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Abstract The recognition of transient motion in terrestrial continuous Global Positioning System (GPS)
time series implies the knowledge of certain time functions that we assume to be ever present in the time
series. By assuming that the permanent time functions are the long-term secular velocity of the Earth and the
seasonal oscillations, we define the total remaining signal as transient motion. Here we adopt the
multitransient as a versatile function for modeling transient motion over a range of time scales. We define the
multitransient as the sum of two or more transient decaying functions with different characteristic time scales
and identical onset times. We then demonstrate the greedy approach to fitting the time series by using a
minimum number of multitransients (sparse functions) in addition to the permanent time functions in a
linear regression. The Greedy Automatic Signal Decomposition algorithm decomposes the signal into three
parts: (1) background seasonal motion, (2) secular and transient motion, and (3) a residual (noise). We
describe the greedy algorithm with synthetic examples before demonstrating its application to time series of
daily GPS solutions. The implementation of the multitransient allows for a more realistic plate-trajectory
model, whereby a full range of transient signal time scales, from short-duration slow slip to longer-duration
processes such as postseismic slab accelerations or postseismic decay, can all be estimated with the same
function. Since Greedy Automatic Signal Decomposition algorithm automatically estimates trend, its
application to a GPS network allows for the common mode filter to be applied seamlessly.

Plain Language Summary Over the past few decades, earthquake scientists have been increasing
the deployment of continuous GPS stations. This is because high precision time series of surface motions are
great for testing the hypotheses of earthquake physics. There is now a wealth of stations (over 15,000
worldwide) but unfortunately no quick way of separating the expected, background plate motion from
the unexpected, unusual transient signal. In this study, we present a method aimed at solving this very
problem. Adapting an algorithm used in the fields of statistics and electrical engineering called "Greedy
Optimization" we show how, by assuming that transient signals are rare occurrences in the time series, it is
possible to separate them from the expected signals in a computationally efficient way. We believe that
this method, if developed to run even faster (for example with parallelization), will pave the way for rapid
analysis of unexpected signals on a spatial scale that has previously been impossible. This opens the door to
many new exciting discoveries into how the earth is moving in response to plate-tectonics and weather.
Furthermore, we conclude that thismethod has the potential to be applied to awide variety of time series data.

1. Introduction

The proliferation of continuous Global Positioning System (cGPS) stations deployed for tectonic monitoring
has created a situation where we now have the challenge of uncovering the extent of transient signals in the
time series. Such extractions of the suspected transient signal typically entail the visual inspection of the time
series after removing or otherwise accounting for seasonal and secular behavior. This workflow is slow and
prone to human error when the data sets are very large. Therefore, considerable research has been geared
toward automatically separating transient signals of interest: In these studies, the cGPS signal has been
decomposed or filtered by a variety of approaches such as singular value decomposition (e.g., principal
component analysis/independent component analysis, PCA/ICA; Gualandi et al., 2016; Kositsky & Avouac,
2009), multichannel singular spectrum analysis (Walwer et al., 2016), linear regression (Riel et al., 2014), and
Kalman filtering of state vectors (e.g., the network inversion filter; Segall & Matthews, 1997). For regression,
onset times of sudden displacements (due to earthquakes, antenna changes, or reference frame shifts) are
typically fed into the algorithm either by invoking jump times for Heaviside steps or jumps in the time
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series or by splitting the time series analysis before and after large, nearly instantaneous displacements or
jumps. Such a priori specification of steps in the data is relatively straightforward for many artificial displace-
ments (e.g., antenna changes) but is more difficult in the event of an earthquake since the cutoff distances
and magnitudes must be predefined, resulting in steps being invoked where none exist in the time series,
and vice versa. The onset of a decay function must also be assigned for larger seismic events to account
for the decaying shape of the postseismic signal. For very large events the origin time is well known, but smal-
ler, local earthquakes can also produce transients, and these events may be harder to detect. Such unex-
pected transients, along with episodic tremor and slip episodes, are individually emergent phenomena
and can be identified with detection algorithms applied to networks where they are known or suspected
to exist. Typically, the detection of these emergent transients involves the indentification of a spatially coher-
ent anomaly (e.g., Bartlow et al., 2011). Of the various approaches to estimating or retrieving transient beha-
vior, linear regression (e.g., Riel et al., 2014) is the only one that implies an expected signal. The expected
background signal, in this case, is the extended trajectory model (ETM) of Bevis and Brown (2014), which
we reformulate here to use exponential rather than logarithmic transients and also to eliminate the explicit
use of a reference time:

