5-11 categorizes them further based on their distribution of 𝐻800, 𝑉𝑆10 and 𝑉𝑆30. Note that 

the clusters in Figure 5-11 are rearranged based on their median 𝐻800 (depth to engineering bedrock with 

𝑉𝑆 = 800m/s). For instance, clusters 4, 5, 6 and 7 in the top row have the deepest soil column with median 

𝐻800 > 50m. Clusters 1, 2, 3 and 8 on the other hand are characterized by shallow soil profiles with me-

dian 𝐻800 around 10m. For visual clarity, both panels provide guiding lines at 𝐻800 = 10, 30, and 100m. 

In the left panel, the x-axis marks the bounding 𝑉𝑆30 values of Zhao et al. (2006) site classification at 200, 

300 and 600m/s, while in the right panel, the x-axis is divided at 𝑉𝑆10 = 200, 300 and 400m/s. We used 

Table 5-2 and Figure 5-11 to evaluate the physical meaning of our clusters, and also to define new site 

classes in Table 5-3. 

The colored contours of Figure 5-11 represent the 2D kernel density (bivariate normal distribution) of 

𝑉S30–𝐻800 and 𝑉S10–𝐻800 of each cluster. The brightly colored regions bound the high density of points 

(sites), which diffuses into outer counters covering low density regions. We use the high density contours 

(green patches in Figure 5-11) of the kernel density plot to identify representative ranges of 𝑉𝑆30, 𝑉S10, 

and 𝐻800 combination that characterize our new site classification scheme in Table 5-3. In addition, we 

provided a revision of 𝑇𝐺 ranges inferred from the peaks in amplification functions of Figure 5-10. 

 Table 5-2: Site classification based on Zhao et al. (2006). 

Zhao et al. (2016) 𝑻𝑮 (s) 𝑽𝑺𝟑𝟎 (m/s) NEHRP Clusters (this study) 

SC1 𝑇𝐺  < 0.2s 𝑉𝑆30 > 600m/s A + B C1 + C2 + C3 

SC2 0.2s ≤ 𝑇𝐺  < 0.4s 300m/s ≤ 𝑉𝑆30 < 600m/s C C7 

SC3 0.4s ≤ 𝑇𝐺  < 0.6s 200m/s ≤ 𝑉𝑆30 < 300m/s D C6 

SC4 0.6s ≤ 𝑇𝐺  𝑉𝑆30 < 200m/s E + F C4 + C5 
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The purpose of this exercise was to identify a combination of geotechnical parameters to classify the sites 

which were otherwise grouped into the same site classes of Zhao et al. (2006). From Figure 5-11 and Table 

5-3, we make the following observations:  

 Cluster 4 and 5 are constituted of KiK-net sites with 300m/s < 𝑉𝑆30 < 600m/s and 150m/s < 𝑉𝑆10 < 

400m/s, showing a broad amplification plateau, increasing towards longer periods. These two clus-

ters can be set apart from other clusters based on their large 𝑇𝐺 . Between cluster 4 and 5, the distinc-

tion can be made based on their 𝑉𝑆10, 𝑉𝑆30 and 𝐻800. Note that these clusters resembled SC4 of Zhao 

et al. (2006) based on their 𝑇𝐺 (> 0.6s), and were expected to also show a 𝑉𝑆30 < 200m/s. However, 

our data consists of very few KiK-net sites with 𝑉𝑆30 < 200m/s. 

 Cluster 6 and 7 can be distinguished from other clusters based on their well-defined 𝑇𝐺 ranges. Clus-

ter 6 shows a much higher amplification with respect to cluster 5, despite similar 𝐻800, due to its 

systematically lower 𝑉𝑆30 and 𝑉𝑆10 ranges. Similarly, cluster 7 despite having the same 𝐻800 range as 

cluster 4, shows much higher amplification at a lower 𝑇𝐺 due to its softer soil profile – characterized 

by lower 𝑉𝑆30 and 𝑉𝑆10 ranges. Interestingly, cluster 6 and 7 are hard to be distinguished based on 

their 𝑉𝑆30  ranges alone. In which case, 𝑇𝐺 , 𝑉𝑆10  and 𝐻800  as site-response proxies perform signifi-

cantly better, proving a case against 𝑉𝑆30 as a standalone proxy. 

 Cluster 8 serves as our reference site cluster, with the highest values of 𝑉𝑆30 and 𝑉𝑆10. Sites in this 

cluster showed no clear peak amplification (left panel of Figure 5-10), hence could not be compared 

with Zhao et al. (2006) classes. 

Figure 5-11: Evaluation of site response proxies in characterizing site clusters: In the left panel is the combination 

of 𝑯𝟖𝟎𝟎 and 𝑽𝑺𝟑𝟎, and in the right panel, 𝑯𝟖𝟎𝟎 and 𝑽𝑺𝟏𝟎. The contour colors represent the 2D Kernel (bivariate nor-

mal) distribution of geotechnical parameters of sites within each cluster. Warmer colors (Red - Green) imply high 

density, colder colors (Blue – Purple) mark low density boundaries. 
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 Cluster 1 from 2 and 3, which were nested in SC1 of Zhao et al. (2006), can be resolved based on their 

𝑇𝐺 values and 𝐻800 ranges. Cluster 1 with 𝑇𝐺 < 0.1s (left panel of Figure 5-10), is the only one show-

ing a strong amplification at high frequency and de-amplification towards longer periods, with re-

spect to reference site cluster 8. Cluster 1 and 8 can be distinguished based on their 𝐻800 and 𝑉𝑆10 

ranges, but not 𝑉𝑆30 – suggesting 𝑉𝑆10 as a better proxy of high frequency site-response. 

 Cluster 2 and 3 are separated from the closest resembling cluster 1, based on their longer 𝑇𝐺 and 

larger H800 values. However, these two clusters do not appear to differ in their 𝑉𝑆10–𝑉𝑆30–𝐻800 

ranges, as much as they do from other clusters. Given their identical 𝑇𝐺 ranges, but radically different 

amplification levels, we suspect these clusters to differ in the velocity contrast of their soil profiles. A 

higher impedance contrast results in significantly higher amplification at 𝑇𝐺 (see Figure 5-10), which 

appears to be the case considering the relatively lower 𝑉𝑆30 and 𝑉𝑆10 ranges of cluster 2 against clus-

ter 3. Shear-wave velocity profiles, and additional geotechnical parameters might help in better char-

acterizing the differences among cluster 2 and 3, and cluster 1 as well. 

5.8 Discussion and conclusions 
In this study we introduce an approach to site classification derived from cluster analysis of empirical site 

amplification functions. The resulting site classification is aimed to be simple, robust, and data-driven 

with minimal a priori constrains in terms of relevant site-response parameters. The fundamental require-

ment for such classification was to derive statistically well-constrained empirical site adjustment func-

tions (∆𝑆2𝑆𝑠 vectors). As a first step, we selected a rich dataset featuring several well-characterized sites 

recording many earthquakes in a region; the KiK-net dataset by Dawood et al. (2016). The next step was 

to fit a mixed-effects GMPE, whose site-specific random-effects (𝛿𝑆2𝑆𝑠) for periods 𝑇 = 0.01s–2s consti-

tute the ∆𝑆2𝑆𝑠 vectors. Given the critical importance of GMPE in our approach, it was necessary that its 

magnitude and distance scaling fixed-effects components are calibrated very well for a wide magnitude 

range 3.4 ≤ 𝑀𝑤 ≤ 7.3, and large distance range 0 ≤ 𝑅𝐽𝐵 < 600km. It IS necessary for a variety of reasons: 

1. We need as many records as possible for each site, so that the estimated ∆𝑆2𝑆𝑠 vectors have a low 

estimation errors. 

2. It is important to include a large number of small events and long distance recordings, as opposed to 

the more important (in a hazard perspective) large magnitudes and short distances, to ensure that 

the ∆𝑆2𝑆𝑠 vectors capture predominantly linear site response – and not biased by nonlinear response 

on very soft soils. 

3. Given that large magnitude events at near source distances may trigger nonlinear site response, and 

that these scenarios are also subject to other phenomena such as: saturation of ground-motions be-

yond 𝑀 > 6.5 and at near-source distances 𝑅𝐽𝐵 < 20km, we were required to model carefully the 

Table 5-3: Site cluster characterization based on 𝑽𝑺𝟏𝟎-𝑽𝑺𝟑𝟎-𝑯𝟖𝟎𝟎 ranges. 

