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a b s t r a c t

The agricultural sector accounts for 70% of all water consumption and poses great pressure on ground
water resources. Therefore, evaluating agricultural water consumption is highly important as it allows
supply chain actors to identify practices which are associated with unsustainable water use, which risk
depleting current water resources and impacting future production. However, these assessments are
often not feasible for crop producers as data, models and experiments are required in order to conduct
them. This work introduces a new on-line agricultural water use assessment tool that provides the water
footprint and irrigation requirements at field scale based on an enhanced FAO56 approach combined
with a global climate, crop and soil databases. This has been included in the Cool Farm Tool e an online
tool which already provides metrics for greenhouse gas emissions and biodiversity impacts and therefore
allows for a more holistic assessment of environmental sustainability in farming and agricultural supply
chains. The model is tested against field scale and state level water footprint data providing good results.
The tool provides a practical, reliable way to assess agricultural water use, and offers a means to engage
growers and stakeholders in identifying efficient water management practices.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With increasing global food demand, agricultural water use and
consequent ground water depletion, improved farm water man-
agement is becoming increasingly critical (Godfray et al., 2010;
Siebert et al., 2010; Tilman et al., 2011; Wada et al., 2012). A global
modelling study by J€agermeyr et al. (2016) investigated different
integrated crop water management interventions, including an
increase of irrigated areas. The study indicates that production
entre for Geosciences, Tele-
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could be increased by 41% and thus the gap in future global food
demand could be reduced by 50% - but not without further
increasing irrigation water consumption. Therefore a solid under-
standing and estimation of crop water usage, crop water demand
and the effect of different watermanagement at farm level is crucial
to enable the identification of improved management
opportunities.

Several models, of varying complexity, have been developed in
order to account for water use in crop production at the field scale
(Baroni et al., 2010; Kroes et al., 2008; Raes et al., 2006; Ragab,
2002; Rosa et al., 2012; Smith, 1992; Steduto et al., 2009). Most of
them use, to some extent, the approach presented in the “FAO
irrigation and drainage paper No. 56 crop evapotranspiration”
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(FAO56) (Allen et al., 1998). However, these models are often not
tailored to application by crop producers, due to (i), the unavail-
ability of soil, crop and climate data required for the model, (ii), the
use of terminology not understood outside the research commu-
nity, (iii), lack of an engaging user interface for some models, in
addition to (iv), a lack of guidance on how to interpret and use
results. Bastiaanssen et al. (2007) raised similar concerns for soil
hydrological models. Table 1 gives a short overview of some of the
existing tools based on FAO56. The selection is based on models
described in the scientific literature and the provision of a graphical
user interface.

The models vary with respect to data integration, with most
data being provided by the ICARDA Agro-Climate tool (Mauget and
De Pauw, 2010) and SAPWAT (van Heerden, 2008) for north-west
Africa to central Asia and South Africa, respectively. CROPWAT,
SAPWAT and Aquacrop provide climate data on a global scale via
the climate database CLIMWAT, which contains long-term average
data from 5000 climate stations (van Heerden, 2008; Smith, 1992;
Steduto et al., 2009). The data can also be downloaded and used for
the other existing models. Most tools provide default soil profiles
and parameters, but do not use soil maps to increase usability.

This study presents the new field scale agricultural water
assessment tool Cool Farm Tool Water (CFTW) which is fully inte-
grated with the already existing greenhouse and biodiversity
model Cool Farm Tool (CFT) (Hillier et al., 2011). The novelty of this
tool is that it combines tested algorithms with a database of
climate, soil and crop data on a global scale in an on-line tool and
packages them for non-expert use with limited data availability. In
doing so, some of the above documented shortcomings of existing
models are improved. With CFTW, agricultural water assessments
can now be performed using local information on production,
climate and management. Growers, companies and non-
governmental organisations are thus no longer dependent on na-
tional or regional datasets, ownmodelling or measurement work to
assess their water use. CFTW provides results on the water foot-
print (WFP), which describes the water consumed per unit product
as well as irrigation requirements. Furthermore, it provides the
possibility to compare different production sites and systems using
the same methodology. Finally, together with the already existing
on-line tool CFT, it enables crop producers and stakeholders to take
a more informed and holistic approach on environmental
Table 1
Overview of existing field water assessment tools that deploy the FAO56 approach (Allen
Most tools allow the users to update existing soil and crop information.

Name Source Climate data Crop
paramete

AquaCrop FAO, Steduto
et al. (2009)

database with 5000 stations (CLIMWAT) 14 defau
crops

CRIWAR Bos et al. (2008) 10 defau
crops

CROPWAT FAO, Smith
(1992)

database with 5000 stations (CLIMWAT) 36 defau
crops

ICARDA Agro-
Climate tool

Mauget and De
Pauw (2010)

interpolation between 649 climate stations default c
provided

MABIA-Region Allani et al.
(2012)

>100 def
crops

SALTMED Ragab (2002) >200 def
crops

SAPWAT van Heerden
(2008)

database with 5000 stations (CLIMWAT) &
South African climate station data

default c
provided

SIMDualKc Rosa et al.
(2012)

auxiliary
data
provided

SPARE-
WATER

Multsch et al.
(2013)
sustainability in the agricultural sector.
In this study we first introduce the existing CFT as the founda-

tion of CFTW (section 2). CFTW is then presented in detail,
describing the model, the database, and the user interface (section
3). To understand the effect on the accuracy of using global datasets
for determining WFPs, the tool is evaluated based on 16 studies
available in the literature in different climatic and soil-plant con-
ditions (section 4). The study provides also one of the first assess-
ments of different modelled WFPs with observations. Finally,
limitations and future developments are discussed and concluding
remarks presented.

