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Abstract In this paper, we present our investigation of geomagnetic crochets observed following the
X-class solar flare events on 9 August 2011 (X6.9) and 24 September 2011 (X1.4). Both events occurred
during geomagnetically quiet times (Kp ≤ 3). The analysis of the geomagnetic crochets near the magnetic
equator revealed very different responses in the ionospheric currents between these two events. During the 9
August 2011 event, a reduction of the eastward equatorial electrojet was observed in all daytime stations
studied, while the daytime eastward equatorial electrojet was observed to enhance during the 24 September
2011 event. A spherical harmonic analysis was applied to the observations from nearly 160 ground stations at
middle and low latitudes to derive the equivalent ionospheric current system for the geomagnetic crochets
as well as background solar-quiet (Sq) variations for both events. The equivalent current system of the
geomagnetic crochets for the 24 September 2011 event showed a similar pattern with the background Sq
current system and thus can be attributed to the enhancement of Sq currents. However, the crochet current
system for the 9 August 2011 event revealed a different pattern from the background Sq current system in
both Northern and Southern Hemispheres. It is suggested that unusual geomagnetic crochets during the 9
August 2011 event may be dominated by the ionospheric currents at D-region altitudes.

1. Introduction

A solar flare is an eruption of electromagnetic waves from the Sun. The phenomenon is sometimes accom-
panied by short-lived geomagnetic disturbances called geomagnetic crochets or solar flare effects (SFEs),
which can be detected by ground-based magnetometers mostly on the sunlit side of the Earth (Annadurai
et al., 2018; Campbell, 2003; Yamazaki & Maute, 2017). It is believed that SFEs are associated with ionospheric
currents in the E-region ionosphere (90–150 km), which are altered during the flare due to the enhanced ioni-
zation caused by X-ray and EUV radiation.

When solar disturbances are absent, the E-region currents at middle and low latitudes are dominated by the
solar-quiet (Sq) current system (e.g., Chulliat et al., 2016; Yamazaki et al., 2011), which results from the iono-
spheric wind dynamo process (e.g., Richmond, 1995; Richmond & Maute, 2014). According to the dynamo
theory, the current density J can be expressed as follows: J = σ·(E + U × B), where σ is the ionospheric con-
ductivity tensor, E is the electric field,U is the neutral wind, and B is the Earth’s main magnetic field. The iono-
spheric conductivity σ depends strongly on the plasma density of the ionosphere, which enhances during
solar flares (e.g., Thome & Wagner, 1971).

Early studies attributed geomagnetic crochets to a simple enhancement of the background Sq currents (e.g.,
McNish, 1937) based on the fact that the equivalent ionospheric current systems for Sq and SFE are similar in
shape. The equivalent Sq current system usually consists of two large-scale current vortices on the dayside
ionosphere; a counterclockwise vortex is in the Northern Hemisphere and a clockwise vortex in the
Southern Hemisphere (e.g., Matsushita, 1965). The equivalent SFE current system has generally the same pat-
tern as the Sq current system, as previous studies have shown (Curto et al., 1994; Gaya-Piqué et al., 2008; Van
Sabben, 1961, 1968; Veldkamp & Van Sabben, 1960; Yasuhara & Maeda, 1961). These studies, however, also
pointed out that the locations of the SFE current foci are often displaced from those of the Sq current system.
The discrepancies between SFE and Sq current systems were considered to be due to contributions from dif-
ferent heights. That is, the Sq currents mainly flow in the E region, while SFE currents may extend into the D
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region (below 90 km). For instance, Richmond and Venkateswaran (1971) showed that the X-ray in the 2–10-Å
range, which enhances during solar flares, is effective in ionizing the region at 80–100-km altitude.