Site cluster 𝑻𝑮 (s) 𝑽𝑺𝟑𝟎 (m/s) 𝑽𝑺𝟏𝟎 (m/s) 𝑯𝟖𝟎𝟎 (m) 

C5 
> 1s 

300 – 450m/s 200 – 300m/s > 50m 

C4 400 – 600m/s 300 – 400m/s 30 – 100m 

C6 0.4 – 1s 200 – 300m/s < 200m/s > 50m 

C7 0.2 – 0.4s 200 – 450m/s 200 – 400/s 30 – 100m 

C3 
0.1 – 0.2s 

450 – 600m/s 200 – 400m/s 
10 – 30m 

C2 300 – 600m/s 150 – 350m/s 

C1 < 0.1s 450 – 600 m/s 200 – 600m/s 5 – 20m 

C8 - > 600m/s > 600m/s < 5m 
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near-source magnitude and distance scaling. In doing so, we used a period-dependent effective-depth, 

or the ℎ-parameter, proposed by Yenier and Atkinson (2015). For far-source distances, we could cap-

ture the apparent anelastic attenuation phenomenon and, what appears to be a combination of post-

critical reflections at crustal discontinuities (e.g. Moho reflections) and transition from body waves at 

near-source to surface waves at far-source distances from the event. We observed that our distance 

scaling works reasonably well for the large distance range we chose. 

4. Finally, we observed that the 𝛿𝑆2𝑆𝑠 show a weak correlation relation with 𝑉𝑆30. For this dataset, the 

site-response: 1) is not efficiently captured by 𝑉𝑆30 particularly at short – moderate periods, and 2) 

highly variable even for sites with identical 𝑉𝑆30. We therefore attempted our alternative approach to 

classifying sites based on 𝑉𝑆30. 

Our need to derive a GMPE is to demonstrate that the magnitude, and distance scaling of ground-motions 

(here 𝑃𝑆𝐴) are strongly period dependent. Following our exercise, we suggest caution against deriving 

empirical site amplification functions from response spectra normalized by Peak Ground Acceleration 

(PGA). The ∆𝑆2𝑆𝑠 vectors on the other hand, are site-specific terms filtered for event and path effects with 

a robust GMPE median. In this sense, we consider ∆𝑆2𝑆𝑠 vectors as more suitable in developing site clas-

sification schemes and amplification functions. We chose the 𝑘-mean clustering technique to reduce the 

higher dimensional ∆𝑆2𝑆𝑠 vectors of 588 sites into 8 clusters (of sites) with similar linear soil response 

under seismic action (in terms of their ∆𝑆2𝑆𝑠 vectors). These 8 clusters serve as the site classes in our new 

classification scheme. 

Site amplification functions are usually presented as scaling functions with respect to the reference site 

conditions. Traditionally, outcropping rock sites with 𝑉𝑆30 > 800m/s are considered as a reference sites. 

Hazard estimates are made on reference site conditions and then scaled using the soil-site amplification 

functions. The ∆𝑆2𝑆𝑠 vectors do not presume any reference site conditions, but instead are additive ran-

dom-effects (scalar adjustments) to the GMPE fixed-effects median. Technically, the ∆𝑆2𝑆𝑠  vectors are 

site-specific deviations from a hypothetical reference site, whose response is an average of all sites in the 

dataset, i.e. a site with null ∆𝑆2𝑆𝑠 vector. However, for engineering purposes, it is necessary to character-

ize real reference site conditions. We therefore select the cluster of sites whose mean ∆𝑆2𝑆𝑠 vector is low 

and flat. Meaning, sites in this cluster show a systematic de-amplification over the entire period range, 

with respect to other sites in the dataset. This unique cluster (cluster 8) represents the reference site 

conditions in our approach. Essentially, we identified a reference site cluster with no amplification, and 

seven other clusters with unique non-zero site amplification functions. Additional benefit of clustering 

technique is seen as the significantly smaller within-cluster site-to-site variability, which is on an average 

~50% smaller than the pre-clustered, overall site-to-site response variability of the dataset. This in our 

opinion is a significant improvement in the context of seismic hazard assessment. 

For site amplification functions to be applicable at new sites, we need to develop site-response proxies 

based on which the new sites can be classified. From this point of view, we are limited by the available 

geotechnical information at the sites. Among the most prevalently used site parameters in the site-re-

sponse characterization are the predominant period (𝑇𝐺), time-averaged shear-wave velocity up to 10m 

(𝑉𝑆10) and 30m (𝑉𝑆30), and the depth to engineering bedrock with shear-wave velocity 𝑉𝑆 = 800m/s 

(𝐻800). The inferences from this part of the study are enumerated below: 

1. Multiple clusters show significantly different site amplifications but similar 𝑉𝑆30 ranges, suggesting 

that 𝑉𝑆30 is insufficient as a standalone proxy in site-response classification. 

2. Classification based on 𝑇𝐺 works well in classifying sites at first order. However, it is insufficient in 

distinguishing sites with identical ranges of 𝑇𝐺 , but different amplification levels at 𝑇𝐺 . 

3. For site clusters with 𝐻800 > 30m and 𝑇𝐺 > 0.2s, both 𝑉𝑆30 and 𝑉𝑆10 perform well in distinguishing 

the four clusters with moderate – long period amplifications. Clusters (5 and 6) with deepest soil pro-

files (𝐻800 > 50m) can be distinguished with their 𝑇𝐺 , 𝑉𝑆10 and 𝑉𝑆30, where lower soil stiffness (of 
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cluster 5) translated into lower 𝑇𝐺 and a much higher amplification. Similar is the case for clusters (4 

and 7) with shallower soil profiles (30m < 𝐻800 < 100m). 

4. For sites with 10m < 𝐻800 < 30m and 0.1s < 𝑇𝐺 < 0.2s, we identified two clusters with very similar 

𝑉𝑆30 and 𝑉𝑆10 distribution, but significantly different amplification levels. These clusters cannot be dis-

tinguished with the available geotechnical information. A detailed investigation of their shear-wave 

velocity profiles may help better distinction of these clusters. 

5. We identified two clusters with 𝑉𝑆30 > 600m/s that can be separated based on their 𝑇𝐺 , 𝑉𝑆10 and 𝐻800. 

Cluster (1) with lower 𝑉𝑆10 and a higher 𝐻800 shows a strong amplification at its 𝑇𝐺 < 0.1s, while the 

one with higher 𝑉𝑆10 and lower 𝐻800 shows a flat response (cluster 8). Evidently, 𝑉𝑆30 based classifi-

cation groups these two very different site types into a unique site class. In our opinion, such misclas-

sification leads to a significant bias and a large variability in response of the so-called reference site 

class (e.g. 𝑉𝑆30 > 800m/s in EC8 classification). We suggest using at least the 𝑉𝑆10, or even better - 𝑉𝑆 

profiles, to characterize reference site conditions. 

Our approach is beneficial in identifying hidden site classes, resolving site-to-site variability, and devel-

oping efficient site classes from a rich dataset. It can be extended to the point where the clusters can be 

hierarchically divided or merged depending on the available site parametrization in a region. However, 

we note that site types, sparsely represented or not represented at all in the dataset, cannot be identified 

with data-driven techniques as ours. A more flexible, predictive method is in development for application 

to pan-European dataset (Lanzano et al., 2017). The number of clusters, the mean and variability of em-

pirical site amplification functions, and even the relevant site-response proxies may depend on the spatial 

coverage of regional datasets. 
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Abstract 

Empirical correlations of horizontal peak spectral amplitudes (PSA) are modelled using the total-residu-

als obtained in a Ground-Motion Prediction Equation (GMPE) regression. Recent GMPEs moved towards 

partially non-ergodic region- and site-specific predictions, while the residual correlation models re-

mained largely ergodic. Using mixed-effects regression, we decompose the total-residuals of a pan-Euro-

pean GMPE into between-event, between-site, and event-and-site corrected residuals to investigate the 

ergodicity in empirical PSA correlations. We first observed that the between-event correlations are mag-

nitude dependent, partially due to the differences in source spectra, and influence of stress-drop param-

eter on small and large events. Next, removing the between-site residuals from within-event residuals 

yields the event-and-site corrected residuals which are found to be region dependent, possibly due to the 

regional differences in distance-decay of short period SAs. Using our site-corrected magnitude and region 

dependent correlations, and the between-site residuals as empirical site-specific ground-motion adjust-

ments, we compute partially non-ergodic conditional mean spectra at four well-recorded sites in Europe 

and Middle-Eastern regions. 