2. Cool Farm Tool - CFT

The development of the CFT (https://coolfarmtool.org) started in
2008 as an on-farm greenhouse gas (GHG) emission calculator
based on a collaboration between the University of Aberdeen, the
Sustainable Food Lab and Unilever. The GHG tool captures emis-
sions related to crop and livestock production. Emissions are
determined using empirical models and emission factors which
consider differences between production systems, regions and cli-
mates (Aryal et al., 2015; Hillier et al., 2011). The interest in the tool
from consumer good producers, retailers, non-governmental or-
ganisations, fertilizer producers and small and medium-sized en-
terprises led to the formation of the Cool Farm Alliance (CFA) in
2014, which nowmanages and owns the tool. The CFA currently has
over 53 members who are using and co-developing CFT in collab-
oration with academics across several research organisations.

The tool was first developed as an Excel spreadsheet and pub-
lished in 2011 (Hillier et al., 2011). In 2012, CFT on-line was released
and has been used by 4900 registered users. Usage requires a one
time registration on https://coolfarmtool.org and enables the user
to assess up to five crops.

The tool has also been applied in over 30 scientific publications
over the last 6 years. The scope of the different studies ranged from
model comparisons (Camargo et al., 2013; Colomb et al., 2013), to
product assessments of, for example wheat, potato and coffee
(Aryal et al., 2015; Haverkort et al., 2014; Sapkota et al., 2014) as
well as investigations of mitigation strategies at the global scale
(Hillier et al., 2012).

Based on further requests by the different members of the CFA,
et al., 1998). The table provides the level of data integration for climate, soil and crop.

rs
Soil parameters Special features

lt 14 default soil profiles contains a full crop growth model for yield
prediction including different stresses

lt only needed when
determining water
requirements

lt 3 default soils

rops default soil types provided only applicable for north-west Africa to central
Asia

ault 12 default soil texture classes GIS based

ault 40 default soils includes advanced soil water model & use of
saline water for irrigation

rops default soils provided climate station data available for South Africa

auxiliary data provided

GIS based

https://coolfarmtool.org
https://coolfarmtool.org
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the tool was extended with the biodiversity module and the water
module. The biodiversity module was released in 2016 and is based
on the Gaia biodiversity yardstick (CFA, 2016; CLM, 2017). It pro-
vides an evidence-based biodiversity assessment for the north-
west European biome. The water module has been released in
2017 and is described and assessed in the present study.
3. Cool Farm Tool Water - CFTW

The CFTW is programmed in Python 2.7. It estimates crop water
use and the main components of the soil water balance combining
the single crop coefficient approach presented in the “FAO irriga-
tion and drainage paper No. 56 crop evapotranspiration” (Allen
et al., 1998) with global datasets for soil, crops and climate. Ad-
justments to crop phenology, soil water balance simulations and
management options have been made to increase accuracy,
represent current knowledge or to enhance usability. The adjust-
ments are described in the following section 3.1 and summarised in
Fig. 1. Finally, model and data are integrated on-line and accessed
via a user-friendly interface at https://coolfarmtool.org using any
internet browser.
3.1. Model

3.1.1. Actual evapotranspiration ETa
The single crop coefficient approach and - thus CFTW - de-

termines actual evapotranspiration ETa (mm d�1) based on three
distinct steps (Allen et al., 1998). First, the reference evapotrans-
piration ET0 (mm d�1) is estimated based on the Penman-Monteith
equation. ET0 refers to a short well-watered grass with an assumed
crop height of 0.12m, a fixed surface resistance of 70 sm�1 and an
albedo of 0.23 (Allen et al., 1998). Based on these values, ET0 is
determined as follows:
Fig. 1. Schematic representation of CFTW model components and related publications. The fi

new model components. A more detailed visual description of the model is presented in th
ET0 ¼ 0:408,D,ðRn � GÞ þ g, 900
Tþ273,u2,ðVPDÞ

Dþ g,ð1þ 0:34,u2Þ
(1)

where Rn is the net radiation at the crop surface (M J m�2 d�1), G is
soil heat flux density approximated as 0M J m�2 d�1 on a daily
basis, T and u2 are the air temperature (

�
C) and wind speed (m s�1)

at 2m height, VPD is the vapour pressure deficit of the air (kPa), g is
the psychometric constant (k Pa

�
C�1), l is the latent heat of

vaporization (MJ kg�1) and D is the slope of the saturation vapour
pressure vs. air temperature curve (kPa

�
C �1). In the second step,

ET0 is corrected based on the single crop coefficient Kc to determine
the potential crop evapotranspiration ETc (mm d�1) as follows:

ETc ¼ ET0,Kc (2)

The single crop coefficient Kc combines evaporation and crop
transpiration into a single coefficient and scales the ET0 so that it
resembles a specific crop without any limitation of water and nu-
trients (Allen et al., 1998). The Kc is not constant over the growing
season as shown in the crop growth curve in Fig. 2.

