
 

 

 

 

   Originally published as: 

 

 

 

 

 

 

 

 

Zhu, H., Shprits, Y., Chen, L., Liu, X., Kellerman, A. C. (2018): An Event on Simultaneous Amplification 
of Exohiss and Chorus Waves Associated With Electron Density Enhancements. - Journal of 
Geophysical Research, 123, 11, pp. 8958—8968. 

 
DOI: http://doi.org/10.1029/2017JA025023 



Journal of Geophysical Research: Space Physics

An Event on Simultaneous Amplification of Exohiss and Chorus
Waves Associated With Electron Density Enhancements

Hui Zhu1,2 , Yuri Y. Shprits2,3,4 , Lunjin Chen1 , Xu Liu1, and Adam C. Kellerman2

1Department of Physics, University of Texas at Dallas, Richardson, TX, USA, 2Department of Earth, Planetary, and Space
Sciences, University of California, Los Angeles, CA, USA, 3Helmholtz Centre Potsdam, GFZ German Research Centre For
Geosciences, Potsdam, Germany, 4University of Potsdam, Potsdam, Germany

Abstract Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause
with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves
was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of
both types of the waves showed a significant increase at the regions of electron density enhancements. It
is found that the electrons resonant with exohiss and chorus showed moderate pitch angle anisotropies.
The ratio of the number of electrons resonating with exohiss to total electron number presented in-phase
correlation with density variations, which suggests that exohiss can be amplified due to electron density
enhancement in terms of cyclotron instability. The calculation of linear growth rates further supports
above conclusion. We suggest that exohiss waves have potential to become more significant due to the
background plasma fluctuation.

1. Introduction

Whistler mode chorus emission is one important type of electromagnetic waves in the terrestrial inner mag-
netosphere, which usually occurs in the low-electron-density region outside the plasmasphere from magnetic
local time (MLT) 22 to 16 (Burtis & Helliwell, 1969; Li, Bortnik, Thorne, & Angelopoulos, 2011; Meredith et al.,
2001; Tsurutani & Smith, 1974, 1977). The frequency of chorus waves lies between 0.1fce and 0.8 fce, where
fce is equatorial electron gyrofrequency (Helliwell, 1967; Tsurutani & Smith, 1977). Chorus waves are generally
believed to be excited by cyclotron resonant interaction with pitch angle anisotropic electrons with energies
ranging from a few to tens of kiloelectron volts (Kennel & Petschek, 1966; Meredith et al., 2001; Nunn et al.,
1997). It is widely accepted that chorus emission plays a key role in the rapid acceleration and precipitation
loss of radiation belt electrons (Horne & Thorne, 1998; Reeves et al., 2013; Shprits et al., 2008; Summers et al.,
2002, 2007; Thorne, 2010; Turner, Angelopoulos, Li, et al., 2014; Turner, Angelopoulos, Morley, et al., 2014; Xiao
et al., 2014). Several studies indicate that chorus waves occurring in nightside plasma sheet region are able to
scatter kiloelectron volt electrons by means of cyclotron resonance, which is considered to be responsible for
the formation of diffuse aurora (Ni et al., 2008; Nishimura et al., 2010).

Structureless hiss waves can be observed outside the plasmasphere, which is referred to as exohiss
(Bortnik et al., 2008; Thorne et al., 1973; Zhu et al., 2015). Using Ogo 5 satellite measurement, Thorne et al.
(1973) investigated extremely low frequency hiss waves in the magnetosphere and for the first time found that
a part of hiss waves appeared outside the plasmasphere in the dayside high-latitude region. They proposed
that the source of exohiss is plamaspheric hiss, which is able to leak from the high-density plasmasphere into
low-density trough region. The primary occurrence of exohiss in the dayside high-latitude region can be well
explained in terms of weak density gradient of the plasmapause. Recently, Zhu et al. (2015) analyzed an exo-
hiss wave event occurring in low latitude recorded by the Electric and Magnetic Field Instrument Suite and
Integrated Science (EMFISIS; Kletzing et al., 2013) wave instrument onboard the Van Allen Probes (Mauk et al.,
2013). Wave Poynting fluxes pointing toward the equator rather than higher latitude is considered to be a
key feature of identification. The MLT-dependent cold electron and suprethermal electron densities corre-
sponding to MLT-dependent exohiss feature further supports the formation mechanism. The corresponding
quasi-linear diffusion coefficients suggest the potential pitch angle scattering of relativistic electrons pro-
duced by exohiss. However, more comprehensive observation features of exohiss waves are required to verify
the formation mechanism and estimate the potential effect on magnetospheric particles.
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Figure 1. The 23 February 2014 storm event. The gray region indicates the wave event that occurred during the end of
the storm. (a) Magnetic intensity (black solid line) and Bz component (red solid line) in geocentric solar magnetospheric
coordinate; (b) solar wind velocity; (c) dynamical pressure of solar wind; (d) Kp index; (e) Dst index; and (f ) AE index.