x tð Þ ¼ mt þ d ∑
nk

k¼1
sk sin ωktð Þ þ ck cos ωktð Þ½ � þ ∑

nj

j¼1
bjH t � tj

� �þ ∑
ni

i¼1
ai 1� e � t�tið ÞlT ið Þ
� �

þ ξ tð Þ (1)

where displacement, x, as a function of time, t, is described using a series of secular, seasonal, step, and decay
basis functions. We note that, in our experience, the results obtained by invoking equal numbers of
exponential or logarithmic transients are so similar that in most contexts it makes little difference which form
is chosen. But in either case, the individual transient functions are evaluated only for t > ti. We also note that
equation (1) is slightly less general than the ETM of Bevis and Brown (2014) since we assume that the
displacement trend component of motion is a constant velocity trend, that is, linear in time, rather than poly-
nomial in time (which would allow, e.g., a quadratic trend implying a constant and persistent acceleration).

The secular velocity is represented by gradientm and constant d. The seasonal oscillations are represented by
coefficients sk and ck where the number of frequencies, nk, is normally two, and ω1 and ω2 are angular
frequencies associated with annual and semiannual periods. H represents the Heaviside functions with
coefficients bj at nj number of jump times tj specified a priori. Some of these jumps will have decays
associated with them, with coefficients ai and decay constants Ti at ni onset locations, and with ti being
the decay onset time. ξ (t) is the noise in the data and is here assumed to be normally distributed. In Riel
et al. (2014), the unexpected (transient) signal is modeled as a series of B-splines in linear combination with
equation (1) and is retrieved by minimizing the number of transient functions that, in addition to the
expected functions, solve the optimization problem:

minimize dk � pk2 þ λa Ck a 2k þ λbkCb 1k
� �

(2)

where vectors d and p contain the data and model predictions, vectors Ca and Cb contain the model
coefficients for the permanent and sparse functions, and λa and λb are the regularization weights. The second
and third terms in equation (2) are the regularization of the inversion, and therefore, the B-spline model
parameters are regularized in the L1 sense. L1 regularization promotes sparsity in the solution vector (Cb),
which means that the weighting of the L1 regularization determines the number of nonzero coefficients in
the Cb vector.

In this study we approximate the linear regression approach of Riel et al. (2014) but with a different form of
the transient (unexpected) time functions in the time series and with a greedy approximation to the L1
regularized optimization. It will be shown that the time series can be fit with permanent functions of seasonal
and secular in addition to as few transient functions as possible. Importantly, we will show that there is no
need to assume the onset of any steps or decays in the time series. Accordingly, we define the transient signal
as being everything other than the seasonal, secular, and noise, therefore modifying the ETM of equation (1)
to the following form:

x tð Þ ¼ mt þ d þ ∑
nk

k¼1
sk sin ωktð Þ þ ck cos ωktð Þ½ � þ ∑

nj

j¼1
bjH t � tj

� �þ ∑
nr

r¼1
∑
ni

i¼1
Ai 1� e � t�trð ÞlT ið Þ
� �h i

þ ξ tð Þ (3)