 

Keywords: Site-specific Ground-Motion Prediction Equations, Correlations, Conditional Spectra, Spectral 

Accelerations 
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6.1 Introduction 
Ground-Motion prediction equations (GMPE) describe the probabilistic distribution of the peak spectral 

amplitudes (PSA) of single degree of freedom oscillators with different periods (𝑇), as a function of event 

magnitude, distance to the source, and proxies for site effects (e.g., 𝑉𝑆30 defined as the shear-wave velocity 

averaged over the uppermost 30m of soil). At each spectral period, the standard deviation (𝜎) of the total-

residual (휀) i.e., distribution of observed minus predicted spectral values, is used to quantify the aleatory 

variability of the ground-motion. 

The total-residuals obtained from a Ground-Motion Prediction Equation (GMPE) regression can be used 

to derive empirical correlations of horizontal peak spectral amplitudes. These empirical correlation mod-

els are widely used in engineering applications, e.g. simulation of scenario response spectra (Baker and 

Cornell, 2006), vector-valued probabilistic seismic hazard assessment (VPSHA; Bazzurro and Cornell, 

2002), and conditional spectra (CS) for an effective selection of time histories matching a design scenario 

(Baker, 2011). For this purpose, several correlation models were developed using strong motion datasets 

from Europe-Middle East (e.g. Cimellaro, 2013; Akkar et al., 2014a), regional datasets (e.g. Jayaram et al., 

2011; Itoi and Takada, 2012), and global datasets (e.g. Baker and Cornell, 2006; Baker and Jayaram, 2008; 

Azarbakht et al., 2014; Abrahamson et al., 2014; Baker and Bradley, 2017). Based on the findings of Baker 

and Cornell (2005), the subsequent total-residual correlation models reported no significant magnitude 

and distance dependence. The underlying datasets then, such as NGA-West (Chiou et al., 2008), did not 

allow investigating such dependencies because of too few records to quantify any statistically significant 

dependencies. Azarbakht et al. (2014) reported a magnitude and distance dependence of correlations us-

ing NGA-West dataset, which was later refuted by Baker and Bradley (2017) on the basis of statistical 

inconsistencies and a lack of physical reasoning. Using the NGA-West2 dataset (Ancheta et al., 2014), 

Campbell and Bozorgnia (2014) observed a magnitude dependence of correlations, but only provided 

magnitude independent correlation models for events larger than 𝑀5. 

In the more recent strong motion datasets, such as RESORCE for pan-European region (Akkar et al., 

2014b) and the NGA-West2 global dataset the number of records from several active shallow crustal re-

gions increased considerably. Consequently, recent GMPEs tended towards resolving the regional er-

godicity in ground-motion prediction (e.g. Boore et al., 2014; Campbell and Bozorgnia, 2014; Kale et al., 

2015; Kotha et al., 2016; etc.). However, the empirical correlation models remained largely ergodic, in the 

sense that, the magnitude, distance, region, and site dependence of PSA residual correlations was not in-

vestigated. The improvement in the data availability motivated us to investigate and quantify such de-

pendencies of correlation models, thus moving towards partially non-ergodic correlation models along-

side the partially non-ergodic GMPEs. 

This study describes the development of new site-corrected magnitude and region dependent correlation 

models corrected for site-to-site variability. We first explain the need to decompose the total-residuals 

into between-event, between-site, and event-and-site corrected residuals, in order to investigate the 

event, site and regional ergodicities respectively. Based on our investigation with the RESORCE dataset, 

supported by statistical checks and physical reasoning, we propose new partially non-ergodic horizontal 

PSA correlation models. Additionally, we demonstrate an application of our correlation models in compu-

tation of partially non-ergodic conditional spectra at four well-recorded sites in the pan-European region. 

6.2 A new method to compute residual correlations taking into ac-
count repeatable site effects 

Using the Abrahamson and Youngs (1992) mixed-effects algorithm, the record-specific total-residuals in 

Eq.  1 (휀) can be decomposed as in Eq.  2 into between-event (𝛿𝐵𝑒) and within-event (𝛿𝑊𝑒𝑠) components 

(Al-Atik et al., 2010):  

log(𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) = log(𝑌𝑚𝑒𝑑𝑖𝑎𝑛) +  휀 (1) 
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 휀  = 𝛿𝐵𝑒 + 𝛿𝑊𝑒𝑠 (2) 

Since the between-event and within-event residuals follow mutually independent normal distributions 

i.e., 𝛿𝐵𝑒 = Ɲ(0, 𝜏
2) and 𝛿𝑊𝑒𝑠 = Ɲ(0,𝜙

2), the respective correlation models computed independently can 

be combined to estimate the total-residual correlation model using Eq.  (3), where 𝜌(𝑇1, 𝑇2) is the corre-

lation coefficient for residuals at two response spectral periods (𝑇1, 𝑇2); 𝜙, 𝜏 and 𝜎 are the period depend-

ent within-event, between-event, and total-residual standard deviations respectively: 

𝜌(𝑇1, 𝑇2)𝑡𝑜𝑡𝑎𝑙 =
𝜌𝑤𝑖𝑡ℎ𝑖𝑛−𝑒𝑣𝑒𝑛𝑡  𝜙(𝑇1) 𝜙(𝑇2) + 𝜌𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑒𝑣𝑒𝑛𝑡  𝜏(𝑇1) 𝜏(𝑇2)

𝜎(𝑇1)𝜎(𝑇2)
 (3) 

The within-event residuals account for path and site variability, and its variance (𝜙2) is generally larger 

than the between-event variance (𝜏2). Consequently, when the total-residual correlations are computed 

using Eq.  (3), the contribution of the between-event correlations is often negligible, resulting in the usu-

ally observed magnitude-independence of the total-residual correlations (e.g. Baker and Cornell, 2005). 

To overcome this limitation, we treat the repeatable site effects as empirical site-specific adjustments to 

the median of GMPE, rather than as a component of the aleatory within-event variability (e.g. Rodriguez-

Marek et al., 2013). The computation of repeatable site effects is nowadays feasible due to the increase of 

data at individual sites. We decompose the within-event residuals into between-site residuals (𝛿𝑆2𝑆𝑠) and 

event-and-site corrected residuals (𝛿𝑊𝑆𝑒𝑠 in Eq.  4): 

𝛿𝑊𝑒𝑠  = 𝛿𝑆2𝑆𝑠 + 𝛿𝑊𝑆𝑒𝑠 (4) 

𝛿𝑆2𝑆𝑠 can be estimated in a post-processing step of GMPE regression as a mean of within-event residuals 

at a site (Rodriguez-Marek et al., 2013), as random-intercept using Eq.  (12) of Kotha et al. (2017) or during 

the GMPE regression itself using a mixed-effects algorithm (e.g. lmer, Bates et al., 2014). In this study, we 

used the later approach to minimize any bias in the GMPE median and 𝛿𝑆2𝑆𝑠 estimates (further detail in 

Stafford, 2014, and Kotha et al., 2017). The standard deviation of between-site residuals is the site-to-site 

variability denoted by 𝜙𝑆2𝑆, and that of normally distributed event-and-site corrected residuals is 𝜙0, i.e. 

𝛿𝑆2𝑆 = Ɲ(0,𝜙𝑆2𝑆
2) and 𝛿𝑊𝑆𝑒𝑠 = Ɲ(0,𝜙0

2). The between-site variance (𝜙𝑆2𝑆
2), when deducted from the 

within-event variance (𝜙2), results in the event-and-site corrected variance (𝜙0
2). The event-and-site cor-

rected variance together with the between-event variance (𝜏2) yields the so-called single-site total vari-

ance (𝜎0
2). Replacing the within-event with event-and-site corrected correlations and standard devia-

tions, and total standard deviation (𝜎 in Eq.  3) with the site-corrected standard deviation (𝜎0), gives us 

the site-corrected residual correlations (Eq.  5). 