Kc is based on adjusted empirical values for various crops and
linear interpolation between an initial, mid-season and end Kc over
the different crop growing periods. The literature values of Kc are
corrected to account for local climate, crop, soil and irrigation
management conditions based on the approaches presented in
Allen et al. (1998). ETc at the beginning of the growing period is
primarily governed by evaporation from the top soil. Therefore, Kc

for the initial phase is defined by the wetting frequency of the soil
surface, ET0, soil texture and the irrigation method. The remaining
mid-season and late growing period are mostly dependent on crop
type and are corrected for humidity and crop height. CFTW does
not correct for wind speed as this is greatly influenced by field
location and its surroundings and uses a global average of 2m s�1
gure also shows where CFTWmakes adjustments to FAO56, by introducing different or
e Appendix B.

https://coolfarmtool.org


Fig. 2. The schematic plot shows the crop phenology in CFTW as represented by the crop growth curve showing the crop coefficient Kc , rooting depth Zr and the leaf area index LAI.
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as recommended by FAO56 (Allen et al., 1998). Even though global
wind speed data is available, they are often not representative at
local scale. Finally, the length of the different growing periods are
crop specific and scaled to the length of the total growing period
defined by the user.

In the last step, ETc is scaled based on a water stress coefficient
Ks that accounts for the soil water available for transpiration for the
plant and for evaporation and limits ETc to actual evapotranspira-
tion ETa (mm d�1):

ETa ¼ ETc,Ks (3)

Ks ranges between 0 and 1 and is defined by root zone depletion
Dr , which is the water lost from the total available water to the
plant and described in section 3.1.2.
Ks ¼ TAW � Dr

ðTAW � RAWÞ for Dr >RAW

Ks ¼ 1 for Dr � RAW

(4)

where TAW and RAW are the total and readily available water (mm)
respectively. TAW represents the total storage capacity (qFC - qWP)
Zr , where qFC and qWP are soil moisture at field capacity and at
permanent wilting point, respectively and Zr is the rooting depth.
RAW represents the part of TAW for which plants do not suffer
water stress. In contrast to FAO56, where Zr is described as con-
stant, Zr grows from an initial depth to the maximum depth over
the initial and developing growth stage in CFTW (Fig. 2). This is an
important adjustment also made by CROPWAT for example as not
all soil water within the maximum rooting zone is available to the



B. Kayatz et al. / Journal of Cleaner Production 207 (2019) 1163e1179 1167
plant from the beginning of the growing period and neglecting this
may lead to an underestimation of crop water stress (Bos et al.,
2008).
3.1.2. Soil water balance
The soil water balance, as expressed in terms of soil water

depletion in the root zone Dr at time i, is defined by a traditional
tipping bucket approach (Allen et al., 1998). The bucket size is
defined by field capacity and permanent wilting point described by
the pedo-transfer function in Saxton and Rawls (2006) as well as
the maximum Zr of the specific crop. The water balance can be
written as follows:

Dr;i ¼ Dr;i�1 � ðP þ I � RO� IntIÞi þ ETa;i þ DPi � CRi±LFi (5)

where P is precipitation, I is applied irrigation depth, CR is
capillary rise, LF is the lateral soil water fluxes, RO is runoff from the
soil surface from irrigation and precipitation, IntI is the interception
loss from irrigation andDP is water loss out of the root zone by deep
percolation. All the components are expressed in term of time step
day i in mm d�1.

Initial soil water depletion is provided by the user and then
simulated daily using the daily water balance. As in Allen et al.
(1998) and Bos et al. (2008), CFTW assumes that LF and CR are
negligible and, for this reason, not simulated. Therefore, CFTW is
currently only applicable when these terms are small and do not
influence the soil water balance significantly. Precipitation and
irrigation are provided by a global data base and users, respectively.
Net soil water infiltration is defined by net precipitation and net
irrigation, which considers interception loss, surface run-off, and
deep percolation. IntI is based on Hoyningen-Huene (1983) and
Braden (1985) (Kroes et al., 2008).

IntPþI;i ¼ a*LAIi*

0
@1� 1

1þ b*Ptot;i
a*LAIi

1
A (6)

where IntPþI (mmd�1) is intercepted precipitation and irrigation on
day i, a is an empirical coefficient of 0.025 cm d�1, b is the soil cover
fraction approximated as b ¼ LAI

3 and Ptot (mm d�1) is the total
precipitation including above canopy irrigation on day i. LAI is
derived from global average crop specific values (Breuer et al.,
2003; Scurlock et al., 2001), which are reached after a linear in-
crease from 0m2/m2 to 0.1m2/m2 over the initial and a further
linear increase to the maximum average LAI over the developing
growth stage similar to the crop coefficient (Fig. 2, Table 2). If above
canopy irrigation (e.g. sprinkler irrigation) and precipitation occur
on the same day, interception is attributed based on their relative
fractions.

IntP;i ¼ IntPþI;i,
Pi

Ptot;i
(7)

IntI;i ¼ IntPþI;i,
Ii

Ptot;i
(8)

Runoff ROi is determined using the approach of J€agermeyr et al.
(2015) for the global dynamic vegetation model LPJmL.

ROi ¼ 1� Ptot;i,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qi

qSAT � qWP

s
(9)

where Ptot refers to the sum of precipitation and all irrigation
reaching the soil surface, q is soil water content, qWP is soil water
content at the permanent wilting point and qSAT is soil water
content at saturation. After larger rain or irrigation events, soil
water content may exceed field capacity and therefore water
holding capacity of the soil and trigger deep percolation DP. FAO56
and CFTW work with the simplified assumption that all excess
water above qFC drains into deeper soil layers the same day (Allen
et al., 1998).
3.1.3. Effect of management practices
The crop water use is controlled by many factors some of which

cannot be altered nor managed by the farmer. Soil texture and
climate including precipitation are defined by the field location.
However, water usage is in some respects influenced by the farmer
and these are reflected in CFTW.

First and foremost the choice of crop has a big influence on total
ETa. User can select 24 different crops, which vary with respect to
growing period and length, Kc, stress tolerance (e.g. via RAW), crop
height, rooting depth as well as LAI.