where nr + nj transient functions model the steps, decays, and other transient signal shapes. Transient signal
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might be composed of earthquake or equipment related sudden displace-
ments, slow slip, postseismic decay, or other noise such as anomalous
atmospheric conditions or precipitation loading. In the formulation of
equation (3), the step-like displacements are modeled with the Heaviside
function and the more gradual transients with the multitransient. We
define a multitransient as the sum of two or more simple exponential
decay functions with the same onset time but different characteristic delay
times. Weiss et al. (2016) and Loveless and Meade (2016) have used this
exponential form of the multitransient to improve their ability to estimate
interseismic velocities in Bolivia and Japan, respectively. In this study we
have specifically chosen exponential functions because a sum of exponen-
tials reaches an asymptotic value, a feature that allows for finite motions of
various transient signals to be approximated. Here the multitransient with
coefficients, Ai, is a linear combination of ni exponential decays with iden-
tical starting time, tr, and a predetermined selection of ni decay constants
Ti. Figure 1 shows how individual exponential functions combine to pro-
duce particular multitransients. A constant sign for the coefficients, Ai, pro-
duces a decay similar to that of a single exponential decay function,
whereas variation in the signs can produce a decaying function with rever-
sals in sense of motion. The ability of the multitransient to produce both
smoothly and bumpily decaying time series means that it is a versatile
enough function for approximating a variety of transient signal shapes
and time scales. In the synthetic examples it will be demonstrated that
by combining just a couple of these multitransients in series, it is possible
to approximate a wide variety of signal shapes. We will first introduce the
Greedy Automatic Signal Decomposition algorithm (GrAtSiD) that is
designed to recover a minimum number of multitransient functions that
fit the time series in linear combination with the permanent time func-
tions. Results will then be shown for the synthetic case and real data exam-
ples on individual cGPS stations and application to a Global Navigation
Satellite System network.

2. Method
2.1. The Greedy Algorithm

L1 regularization, often called the Lasso or sparse regularization, typically
requires a large dictionary of sparse functions through which the inversion
procedure will search until it converges on a solution that requires a

minimal number of these functions (Hastie et al., 2015). Such L1 regularization to the optimization problem
is significantly slower than L2 regularization, and therefore, the sparse dictionaries should be constructed
conservatively if solving with convex optimization approaches (e.g., Boyd & Vandenberghe, 2004; Grant
et al., 2008). When the number of required sparse functions in the model space exceeds reasonable compu-
tational limitations, globally optimal sparse solutions can be approximated with iterative methods such as
coordinate descent (e.g., Tseng, 2001), orthogonal matching pursuit (e.g., Cai & Wang, 2011), or greedy algo-
rithms (see Needell et al., 2008). In the simplest terms, a greedy algorithm works by iteratively selecting a
sparse basis function from the sparse dictionary that can best fit the residual of the current iteration. This pro-
cedure requires many computationally cheap intermediate inversions or correlations to be performed in each
iteration, as the remaining sparse functions are first sifted through, before the best new candidate sparse
functions from this initial stage are tested alongside existing sparse and permanent basis functions in the
regression of the full data. Such greedy algorithms can be designed to satisfactorily converge given an appro-
priate rejection criteria for the candidate sparse basis functions: After some number of iterations, of the
remaining sparse basis functions that have not already been incorporated into the regression of the full data,
none are able to improve the fit of the regression above a certain predefined threshold and at this point the
optimization has converged.

Figure 1. (a) Colored exponential decay functions with time constants and
coefficients indicated by the legend. Black function shows the summation
of these three original functions. All coefficients have the same sign. (b) Same
as (a) except that the coefficients have different signs, therefore producing
reversals of motion in the decaying time series.
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In our application (additional details with figures andmovies included in the supporting information), at each
iteration of the algorithm we fit the residual with many different combinations of two transient onsets (TOs)
to find two new candidate TOs. The two candidate TOs are the combination that produce the best fit to the
current residual. In the forthcoming examples, each TO is either a matrix of three sparse basis functions
representing the multitransient or a Heaviside function and therefore the design matrices for the tested
combinations of two TOs has four or six columns at the length of the data vector.