Near the magnetic equator (approximately +/�3° from the magnetic equator), the E-region currents are
enhanced due to the so-called Cowling effect (Baker & Martyn, 1953; Hirono, 1950). The enhanced eastward
current flows along the magnetic equator is referred to as the equatorial electrojet (EEJ; Chapman, 1951).
Nagata (1952) reported that the amplitude of SFE in the horizontal (H) component of the geomagnetic
field at Huancayo, Peru, was enhanced due to the presence of the EEJ. Rastogi et al. (1999) established
that SFE (H) at the magnetic equator is positive and negative during the periods of normal (eastward)
and reversed (westward) EEJ, respectively. Yamazaki et al. (2009), and later Rastogi et al. (2013), studied
unusual SFE events observed on 18 June 2000 and 3 July 2002. During these events, SFEs in H near the
magnetic equator were negative in the midday sector around 10:30–13:00 LT despite positive Sq (H).
Yamazaki et al. (2009) called such counter-Sq SFEs near the magnetic equator SFE*s. Sripati et al. (2013)
studied the response of the low-latitude ionosphere to the X-class solar flare event on 9 August 2011, using
various ground measurements. The H-component magnetic data at Tirunelveli, India, revealed the occur-
rence of SFE*.

The present study also examines the ionospheric response during the solar flare event of 9 August 2011. The
aim of the study is to reveal, for the first time, the global ionospheric current system associated with SFE*. This
is made possible by using ground-based magnetometer data from approximately 160 stations worldwide.
The uniqueness of this event is demonstrated by comparing the results with those from another X-class solar
flare event on 24 September 2011.

2. Data Sets and Methodology

We utilize ground-basedmagnetometer data in the range of +/�60° magnetic latitude to study the solar flare
influence on the global ionospheric current system. Higher latitude stations were excluded in order to avoid
contamination from polar-region currents that are generated by solar wind-magnetosphere dynamo
(Matsushita & Xu, 1982; Weimer, 2013). Total number of stations used in this study is 155. Vector magnet-
ometer data were obtained from various magnetometer networks such as MAGnetic Data Acquisition
System/Circum-pan Pacific Magnetometer Network (Hamid et al., 2014; Yumoto, 2006), International Real-
time Magnetic Observatory Network (Love & Chulliat, 2013), Southeast Asia Low-Latitude Ionospheric
Network (Maruyama et al., 2007), World Data Centre for Geomagnetism, Edinburgh, Low-Latitude
Ionospheric Sensor Network, Geospatial Information Authority of Japan, SuperMAG (Gjerloev, 2009, 2012),
Deutsches GeoForschungsZentrum, Ocean Hemisphere Network Porject (Shimizu & Utada, 1999), and West
African Magnetometer NETwork (Alken et al., 2013). The distribution of magnetometer stations is shown in
Figure 1, while information of each station including the geographic coordinates and quasi-dipole coordi-
nates is presented in supporting information Table S1. Quasi-dipole coordinates are magnetic coordinates
that are used in the spherical harmonic analysis (SHA). All the magnetometer data are expressed in the
magnetic-northward (N), magnetic-eastward (E), and vertical (Z) components using local magnetic coordi-
nates (e.g., Laundal & Richmond, 2017).

The onset and peak times of SFE/SFE* are determined based on the N-component magnetic field at an equa-
torial station where the geomagnetic crochet is most prominent. At each station, the amplitude of SFE/SFE*
was derived as the difference of the magnetic field at the onset and peak times for each component. We also
derived the amplitude of Sq as the difference between the magnetic field at the SFE/SFE* onset time and the
average nighttime value during 22:00–02:00 LT. Although there are several approaches to evaluate Sq varia-
tion (e.g., Rahim & Kumbher, 2016), we adopted this present simple method used in most of previous studies
in this area (e.g., Curto et al., 1994; Rastogi et al., 2013; and many others).

A SHA was performed to determine the equivalent ionospheric current system for SFE/SFE* as well as Sq.
The methodology follows that detailed by Yamazaki and Maute (2017). Equivalent ionospheric current
systems at 110 km were derived using the spherical harmonics of up to degree n = 5, which is sufficient
to resolve large-scale structure of the current system (Takeda, 1999, 2002). The calculations were made both
including and excluding the equatorial stations within +/�3° from the magnetic equator. Since the patterns
of the current system were largely the same for the two cases, we show the results including the
equatorial stations.
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In addition to the geomagnetic field data, we also use the solar X-ray intensity obtained from Geostationary
Operational Environmental Satellites and the geomagnetic activity index Kp.

