

GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES

Marco Pilz, Heiko Woith, Gaetano Festa

MED-SUV CUBE arrays 2014 – Report

Scientific Technical Report STR18/05 – Data GIPP Experiment- and Data Archive

www.gfz-potsdam.de

Recommended citation for this report: Pilz, M., Woith, H., & Festa, G. (2018) MED-SUV CUBE arrays 2014 – Report. (Scientific Technical Report STR - Data; 18/05) (GIPP Experiment and Data Archive), Potsdam: GFZ German Research Centre for Geosciences.

DOI: http://doi.org/10.2312/GFZ.b103-18052

Recommended citation for data described in this report: Pilz, M., Woith, H., & Festa, G. (2018) MED-SUV CUBE arrays 2014 – Dataset. GFZ Data Services. DOI: http://doi.org/10.5880/GIPP.201403.1

Imprint

HELMHOLTZ CENTRE POTSDAM GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES

> Telegrafenberg D-14473 Potsdam

Published in Potsdam, Germany December 2018

ISSN 2190-7110

DOI: http://doi.org/10.2312/GFZ.b103-18052 URN: urn:nbn:de:kobv:b103-18052

This work is published in the GFZ series Scientific Technical Report (STR) and electronically available at GFZ website www.gfz-potsdam.de

MED-SUV CUBE arrays 2014 - Report

Marco Pilz¹, Heiko Woith¹, Gaetano Festa²

¹ Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany

² Università di Napoli Federico II, Naples, Italy

Abstract

This data set contains continuous recordings of seismic noise, which have been made on the surface of a shallow volcanic crater in the Phlegrean Fields volcanic complex near Naples, Italy, where a significant level of volcanic-hydrothermal activity is presently concentrated (MED-SUV = Mediterranean Supersite Volcanoes). As part of the Phlegrean Fields, the Solfatara crater is a 0.4×0.5 km sub-rectangular structure whose geometry is mainly due to the control exerted by N40–50W and N50E trending normal fault systems, along which geothermal fluids can ascend. These systems crosscut the study area and have been active several times in the past.

Coordinates: 40.8273N, 14.1218E

Keywords: EARTH SCIENCE > SOLID EARTH > TECTONICS > VOLCANIC ACTIVITY; seismic noise, arrays

1. Introduction

Repeated phase and amplitude measurements done on active and/or passive seismic data including shots, vibrations, earthquakes and ambient noise were carried out in order to characterize the structure of the volcano and track its evolution through time. The characterization of the medium properties is performed through the reconstruction of an image of the elastic and anelastic properties of the propagation medium crossed by seismic waves. The resolution of the tomographic models is influenced by the number and spatial distribution of data. The expected resolution thus guided the setup. To recognize and monitor changes in the properties of the propagation medium without performing an active survey we identify a fast proxy based on the time evolution of the Vp/Vs ratio.

2. Data Acquisition

2.1 Experiment design and schedule

During 19-22 May and 9-12 November 2014, 50 seismic sensors were deployed irregularly on the surface of the crater, covering an area of 350 m × 320 m. Each CUBE 24-bit digitizer was synchronized using GPS reference time and recorded seismic noise continuously on more than three consecutive days at 400 samples per second. Every sensing unit was connected to an external, PE-6/B 3-component, 4.5 Hz geophone providing an excellent signal-to-noise ratio on all three components for frequencies higher than 1 Hz.

2.2 Geometry/Location

WGS 84	May 2014		November 2014	
	Lat (° N)	Lon (° E)	Lat (° N)	Lon (° E)
min	40.82583	14.13756	40.82631	14.13778
max	40.82870	14.14144	40.82891	14.14141

The coordinates of the geophones during the array measurements in May and November 2014 are provided in Appendix 1 and 2.

Figure 1: Location map (Naples, Italy)

2.3 Instrumentation

In the experiment Data Cube recorder (3-channels; manufacturer: Omnirecs/DIGOS; www.digos.eu) and PE-6/B 3-component, 4.5 Hz geophones (manufacturer: SENSOR Netherlands) were used.

2.4 Acquisition parameters

For locations please see Figure 1 and Appendices. The data loggers recorded continuously at 400 samples per second.

3. Data Processing

No processing has been done regarding the provided raw data set.

4. Data Description

4.1 File format (s)

Data are stored in the raw CUBE format, which can be converted into a variety of formats using GIPP-tools being provided at:

https://www.gfz-potsdam.de/en/section/geophysical-deep-sounding/infrastructure/geophysical-instrument-pool-potsdam-gipp/software/gipptools/

4.2 Data content and structure:

Data are organized in the following structure according to field deployment (May or November 2014) and recorder-ID.:

/raw/2014-05/XXX /raw/2014-11/YYY

XXX are recorder ID: 680, 682, 684, 686, 688, 690, 692, 694, 774, 776, 778, 780, 782, 784, 790, 792, 794, 811, 813, 815, 817, 819, 821, 823, 837, 681, 683, 685, 687, 689, 691, 693, 773, 775, 777, 779, 781, 783, 789, 791, 793, 810, 812, 814, 816, 818, 820, 822, 824, 838

YYY are recorder ID: 634, 636, 638, 652, 654, 656, 658, 666, 668, 670, 672, 674, 676, 678, 680, 682, 684, 686, 688, 690, 692, 694, 725, 864, 873, 635, 637, 651, 653, 655, 657, 665, 667, 669, 671, 673, 675, 677, 679, 681, 683, 685, 687, 689, 691, 693, 714, 727, 865, 876

5. Data Quality/Accuracy

The relative position of the arrays nodes was determined with a theodolite to an accuracy of several centimeters.