Note that the number and values of decay constants must be predefined as hyperparameters. In all following
examples, we use the values 103, 102, and 101 as decay constants since they allow for the estimation of a
variety of transient shapes. The matrix that horizontally concatenates all the possible TOs is called the
dictionary of sparse functions. The initial residual is found by fitting a straight line (secular basis function)
to the original time series and taking the difference. Subsequent residuals depend on which TOs are deemed
necessary after a combinatorial exploration of the current candidate TOs alongside the permanent (seasonal
and secular) basis functions.

Each iteration of the Greedy algorithm will perform thousands of very fast inversions. These inversions take
the form:

m ¼ GTGþ I:ε2
� ��1

GTd (4)

where m is the vector of coefficients for the particular inversion, G represents the basis functions, and d
represents the signal currently being fit. The Tikhonov damping (identity matrix I) is weighted by the same
amount, ε2, in all inversions. Therefore, our greedy algorithm uses L2 regularization despite being designed
to mimic the L1 regularization of sparse basis functions. The procedure for rejecting candidate TOs aims to
balance the improvement of fit to the data with minimizing the number of TOs. Therefore, on each iteration,
we select the smallest list of TOs that improves the fit above a certain predefined threshold and reject the TOs
not in that list. If no list of TOs can exceed this threshold, the two newest candidate TOs are rejected. Rejected
candidate TOs are placed into a quarantine that prevents them being searched for in the subsequent
iteration. If new TOs are added to the solution, a swap-out test is performed whereby we swap the type of
transient (either Heaviside or Multitransient) within a predefined window spanning before and after each
TO. The swap-out stage continues until neither swapping the transient type nor adjusting the onset time
can improve the fit of the regression. An iteration is completed following either the rejection of both new
candidate TOs or the completion of the swap-out phase. Convergence is decided when the list of TOs at
the end of each iteration is the same over a predefined number of iterations (e.g., 5). Before starting the next
iteration, the updated residual is calculated as the difference between the full data and the prediction of the
permanent and accepted sparse basis functions. Gaussian-distributed random noise with a standard
deviation of the updated residual is added to the residual before the next iteration. Both addition of random
noise and the quarantining of rejected basis functions are measures taken to mitigate convergence to local
minima. After convergence, the algorithm can be repeated from the starting residual, or alternatively, a
fraction of the converged list of TOs can be randomly removed and the starting residual calculated from that
point. After a predefined number of convergences, the extracted signals can be analyzed together to gauge a
statistical measure of uncertainty in the transient signal. In the following synthetic and data examples we run
the algorithm for 10 convergences. After each convergence we remove half of the TOs at random. For each
converged extracted transient signal, we can define its similarity to the other extracted signals using the
measure of similarity, S:

Si ¼ 1

∑
n

j¼1
Mk i �Mj 2k

i≠jð Þ (5)

where the similarity score for each converged series, i, is the sum of norms of the difference in n transients after
transient time series Mj has been tilted and offset to minimize its difference to transient time series Mi. In the
synthetic examples shown in this study, we display the transient with highest similarity to the others.

The hyperparameters of the algorithm include the magnitude of the Tikhonov damping (ε2 in equation (4)),
decay constants and number of transients in eachmultitransient, misfit improvement threshold for accepting
new TOs, window size of the swap-out stage, and the number of convergences. A full list of hyperparameters
and their effect on the algorithm is listed in the supporting information. In choosing hyperparameters, one
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must consider available computational resources, expected shape of the transient signal, and the balance
between overfitting and underfitting the data.

In both real and synthetic applications of this algorithm, the model parameter for the secular term can
converge to a quite unrealistic value. This is because the long wavelength of the secular term can trade off
with the transient signal, especially if the solution is supported by a TO early on in the time series. This
problem is something that can be expected since some GPS time series, upon visual inspection, seem to have
a nonconstant linear velocity. Furthermore, such changes in apparent secular velocity have been shown in
recent literature (Heki & Mitsui, 2013; Loveless & Meade, 2016; Melnick et al., 2017). Therefore, we can think
of GrAtSiD as decomposing the signal into three parts: (1) background (steady state) annual and semiannual
oscillations, (2) secular and transient motion represented by the secular, Heavisides, and multitransient terms
of the regression, and (3) the remaining residual (noise). Accordingly, by subtracting the residual from the
original time series, we are left with an estimation of trend.

