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Abstract Geodetically derived velocities from Central Asia show that Northern Afghanistan, the Tajik
Pamir, and northwestern Pakistan all move northward with comparable large velocities toward Eurasia.
Steep velocity gradients, hence high strain rates, occur only across theMain Pamir Fault zone andwith lesser
magnitude between the northernmost Hindu Kush and the south and southeast margins of the Tajik
Depression. Localized shortening is not apparent on any active India-Hindu Kush crustal boundary; hence,
crustal convergence between India and Eurasia in Central Asia is absorbed primarily on the northern and
western margins of the Pamir. This concentrated strain on the Pamir margins is consistent with one,
geometrically complex, interface between subducting Asian lithosphere and the Pamir. That interface might
curve westward such that the Hindu Kush seismic zone is a continuation of the Pamir seismic zone, or
alternatively, Hindu Kush earthquakes might occur in convectively unstable mantle lithosphere
mechanically detached from surface faults.

Plain Language Summary Using Global Positioning System (GPS) measurements of surface
velocities, we find that much of the relative motion between India and Eurasia in Central Asia is
accommodated on a single crustal boundary on the north side of the Pamir, wrapping around the eastern
and southern margins of the Tajik Depression.

1. Introduction

The Pamir-Hindu Kush region of Central Asia (Figure 1) serves as the best present-day example of ongoing
subduction of continental lithosphere. It is interpreted as a case of initiation of subduction in continental
materials (Burtman & Molnar, 1993; Hamburger et al., 1992; Jay et al., 2017; Kufner et al., 2016; Negredo
et al., 2007; Pegler & Das, 1998; Schneider et al., 2013; Sippl, Schurr, Yuan, et al., 2013), in contrast to the
more common scenario where continental lithosphere follows oceanic lithosphere into a subduction zone.
Because subduction is generally attributed to gravitational foundering of negatively buoyant intact litho-
sphere into the asthenosphere (Isacks et al., 1968), while continental lithosphere is usually thought to be less
dense than the mantle regardless of age, such subduction is unusual (McKenzie, 1969, 1977; Turcotte
et al., 1977).

Beneath the Pamir and the Hindu Kush, a seismogenic zone reaching to approximately 350-km depth (Sippl,
Schurr, Yuan, et al., 2013) has several subduction features, including crustal thrust faults (Burtman &
Molnar, 1993), localized seismicity (e.g., Pavlis & Hamburger, 1991; Prieto et al., 2012; Sippl, Schurr,
Yuan, et al., 2013), and a zone of high seismic wave speeds and low seismic attenuation extending to mantle
depths (e.g., Khalturin et al., 1977; Mellors et al., 1995; Schneider et al., 2013; Sippl, Schurr, Tympel, et al.,
2013). The distribution of earthquake hypocenters below the crust is conventionally divided into two parts,
a northeastern part beneath the Pamir and a southwestern part beneath the Hindu Kush (Figure 1), distin-
guished by the Pamir zone dipping shallowly to the south and the Hindu Kush zone dipping nearly vertically
to the north (Billington et al., 1977; Chatelain et al., 1980; Roecker, 1982; Roecker et al., 1980; Sippl, Schurr,
Yuan, et al., 2013), with the two separated by a gap in hypocenters at depth. Fan et al. (1994), Kufner et al.
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(2016), and Liao et al. (2017), among others, attribute both the reversal in dip direction and the gap in
seismicity at depth to different sources of lithosphere for each part of the seismic zone, with the Pamir
zone of Eurasian origin and the Hindu Kush zone of Indian origin. This “two-sided” scenario corresponds
to the two-boundary models discussed below (model family 2). Because of the absence of a gap in the
distribution of seismic hypocenters shallower than 80–100 km (Sippl, Schurr, Yuan, et al., 2013), as well
as the narrowness of the deeper gap below ~100-km depth, others interpret Pamir-Hindu Kush