𝜌𝑠𝑖𝑡𝑒−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 (𝑇1, 𝑇2) =
𝜌𝑒𝑣𝑒𝑛𝑡−𝑠𝑖𝑡𝑒𝜙0(𝑇1)𝜙0(𝑇2) + 𝜌𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑒𝑣𝑒𝑛𝑡𝜏(𝑇1)𝜏(𝑇2)

𝜎0(𝑇1)𝜎0(𝑇2)
 (5) 

The benefits of site-corrected residual correlation formulation are manifold:  

1) The contribution of the between-event correlations to site-corrected residual correlation in Eq.  (5) 

becomes noticeable due to the comparable sizes of 𝜙0 and 𝜏. Meaning, if the magnitude dependence 

of between-event correlations is indeed significant, then it is less likely to be concealed in Eq.  (5) than 

in Eq.  (3). 

2) The within-event residuals and correlations maybe biased by a well-recorded site, which could bias 

the within-event correlations in favor of representing the correlations at the well-recorded site. By 

discounting the between-site residuals, the resulting event-and-site corrected residuals (𝛿𝑊𝑆𝑒𝑠) can 

be investigated for distance and region dependencies of their correlations. 

3) For any site with strong motion recordings, the corresponding period dependent between-site resid-

uals (𝛿𝑆2𝑆𝑠) can be estimated with respect to a chosen GMPE (e.g. Rodriguez-Marek et al., 2013). 

These residuals can be used as empirical site-specific adjustment factors to scale the GMPE predicted 

spectral values (Kotha et al., 2017). Since 𝛿𝑆2𝑆𝑠 is estimated using a small sample of within-event re-
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siduals, an appropriate epistemic uncertainty in terms of estimation error of 𝛿𝑆2𝑆𝑠 needs to be con-

sidered. For sites with no strong motion recordings, the 𝛿𝑆2𝑆𝑠 can be assumed to be zero with a stand-

ard error equal to 𝜙𝑆2𝑆 (Abrahamson and Hollenback, 2012). 

For the between-event and event-and-site corrected residuals, we estimate the Pearson product-moment 

correlation coefficients using Eq.  (6), where 𝑋 and 𝑌 are random variables (residuals in this context) at 

period 𝑇1 and 𝑇2 respectively: 

𝜌𝑋,𝑌 =
𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋 ∙ 𝜎𝑌
 (6) 

Since the residuals are sampled from a normal distribution, the standard-error on the correlation esti-

mates can be approximated using Eq.  (7) (Hotelling, 1953), 𝑛 being the sample size. Note that according 

to Eq.  (7), the standard error in the point estimate of correlation is larger for smaller 𝜌𝑋,𝑌 values (Baker 

and Bradley, 2016): 

𝑆𝐸(𝜌𝑋,𝑌) =
(1 − 𝜌𝑋,𝑌

2)

√𝑛 − 1
 (7) 

6.3 Datasets 

6.3.1 NGA-West2 dataset 

The NGA-West2 project dataset includes ground-motion data and metadata from earthquakes recorded 

worldwide, in particular from California, Japan and Taiwan. The dataset includes more than 20000 re-

cordings from about 600 shallow crustal earthquakes in the magnitude range 3 to 7.9. NGA-West 2 ex-

tends the earlier NGA-West dataset (Chiou et al., 2008) by adding several moderate-to-large earthquakes 

between 2003 and 2011. A large number of small-to-moderate earthquakes occurring in California were 

included as well. NGA-West2 dataset based GMPEs superseded those previously derived from NGA-West. 

In the following sections, we consider an NGA-West and an NGA-West2 correlation model derived for 

RotD50 component of horizontal peak spectral accelerations, Baker and Jayaram (2008) and Abrahamson 

et al. (2014) respectively, to investigate differences between correlation models. 

6.3.2 RESORCE dataset 

The RESORCE project dataset (Akkar et al., 2014b) includes about 6000 recordings from 1814 earth-

quakes in the magnitude range from 3 to 7.6 that occurred in Europe and Middle-Eastern regions. 

RESORCE expands the earlier European strong motion data set ISESD (Ambraseys et al., 2004) including 

the outcomes of several national strong motion projects in Europe, such as ITACA in Italy (Luzi et al., 

2008), HEAD in Greece (Theodulidis et al., 2004), and TSNMP in Turkey (Akkar et al., 2010). The dataset 

was used to derive a set of GMPEs (Douglas et al., 2014) following both parametric and data-driven ap-

proaches. In addition a correlation model based on RESORCE was provided by Akkar et al. (2014a), which 

superseded models derived from ISESD, e.g. Cimellaro (2013). 

The Bindi et al. (2014) GMPE based on RESORCE dataset is derived for geometric mean (GM) of 5% 

damped horizontal peak spectral acceleration (PSA) at 17 spectral periods from PGA to 4s, using strong 

motion data with 𝑀𝑤 ≥ 4, focal depth ≤ 35km, and 𝑅𝐽𝐵 ≤ 300km. In the published version of the GMPE, 

the total-residuals were split into two components: between-event and within-event residuals as in Eq.  

(2). In this study however, our aim is to investigate site-corrected correlation models, where the within-

event correlations are replaced with event-and-site corrected correlations for reasons listed previously. 

For this purpose, using a non-linear mixed effects regression algorithm (NLMER; Bates et al., 2015) we 

split the Bindi et al. (2014) within-event residuals into between-site and event-and-site corrected residu-

als as in Eq.  (4). Figure 6-1 compares standard deviations of the resulting residual distributions: within-

event (𝜙) and between-event (𝜏) from Bindi et al. (2014), between-site (𝜙𝑆2𝑆) and event-and-site cor-

rected (𝜙0) from splitting the within-event residuals. Notice that 𝜙0 is comparable in size to 𝜏, while 𝜙 is 
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significantly larger. The relatively stronger influence of between-event correlations on site-corrected re-

sidual correlations motivates us to investigate their magnitude dependence. 

 

6.4 Dataset dependence of total-residual correlations 
Before proceeding to investigating non-ergodicity of correlation models, we first examine the dependence 

of correlation models on the dataset. We used the peer-reviewed models of Abrahamson et al. (2014) 

(ASK14) from NGA-West2, Baker and Jayaram (2008) from NGA-West, and Akkar et al. (2014a) (A14) 

from RESORCE datasets. We also included in the comparison a correlation model developed in this study 

using total-residuals from Bindi et al. (2014) (B14) GMPE. Figure 6-2 shows a comparison between the 4 

models: those derived from RESORCE in panel (a), and those derived from NGA-West and NGA-West2 

datasets in panel (b). In Figure 6-2, and in all subsequent correlation plots, the correlation values 𝜌(𝑇1, 𝑇2) 

are shown as a function of 𝑇2 for a set of fixed primary period 𝑇1. For all models, the correlation is equal 

to one when 𝑇1 = 𝑇2 and decreases as the separation between 𝑇1 and 𝑇2 increases. For visual clarity, we 

show the correlation curves only for three selected 𝑇1 values. In particular, we select the periods 𝑇1 =

0.02s, 0.5s, and 2s to discuss the correlation of short, moderate and long periods, respectively. 

At a first glance, Figure 6-2 suggests that the correlation models developed on the RESORCE dataset differ 

from the NGA-West and NGA-West2 models. Particularities of these differences and their possible physi-

cal reasons are as follows: 

• In Figure 6-2a, A14 and B14 models are in good agreement since they are derived over a similar rec-

ord selection from the same data set. The only observable differences are in the correlations between 

short period SAs and moderate – long period SAs. A major difference between the two models is that 

the underlying GMPE of A14 includes a non-linear site-response component, which predicts high fre-

quency SAs (for 𝑀 > 6) significantly different from the linear-only site-response component of the 

Bindi et al. (2014) GMPE (Douglas et al., 2014). 