Variation of background electron number density is believed to provide a preferential condition for the ampli-
fication of whistler mode emissions. Based on CLUSTER spacecraft data Moullard et al. (2002) reported an
electron density fluctuation near the plasmapause, which in-phase modulated the 100–600 Hz emission
band but out-of-phase modulated 3–6 kHz band. Chen, Thorne, et al. (2012) studied a modulation of plas-
maspheric hiss intensity by plasma density structure, and the calculation of local growth rate suggests that
the growth rate increases as the plasma density increases. Its combination with the ray focusing during the
wave propagation is responsible for the observed modulation. Li, Bortnik, Thorne, Nishimura, et al. (2011) sys-
tematically investigated the role of density variation in the modulation of whistler mode chorus waves and
found that both density depletions and density enhancements are correlated with the increase of chorus
wave amplitudes. Until now, the modulation of whistler mode exohiss similar to chorus and hiss has not been
reported yet.

In this paper, we will report a simultaneous amplification of exohiss and chorus waves correlated with electron
density enhancement. The linear theory (Kennel & Petschek, 1966; Xiao et al., 1998) in relativistic plasma is
adopted to investigate the possible mechanisms of waves amplification.

2. Observations and Analysis

Figure 1 shows the interplanetary and geomagnetic indices during 23–28 February 2014 obtained from
CDAweb-OMNI database. A weak geomagnetic storm occurred starting from 23 February 2014, driven by sud-
den appearance of strong dynamic pressure and southern interplanetary magnetic field. The minimum of Dst
values can reach around −50 nT, and AE index increased up to 1,000 nT during the main phase. We primarily
focus on the interval 05:00–08:00 UT on 26 February 2014 when we observed the simultaneous intensifica-
tion of whistler mode exohiss and chorus waves. This interval is during the late recovery phase of the weak
geomagnetic storm, and the Kp and AE indices were very smaller, indicating that geomagnetic and substorm
activity is weak.

Figure 2 presents the overview of the event captured by the waves instrument of the EMFISIS suite (Kletzing
et al., 2013) onboard the Van Allen Probe A. The upper hybrid resonance frequency (fhfr) line could be visually
identified in the electric power spectral density of high-frequency receiver (HFR) channel. The low values of
fhfr indicate that during this interval, Probe A was crossing through the plasmatrough. The fluctuation of fhfr
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Figure 2. Frequency-time spectrograms of (a) electric power spectral density in the high-frequency receiver (HFR)
channel; (b) magnetic and (c) electric power spectral densities in the waveform receiver (WFR) channel; (d) ellipticity of
magnetic field polarization; (e) normal angle 𝜓 ; (f ) poleward Poynting flux; and (g) equatorward Poynting flux. The solid
and dotted lines (in all panels except a) indicate 0.5fce and 0.1fce. MLT = magnetic local time; MLAT = magnetic latitude.