3. Results and Discussions
3.1. Solar X-Ray and Geomagnetic Activity

We examined geomagnetic crochets observed during 2008–2014. The investigation was made using the
N-component magnetic field data from equatorial stations during the solar flare events listed in the solar
event archive at the Lockheed Martin Solar and Astrophysics Laboratory. From our analysis, we have identi-
fied only one solar flare event that caused SFE*. The rareness of SFE* was also noted by previous researchers
(Rastogi et al., 2013; Yamazaki et al., 2009). The event occurred following the X-class solar flare on 9 August
2011 that erupted from AR#11263 (17°N, 69°W) at 07:48 UT and lasted for ~ 20 min. The plot of X-ray flux,
SYM-H index, and Kp index for this event are depicted in Figures 2a, 2b, and 2c, respectively. The blue and
red lines in Figure 2a indicate the intensity of X-ray at 1.0–8.0 Å and 0.5–3.0 Å, respectively. The flare class
(A, B, C, M, and X) is also indicated at the right side of Figure 2a. The 9 August 2011 solar flare occurred during
the recovery phase of geomagnetic storm that started at the night of 5 August 2011 (not shown here). The
low SYM-H values on 9 August 2011 (Figure 2b) are due to the ring current developed during the solar storm.
Although the storm effect known as the disturbance dynamo sometimes perseveres over a day, it is not likely
that the disturbance of zonal electric field lasts for 3 days (Huang et al., 2005). Thus, the contribution of the 5
August 2011 geomagnetic storm to our SFE* results can be discounted. This is agreeable with Kp indices in
Figure 2c that represent the X6.9 solar flare event took place during the period of low geomagnetic activity
(Kp ~ 3) day.

For the purpose of comparison, we have also analyzed geomagnetic crochets during another X-class (X1.6)
solar flare event that occurred on 24 September 2011. This solar flare erupted from AR#1302 (13°N, 61°E)
at 09:21 UT and lasted for 27 min. Figures 3a, 3b, and 3c illustrate the X-ray intensity, SYM-H index, and Kp
index, respectively, for this event. Similar with the August event, the geomagnetic activity was also low during
the 24 September 2011 solar flare event (positive SYM-H variation and Kp < 2).

Equatorial geomagnetic field data in the N component for 9 August 2011 are presented in Figure 4a, along
with the X-ray intensity. The red-dashed line indicates the onset time (08:02 UT). Figure 4b displays the ampli-
tude of SFE/SFE*(ΔN) and the local time for each equatorial station. The stations are Koror (KOR), Phuket (PKT),
Adis Ababa (AAB), Tirunelveli (TIR), Davao (DAV), Yap Island (YAP), Tatuoca (TTB), and Huancayo (HUA).
Negative crochets in N were observed at all the equatorial stations on the sunlit side during the event, cor-
responding to the westward ionospheric currents induced by the solar flare. The largest SFE was detected
at KOR with the amplitude of �50.40 nT followed by PKT with the amplitude of �33.30 nT. KOR was located
in the morning sector, where the EEJ is relatively weak and occasionally turns westward, which is known as

Figure 1. Magnetometer stations used in this study denoted by the black dots. The red line across the map is the magnetic
equator.
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counter electrojet, or CEJ (Marriott et al., 1979; Mayaud, 1977; Rastogi, 1974). Sq (N) at KOR was�4.7 nT, which
indicates the occurrence of a weak CEJ. Negative crochets are often observed during CEJ events (Rastogi
et al., 1975; Sastri, 1975). At other dayside equatorial stations (i.e., AAB, TIR, PKT, DAV, and YAP), however,
Sq (H) was positive. Thus, the negative crochets observed at those stations are SFE*. The amplitude of SFE
is very small at TTB and HUA, which were located on the night side. In addition, the responses of some off-
equatorial magnetometer data were already reported by Sripati et al. (2013).