• Figure 6-2b emphasizes the difference between ASK14 and BJ08 models derived from NGA-West2 

and NGA-West datasets respectively. Referring to the curves 𝑇1 = 0.02s and 𝑇1 = 0.5s, the correla-

tions between short and moderate period SAs appear to be similar among the two models. The long 

period SAs (𝑇1 = 2s) are less correlated to the moderate frequency SAs (e.g. 0.1s < 𝑇2 < 1s) in case of 

BJ08. A clear physical reason for such differences is difficult to assert, given that: (1) NGA-West2 is a 

substantial update of NGA-West from inclusion of several M3-M4 events from California, (2) Baker 

and Jayaram (2008) correlations shown here are from an analytical function, and (3) record selection 

Figure 6-1: Reduction of within-event standard devi-

ation (𝝓) to event-and-site corrected standard devia-

tion ( 𝝓𝒔𝒔 ) by removing between-site variability 

(𝝓𝑺𝟐𝑺 ), considering the RESORCE dataset. The be-

tween-event variability (𝝉) is shown as well. 
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and choice of functional form by Chiou and Youngs (2008) and Abrahamson et al. (2014) are not sim-

ilar. Similar comparison between the NGA-West based BJ08, and NGA-West2 based Baker and Bradley 

(2017) were recently reported, wherein the models were assessed to be identical for practical pur-

poses. 

• Comparing the models B14 and ASK14 across the datasets, pan-European RESORCE and global NGA-

West2 respectively, the only significant differences observed are the correlation between short and 

moderate periods with long period SAs. For instance, the RESORCE models show stronger correla-

tions between 𝑇1 = 0.5s and 𝑇2 = 0.2s. The evident reason being that the NGA-West2 dataset based 

GMPEs were derived over much larger magnitude and distance ranges, from events and sites across 

several regions (detail in the Datasets section). In comparison, the pan-European GMPEs considered 

only events larger than 𝑀4, from a dataset dominated by 𝑀5 to 𝑀6 events in Italy and Turkey. The 

diversity of NGA-West2 data exhibits higher record-to-record variability at short period SAs with re-

spect to the RESORCE dataset, thus the relatively lower correlations with moderate – long period SAs. 

It is important to note that the NGA-West2 GMPEs are derived on RotD50, while the RESORCE GMPEs are 

derived on Geometric Mean (GM) of horizontal SAs. Baker and Jayaram (2008) reported that even though 

the GMPE residual variances for different PSA component definitions are significantly different, the resid-

ual correlation models are not. Assuming the same and based on our observations, we then consider the 

correlation models to be dataset dependent or, more generally, region dependent. Given the recent shift 

towards partially non-ergodic regionalized GMPEs, we suggest the correlation models to be regionalized 

as well. Such working hypothesis and the physical reasoning, i.e. the magnitude and distance ranges, and 

regional diversity of the datasets, motivate us to inspect the various within-dataset dependencies of cor-

relation models. For this purpose, we choose the RESORCE dataset based Bindi et al. (2014) GMPE and its 

correlation model (B14) for further investigations in the following sections. 

 

6.5 Magnitude dependence of between-event correlations 
To investigate the magnitude dependence of between-event correlations, we divided the RESORCE events 

into small and large magnitude events. Baker and Cornell (2006) and Cimellaro (2013), in deriving their 

correlation models from NGA-West and European dataset ISESD respectively, assumed 𝑀5.5 as the lower 

magnitude limit for earthquakes of engineering relevance. In terms of ground-motion variability, Boore 

et al. (2014) chose 𝑀5.5 to separate small from moderate – large events for their heteroscedastic model 

Figure 6-2: Comparison between total-residual correlation models  for (a) Akkar et al. (2014) (A14) and Bindi et al. 

(2014) (B14) derived from RESORCE dataset (b) Abrahamson et al. (2014) (ASK14) and Baker and Jayaram (2008) 

(BJ08) derived from NGA-West2 and NGA-West datasets, respectively. 

(a) (b) 
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of between-event variability. On similar lines, we divide the 176 between-event residuals from Bindi et al. 

(2014) GMPE into 97 small events with 𝑀 < 5.5, and 79 large events with 𝑀 ≥ 5.5.  

The between-event correlation models computed using between-event residuals from 𝑀 < 5.5 and 𝑀 ≥

5.5 magnitude ranges (Figure 6-3a) show clear differences depending on 𝑇1 and 𝑇2. To check if the differ-

ences were not contingent of limited sample sizes, we use Eq.  (7) to compute the standard error on the 

correlation coefficients. For example, for 𝑀 < 5.5 when 𝑇1 = 0.5s and 𝑇2 = 0.1s 𝜌(𝑇1, 𝑇2) = 0.5, and for 

𝑀 ≥ 5.5 it is 0.81. Using Eq.  (7) the standard error on a correlation value 0.81 estimated using 79 data 

points is 0.04, while for the correlation value 0.5 obtained using 97 data points is 0.08. The small standard 

errors suggest the differences to be statistically significant. 

 

The magnitude dependence of between-event correlations, although statistically significant, can also be 

an artifact of the magnitude scaling component of the GMPE. For instance, the magnitude scaling could be 

biased by a well-sampled magnitude range resulting in systematically biased between-event residuals in 

other magnitude ranges. In RESORCE dataset, the most well-sampled magnitude range is between 𝑀5 and 

𝑀6. To check for any systematic biases in lower and higher magnitude ranges, in Figure 6-3b we plot the 

residuals against the event magnitude, along with the mean of residuals and standard error within ∆𝑀 =

0.5 bins. Figure 6-3b shows that the quadratic magnitude scaling of Bindi et al. (2014) GMPE does not 

introduce a statistically significant bias in any of the magnitude residual bins. We can assert that the mag-

nitude dependence of the (B14) between-event correlations is not an artifact of Bindi et al. (2014) GMPE 

magnitude scaling. 

A physical explanation for the magnitude dependence of between-event correlations can be obtained con-

sidering a standard omega-square source model by Brune (1970). For a given moment magnitude (seismic 

moment), increase in the static stress drop lowers the corner frequency (𝑓𝑐), and increases the amplitudes 

at frequencies higher than the 𝑓𝑐; while keeping the amplitudes at frequencies lower than 𝑓𝑐 unaffected. 

For illustration, we consider as primary frequency 𝑓𝑐 = 1/𝑇1 and secondary frequency 𝑓2 = 1/𝑇2. When 

(𝑓1, 𝑓2) < 𝑓𝑐 , neither 𝑓1  nor 𝑓2  is effected by the variability in stress drop, hence their correlations are 

strong. When (𝑓1, 𝑓2) > 𝑓𝑐, amplitudes at both 𝑓1 and 𝑓2 change monotonically with the static stress drop, 

hence the correlation of their amplitudes is strong as well. Based on this assertion, for large magnitude 

events with a low 𝑓𝑐, one would expect stronger correlations over a wide range of (𝑓1, 𝑓2) > 𝑓𝑐. In Figure 

6-3a, curves 𝑇1 = 0.02s and 0.5s capture this phenomenon as stronger and more gradually decreasing 

correlations in the range 0.01s < 𝑇2 < 0.5s for 𝑀 ≥ 5.5 events. On the other hand, for small magnitude 

Figure 6-3: Between-event correlations for 𝑴 < 𝟓.𝟓 events and 𝑴 ≥ 𝟓.𝟓 obtained in this study using (a) RESORCE 

dataset (b) Between-event residuals trend and bias within magnitude bins, color coded for the region of event. 

(a) (b) 
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events with a high 𝑓𝑐, stronger correlations are expected over a wide range of (𝑓1, 𝑓2) > 𝑓𝑐 . In Figure 6-3a, 

curves 𝑇1 = 0.5s and 2s capture this phenomenon as stronger correlations in the range 0.5s < 𝑇2 < 4s for 

𝑀 < 5.5 events.  

Magnitude dependence of ground-motion variability (as in Boore et al., 2014 and other NGA-West2 mod-

els) supports a higher variability of ground-motion among smaller earthquakes which tend to exhibit 

more variability than larger events, e.g. in terms of source depth, stress drop, etc. The large number of 

𝑀3-𝑀4 events in NGA-West2 dataset may be the probable cause behind their weaker correlations seen 

in Figure 6-2. In any case, the magnitude dependence of between-event correlations would not be notice-

able in the total-residual correlations for the reason that within-event correlations dominate Eq.  (3). In 

the following sections, we first demonstrate the benefit of replacing within-event correlations with event-

and-site corrected correlations, and then proceed to exploring regional dependence of correlations. 