suggests the in-phase fluctuations of either ambient magnetic intensity or cold electron number density. Two
bands of electromagnetic waves were observed in the magnetic and electric power spectral density of wave-
form receiver (WFR) channel. One band was in the frequency range from 0.1fce to 0.5fce, but another band
was in the frequency range below 0.1fce. Both of the two band waves were predominantly circularly polarized
with ellipticity closing to 1 shown in Figure 2d, suggesting that both of the waves can be identified as whistler
mode waves. Their wave normal angles presented different characteristics. The normal angels of band below
0.1fce mainly close to zero, indicating the field-aligned propagation feature. While for the band ranging [0.1fce,
0.5fce] the normal angle could present either field aligned or obliqueness. The most interesting thing is that
the Poynting fluxes of both bands show opposite directions. The Poynting fluxes of band below 0.1fce were
pointing equatorward while the Poynting flux of band between [0.1fce, 0.5fce] were pointing poleward. Obvi-
ously, the band between [0.1fce, 0.5fce] is namely whistler mode chorus waves, which are frequently observed
outside the plasmasphere in the night sector. Chorus waves are usually generated near the minimum of geo-
magnetic field (magnetic equator) due to the substorm injection and then propagate toward high latitude.
Hence, their Poynting fluxes are poleward. The band below 0.1fce with equatorward Poynting fluxes could
be considered as exohiss wave, recently reported by Zhu et al. (2015). The formation of exohiss is believed
to result from the leakage of plasmaspheric hiss after excluding the possibilities of excitation at high lati-
tude and bounce propagation of chorus wave (Bortnik et al., 2008; Chen et al., 2012a, 2012b). The schematic
figure about the formation of exohiss can be found in Figure 2 of Zhu et al. (2015). Its intensity is partially con-
trolled by the plasmatrough suprathermal electrons via the Landau damping. In this event, we can see both
the intensities of exohiss and chorus wave are modulated with the upper hybrid resonance frequency. When
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Figure 3. (a) Electron number density derived from high-frequency receiver channel; (b) observed magnetic intensity
(black solid line) and fluctuation (red solid line) based on magnetometer instrument; and (c) wave amplitudes. The red
and black lines in panel (c) represent the amplitudes in the frequency range [100, 700] and [700, 3000] Hz. The gray
regions are selected to highlight the enhancement of electron number density.

upper hybrid resonance frequency line fluctuates toward high frequency, the intensities of exohiss and chorus
tend to increase. Particularly, the wave normal angle of chorus shown in Figure 2e also exhibits fluctuations.
The wave normal becomes smaller with density enhanced. The upper hybrid resonance frequency is deter-
mined by both of electron number density and ambient magnetic intensity. Below we investigate which one
is dominated.

Figure 3 shows the obtained electron number density, ambient magnetic field, and wave amplitudes. Here
the electron number density is automatically identified based on Neural-network-based Upper hybrid Reso-
nance Determination (NURD) algorithm (Zhelavskaya et al., 2016). The ambient magnetic field was recorded
by the fluxgate magnetometer instruments of the EMFISIS. The fluctuation of magnetic field is obtained by
subtracting the 100-s-running average magnetic intensity. The wave amplitudes are obtained by integrat-
ing the magnetic power spectral density within the corresponding frequency ranges. The frequency range
[100, 700] Hz basically represents exohiss, and the range [700, 3000] Hz represents the lower band cho-
rus. We can see that the number density shows the discrete enhancements, which are marked by the gray
color. The ambient magnetic field showed a much smaller fluctuation compared with the number density.
The wave amplitudes of both exohiss and chorus presented positive correlation with electron number den-
sity neither the ambient magnetic intensity nor magnetic fluctuations. When the number density increased,
the wave amplitudes simultaneously increased and vice versa. It should be noted that the intensities of
higher-frequency range are roughly larger than those of lower-frequency range. The intensities of wave within
higher-frequency range can reach 100 pT, and maximum intensity of wave within lower frequency is around
10 pT, which is consistent with previous observation by Zhu et al. (2015). Below we investigate if the density
enhancement produces wave amplification and how the density variation works.

We will look into the amplification of exohiss and chorus in the frame of linear theory (Kennel & Petschek, 1966;
Xiao et al., 1998). The local growth rate (𝜔i) for field-aligned whistler mode wave in a relativistic plasma is

𝜔i =
𝜋𝜔2

pe𝜂

[2𝜔r + 𝜔2
pe|Ωe|∕(𝜔r − |Ωe|)2]

[
A(pR) − Ac

]
, (1)

where
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Figure 4. (a) Helium, oxygen, proton, and electron omnidirectional electron flux; (b) the corresponding electron
anisotropy; (c) Radiation Belt Storm Probes Ion Composition Experiment omnidirectional electron flux; and (d) the
electron anisotropy as a function of time and energy. The black solid and red solid lines represent the minimum
energies of electron resonating with waves of frequencies 0.07 fce and 0.3 fce via fundamental cyclotron resonance.