Figure 1. Map of the study area. Earthquakes below 50 km are plotted and colored by depth. Major faults and geographic
features are labeled. Thin black lines represent known faults from Mohadjer et al. (2016). Thick colored lines represent
the progression of block modeling (Table 1). The single boundary model is represented by the green line; the two-
boundary model adds a boundary south of the Hindu Kush shown by the red line. The three- and four-boundary models
add further boundaries denoted by the blue and orange lines, respectively. Gray lines represent free slip boundaries on the
edges of the model domain and segments of modeled boundaries that do not correspond to mapped structures.
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intermediate depth earthquakes as indicative of a single warped slab of lithosphere, of Indian (Pegler & Das,
1998), or Asian origin (Sippl, Schurr, Yuan, et al., 2013). The latter “one-sided” subduction corresponds to
the one-boundary models discussed below (model family 1). An alternative model for the one-boundary
models allows a downgoing, intact lithospheric slab hosting Pamir seismicity while Hindu Kush seismicity
occurs in a negatively buoyant blob of mantle lithosphere, analogous to the interpretation that Houseman
and Gemmer (2007) and Lorinczi and Houseman (2009) gave for the Vrancea zone beneath the Carpathians.

On the northern margin of the Pamir (Figure 1), geodetic (Ischuk et al., 2013; Metzger et al., 2018; Reigber
et al., 2001; Zubovich et al., 2010) and geologic (Arrowsmith & Strecker, 1999; Burtman & Molnar, 1993;
Cowgill, 2010; Li et al., 2012; Nikonov et al., 1983; Strecker et al., 1995; Trifonov, 1978, 1983) observations
are consistent with mechanical continuity of subducted and surface lithosphere with a discrete interface
between overriding and downgoing crust manifested as localized and persistent shortening at the Main
Pamir Fault system. Schneider et al. (2013) show receiver functions interpreted as the top and bottom of
Asian crust that has been subducted southward beneath the overriding Pamir. Several other studies find
high-speed zones surrounding the intermediate depth earthquakes and extending deeper (e.g., Koulakov
& Sobolev, 2006; Kufner et al., 2016; Mellors et al., 1995; Mohan & Rai, 1995; Vinnik & Lukk, 1973, 1974).
Furthermore, northward deflections of geologic units within the Pamir relative to their continuations in
Afghanistan and Tibet (Burtman &Molnar, 1993; Cowgill, 2010; Sobel et al., 2013) suggest 300 km of north-
ward displacement past the Tajik Depression and Tarim Basin. Finally, the 2015 Murghab earthquake
(Metzger et al., 2017; Sangha et al., 2017) demonstrates ongoing thrusting of the Pamir northward over
the Alai Valley; two moderate events in 1972 and 1982 show thrusting of the Hindu Kush westward over
the Tajik Depression (Abers et al., 1988), while crustal earthquakes within the Pamir show predominantly
normal and strike-slip faulting with east-west extension (Strecker et al., 1995).

In contrast to the Pamir, although the high seismic velocity anomaly beneath the Hindu Kush (Figure 1) is
spatially coincident with hypocenters (Koulakov & Sobolev, 2006; Kufner et al., 2016; Mohan & Rai, 1995;
Negredo et al., 2007), it does not project to a unique thrust fault at the surface (Sippl, Schurr, Tympel,
et al., 2013). Moreover, strain rates inferred from seismic moments at intermediate depth are much higher
than average horizontal convergence rates at the surface (Kufner et al., 2017; Zhan & Kanamori, 2016).

2. Data and Methods

We compile data collected from 2008 to 2016 from 66 Geodetic Positioning System (GPS) stations throughout
Tajikistan, Afghanistan, Kyrgyzstan, and Pakistan, including 32 publicly available and 9 restricted campaign
sites and 25 regional continuous sites including International GNSS Service (IGS) reference stations (Table S1
in the supporting information). We process these data using the GAMIT/GLOBK software package (Herring
et al., 2015) following the procedure described in Reilinger et al. (2006). GAMIT is used to calculate initial daily
position estimates of each station. These are edited, averaged, and weighted over approximately 2-week long
intervals. GLOBK’s Kalman filter is used to estimate linear horizontal velocities from the position averages,
incorporating a random walk noise model to account for systematic errors. The velocity solution is tied to the
International Terrestrial Reference Frame 2008 (ITRF08) and then transformed into a stable Eurasian reference
frame using the ITRF08-Eurasia angular velocity calculated by Altamimi et al. (2012; Table S1).