3. Results
3.1. Synthetic Case

Figure 2 shows a synthetic cGPS time series consisting of secular, seasonal, and transient (unexpected)
motions. This particular synthetic signal is similar to what is observed at active plate boundaries, where
earthquakes, decays, and other transient motions are thought to accompany the background secular and
seasonal motions. The unexpected signals in this case are represented by some step (Heaviside), decay,
arctangent, and Gaussian functions (plotted in isolation in Figure 3). We additionally consider unexpected
seasonal motions that arise in nature due to anomalous climactic effects by means of a stochastic
contribution to the seasonal (see equation (12) of Davis et al., 2012). Finally, we add Gaussian distributed
random noise to the combined signal. Figure 3 shows the extracted transient and seasonal signals and the
overall fit of the linear regression to the synthetic data for the transient extraction with highest similarity

Figure 2. The top panel shows the synthetic signal complete with randomGaussian distributed noise. The signal is the sum
of a linear secular motion, two steps, arctangent functions, Gaussian functions, stochastic seasonal oscillations, and
Gaussian distributed noise. The lower panel shows the background and stochastic seasonal oscillations and the Gaussian
distributed noise. With the Greedy Automatic Signal Decomposition algorithm, we aim to recover the background seasonal
and Gaussian noise to leave behind the secular and transient motions.
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score out of 15 converged transient signals. Note that, in this example, the GrAtSiD algorithm is run blind—it
is not given any information about the onset time of steps. In Figure 3 we see a decent recovery of both the
input background seasonal and transient signals as well as the successful discrimination between sudden
and more gradual transients. In recovering the steady state seasonal in the presence of seasonal variability,
the algorithm is effectively seeing the anomalous seasonal motion as part of the transient motion that can
be fit with the multitransient functions. For most gradual transient shapes, such as the one occurring at
t = 4 years, we see that typically one TO or two TOs in series are able to approximate the signal. Figure 4
shows the residual for each iteration along with the best new candidate TOs. We see that the transients
tend to be identified in order of magnitude, with subsequent TOs being less likely to be retained in the
converged upon list of TOs (the algorithm is fully illustrated in supporting information section S2 and with
Movies S1–S3). The performance of the algorithm in the presence of a perfectly steady state seasonal
signal can be found in the supporting information. The supporting information contains two more
examples of synthetic transient signal recovery (supporting information Figures S1–S11).
3.1.1. Real Data—Single Station Approach
We also applied the greedy algorithm to daily solutions of cGPS for two real stations EMAT and GISB. EMAT
was processed as outlined in Melnick et al. (2017), while GISB was processed according to the Nevada
Geodetic Lab procedures (see http://geodesy.unr.edu/gps/ngl.acn.txt). Additionally, EMAT was filtered for
common mode noise, as outlined in the next section (stations used for common mode filtering shown in
supporting information Figure S14). Figure 5 shows the data and estimated signals after detrending. Again,
we show the model corresponding to the transient signal with the highest similarity score out of 10
converged transient signals. The algorithm succeeds in extracting the transient signal spotted by human