6.6 Within-event and event-and-site corrected residuals 
Using datasets compiled from different regions (e.g. NGA-West2 and RESORCE), the GMPEs developed 

under ergodic assumption are likely to be biased by a few well-sampled regions, source – site paths, and 

local site conditions. For instance, if indeed there exist period dependent regional biases in within-event 

residuals, subsequent ergodic within-event correlation models would be biased as well. In the left panel 

of Figure 6-4, we show the region dependent distance trend of Bindi et al. (2014) within-event residuals. 

In the right panel of Figure 6-4, we show that event-and-site corrected residuals, resulting from removal 

of site-residuals (between-site terms) from within-event residuals, are unbiased at near source distances 

RJB<80km. At far source distances (RJB≥80km), the distance dependent trends persist despite filtering out 

the between-site residuals, possibly due to regional differences in distance scaling of high frequency SAs 

(Kotha et al., 2016). 

Figure 6-5 extends the investigation in Figure 6-4 by comparing the within-event and event-and-site cor-

rected correlations computed using 536 residuals from near source recordings (0 ≤ 𝑅𝐽𝐵 < 80km). In this 

distance range, the within-event residual correlations between short period SAs (𝑇1 = 0.02s) and the 

moderate – long period SAs (𝑇2 > 0.5s) are significantly weaker than the event-and-site corrected corre-

lations. In a similar exercise using K-NET and KiK-net strong motion data, Itoi and Takada (2012) ob-

served the contrary i.e., the within-event correlations are stronger than the event-and-site corrected cor-

relations. Itoi and Takada (2012) used strong motion data from 19 aftershocks (𝑀𝐽 > 5) following the 

2004 Niigata-ken Chuetsu earthquake, with peak horizontal acceleration less than 0.2𝑔 and hypocentral 

distances less than 100km. The stations selected by Itoi and Takada (2012) are located such that the 

source – site azimuth (path) is very similar for the 19 aftershocks. In such datasets, the observed within-

Figure 6-4: Distance dependence of within-event residuals and event-and-site corrected residuals for two spectral 

periods (0.02s, 2s). Colors indicate the regions: Italy (blue), Turkey (red). The solid lines represent the residual 

trend with Joyner-Boore distance (km). 
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event record-to-record variability is small due to similarity of propagation path and site response (from 

considering only recordings with PSA<0.2𝑔). This may explain why, in their study, removal of between-

site residuals renders the event-and-site corrected correlations weaker than the within-event correla-

tions. On the other hand, the RESORCE strong motion used in our study exhibits a much larger record-to-

record variability due to the diversity of propagation path and site conditions; consequently the within-

event correlations appear weaker than event-and-site corrected correlations (Figure 6-5). We infer from 

these two studies that, the differences between within-event and event-and-site corrected correlations 

depend on the initial strong motion data selection. Interestingly, we also noticed that the event-and-site 

corrected correlations by Itoi and Takada (2012) are remarkably close to the RESORCE based models of 

this study. 

Removal of the between-site residuals from the within-event residuals reduces the scatter of event-and-

site corrected residuals as seen in Figure 6-4. Figure 6-1 depicts the reduced scatter in terms of a smaller 

event-and-site corrected variability 𝜙0 compared to within-event variability 𝜙. The smaller variance and 

reduced regional (and site) bias suggest that the event-and-site corrected residuals are more suitable for 

developing non-ergodic correlation models in combination with our magnitude dependent between-

event correlations. 

6.7 Regional dependence of event-and-site corrected residuals 
Event-and-site corrected correlations can be analyzed for regional variations not accounted in the Bindi 

et al. (2014) GMPE. Of the 536 residuals in the near source distance range 0 ≤ 𝑅𝐽𝐵 < 80km, 217 are from 

Italy, 225 from Turkey, and 94 from other regions. The other 350 residuals from far source recordings 

(80 ≤ 𝑅𝐽𝐵 < 300km) are strongly imbalanced in terms of regional contributions: 295 from Turkey, 42 

from Italy, and 13 from other pan-European regions. In this study, we investigate region dependence of 

only the near source event-and-site corrected correlations. 

Two correlation models derived using residuals from Italy and Turkey separately, and one using near 

source residuals from all regions are compared in Figure 6-6. Correlations between moderate and long 

period SAs (𝑇 > 0.5s) for the two regions appear to be identical, while the short period SAs (𝑇 < 0.2s) in 

Italy are weakly correlated to moderate – long period SAs with respect to Turkey. For example, with 𝑇1 =

0.5s and 𝑇2 = 0.1s, 𝜌(𝑇1, 𝑇2) for Turkey is (0.7 ± 0.03) while for Italy it is (0.47 ± 0.05). The small stand-

ard errors imply the differences are not due to limited sample sizes, but due to possible regional differ-

ences in propagation paths. There could be two possible reasons for the regional differences: 

• In RESORCE, a large fraction of the Italian records (0 ≤ 𝑅𝐽𝐵 < 80km) originate from the Central Ap-

ennine region, and the L’Aquila sequence. Following the recent 2016 Central Italy sequence (Lanzano 

et al., 2016), the event-and-site corrected residual analysis of the strong motion data showed signifi-

cant differences in attenuation of high frequency ground-motions between North-East and South-

West regions around the Apennine range. Such local anisotropy of high frequency attenuation may 

increase the record-to-record variability of short period SAs (e.g. 𝑇 = 0.02s). The lower correlations 

between short and moderate – long period SAs in Italy could be a consequence of such local phenom-

enon. 

•  The focal mechanism of Italian earthquakes is predominantly Normal, while in Turkey it is Strike-

Slip. We observed a focal mechanism dependence of the correlations very similar to those in Figure 

6-6, i.e. better moderate and long period PSA correlations among Strike-Slip faulting (as with Turkey) 

compared to the Normal faulting (as with Italy). 

It is unclear whether the statistically significant regional differences in correlations are due to differences 

in the attenuation or due to the differences in source mechanism. Our observations however suggest that 

correlation models (as with the GMPEs) developed from a compendium dataset (global or pan-European) 

may not be reliably used across regions discounting the regional differences in predominant rupture 

mechanisms and high frequency ground-motion attenuation. Hence, we provided region-specific event-
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and-site corrected correlations for Italy, Turkey, and in addition, an ergodic region independent model 

from RESORCE dataset. 

 

 

 

 

6.8 Application: Partially non-ergodic Conditional Spectra 
Step-wise procedures to estimate conditional spectra (CS), VPSHA, time history selection, generation of 

synthetic time history are available in the peer-reviewed literature. In all these applications the residual 

correlation models are required. Our between-event and event-and-site corrected correlations are com-

bined using Eq.  (3) to obtain site-corrected magnitude- and region-dependent correlations. The site cor-

rections, i.e. the between-site residuals (𝛿𝑆2𝑆 in Eq.  4), can be used as site-specific adjustment factors to 

scale the GMPE predicted ground-motions to obtain a partially non-ergodic conditional mean spectra 

(CMS) and CS. 

Four sites with at least 10 recordings at all spectral periods from 0.02s to 4s are selected from RESORCE. 

Sites 1604 and 5401 in Figure 6-7 are from Turkey, with a measured 𝑉𝑆30 of 457 and 416m/s respectively. 

Sites AQV and GSA in  are from Italy with a measured 𝑉𝑆30 of 474 and 488m/s respectively. These empir-

ical site-specific adjustment factors (AF equal to 10𝛿𝑆2𝑆) scale the linear site-response prediction of Bindi 

et al. (2014) GMPE. For new sites with new strong motion data, the equations presented in Rodriguez-

Marek et al. (2013) can be used to estimate the 𝛿𝑆2𝑆𝑠.  

Figure 6-5: Comparison of within-event and event-and-

site corrected residual correlations at near source rec-

ords with 𝟎 ≤ 𝑹𝑱𝑩 < 𝟖𝟎km. 