Organic matter content in the soil is important for determining
the total water holding capacity and can be influenced by the crop
producer for e.g. by reduced tillage or applying organic mulch as
described in Cannell and Hawes (1994) and Mulumba and Lal
(2008), respectively. This is implemented in CFTW by using the
pedo-transfer function of Saxton and Rawls (2006), where field
capacity and permanent wilting point is determined based on sand
and clay content as well as soil organic matter. A higher organic
matter content thus may reduce DP and increase resilience against
water stress.

More options to impact ETa arise when irrigation is applied to
the field. The model considers four different methods for irrigating:
pivot, rain gun, flooding and drip irrigation. The methods vary with
respect to their application efficiency as the model considers
interception loss and runoff, with only infiltrating water being
utilized by the crop. Irrigation also affects the initial crop factor
Kc;ini in two ways; firstly, Kc;ini is determined by wetting interval as
evaporation requires frequent wetting and, secondly, different
irrigation practices wet different soil fractions (Allen et al., 1998). A
smaller irrigated soil fraction, as for example when applying drip
irrigation, where only 35% is wetted, implies lower evaporation.
The wetted soil fraction for flood, pivot and rain gun irrigation, on
the other hand, is 100% (Allen et al., 1998).
3.1.4. Model outputs
Themodel determines the components of the soil water balance

as discussed above. These results are used to estimate the crop
irrigation requirements Ireq as follows:

Ireq ¼
X

ðET0,KcÞ �
X

Pnet (10)

Pnet is the sum of net precipitation and net irrigation.
The tool provides the green and blueWFP (Hoekstra et al., 2011).

The green water footprint WFPgreen reflects the total precipitation
water used for the production of a crop, whereas the blue water
footprint WFPblue reflects the used surface and groundwater via
irrigation. Both WFPs are determined in accordance with the water
footprint network as follows (Hoekstra et al., 2011):

WFPblue ¼
min

�
Ireq; Inet

�
Y

(11)

where Inet is the part of the applied irrigation not lost via inter-
ception, surface runoff or deep percolation. The model does not
consider losses related towater transport (conveyance efficiency). Y
is the harvested yield in kg ha�1.



Table 2
Data requirements for the CFTWand data-sources. ding51 indicates that data input is only optional. ding51shows that data input is mandatory. The column D. or C. indicates if
the parameter is a constant (C) for the entire season or varies daily (D). CFTGHG input and CFTW input shows if the variable is new to CFT for thewater module or has been part
of the GHG model already.
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Fig. 3. CFTWon-line input user interface. The figures show part of the user interface for a potato crop grown in England in 2014, which is irrigated between May and early July using
a rain-gun system.
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WFPgreen ¼
P

ETa
Y

�WFPblue (12)

P
ETa describes the cumulative ETa of the entire growing season in

l. The quotient of
P

ETa and Y is the total WFP of a crop. Water
stored in the final harvested product is neglected because this
generally consists of less than 1% of the total WFP and, in fact, is
commonly in the order of 0.1% (Hoekstra et al., 2011).
3.2. Data

Table 2 and Fig. 1 provide an overview of data requirements. All
data which is not required from the user is stored in a PostgreSQL
database. The datasets include the Harmonized World Soil Data-
base (HWSD), the ERA-Interim climate data, the FAO56 crop and
soil parameters as well as a dataset of crop specific leaf area index
(LAI) values.

ERA-Interim is a climate reanalysis dataset developed by the
European Centre for Medium-Range Weather Forecasts (ECMWF)
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and it provides precipitation and meteorological variables for
determining reference ET0 and ETa according to the FAO56 and as
described in the previous section (Dee et al., 2011). The three-
hourly values available in the ECMWF database were adjusted for
time zone and aggregated to daily values. The database provides
climate data since the year 2004 and is updated every three
months.

HWSD is the assimilation of multiple national andmultinational
Fig. 3. (cont
soil databases (FAO, 2012) and is used to determine soil texture
defined by sand, silt and clay content and organic mater content if
the user does not provide this information. The pedo-transfer
function of Saxton and Rawls (2006) are used to estimate field
capacity and permanent wilting point based on this information.

The model includes crop factors, length of growing stages and
other crop parameters for 25 different annual crops as well as
perennial grass (See crop section in Table 2). Default values can be
inued).



Fig. 4. CFTW on-line results for a potato crop in England as described in Fig. 3.
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derived from Allen et al. (1998). Average LAI values are primarily
based on two publications by Breuer et al. (2003) and Scurlock et al.
(2001).
3.3. User interface

The CFTW user interface is fully integrated into the CFT to avoid
redundancies of input variables between the GHG calculator and
the water tool. For example, some inputs, such as crop and growing
area, are required for both metrics of the CFT. Several questions
presented to the user, such as intensity and average temperature
are, however, only relevant for the GHG metrics and have no in-
fluence on the water results (see Fig. 3). The input and output user
interfaces are designed tomakewater assessments easily accessible
via an interface that is quick and self-explanatory as displayed in
Figs. 3 and 4. All relevant user inputs for the water component are
presented in Table 2.