6. Data Availability/Access

Data is archived at the "GIPP Experiment and Data Archive" where it is freely available for further use under a "Creative Commons 4.0 International License" (CC BY 4.0). When using the data please cite the data publication and report (see below) and make reference to Pilz et al. (2017) and Amoroso et al. (2017).

Recommended citation for data described in this report:

Pilz, M., Woith, H., & Festa, G. (2018) MED-SUV CUBE arrays 2014 – Dataset. GFZ Data Services, http://doi.org/10.5880/GIPP.201403.1

Recommended citation for this report:

Pilz, M., Woith, H., & Festa, G. (2018) MED-SUV CUBE arrays 2014 – Report. (Scientific Technical Report STR - Data; 18/05) (GIPP Experiment and Data Archive), Potsdam: GFZ German Research Centre for Geosciences, http://doi.org/10.2312/GFZ.b103-18052

7. Acknowledgments

MED-SUV has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308665. Instruments were provided by the Geophysical Instrumental Pool GIPP of the GFZ Potsdam (grants GIPP201403 and GIPP201421).

8. References

- Amoroso, O., G. Festa, P. P. Bruno, L. D'Auria, G. De Landro, V. Di Fiore, S. Gammaldi, S. Maraio, M. Pilz, P. Roux, G. Russo, V. Serlenga, M. Serra, H. Woith, and A. Zollo (2017). Integrated tomographic methods for seismic imaging and monitoring of volcanic caldera structures and geothermal areas, J. Appl. Geophys. https://doi.org/10.1016/j.jappgeo.2017.11.012
- Pilz, M., S. Parolai, and H. Woith (2017). A 3-D algorithm based on the combined inversion of Rayleigh and Love waves for imaging and monitoring of shallow structures, Geophys. J. Int. 209 152-166, https://doi.org/10.1093/gji/ggx005

Appendix 1: Deployment in May 2014

CUBE		(E) WGS 64
000	40.02013	14.13091
001	40.62766	14.14075
082	40.82870	14.14061
083	40.82829	14.14092
084	40.82862	14.13942
000	40.82743	14.14043
000	40.82777	14.13987
087	40.82794	14.14144
000	40.82645	14.13875
600	40.02007	14.13923
601	40.02700	14.13903
602	40.02729	14.13901
692 602	40.02002	14.13000
693	40.02772	14.13930
094 770	40.82820	14.13954
774	40.82631	14.13760
775	40.82844	14.13978
776	40.82849	14.14030
770	40.62790	14.13039
770	40.02791	14.13904
700	40.02003	14.13/0/
700	40.02000	14.13090
704	40.02000	14.13001
701	40.02733	14.13013
782	40.02730	14.13750
702	40.02091	14.137.94
780	40.82633	14.13868
700	40.82847	14.13851
791	40.82744	14.13014
792	40.82714	14 13938
793	40.82689	14.13800
794	40 82826	14 13832
810	40 82623	14 13969
811	40.82760	14,13878
812	40.82763	14.13779
813	40.82637	14.13945
814	40.82611	14.13919
815	40.82696	14.13771
816	40.82605	14.13839
817	40.82586	14.13878
818	40.82787	14.13780
819	40.82603	14.13880
820	40.82630	14.13811
821	40.82583	14.13818
822	40.82792	14.13830
823	40.82607	14.13770
824	40.82590	14.13917
837	40.82685	14.13975
838	40.82643	14.13982

Appendix 2: Deployment in November 2014

CUBE	lat (°N) lon	(°E) WGS 84
680	40.82744	14.14068
681	40.82682	14.13788
682	40.82745	14.13810
683	40.82773	14.13805
684	40.82848	14.14095
685	40.82800	14.14070
686	40.82645	14.13945
687	40.82736	14,14141
688	40.82650	14,14000
689	40 82682	14 14028
690	40 82739	14 14037
691	40 82760	14 13996
692	40.82631	14.13954
603	40.02001	14.10004
604	40.02000	14 14052
773	40.02700	14.14039
774	40.02000	14.13900
775	40.02091	14.14023
776	40.02045	14.14007
770	40.02001	14.14030
770	40.02044	14.13000
770	40.02707	14.13940
700	40.02704	14.14010
700	40.02040	14.13039
701	40.82781	14.14091
782	40.82692	14.14102
783	40.82700	14.13991
784	40.82826	14.13935
789	40.82659	14.14034
790	40.82667	14.13994
791	40.82674	14.13922
792	40.82665	14.13830
794	40.82679	14.13853
810	40.82690	14.13821
811	40.82770	14.14125
812	40.82721	14.14031
813	40.82800	14.13978
814	40.82738	14.14095
815	40.82795	14.13858
816	40.82700	14.13889
817	40.82719	14.13989
818	40.82706	14.13844
819	40.82724	14.13864
820	40.82721	14.14072
821	40.82664	14.13881
822	40.82786	14.14005
823	40.82765	14.13847
824	40.82726	14.13778
837	40.82656	14.13923
838	40.82676	14.14062