Figure 6-6: Region dependence of event-and-site cor-

rected residual correlations in near source distance 

range of residuals 𝟎 ≤ 𝑹𝑱𝑩 < 𝟖𝟎km. 
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We use the correlation model based on Bindi et al. (2014) GMPE residuals, B14 (in Figure 6-3a), as the 

ergodic (magnitude and region independent) correlation model. The site-corrected magnitude and region 

dependent models presented in this study are the partially non-ergodic correlation models. For estima-

tion of CMS, we choose PSA at 𝑇1 = 0.5s as the primary intensity measure, on which the other secondary 

intensity measures are conditioned. In a strict sense, the design scenarios are site-specific and are identi-

fied via disaggregation of hazard at the site of interest (Bazzurro and Cornell, 1999). For a simple demon-

stration, we chose two design earthquakes characterized by (𝑀, 𝑅𝐽𝐵, 𝑉𝑆30, 𝜂), where 𝜂 indicates the num-

ber of standard deviations. As a small earthquake scenario, we chose a scenario with (𝑀, 𝑅𝐽𝐵, 𝑉𝑆30, 𝜂) = (5, 

20, 450, 1). As a large earthquake scenario, we chose (𝑀, 𝑅𝐽𝐵, 𝑉𝑆30, 𝜂) = (6, 40, 450, 1). In Figure 6-8, the 

ergodic CMS (identified with a solid black line) is common for all the four sites, irrespective of the region 

and site. The partially non-ergodic CMS (colored lines in Figure 6-8) are unique to each magnitude, region 

and site combination. For example, in Figure 6-8 the selective amplification of SA(0.1s) and de-amplifica-

tion at SA(0.2s) at site AQV is in accordance with its AF in Figure 6-7. Such behavior is observed across all 

sites in this example, suggesting the partially non-ergodic conditional mean spectrum as a better tool for 

site-specific hazard and risk assessment. 

6.9 Conclusions 
Correlations of horizontal peak spectral amplitudes (PSA) are widely used in calculating the conditional 

spectra, in vector-valued probabilistic seismic hazard assessment (PSHA), time history selection for dy-

namic analysis, etc. We first showed that empirical correlation models are dataset dependent, which can 

be attributed to the differences in magnitude range, and regional diversity of the strong motion dataset. 

For practical applications in pan-European region, we suggest using the correlation models developed in 

conjunction with the pan-European Ground-Motion Prediction Equations (GMPEs). 

Using the pan-European events in RESORCE dataset we observed a significant magnitude dependence of 

the between-event correlations. The magnitude dependence of between-event correlations is a product 

of differences in the source spectrum between large and small magnitude events, particularly in terms of 

stress-drop parameter and its influence on short and moderate period SAs. We provided between-event 

correlation models for small events (𝑀 < 5.5) and large events (𝑀 ≥ 5.5) separately.  

In case of RESORCE dataset and Bindi et al. (2014) GMPE, we observed a regional bias of within-event 

residuals with distance. Such biases in residuals may bias the subsequent residual correlation models. 

Removing the site-to-site variability, in terms of between-site residuals, from within-event residuals 

yields the event-and-site corrected residuals with reduced regional biases. We recommend replacing the 

Figure 6-7: Adjustment factor (𝟏𝟎𝜹𝑺𝟐𝑺 ) for four sites with 

𝑽𝑺𝟑𝟎 = 𝟒𝟓𝟎m/s and 10 records in RESORCE dataset. Sites 

1604 and 5401 are located in Turkey, and sites AQV and GSA 

in Italy. The adjustment factors at each spectral period scale 

the 𝑽𝑺𝟑𝟎 based linear ground-motion response predicted by 

the Bindi et al. (2014) GMPE to obtain a site-specific ground-

motion. The color ribbon indicates the uncertainty in the es-

timation of 𝜹𝑺𝟐𝑺 due to the limited number of records at a 

site. 
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potentially biased within-event correlations with event-and-site corrected correlations. In further analy-

sis, we observed that the near source event-and-site corrected residual correlations are region dependent. 

The near source records from Turkey show a stronger correlation between short and moderate period 

SAs compared to Italy. We offer two physical reasons for the region dependence: (1) the difference in 

attenuation of high frequency SAs between North-East and South-West of Apennine ranges, where most 

of the Italian data is concentrated, could result in higher variability of short period PSA residuals, and thus 

lower their correlation with moderate – long period SAs. (2) The regional differences could in fact be due 

to the differences in predominant focal mechanisms of Turkey and Italy; Strike-slip in Turkey, and Normal 

faulting in Italy. However, in this study, we hypothesize the regional differences to be a combination of 

both crustal effects and focal mechanisms. 

 

The magnitude dependent between-event correlations and region dependent event-and-site corrected 

correlations in combination yield the partially non-ergodic site-corrected correlation models. Using our 

partially non-ergodic correlations and the site-specific adjustment factors, we demonstrated the calcula-

tion of partially non-ergodic conditional mean spectra (CMS) at two sites from Italy, and two from Turkey 

with similar 𝑉𝑆30. The non-ergodic CMS better represents the linear site-specific response compared to 

the traditional ergodic CMS. 
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7  
Conclusions and Outlook 

7.1 Conclusions 
Goal of this study was to quantify and mitigate the prediction uncertainties of ground-motion models 

(Ground-Motion Predictive Equations (GMPEs)) and improve the reliability of Probabilistic Seismic Haz-

ard Assessments (PSHA) estimations. In process, we worked with global and regional ground-motion da-

tasets, developed statistical tools to quantify the various contributors to GMPE variances, and suggested 

methodological refinements to the development of region- and site-specific GMPEs for use in empirical 

site-specific PSHA. Chapter 1 provides an overview of the origin of GMPE uncertainties, their technical 

(statistical) definition, and steps to resolve them. Subsequent chapters constitute the series of steps in 

achieving the goal. 

Chapter 2 discusses the very fundamental GMPE uncertainty – the statistical uncertainty on regression 

fits. Since GMPEs are essentially regressed formulations of observed ground-motion scaling with event-

path-site parameters, their regression coefficients are well-constrained (or not) depending on the density 

of recorded ground-motion data in different ranges of event-path-site parameters. The asymptotic vari-

ance 𝜎𝜇
2, quantifying this uncertainty of regression fit, is large over poorly sampled event-path-site para-

metric ranges – making predictions for under-sampled scenarios unreliable. 

In this chapter, we developed a GMPE from the NGA-West2 dataset, for application in PSHA of non-cra-

tonic moderate seismicity regions (e.g. Germany). The high quality of event-path-site metadata in NGA-

West2 ensures negligible contributions to GMPE variances arising from incorrect metadata. However, ab-

sence of sufficient data from large earthquakes (𝑀𝑤 ≥ 7.5) and at short distances (𝑅𝐽𝐵  <  10km) results 

in large  𝜎𝜇 (prediction uncertainty) for such scenarios. For instance, for an 𝑀7.5 rupture occurring at 

25km from a site, 𝜎𝜇 = 0.25 implies the GMPE prediction of SA(2s) is uncertain by approximately 30%. 

For less frequent scenarios, the uncertainties are even larger. 

Our analysis corroborates the need to collect more data from near-source distances in the vicinity of active 

fault systems, so as to reduce the prediction uncertainty of GMPEs. Although not emphasized in this chap-

ter, I observe it is crucial to sample ground-motion data over a wide range of site parameters as well. 

Typical PSHA practice requires GMPEs to predict accurate ground-motions on generic rock sites (𝑉𝑆30 ≥

800m/s). But most ground-motion datasets, global and regional, lack sufficient data from such reference 

rock sites, which result in poorly constrained GMPEs and unreliable hazard estimates. 

Chapter 3 discusses the two contributors to GMPE aleatory variability 𝜎 – incorrect metadata and the 

ergodic assumption. The statistical uncertainty of regression fit, quantified in 𝜎𝜇, can be minimized by 

collecting more ground-motion data in a region, for an extended period of time. An alternative to temporal 

sampling of event-path-site parameters (in a region) is to aggregate spatially diverse samples from sev-

eral, tectonically similar, regions – the ergodic assumptions in GMPE development. Along with the ergodic 

assumptions come the issues of errors (and inhomogeneity) of event-path-site metadata and the ineffi-

ciency of parametrization. In this chapter, I worked on developing a regionalized GMPE for pan-European 

region, using only the data with reliably accurate metadata. 