The results for the second event, which occurred on 24 September 2011, are summarized in Figures 4c and
4d. The onset of SFE was at 09:35 UT. The positive SFEs (N) observed at dayside stations indicate the enhance-
ment of the eastward EEJ, with the strongest effect at AAB at 12:01 LT with the amplitude of 30.68 nT. Positive
SFEs were also recorded at KOR, TIR, and PKT with the amplitude of 24.33, 16.46, and 18.80 nT, respectively. A
negative SFE (N) was observed at TTB during a CEJ event. Sq (N) at TTB was �18.20 nT. The SFE amplitudes
were very small in the dusk sector at DAV and YAP and on the night side at HUA. SFEs observed at equatorial
stations during this event are consistent with the previous results by Rastogi et al. (1999). That is, Sq (N) is
positive and negative during the normal and reversed EEJ, respectively.

To further see the differences in the ionospheric response during these two solar flare events, we perform a
SHA, usingmagnetometer data from the stations listed in Table S1. This provides us with the overview picture
of the global ionospheric current system associated with SFE/SFE* as well as Sq.

3.2. SHA

The equivalent ionospheric current systems derived using SHA are shown in Figures 5, 6, 7, and 8. The results
of the SHA in Figure 5 illustrate the global structure of the ionospheric current systems for Sq and Figure 6 for
SFE on 9 August 2011. The green and light blue contours correspond to positive and negative parts of the

Figure 2. (a) Solar X-ray intensity, (b) SYM-H index, and (c) Kp index on 9 August 2011.
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current functions, respectively. Contour intervals are 20 and 10 kA for the Sq and SFE/SFE* current systems,
respectively. The uncertainty was evaluated for the equivalent current systems by calculating the standard
deviation (σ) of the current function using the bootstrap technique. In general, σ is small on the night side
and is largest at midlatitudes on the dayside. The maximum value of σ is indicated at the right corner of
each panel. The arrows represent horizontal magnetic field perturbations due to Sq and SFE, which are
rotated 90° clockwise to indicate the direction of equivalent currents. The orange line shows the magnetic
equator, while the blue lines indicate +/�60° magnetic latitudes. We also indicate the day-night terminator
at 110 km with the gray-dashed line.

The equivalent Sq current system on 9 August 2011 (Figure 5) shows the well-known current pattern with a
counterclockwise vortex on the dayside of the Northern Hemisphere and a clockwise vortex on the dayside of
the Southern Hemisphere. The snapshot of equivalent SFE current system (Figure 6) is also confined to the
dayside. However, the current pattern is different from that of Sq. Multiple current cells can be seen in both
Northern and Southern Hemispheres. The equivalent SFE current system represents the ionospheric current
system superposed on the background Sq current system as fast as 3 min after the occurrence of the
solar flare.

We also analyzed magnetic field data by SHA during the solar flare event of 24 September 2011, which
occurred one and a half month after the first event. The pattern of the Sq current system shown in
Figure 7 is similar to that in Figure 5, but the currents are somewhat stronger during the 24 September
2011 event. The SFE current system evolution in Figure 8 reveals a similar current pattern as the background
Sq current system (Figure 7). The location of SFE current foci do not exactly agree with that of Sq current foci,
as previously reported by Van Sabben (1961) and others.

Figure 3. Same as Figure 2 but for 24 September 2011.
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The results for the 24 September 2011 event confirm the known features of the SFE current system.
The similarity between the SFE and Sq current systems suggests that the enhancement of the back-
ground Sq current system is the main cause of SFE currents, supporting earlier results in the literature
(McNish, 1937, and many others). The present study demonstrated that the SFE current system is different
in pattern from the background Sq current system during the 9 August 2011 event, in which SFE*s were

Figure 4. (a) Solar X-ray intensity and N-component magnetic field variations at equatorial stations during the solar flare
event of 9 August 2011. (b) Location of the equatorial stations during the solar flare event. (c) and (d) are the same as
(a) and (b), respectively, but for the solar flare event of 24 September 2011.
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observed at several dayside equatorial stations spread over a wide range of longitudes. Previous
studies were not able to address the global ionospheric current system associated with SFE* due to
the lack of data (Rastogi et al., 2013; Yamazaki et al., 2009). We have overcome this issue by using a
large number of ground-based magnetometers and revealed for the first time the global structure of
the current system.