Input fields required only for CFTW concern field location,
growing period, initial soil moisture and irrigation management
and are highlighted using a droplet icon. For all inputs which
require a unit the on-line tool provides a selections of units from
which to choose. The location is entered via “Farm settings”, where
the user can select the field location by providing longitude and
latitude or by tagging the location on a map (Fig. 3). Growing and
irrigation period are not provided as dates, but as early, middle or
late in a given month and year representing the 5th, 15th and 25th
day of each month respectively. The total irrigation amount is
distributed equally between both dates and the total number of
irrigation events. Initial soil moisture content is a required input
and can be entered as high (soil moisture at field capacity), mid (2/3
of available water capacity filled) and low (1/3 of available water
capacity filled). The use of approximate dates and classes were
identified to be a suitable compromise between the accuracy in the
input and model usability since specific values are not always
available.

The blue and green WFP and the irrigation requirements based
on the assessment of the entire growing period are displayed in the
results section (see Fig. 4). Furthermore, additional information
about the results are provided after pressing the info icons on the
results page.
4. Assessment of CFTW

The assessment of CFTW was done in three ways: First we
compare the CFTW estimates with field observations, which rep-
resents a very time consuming, but reliable approach to assess total



Table 3
The table provides information on the 16 studies used for validating CFTW. Most studies are using the soil water balance method (SWB) to determine ETa . Other methods used
are lysimter studies (LM), eddy covariance measurements (EC) and the Bowen ratio (BR).

Study crop location country method study aim (assessing impact of)

Aksic et al. (2014) potato 43.3 N, 21.9 E Serbia SWB irrigation amount
Ati et al. (2012) potato 33.3 N, 44.2 E Iraq SWB irrigation method & amount, fertilizer rates
Bandyopadhyay and Mallick (2003) wheat 23.0 N, 88.1 E India SWB irrigation amount
Corbeels et al. (1998) wheat 33.9 N, 5.6W Morocco SWB irrigation amount, fertilizer rates
Cossani et al. (2012) wheat 41.2 N, 1.1 E Spain SWB irrigation amount, fertilizer rates
Erdem et al. (2006) potato 41.0 N, 27.5 E Turkey SWB irrigation method, amount & interval
Fengrui et al. (2000) potato, maize 35.7 N, 107.9 E China SWB crop rotations
Hern�andez et al. (2015) maize 37.8 S, 58.3W Argentina SWB & Micro-LM irrigation amount, fertilizer rates
Igbadun et al. (2008) maize 8.6 S, 33.9 E Tanzania SWB irrigation interval & periode
Jabro et al. (2012) potato 48.2 N, 103.1W USA SWB irrigation interval
Jia et al. (2014) wheat 36.2 N, 117.2 E China SWB irrigation amount & method
Kang et al. (2000) maize 38.0 N, 103.1 E China SWB irrigation amount & method
L�opez-Urrea et al. (2009) wheat 39.2 N, 2.1W Spain LM - (only single wheat crop)
Parent and Anctil (2012) potato 46.8 N, 72.3W Canada EC - (only single potato crop)
Suyker and Verma (2009) maize 41.2 N, 96.5W USA EC irrigation amount
Young et al. (2008) wheat 31.7 S, 150.5 E Australia SWB & BR e
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water footprints. This is done by using different field trials of water
footprints in the scientific literature as well as different eddy
covariance measurement sites (see Appendix A). Secondly, model
results are compared with available estimates by the water foot-
print network (WFN), which are quickly accessible and represent
state level averages. In a final step we analyse the usability of the
tool based on feedback we have received by members of the CFA.

The goal of this study is not to analyse the quality of each input
dataset individually, but to provide a functional evaluation of the
model results based on all input data used and test if CFTW re-
sponds to differences in management, climate, soil and crop.
4.1. Experimental tests

4.1.1. Case studies
CFTW was tested using observations from 16 published crop

water productivity studies for potato, wheat and maize as those
represent themost commonly used crops in CFT. Each of the studies
explored between 1 and 18 different trials. The studies were
selected to represent different irrigation management practices,
climates, soils and potential yields in order to investigate the
response to these important drivers. The selected studies are pre-
sented in Table 3. The evaluation is only based on studies that use
site observations as soil water balance measurements, lysimeter
studies or eddy covariance measurements. Modelling studies were
not used in order to avoid interdependencies in modelling results.
Model runs were performed using all available information about
growing period, irrigation design and soil. In contrast to the on-line
model interface, this study uses exact dates for sowing and har-
vesting as well as beginning and end of irrigation. Furthermore, the
trials also include a fifth irrigation method representing furrow
irrigation with a soil wetting fraction of 50% which is not yet
available on-line.

Furthermore, state level WFP data published by the WFN and
CFTW WFPs are compared to the observed total WFPs of the case
studies. The WFN values are part of a global modelling study for
various crops using a grid based water balance model also derived
from Allen et al. (1998) using global datasets for crop distribution,
precipitation, long-term monthly ET0 and soil properties
(Mekonnen and Hoekstra, 2011). Soil and climate data used for
WFN estimates differ from datasets used for CFTW and are further
described in Mekonnen and Hoekstra (2011). Results have been
aggregated for administrative units and results are representative
for the years 1996 until 2005 (Mekonnen and Hoekstra, 2011). The
comparison highlights the potential differences between state level
averages and local agricultural practices for a specific year.
4.1.2. Result and discussion of case studies
CFTW explained more then 50% of all the variance in all 16

studies of observed ETa (R2 ¼ 0.53, p-value< 0.05). The best results
are obtained for potato (R2 ¼ 0.63, p-value< 0.05), followed by
wheat (R2 ¼ 0.61, p-value< 0.05) and maize (R2 ¼ 0.57, p-
value< 0.05). The Root Mean Square Error (RMSE) of all studies
combined is 103mm and ranges between 28mm for Aksic et al.
(2014) and 190mm for Ati et al. (2012) (Fig. 5).