Figure 3. (top) The synthetic data and the fit from GrAtSiD are shown along with the Heaviside andmultitransient onset times. This panel demonstrates how GrAtSiD
functions as a trend estimator. (middle) Input and extracted synthetic seasonal signals. (bottom) The input synthetic secular and transient signal and the GrAtSiD fit.
The extracted transient has been detrended and shifted to minimize residual to the known input transient. GrAtSiD = Greedy Automatic Signal Decomposition
algorithm.
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eye in the published cases of slow slip (GISB; Wallace et al., 2016) and long-term velocity changes (EMAT;
Melnick et al., 2017). Since it is a regression-based approach, GrAtSiD is easily able to handle missing data
in the time series. We suggest only the removal of outliers from the time series before running GrAtSiD,
since other denoising measures such as median filtering can smooth over transients in certain scenarios.
3.1.2. Real Data—Common Mode Noise Reduction With a Network Approach
Following convergence, GrAtSiD has decomposed the data into three parts: (1) the background seasonal
signal, (2) the sum of secular and transient functions, and (3) the remaining residual (i.e., the signal minus
parts 1 and 2). Therefore, the remaining residual contains the true noise in addition apparent noise arising
from the underfitting or overfitting of the regression. Wdowinski et al. (1997) demonstrated how the noise
in daily time series of cGPS networks is correlated between stations and can therefore be diminished by
averaging and subtracting. This common mode filter (CMF) approach only works when one has a good
estimate on the background trend in the time series. Rather conveniently, GrAtSiD automatically recovers this
background trend (sum of parts one and two), and therefore, the CMF can be easily applied to time series in a
network following the application of GrAtSiD. Figure 6 shows time series at a station in the GEONET cGPS
network in Japan (see supporting information for network map and location of the time series shown).
GrAtSiD was applied blind on all time series of daily F3 cGPS solutions, and the median of the residuals for
each day was removed from the time series. These results demonstrate how GrAtSiD allows for a very
effective noise reduction via the CMF.

The supporting information includes a movie (Movie S4) for the background seasonal signal of the Japanese
network extracted by running GrAtSiD on the common mode filtered solutions. With a station-by-station
approach to the decomposition, we recover a fairly spatiotemporally coherent background seasonal signal,
even with a blind application of the algorithm and one convergence per time series. Indeed, GrAtSiD could
be modified to enforce some spatial coherency (e.g., as shown in Riel et al., 2014). Alternatively, spatially

Figure 4. Descending the left column shows the combination of two TOs that best fits the current residual for consecutive iterations. Descending the right column
shows the estimation of the synthetic transient signal for consecutive iterations. TO = transient onset.
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coherent transient motions might be found by applying PCA/ICA (Gualandi et al., 2016; Kositsky & Avouac,
2009) to the data minus the noise extracted by GrAtSiD (i.e., applying PCA/ICA on the trend of the data as
estimated by GrAtSiD). Our choice, in this study, to solve for transient functions on a station-by-station
basis, allows for very local transients to manifest themselves in the model. Such local transients might be
controlled by site specific conditions such as soil/monument instability (see Williams et al., 2004) or

Figure 5. Top panel shows the data (black) for the manually detrended east component of station EMAT in Chile (see map
in supporting information Figure S14 for location). The GrAtSiD model is shown including the secular, transient functions
and background seasonal (green) and without the seasonal (red). We can see that GrAtSiD is able to model the change
in interseismic velocity that this station undergoes (see Melnick et al., 2017). The bottom panel shows the east component
of station GISB in New Zealand (also presented in Wallace et al., 2016). Colors are the same as panel above. We see
that GrAtSiD is able to automatically model the slow-slip-related motions. Note, that both examples are for GrAtSiD run
blind (without steps in the data being predefined). GrAtSiD = Greedy Automatic Signal Decomposition algorithm.

Figure 6. Top panel shows the daily continuous time series for station Ojiya in the Japanese network (location shown on
Figure S15 in the supporting information). Processed F3 solution shown in light blue. Time series after first common mode
filter shown in black. Red line is the fit to secular, transient, and background seasonal motion on the common mode filtered
data (black). Bottom panel shows the original time series (same as light blue in top panel) and red shows the removal of
the commonmode noise and seasonal from GrAtSiD run on the commonmode filtered data. Note that GrAtSiD was run blind
to any known steps in the data. GrAtSiD = Greedy Automatic Signal Decomposition algorithm; CMF = common mode filter.
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human-controlled depletion of a nearby water resource. By enforcing spatial coherency, local transients
would increasingly be mapped into noise with increasing weight and spatial extent of the enforced
coherency. The choice of an appropriate spatial extent and weighing of coherency would depend on the
expected spatial wavelength of transient signals and the spatial density of measurements.