𝜂 = 𝜋𝜇h

(𝜔r − |Ωe|)
k ∫

∞

0

p2
⟂dp⟂

ΔR

𝜕F
𝜕p⟂

|||p∥=pR

(2)

is the fraction of the electron distribution near resonance,

A =

k
(𝜔r−|Ωe|) ∫

∞
0

dp⟂
ΔR

p2
⟂
𝛾R

(
p⟂

𝜕F
𝜕p∥

− p∥
𝜕F
𝜕p⟂

)

∫ ∞
0

dp⟂
ΔR

p2
⟂
𝜕F
𝜕p⟂

|||p∥=pR

(3)

is the dimensionless measure of the relativistic pitch angle anisotropy of the resonant particles, and

Ac = 𝜔r∕
(|Ωe| − 𝜔r

)
(4)

is the threshold anisotropy for whistler mode excitation. Here 𝜔r is the real part of complex wave frequency;
𝜔pe is the electron plasma frequency; Ωe is the angular gyrofrequency of electron; pR = (𝛾R𝜔r − |Ωe|)∕k is the
resonant electron parallel momentum for the fundamental cyclotron resonance; 𝛾R is the relativistic factor of
the resonant electrons; k is the wave number; p∥ and p⟂ are the parallel and perpendicular components of
electron momentum, respectively; F is the normalized electron distribution function; ΔR = 1 − 𝜔rPR∕(c2k𝛾R)
is a strictly positive quantity; c is the speed of light; and 𝜇h is the density ratio between the hot and cold
electrons.
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Figure 5. (a) Electron number density derived from high-frequency receiver
channel; (b) the electron anisotropy and (c) the ratio of omnidirectional
electron flux to the electron number density at the minimum energies of
electron resonating with wave of frequency 0.3 fce based on the helium,
oxygen, proton, and electron (HOPE); and (d) the electron anisotropy and
(e) the ratio of omnidirectional electron flux to the electron number density
at the minimum energies of electron resonating with wave of frequency
0.07 fce based on the Radiation Belt Storm Probes Ion Composition
Experiment (RBSPICE). MLT = magnetic local time.

According to equation (1) the growth rate 𝜔i is proportional to 𝜂, and its
sign depends on A. When A>Ac, the value of 𝜔i is positive (wave growth).
When A < Ac, the value of 𝜔i is negative (wave damping). It should be
noted that both integrals for both the fraction 𝜂 and the anisotropy A
require the full distribution function. Obviously, it is not convenient to
obtain 𝜂 and A values from the in situ measurements due to the different
instruments measuring the limited energy ranges and their intercalibra-
tions. Hence, in the following analysis we provide two similar quantities
to estimate the fraction and pitch angle anisotropy instead of 𝜂 and A.
The fraction of resonant electron to total electron is characterized by j∕ne

(Zhu et al., 2015), where j is the measured omnidirectional flux at the min-
imum energy and ne is the cold electron number density. Electron pitch
angle anisotropy (A∗) at a fixed kinetic energy (Chen et al., 1998; Li, Bortnik,
Thorne, & Angelopoulos, 2011) is defined as follows:

A∗ =
∫
𝜋

0 F(Ek, 𝛼) sin3 𝛼d𝛼

2∫
𝜋

0 F(Ek, 𝛼) cos2 𝛼 sin 𝛼d𝛼
− 1, (5)

where Ek is the electron kinetic energy and 𝛼 is the local pitch angle. A∗ =
0 represents isotropic pitch angle distribution. A∗ > 0 means anisotropic
pitch angle distribution with peak at 𝛼 = 90∘, while A∗ < 0 means
anisotropic pitch angle distribution with minimum at 𝛼 = 90∘.