The median relative error between simulated and observed ETa
is 1.3% with an inter-quartile range of �20.2% and 15.5% and thus
shows no clear bias towards over- or underestimation of ETa. The
model reproduced a significant positive correlation for 10 out of 13
studies with more than two trials (Fig. 5). Only results for Corbeels
et al. (1998) show a significant negative correlation. This shows
that, based on 13 studies, CFTW correctly identifies water man-
agement improvements. The magnitude of change in ETa is how-
ever underestimated for 8 and overestimated for 2 of the 10 studies
- with significant positive correlation. In cases where underesti-
mation of the change in ETa occurs, this may in fact also result from
the method of measurement of ETa. Most studies used in this work
are based on soil water balances which tend to underestimate ETa,
in particular for high precipitation or irrigation (Sadras and Angus,
2006) due to the fact that these studies often neglect runoff and
deep percolation.

The biggest positive relative error between model results and
measurements is from a trial of Cossani et al. (2012). ETa is over-
estimated by over 54.4% and 65.4mm. The trial shows a control
trial of the study without any irrigation and only little precipitation,
which means ETa is highly sensitive to initial soil moisture. CFTW
currently permits only three levels of initial soil moisture with the
lowest being one-third of the available water capacity. This may
therefore lead to an overestimation of the available water in the
soil, when actual soil moisture is below this at the time of sowing as
in this trial.

The greatest underestimations occurred at individual trials from
Suyker and Verma (2009), Ati et al. (2012), Young et al. (2008) and
Jia et al. (2014). Suyker and Verma (2009) shows a substantial
underestimation of precipitation in ERA-Interim during summer
months in 2003 and 2005, which triggers water stress and an un-
derestimation of rain-fed trials. Other reasons may also contribute
to the discrepancies, since rainfall is not underestimated in 2001
while simulated ETa is 150mm lower than observed. Nevertheless,
the rain-fed trial in 2001 shows the smallest error of all trials



Fig. 5. Simulated ETa using CFTW versus observed ETa for 16 different studies for wheat, potato and maize. The dashed lines indicate an offset between simulated and observed ETa
of more than 25%.
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without irrigation in Suyker and Verma (2009).
Data points from Ati et al. (2012) represent furrow and drip

irrigated potato grown between September and January with
different fertilizer application levels. ETa from all trials in this study
are underestimated by CFTW. The model results do not show crop
water stress and therefore indicates that ETc is underestimated. ET0
is high in the beginning, but decreases towards the end of the
growing season when crop factors are higher. Therefore, the un-
derestimation is because ET0 is underestimated during the winter
months or the Kc in the early month of the growing season is too
low, possibly linked to an underestimation of soil wetting fraction.
In addition, different levels of fertilization - and thus different crop
growth curves per crop - are currently not implemented in CFTW
which assumes optimal nutrient levels for all crops. Hence the
model results show no variance in ETa associated with different
fertilization rates. The strong offset of the Ati et al. (2012) ETa es-
timates results in a mean relative error of �17% for all potato
studies.

For Jia et al. (2014) the reasons are more complex and the un-
derestimation of ETa cannot be clearly attributed. The initial crop
factor is very low, which leads to a low water use in the beginning,
which again triggers great deep-percolation. Moreover, the results
show high crop water stress in April and June at the end of the
growing season.

The observed total WFPs of all studies range between
0.083m3 kg�1 and 8.686m3 kg�1 (Fig. 6). The WFPs above
1.500m3 kg�1 belong to trials with little irrigation or precipitation
causing low yields and thus often served as control trials. Only four
trials of Corbeels et al. (1998) and Igbadun et al. (2008) exceed a
total WFP of over 1.500m3 kg�1. The underestimation of potato ETa
also leads to an underestimation of potato water footprints.
Nevertheless, CFTW accounts for 92.6%e99.1% of the variance of all
WFPs for the specific crop (potato: R2 ¼ 0.926, p-value< 0.05;
wheat: R2 ¼ 0.991, p-value< 0.05).

In contrast, WFPs estimated based on the WFN state level are
muchmore diverse. Using CFTWwith limited user input and global
datasets reduces the RMSE of the WFP by over 70% for all crops in
comparison of WFN estimates (Table 4, Fig. 6). This shows the dif-
ferences between local WFPs and average state level WFPs pre-
sented byWFN, but also the benefit of using field level yield data as
well as more local climate, soil and management information.
Therefore, WFN state level WFP data cannot be used as approxi-
mation for individual fields within one state as it does not reveal
the variability of WFPs on state and even individual field level.



Fig. 6. Comparison of state level total WFP estimates byWFN for 1996 to 2005 and CFTW total WFPs to observed total WFPs of the 16 case studies. Two points are removed from the
wheat plot where observed water footprints exceed 3.0m3 kg�1, to enhance visibility of the remaining studies.

Table 4
The table displays the RMSE for estimated WFPs using CFTW or WFN state level
values representative for 1996 to 2005.