Figure 5. Equivalent ionospheric current systems for Sq before the X6.9 solar flare event on 9 August 2011.

Figure 6. Snapshots of equivalent ionospheric current systems for SFE during the X6.9 solar flare event on 9 August 2011. SFE = solar flare effect.
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The reason for the unusual response of the ionosphere during the 9 August 2011 event is yet to be under-
stood. The fact that the event occurred under quiet geomagnetic activity conditions rules out the effect of
disturbance electric fields as suggested by Abdu et al. (2017). Recently, Zhang et al. (2017) showed that
the equatorial electric field can be disturbed during solar flare events. It needs to be clarified how the global
electric field responds during SFE* events.

Figure 7. Same as Figure 5 except for the X1.4 solar flare event on 24 September 2011.

Figure 8. Same as Figure 6 except for the X1.4 solar flare event on 24 September 2011. SFE = solar flare effect.
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The solar flare on 9 August 2011 was an X-class (X6.9) event, like other SFE* events previously reported. The
SFE* events studied by Yamazaki et al. (2009) and Rastogi et al. (2013) were observed on 18 June 2000 (X1.0)
and 3 July 2002 (X1.5). An intense X-class flare might be a necessary condition for SFE* to occur. Another com-
mon factor for these SFE* events is that they were all observed during the Northern-Hemisphere summer
during days with Kp ≤ 3, which could also be a favorable condition for SFE*.

The different current patterns observed between Sq and SFE during the 9 August 2011 event suggest that the
two current systems might be at different height regions. One possible candidate is the ionospheric D region
below 90 km. As stated earlier, the X-ray in the 2–10-Å range can effectively ionize D-region heights. Indeed,
ionosonde observations revealed evidence of enhanced D-region ionization during the 9 August 2011 event,
as reported by Sripati et al. (2013). However, little is known about the D-region current system, and it is
unclear whether the global current system shown in Figure 6 has any resemblance with the D-region current
system. Another possible source is interhemispheric field-aligned currents (IHFACs) that flow from one hemi-
sphere to the other at middle and low latitudes (Lühr et al., 2015; Park et al., 2011). The north-south asymme-
try of the ionospheric conductivity, which might be enhanced during solar flare events, could drive IHFACs.
However, the response of IHFACs to solar flares is unknown.

4. Conclusions

We have examined the geomagnetic crochets due to the X-class solar flare on 9 August 2011 (X6.9) and 24
September 2011 (X1.9) using extensive ground-based magnetometer observations. The equivalent iono-
spheric current systems were evaluated based on a SHA for both cases, and the two results were compared.
Main findings of this study are summarized below.

1. There is a significant difference in the response of equatorial ionospheric currents between the two
events. During the 9 August 2011 event, negative crochets were observed in the magnetic northward
(N) component at all the dayside equatorial stations. SFE*s (i.e., counter-Sq SFEs) were detected at five sta-
tions in the local time sectors 10:18–17:07 LT. In contrast, the daytime eastward EEJ was observed to
enhance during the 24 September 2011 event.

2. The results of the SHA, involving magnetic data from nearly 160 stations, shows that the global pattern of
the ionospheric SFE current system was totally different from that of the background Sq current system
during the 9 August 2011 event, while the SFE current system was similar in pattern with the background
Sq current system during the 24 September 2011 event.

3. The difference in the global pattern of the SFE and Sq current systems during the 9 August 2011 event
suggests that the ionospheric currents associated with SFE* may not flow mainly in the E region as Sq
currents. Contribution from the D region is suspected from the previous ionosonde observation by
Sripati et al. (2013).
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