Figures 4a and 4b show the omnidirectional electron fluxes measured by
the helium, oxygen, proton, and electron (HOPE) mass spectrometer (Fun-
sten et al., 2013) onboard the Van Allen Probes and the corresponding
electron pitch angle anisotropies A∗ obtained from unidirectional fluxes
observation. Figures 4c and 4d present the omnidirectional fluxes mea-
sured by the Radiation Belt Storm Probes Ion Composition Experiment
(RBSPICE; Mitchell et al., 2013) and the pitch angle anisotropies A∗. Here we
do not use the magnetic electron ion spectrometer (Blake et al., 2013) data,
which also are part of energetic particle composition & thermal plasma

suite (Spence et al., 2013). That is because that RBSPICE provides higher-resolution energetic electron obser-
vation with 17 points in pitch angle range from 7.5∘ to 172.5∘ and 64 points in energy range from 20 to 939 keV.
Hereinafter we will analyze HOPE data and RBSPICE data separately in order to avoid intercalibration between
the two instruments. The two solid lines represent the minimum resonance energies for the two frequencies
0.07fce and 0.3fce, by simultaneously solving dispersion relation (Stix, 1992) and cyclotron resonance condi-
tion using the real-time magnetic intensity data and number density identified by NURD. We can see that
HOPE observations cover the energy range from 0.1 to 10 keV. In the energy range [0.1, 1] keV the electrons
present high anisotropic with A∗ ∼ 0.8. In the energy range [1, 10] keV the electrons show weak anisotropy
with 0 < A∗ ≤ 0.3for most of time. Figures 4c and 4d present the RBSPICE observations covering the range
from 20 keV to 1 MeV. The corresponding anisotropy values are roughly larger than 0.2. HOPE data capture the
variability of electrons resonant with chorus wave at 0.3fce, and RBSPICE data capture the variability of electron
resonant with exohiss wave at 0.07fce. Both the minimum resonance energies for 0.07fce and 0.3fce fluctuated
with the fluctuation of electron number density. Particularly, the minimum resonance energies exhibited the
out-phase variation with electron density. That is because the variation of electron density essentially influ-
ences the dispersion relation and therefore the cyclotron resonance. In addition, it is interesting to note that
chorus waves cyclotron-resonate with 1- to 10-keV electrons while exohiss waves cyclotron-resonate with 10-
to 100-keV electrons in this case.

Figure 5a is the same as Figure 3a, showing discrete enhancements of electron number density. The gray
regions are selected to highlight the enhancement of electron number density. Figures 5b and 5c show
the electron pitch angle anisotropy and the ratio of omnidirectional electron flux to the electron number
density at the minimum energies of electron resonating with wave of frequency 0.3 fce based on the HOPE
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Figure 6. (a) growth rates of parallel exohiss waves as functions of time and
frequency based on Radiation Belt Storm Probes Ion Composition
Experiment observation; (b) growth rate profiles of 300 Hz (black solid line)
and 400 Hz (red solid line) exohiss waves and electron density number of
profile (blue solid line); (c) growth rates of parallel chorus waves based on
helium, oxygen, proton, and electron electron distribution.

observations. Obviously, most of the anisotropies A∗ are larger than 0.2,
indicating the possibility of exciting whistler mode wave. Although the
values of electron anisotropy exhibit high-frequency fluctuations, they do
not show a good correlation with the variability of number density. The
ratios of omnidirectional flux to number density j∕ne tend to increase by
2 orders of magnitude but show some in-phase fluctuation with the vari-
ation of number density. Figures 5d and 5e plot the electron anisotropy
and the ratio of the omnidirectional electron flux to the electron density
at the minimum energies of electron resonating with wave of frequency
0.07 fce based on the RBSPICE measurements. The values of anisotropy A∗

for 0.07 fce are larger than 0.1 except the time after UT 07:30. Looking at
Figure 4d, the minimum energies of electron can lower down to 15 keV,
which is smaller than the minimum of observed energy range by RBSPICE.
Hence, the A∗ and j∕ne are not accurate after UT 07:30. We can see that the
values of A∗ vary but do not show good correlation with number density
variations. Compared with this good correlation between density and the
ratio j∕ne observed by RBSPICE, the corresponding correlation observed
by HOPE is relatively poor, which possibly caused by the low-resolution
energy sampling. During the following growth rate calculation, we will use
HOPE and RBSPICE data to verify the correlation between density variation
and exohiss and chorus amplification, respectively. In addition, the ratios
j∕ne show a well-positive correlation with number density, which means
the plasma is capable of providing more free energy with the enhance-
ment of number density. Note that the increase of ne leads to the decrease
of resonance energy and thus the increase of j at resonant energy. This
explains j∕ne increases with ne shown.