Crop RMSE for WFN WFP [m3 kg�1] RMSE for CFTW [m3 kg�1]

potato 0.174 0.048
wheat 1.442 0.404
maize 0.555 0.154
all 0.941 0.264
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4.2. Usability trials

The tool was tested with users via presentations to candidate
user groups in the form of a webinar, a workshop and individual
trials organized by the CFA between February and June 2017. Here
the importance of science based methods for voluntary
assessments in the agricultural and cooperate sector was empha-
sized in order to assess, improve and communicate the sustain-
ability of crop production as well as global supply chains. During
these trials, it was recognized how CFTW has provided a practical
tool for the assessment of agricultural water use and increased the
usability of FAO56 by, (i), limiting the user input to basic questions
that constitute common farmer knowledge and, (ii), integrating a
climate, soil and crop database. Users, however, acknowledged that
the use of gridded climate data, default crop parameters and soil
data may not capture the spatial or crop specific variability in those
domains (see Appendix A). Therefore, results should be interpreted
with caution when these values do not well represent local con-
ditions. In addition, the tool tried to minimize user input by inte-
grating the GHG and water user interface. While this reduced the
redundancy of questions in CFT significantly, it may also lead to
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questions when the input is not explicitly allocated to the GHG or
water metrics. Therefore, defining user pathways depending on
user interest is desirable and should be considered in further
developments.

CFTW enables users to assess their green and blue WFP
considering local meteorology, soil and harvest, capturing different
growing seasons and the annual variability of the weather.
Although Hoekstra et al. (2011) also addresses farmers and gives
recommendations on how to reduce the WFP of crop production,
uptake by farmers has been low, whereas a focus on irrigation re-
quirements, water productivity and crop water stress appears to
have greater meaning with farmers.

The discussion with members of the CFA also revealed differ-
ence of opinion and uncertainty on how to best assess the envi-
ronmental impact of water consumption and how to define
reduction targets. While some showed a strong interest in theWFP,
others target a reduction of abstracted blue water, an increase in
irrigation efficiency or avoiding water scarcity and risk. The dis-
cussion observed here is also present in the scientific literature
where recommendations vary to the point of the reduction of the
WFP to an approach that focuses on water scarcity (Boulay et al.,
2015; Hoekstra et al., 2011; ISO, 2014; Ridoutt and Pfister, 2010).

4.3. Limitations and possible improvements

In this study and in trialling of the tool we have identified
several specific areas where there is scope for further development
and opportunities for improvement. This could mean an improve-
ment of default data provided in the tool, enhancing the model
itself or an advancement of the user interface.

Pereira et al. (2015) and Allen et al. (1998) emphasize the
importance of accurate measurements of meteorological variables
to reduce the uncertainty for ET0. CFTW uses global gridded data to
determine ETa based on FAO56 and is therefore taking a similar
approach as Siebert and D€oll (2010) and Mekonnen and Hoekstra
(2011). The average climate in the grid cell may not represent the
meteorology at the field location for various reasons, as for
example, topography. In particular ERA Interim precipitation data is
linked to uncertainties due to the spatial variability of rainfall.
Furthermore, some studies show an underestimation of ERA
Interim precipitation (de Leeuw et al., 2015; Szczypta et al., 2011),
similar to what was observed for the trials of Suyker and Verma
(2009). Still, a refined analysis of using local meteorological data
versus ERA Interim data for CFTW using 10 eddy covariance mea-
surement sites show only a small improvement when using local
data (see Appendix A). Furthermore, the outline of the 0.75

�
grid

cell that is used under “Farm settings” enables the user to assess
how representative weather is across this area based on own local
knowledge. Still, future versions of the model may consider using
meteorological data with a higher spatial resolutions, such as the
newly released ERA5 dataset (ECMWF, 2018) or allow for the
replacement of individual climate variables with local meteoro-
logical data if available.

The tool might also make better use of the data available in the
HWSD, by displaying the different soil textures available in the
HWSD for a given location and offering the user to select the most
representative soil from these options rather than defaulting to the
most abundant soil texture as is done currently. Moreover, the
quality of the HWSD varies strongly across different world regions
and countries (Avellan et al., 2012; FAO, 2012). It is possible that
alternatives such as the newly available high resolution soil map
SOLIDGRIDS could replace HWSD in the future (Hengl et al., 2017)
and address this known issue. Nevertheless, the use of local soil
data whenever available is likely to be the most reliable option.

Furthermore, default crop coefficients, rooting depth, crop
height and LAI are currently set internally and not by the user. Since
global averages may not be representative at farm level (Allen et al.,
1998), we propose to improve the on-line tool in the future to
enable users to overwrite this crop data where desirable. Still,
CFTW is different to most other models as it determines initial Kc

based on wetting frequency and soil texture and adjusts the
remaining Kcs automatically and therefore eliminates a great
source of error present in most tools (Pereira et al., 2015).

The model itself can be improved by enhancing current model
components or increasing its scope. For example, the water balance
estimated in CFTW is similar to CROPWAT (Smith, 1992) and does
not account for any impermeable layers or capillary rise from
groundwater layers. Raes et al. (2012) have overcome this limita-
tion in AquaCrop by enhancing the input requirements for the tool.
In addition, the pedo-transfer function used for determining water
holding capacity for the soil profile in CFTW was calibrated for top
soils and is applied here for the full rooting depth. This could be
replaced by a different pedo-transfer function to reduce un-
certainties for water holding capacity.

CFTW represents water stress and assumes that crop growth is
not limited by other factors as nutrients, temperature or salt stress.
Inclusion of these features could increase the scope of the tool as
has also been done in AquaCrop (Raes et al., 2012). In addition,
more management interventions such as mulching, contour
ploughing, fertilizing or further irrigation methods to reduce runoff
and decrease evaporation as well as transpiration might be
included. Future developments can show the benefits of such
practices on water management and therefore would give greater
relevance to the tool and encourage adoption and reporting of
these practices. Mulching, for example, is estimated to reduce soil
evaporation by 50% per area covered (Allen et al., 1998; Chukalla
et al., 2015).

Currently the tool only reflects the water use element of the
WFP estimation while yield is defined by the user. Coupling CFTW
with a crop growth model could help to show the co-benefits of
different management for water and yield and therefore show the
full reduction potential of the WFP.