Our first finding was that the incorrect event metadata of the many 𝑀𝑤 < 5 earthquakes from Italy and 

Turkey inflated the between-event variability τ by 30%. Discarding data from such event in the GMPE 

regressions reduces the total GMPE standard deviation 𝜎 by 10%, which has significant impact on PSHA 

at pan-European sites. In fact, these events were originally parametrized on a magnitude scale different 

from 𝑀𝑤; e.g. region-specific magnitude scales such 𝑀𝐿 ,𝑀𝑠, etc. Using region-specific empirical relation-
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ships between 𝑀𝑤 − 𝑀𝐿 and 𝑀𝑤 −𝑀𝑠, these magnitude estimates were then converted into 𝑀𝑤 to main-

tain magnitude scale homogeneity in the RESORCE dataset. However, the conversions being region-spe-

cific, introduced a regional ergodicity into magnitude scaling component of the GMPE, and led to an in-

flated estimate of between-event variability. Discarding such data reduces the bias and variance of the 

GMPE, but a more desirable remedy would be to homogenize the magnitude scale across the several active 

tectonic regions in pan-Europe. 

The second, more interesting, outcome of our GMPE regionalization is the regional variability of ground-

motion scaling with path and site parameters. The mixed-effects regression I employed could quantify 

statistically significant differences in apparent anelastic attenuation of high frequency ground-motions 

and (linear) scaling of ground-motion with 𝑉𝑆30, between Italy and Turkey. Allowing the GMPE to account 

regional variability of ground-motion scaling did not necessarily decrease the 𝜎 of GMPE, but improved 

its explanatory and predictive power (measured in terms of AIC and BIC). These findings were later af-

firmed by Bora et al. (2017), in terms of regional differences in crustal quality factor (𝑄) between Italy 

and Turkey. In regionalizing the GMPE, I could resolve partially the region-level ergodicity in the GMPE 

and remove regional biases in its prediction. 

Chapter 4 is primarily focused on furthering the region-specific GMPE into a region- and site-specific 

GMPE, and refining the empirical site-specific PSHA procedure. In addition, I illustrated the significance 

of resolving region and site ergodicities in GMPEs by comparing the ergodic PSHA with region- and site-

specific PSHA estimates at 225 sites in pan-European region. 

In this chapter, I further exploited the advantages of mixed-effects GMPE regression techniques in resolv-

ing ergodicity in GMPEs. I reaffirmed Stafford (2014) that the existing method of estimating site-specific 

terms from the GMPE residuals (Rodriguez-Marek et al., 2013) is an approximate method, by demonstrat-

ing its misconfiguration of GMPE median and variances. Mixed-effects GMPE regression as I performed in 

this chapter, isolates site-specific non-ergodic biases more accurately, and also appears to provide a better 

constrain on the regression. I note once again that the PSHA estimates are very sensitive to GMPE median 

and variances, and even more so to the region- and site-specific adjustments.  

The key outcome of this chapter is an illustration of the impact on PSHA from resolving region and site 

ergodicity in the GMPEs. I demonstrated that at several (well-sampled) sites in pan-European region, the 

region- and site-specific hazard estimates vary from ergodic estimates by 50% at long return periods. I 

see our results as a motivation to shift towards region- and site-specific PSHA. However, the reliability of 

non-ergodic GMPEs depends on the amount of data used in constraining the non-ergodic biases; empha-

sizing the need to collect more data at several sites. 

Chapter 5 explores an engineering solution to the insufficiency of site-specific ground-motion data to 

estimate site-terms. In absence of site-specific ground-motion data, a common practice is to attribute ap-

proximate site-terms based on the best representative site-class. Traditionally, site-classes are identified 

by their characteristic amplification factors, and defined by characteristic ranges of site parameters, or 

site-response proxies (e.g. 𝑉𝑆30 ). However, the choice of parametrization and predefined parametric 

ranges (of proxies) introduce subjectivity in site-classification, which appears to reduce their efficiency in 

predicting site-response (through GMPEs). Therefore, I sought an alternative data-driven site-classifica-

tion scheme to complement our partially non-ergodic region- and site-specific GMPEs. 

With increasing ground-motion data, it became possible to reliably estimate (predominantly linear) site-

terms at several sites in active shallow crustal regions, e.g. Japan. I applied the mixed-effects GMPE re-

gression on KiK-Net dataset to estimate site-terms at ~600 sites in Japan. These ~600 site-terms were 

then processed with spectral clustering techniques to identify sites with similar site-response – optimal 

number of clusters being the only subjective input. 

Our approach could identify 8 distinct site clusters in KiK-Net ground-motion network. These 8 clusters 

could serve as the new site-classes, provided they can be characterized by a combination of site-response 
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proxy parameters. Our primary inference from this chapter is the inefficiency of preferred site-response 

proxy for site classification 𝑉𝑆30. Within the existing Eurocode8 reference rock site-class of soil-type A, I 

could identify two sub-classes with radically different high frequency amplification. These sub-classes 

cannot be characterized based on their  𝑉𝑆30  ranges alone (as in EC8), but a combination site-proxy 

(𝑉𝑆10, 𝐻800) was verified to perform better. In addition, the spectral clustering based site-classification 

being more efficient and sufficient in capturing the diversity in site-response, reduced the 𝜙𝑆2𝑆 by ~50%, 

which is roughly a 15% reduction in 𝜎 of GMPE. With the improvement in accuracy and reduction in var-

iance of site-response prediction, our approach could bridge the gap between ergodic and partially non-

ergodic site-specific GMPEs. 

Chapter 6 is aimed at predicting a site-specific magnitude and region-dependent Conditional Spectra, 

using empirically modeled correlation of peak spectral amplitudes. Existing correlation models were de-

veloped from total residuals, assuming no event-path-site dependencies in ground-motion. Indeed the 

total residuals (휀) and their correlations show no event-path-site specificities. But when they were disso-

ciated into event, site and path components, I observed significant magnitude (event) dependence of be-

tween-event (𝛿𝐵𝑒) correlations and region (path) dependence of event-and-site corrected (𝛿𝑊𝑆𝑒𝑠) cor-

relation coefficients over the period range 𝑇 = 0.01-2s. Using our magnitude and region dependent cor-

relation models, along with the site-terms, I proposed refinements to the computation of Conditional 

Spectra. Our new procedure accounts for differences in source spectra of small and large events, regional 

differences in attenuation with distance, and site-specific amplification of ground-motions. 

7.2 Outlook 
Our study is aimed at characterizing and reducing prediction uncertainties of GMPE, in order to make 

PSHA more reliable. In process I developed non-ergodic GMPEs and demonstrated their usefulness. Of 

course, the strongest inference is that we need to collect more ground-motion data if we were to develop 

better predictive models. Even with less than optimal amount of data, I find the mixed-effects regression 

and machine learning techniques to have a remarkable potential in quantifying uncertainties and refining 

the PSHA framework. To summarize the prospects of our study: 

• Asymptotic variance is usually an unreported statistical uncertainty in GMPEs, whose disclosure can 

foster better selection of GMPEs in PSHA, depending on the seismicity of a region and the predominant 

geological conditions 

• Mixed-effects regression based region- and site-specific GMPEs are unbiased by ergodicity, and may 

serve as regionally adaptable backbone models for regions with too little ground-motion data 

• Considering the alternative of discarding large amounts of usable but incompatibly parametrized 

ground-motion data from many pan-European regions, homogenization of magnitude scale and re-

evaluation (and parametrization) of event-path-site metadata is a more desirable proposal 

• Spectral clustering techniques could identify hidden site classes – it would be interesting to extend 

this application to investigate, say, event classes or to localize path effects 

• Removal of the highly variable site-term from the residuals allowed us to quantify a variety of known 

physical effects in correlation models, which were otherwise masked by dominance of site-to-site var-

iability. It is worth investigating the residuals for more repeatable patterns, introduce them into pre-

dictive models, and improve our probabilistic assessments 

• Given the immense potential of site-terms in performing empirical site-specific PSHA, I am strongly 

motivated to develop methods for their rapid estimation. Our immediate focus is therefore to use 

weak-motion data along with teleseismic data, investigate scenario dependence site-response, and 

propose a framework to predict site-terms in low seismicity regions of Europe 

I firmly believe in the need for denser seismological instrumentation to collect more ground-motion data. 

At the same time, I am optimistic that appropriate statistical tools can accelerate our progress towards 

fully non-ergodic ground-motion prediction.   
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