4. Discussion

An ongoing aim of the tectonic GPS research community is to be able to both extract and detect transient
motion in the GPS (see Lohman & Murray, 2013). Algorithmic transient detection aims to identify periods
in time during which there occurs an acceleration and sustained velocity that is statistically distinct from
the background (expected) velocity (e.g., Crowell et al., 2016). Accordingly, we do not suggest that GrAtSiD
is detecting transient motion. Rather, more specifically, it is extracting transient motion, whereby the very
low frequency component of the transient signal trades off heavily with the secular velocity. Given this
trade-off, we suggest that the secular signal can be estimated to leave behind a relative transient, R:

R tð Þ ¼ d tð Þ � pB tð Þ � s tð Þ � ξ tð Þ (6)

where t is time, d is the original time series, pB is the prediction from a simple background tectonic velocity
model, and s and ξ are the seasonal and noise isolated from the GrAtSiD algorithm. Such a background
tectonic velocity model might be a backslip prediction (e.g., Savage, 1983) based on a uniform locking
pattern across the largest known nearby faults with a velocity estimated from plate velocity models.

From time series presented in this paper it is clear that the ability to extract a transient signal is dependent on
the noise level, the magnitude of the transient, and the shape of its function. This result is obvious yet is not
quantified within this study. Supporting information Figures S6–S11 show the full suites of transient signals
extracted upon each convergence for the synthetic examples (Figure 3 and S1–S5). Supporting information

Figure 7. Top panel: Black time series shows themedian of residuals following the first GrAtSiD application to the Japanese
continuous Global Positioning System network. Red time series shows the median of residuals following common mode
filtering and application of GrAtSiD again. Bottom panel: Black time series shows the residual recovered from running
GrAtSiD on the synthetic time series (Figure 2). Red shows the misfit of the gratsid recovered trend (synthetic data minus
the recovered residual) to the actual trend (data minus the synthetic random noise). GrAtSiD = Greedy Automatic Signal
Decomposition algorithm; CMF = common mode filter.
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section S1 outlines a basic investigation into the uncertainty of the extracted transient signal, but this analysis
is limited by our low number of convergences (in this case 10) for each synthetic signal. Accordingly, we
suggest that future work could involve performance benchmarking of the algorithm in terms of
investigating how transient signal recovery is impacted by noise, transient signal shape, and transient
signal magnitude. Development of the code, such as parallelization, would allow for extensive
hyperparameter testing that is currently too expensive (see details in supporting information).
Furthermore, we have only shown examples of the application to one directional component of a three-
component GPS time series. The algorithm could also be readily modified so that the multitransient
functions exist in 3-D space.

Another important consideration in assessing the error of the decomposed signal is the characteristic noise
of the time series. During the synthetic testing of the algorithm, noise added to the time series was
considered to be Gaussian. Previous studies of the noise in cGPS have suggested that GPS time series contain
significant amounts of colored noise such as flicker and random walk (e.g., Dmitrieva et al., 2015; Langbein,
2008). In this study, we can compare the noise extracted from the GEONET solutions with the noise extracted
from the synthetic examples. Figure 7 shows the median noise of the east component of the GEONET
solutions as recovered from the first and second runs of GrAtSiD. The data have been common mode filtered
after the first run. We see that there is some colored noise in both solutions, but with considerably more
high-frequency component in the first residuals from the first GrAtSiD run. Similarly, Figure 7 shows the final
noise recovered from running GrAtSiD on the synthetic data (time series in Figures 2 and 3) and the misfit of
the sum of secular and transient functions to the true secular and transient motions (where true transient
includes also the anomalous seasonal signal). In presenting these synthetic and real signals on the same plot
we aim to frame our understanding of noise in the data in terms of underfitting and overfitting of the data. In
the lower panel, the misfit to the true signal is showing the model’s failure to recreate the true shape of
transient motions. Similarly, the second stack of the residuals in the top panel is showing us the systematic