Finally, the WFP has been criticised in the past for not being
easily comparable and not reflecting local water scarcity (Ridoutt
and Pfister, 2010). In practice it is more important to manage wa-
ter efficiently when a river basin suffers fromwater scarcity and the
WFP does not convey the importance of this context. The tool (and
any reporting of WFP) would therefore benefit from provision of
information on local water scarcity or availability.

These examples show how existing model components can be
further developed in the future. Most of the changes discussed
above, would imply an adjustment to the user interface and higher
user input. Thus, all changes have to be thoroughly evaluated based
on the added accuracy and functionality, while remaining a user
friendly tool, which is easy to use. This can only be done and
decided in close collaboration with targeted user groups, as con-
ducted so far. This also holds true for more precise user input for
already existing input parameters, as for example, irrigation
scheduling and initial soil moisture.

While we show that CFTW provides reliable estimates based on
16 field studies, further testing is essential to consider awider range
of management interventions, climates, crops and soils. The esti-
mation and communication of uncertainties within the tool re-
mains an important task in terms of model evaluation and usability.
Using various environmental conditions and management during
testing showed that CFTW is sensitive to those changes and that
ERA Interim is sufficiently accurate. A sensitivity assessment of
CFTW considering the uncertainties for crop, soil and climate input
using information from additional field sites is foreseen.
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5. Conclusion

The CFTW is to our knowledge the first on-line water tool for
farmers, suppliers, NGOs and consumer goods producers that
provides WFP results and irrigation requirements using gridded
climate data, global soil maps and local management information.
It overcomes some of the main constraints with current models as
it provides default input data where users find provision of such
data difficult, uses terminology known to the farmer and has an on-
line user interface. The strong collaboration with the Cool Farm
Alliance helped us to shape the tool based on demand and enabled
us to make scientific models and datasets available to end-users.

The validation of CFTW using 16 studies for potato, wheat and
maize in 12 different countries with a total of 106 observations
showed that the CFTW was effective in modelling ETa and total
WFP and is able to indicate the correct direction of change in water
use for management interventions or location changes for most
studies investigated.

In contrast, the long-term and spatially averaged results pro-
vided by the WFN were not able to represent local conditions. By
that, it is shown how CFTW helps crop producers to identify
adaptation strategies relevant for the specific local conditions.
Finally, by integrating this water assessment tool with the already
existing on-line CFT developed for the assessment of green-house
gases emissions (Hillier et al., 2011) and the biodiversity module
(CFA, 2016), it provides a unique platform to engage farmers and
users towards a holistic assessment of the agricultural sector.
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Appendix

A. Testing model performance based on climate data input

CFTW was further tested for climate data uncertainty. The
model is based on the global climate dataset ERA Interim, which
has been evaluated independently in several studies (Gao, 2013;
Thiemig et al., 2012; Zhang et al., 2016). This section provides an
analysis of model results based on field data input at crop fields and
ERA Interim input.

Field data was used from 10 eddy covariance measurement sites
of the AmeriFlux network and European Fluxes Database Cluster
using local information on daily maximum and minimum tem-
perature, net radiation, wind speed, atmospheric pressure and
precipitation if available (Table A1). This data was used as it pro-
vides field relevant meteorological data, agronomic information as
well as observed ETa. As field data contained gaps we allowed for an
up to 10% gap filling using ERA Interim data, except for atmospheric
pressure where we used ERA Interim if this was not observed at the
eddy covariance site. Furthermore, CFTW required dewpoint tem-
perature, which was not observed at any of the sites and therefore
was replaced with daily minimum temperature as recommend by
FAO56 (Allen et al., 1998). Observed ETa was gap filled using linear
interpolation and only for a maximum of 5% of the growing season.

Our comparison based on 10 eddy covariance sites and a total of
60 individual observations indicated that CFTW performs only
slightly better when using local meteorological input (R2 ¼ 0.59,
RMSE¼ 97mm) compared to ERA Interim input (R2 ¼ 0.53,
RMSE¼ 100mm) (Fig. A1). Furthermore, CFTW ETa results driven
by local and global climate data showed a very good agreement (R2

¼ 0.78) (Fig. A2). However, we also found that CFTW results based
on ERA Interim were on average 12.5% lower compared to model
runs based on local data. This was driven by 3 sites (US-Ne1, US-Ne2
and US-Ne3) located in the same ERA Interim grid cell, due to an
average underestimation of precipitation of 41.3%e56.7% (see also
4.1). The bias was significantly reduced (�4.9%) when these sites
were excluded from the analysis.

Therefore, we conclude that ERA Interim is sufficiently accurate
for the purpose of CFTW, but may benefit from improved precipi-
tation input.
g model performance based on climate input data. Sites were used for minimum and
drive CFTW.

country reference

Switzerland Dietiker et al. (2010) and Emmel et al. (2018)
Germany Prescher et al. (2010)
France Loubet et al. (2011)
Italy Vitale et al. (2007, 2009)
USA Fischer et al. (2007)
USA Meyers and Hollinger (2004) and Wilson and Meyers (2007)
USA Matamala et al. (2008)
USA Suyker and Verma (2009)
USA Suyker and Verma (2009)
USA Suyker and Verma (2009)



Fig. A1. CFTW model results for ETa based on local (FLUX data) and global (ERA
Interim) climate data input compared to observations based on eddy covariance
measurements.

Fig. A2. CFTW model results for ETa based on local (FLUX data) and global (ERA
Interim) climate data input.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jclepro.2018.09.160.
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