3. Calculation of Growth Rates

After the above analysis on plasma data, we calculate the linear growth
rates (Xiao et al., 1998) of parallel whistler waves based on RBSPICE and

HOPE electron distributions. Figures 6a and 6b show growth rates of parallel exohiss waves based on RBSPICE
electron distribution, and Figure 6c shows growth rate of parallel chorus waves based on HOPE electron dis-
tribution. We can see that both the growth rates of exohiss and chorus waves tend to increase during density
enhancement and decrease during density depletion. As shown, the values of growth rates vary in positive
correlation with density variations, which is consistent with our analysis on plasma data. It should be noted
that the peak of exohiss growth rates at fixed time is always located around 600–700 Hz rather than the typical
frequency of exohiss waves ∼300 Hz. The frequency distribution of exohiss growth rates directly results from
the observed plasma distribution function and its lower and upper energy cutoffs. The inconsistency between
observed low-frequency, narrow-banded exohiss waves and simulated high-frequency, wide-banded growth
rate distribution can be explained by the following two reasons. First, the seed population of exohiss emission,
plasmaspheric hiss, is low frequency and narrow banded. A recent study (Li et al., 2015) found that at different L
regions and under different geomagnetic conditions, the frequency of the plasmaspheric hiss averaged wave
power peak closes to 300 Hz. When hiss leaks, the exohiss waves show the similar frequency distribution. Sec-
ond, the process of leaking through the plasmasphere may be also frequency dependent. It should be noted
that for both the particle analysis and wave growth rate calculation, all parameters we adopted (e.g., electron
number density, electron distributions, and background magnetic fields) are local parameters and therefore
the corresponding anisotropy and growth rates are local too. One may obtain the equatorial parameters by
mapping the observed distribution into that at the magnetic equator with near 90∘ degree equatorial pitch
angle missing. In our event both the local anisotropy and calculated growth rate suggest that the local plasma
environment event at latitude −17∘ is capable of providing free energy for wave excitation and therefore the
equatorial region can be more unstable.
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Figure 7. Van Allen Probe A: (a) electron number density and (b) magnetic power spectral densities; Van Allen Probe B: (c) electron number density, (d) magnetic
power spectral densities, and (e, f ) the orbits of Probe A (red solid lines) and Probe B (blue solid lines) during UT 05:00–09:00 on 26 February 2014 projected in
the X-Y plane and in the Rxy-Z plane of solar magnetosphere coordinate system. MLT = magnetic local time; WFR = waveform receiver.

4. Discussions

In the above context, we describe the in situ observation measured by Van Allen Probe A containing the vari-
ations of electron number density, exohiss, and chorus wave amplitudes and their positive correlation. We
then use the plasma measurements to explain that the amplification of waves; particularly, exohiss wave is
due to the decrease of resonant energy caused by the number density enhancement and thus takes place
when plasma density enhances. The calculated growth rate of exohiss wave shows the positive correlation
with electron density supporting our explanation. The observed correlations among in situ parameters tend
to exclude this possibility that the exohiss waves have been amplified inside the plasmasphere during the
density enhancement before leaking outside as suggested by Li et al. (2013). For this case to occur the good
correlation between density variation outside plasmapause and exohiss amplitude requires that the density
variation structure has to cover a huge spatial range to make sure the in-phase correlation between the den-
sity variation outside and inside the plasmasphere. Here we use twin Van Allen Probes to investigate the spatial
range of density variation. Figure 7 shows the electron density, magnetic power spectral densities for exohiss,
and chorus measured by twin Van Allen Probes and their orbits projected in the X-Y plane and in the Rxy-Z
plane of solar magnetosphere coordinate system. We can see Probe B had similar trajectory with Probe A, fly-
ing from prenoon sector to duskside sector at L ∼ 5.7 and outside the plasmasphere. The positive correlation
between density enhancement and wave power has also been clearly observed. However, the density pro-
files observed by the two probes are significantly different from each other. At UT 06:10, the density observed
by Probe B reached peak while the density from Probe A was significantly decreasing. At UT 06:50, the den-
sity observed by Probe B was much small, located between two peaks, while the density observed by Probe
A was at peak. At UT 07:20, the density observed by Probe A started to increase, but the density observed by
Probe B did not change much. So the spatial scale of density structure is smaller than 0.09 Re, and thus, we
can exclude the possible scenario that exohiss have been intensified inside plasmasphere before leakage.