Figure 8. Top panel shows the power spectral densities of the black time series of Figure 7. Bottom panel shows the power
spectral densities of the red time series of Figure 7. All power spectral densities have been shifted along the y axis for clarity.
Pink and dark green represent synthetic and real data respectively. In the bottom panel, the dashed blue power spectral
density represents the synthetic misfit with Gaussian noise added (standard deviation of added white noise is 10% of the
standard deviation of the white noise in the synthetic time series). GrAtSiD = Greedy Automatic Signal Decomposition
algorithm; CMF = common mode filter.
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failure of the regression to fit the transient shapes in the data in Japan. The higher contribution of the lower
frequencies in this second residual stack is showing us that there is a transient signal in the time series that is
common to most stations in the Japanese network. Whether or not this is explained by tectonics or
processing is unclear, but such motion is systematically underfit or overfit by the regression. Figure 8 shows
the power spectral densities (PSDs) for the time series shown in Figure 7. Here we see that the first stack of the
noise in the real data has a similar PSD to the residual recovered from synthetic data with Gaussian noise. The
addition of a small amount of Gaussian noise (with standard deviation 10% of that added to the original
synthetic time series) to the truemisfit in the synthetic case results in a PSD similar to that of themedian noise
in the CMF filtered real data. In this case, adding a small amount of Gaussian noise to the true misfit is
simulating the inability of the CMF to remove all noise in the real data. Therefore, with the assumption of only
Gaussian noise in the synthetic GPS time series we are able to recreate PSDs comparable to real data
examples. This is not to say that other noise such as flicker and random walk are not present in the real data,
rather that the assumption of a Gaussian noise (implied by the application of a least squares regression) is not
too unreasonable.

As mentioned in section 1, standard regression approaches to the GPS signal separation problem often
specify functions for a list of assumed earthquake jumps and times of equipment or processing strategy
related shifts in the time series. The algorithm presented in this paper can easily be modified to include
Heaviside functions at predefined times corresponding to known shifts in the time series.

5. Conclusions

We have shown that, by using a minimum number of versatile multitransient functions, we are able to
approximate signal shapes with a range of characteristic time scales. Such signal might include very low
frequency postseismic decay, subtle subduction velocity changes, or very high frequency steps such as elastic
responses to earthquakes. By using these multitransients as sparse dictionary basis functions in a greedy
optimization algorithm, we have shown that, with a priori knowledge on the periodic wavelengths present
in the signal, we are able to successfully extract transients from realistic synthetic time series. We need not
assume any steps in the signal beforehand (e.g., from known nearby earthquakes and artificial equipment
or processing related steps). Therefore, GrAtSiD is an automatic trend estimator (e.g., Blewitt et al., 2016).
The greedy algorithm allows us to explore a vast dictionary of sparse transient functions and offers an
alternative to using L1 regularized optimization solvers.

GrAtSiD separates the signal into three components: (1) the background seasonal signal, (2) the sum of
secular and transient functions, and (3) the remaining residual. The modeled secular and transient trade
off significantly and are therefore better treated as one component of the decomposition. Transient motion
can be invoked by detrending this component according to an assumption of the constant background
tectonic activity. Such a grouping of secular and transient motions can be convenient for modeling
nonsteady state interseismic motions that are increasingly apparent in the cGPS record at multiple time
scales. We envisage future developments of the GrAtSiD such as a parallelization of the code to facilitate
faster convergences and a comprehensive investigation of hyperparameter choices. The algorithm shown
in this paper has been developed for the application to daily GPS time series but could be modified to extract
unexpected signals from nay time series where the periodicities are well known.
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