Besides the amplification of exohiss due to electron enhancement, the chorus waves also exhibit similar ampli-
fication. The growth rate calculation confirms the effects of density variation. Moreover, the obliqueness of
chorus changed with electron density variation. As shown in Figures 2b and 2e, intense chorus waves (∼1 kHz)
have parallel propagation direction, while some with much weaker intensity can be oblique. During the den-
sity enhancement, chorus waves became more intensive and more parallel, which indicates the increased
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growth rate of parallel propagation. The generation of oblique chorus has been also investigated by previous
studies (Artemyev et al., 2016; Li et al., 2016; Mourenas et al., 2015).

5. Conclusions

In this work, we report an event when exohiss and chorus waves outside the plasmapause were simultaneous
intensified observed by the Van Allen Probe A, which occurred during the late recovery phase of a weak geo-
magnetic storm. Exohiss waves below 0.1fce were identified with equatorward Poynting fluxes, while chorus
waves within [0.1fce, 0.5fce] frequency range were identified with poleward Poynting fluxes. The characteristics
of Poynting fluxes suggest that exohiss results from the leakage of plasmaspheric hiss while chorus originates
from the minimum region of magnetic field outside the plamasphere via cyclotron resonance instability. The
minimum resonant energies for exohiss and chorus waves calculated by solving dispersion relation and fun-
damental cyclotron resonance show that chorus waves are mainly associated with 1- to 10-keV suprethermal
electrons while exohiss is associated with 20- to 400-keV energetic electrons. Both their amplitudes presented
in-phase correlation with electron number density, which is obtained by NURD algorithm. To investigate pos-
sible mechanism, the linear theory of relativistic plasma is adopted to analyze plasma pitch angle anisotropy
and the fraction of resonant electron to total electron from plasma observed by HOPE and RBSPICE instru-
ments. Sufficient pitch angle anisotropies at the minimum energies of electron resonating with both chorus
and exohiss waves allow their excitation. The in-phase enhancements of the resonant electron fraction with
number density particularly for exohiss waves indicate that more free energies for wave generation are avail-
able during the high-density periods, which can well explain the intensification of exohiss. Furthermore, the
calculation of corresponding growth rates further supports that with pitch angle anisotropic resonant elec-
trons, the density enhancements cause the increase of growth rates and then exohiss intensity amplification.
These results suggest that exohiss waves have potential to play a more important role due to the background
plasma fluctuation.

The present study focuses on the local growth of exohiss caused by background fluctuation, while wave prop-
agation is also important. Ray tracing method, which simulates the wave propagation path and the wave
gain accumulated along the path, requires the global cold electron density model, suprethermal electron dis-
tribution, and the wave source (Chen et al., 2012a, 2012b; Horne, 1989). Ray tracing simulation with density
ducts has been shown previously (Chen, Thorne, et al., 2012). For example, Figure 4 of Chen, Thorne, et al.
(2012) demonstrates that with the presence of density enhancement ducts, whistler mode can be trapped
and exhibit parallel propagation. Because raypath is reversible, one can expect that escaped hiss emission
(exohiss) can be guided along the density duct toward the equator. In addition to this ducting effect, one
may also expect the preferred amplification for parallel propagation. Both reasons favor parallel propagation
as observed. Additionally, the ray tracing simulation (Bortnik et al., 2008; Chen et al., 2012a, 2012b) sug-
gests that chorus waves generated near the magnetic equator, if not entering the plasmasphere to avoid
strong damping, hardly experience magnetospheric reflection because of strong Landau damping outside
the plasmapause and thus unlikely return wave energy toward the equator. These results also support that
exohiss waves originate from escape of plasmaspheric hiss waves (Zhu et al., 2015).
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