Following the determination of the regional velocities, we define five families of models (0, 1, 2, 3, and 4)
based on the number of tectonic boundaries in the study area (Figures S1–S4). We use TDEFNODE
(McCaffrey, 2009) to calculate angular velocities for rigid crustal domains that minimize misfit to the
observed velocity field. We use the misfit calculated in TDEFNODE as a measure of the likelihood function
of possible tectonic boundaries on the north margin of the Pamir; the north, east, and south margins of the
Tajik Depression; within the central Pamir; and south of the Hindu Kush (Figure 1). Because we only use the
TDEFNODE results for misfit related to the presence or absence of particular tectonic boundaries, the result-
ing block models do not necessarily describe the full regional kinematics.

We set the specific location of boundaries using major faults in the Central Asia Fault Database (Mohadjer
et al., 2016). Lacking detailed 3-D structural information about these faults, we approximate them as 20° dip-
ping fault planes for thrust faults, 45° dipping planes for normal faults, and near-vertical fault planes for
strike-slip faults. The TDEFNODE inversions are not sensitive to the structural geometry (such as 3-D fault
shape, dip angle, or locking depth) because very few of the observed geodetic velocities are located within the
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elastic length scale of the block bounding faults. The zero-boundary case (model 0) corresponds to a rigid
rotation of the whole study area, the one-boundary case (model 1a or 1b, Figure S1) to convergence
between Eurasia and India on the Main Pamir Fault and its westward extension along the Darvaz-
Karakul’ Fault, the two-boundary case (model 2b, Figure S2) to convergence between Eurasia and the
Pamir at the Main Pamir Fault and between the Pamir-Hindu Kush and India on a structure south of the
Hindu Kush, and the three- and four-boundary approximations to additional active boundaries on the north
side of the Tajik Depression and within the central Pamir, respectively (Figure 1). We present alternative
configurations for each number of boundaries in the supporting information (Table S2 and
Figures S1–S4). Boundaries defining the far-field edges of the model domain are specified for geometric
simplicity rather than geologic or kinematic accuracy (Figure 1 and Figures S1–S4).

We then compare model favorability using the Akaike Information Criterion (AIC) and a modified version
for limited observational data (AICc; Akaike, 1974). These tools are designed for model selection in nonuni-
que problems by penalizing both large misfits to data and large numbers of free parameters. We specifically

use the least squares case of the AIC and the AICc, AIC ¼ nlog bσ2� �þ 2K andAICc ¼ AICþ 2K Kþ1ð Þ
n�K�1 , respec-

tively (Burnham & Anderson, 2002), where n is the number of GPS velocity observations, bσ2 is the root-
mean-square misfit determined from the TDEFNODE inversion, and K is the number of free parameters.
K increases by 4 with each additional boundary in the kinematic model, because the existence of the bound-
ary and three parameters defining the angular velocity of the resulting additional block are added.

3. Kinematic Results

The GPS velocities (Figures 2 and 3 and Table S1) show ongoing convergence between India and Eurasia,
with the steepest velocity gradients localized near the northern margin of the Pamir, consistent with other

Figure 2. Velocity solution in a Eurasia-fixed frame with 95% confidence ellipses and regional faults from Mohadjer et al. (2016) in red. (a) Overview of velocity
solution with colored lines corresponding to velocity profiles (Figure 3). (b) Zoomed in map showing velocity observations in Northern Afghanistan. The loca-
tions of profiles in Figure 3 are shown as colored lines.
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GPS results (Ischuk et al., 2013; Reigber et al., 2001; Zhou et al., 2016; Zubovich et al., 2010). The shortening
rate on and adjacent to the Main Pamir Fault system is 18–22 mm/year (65–80% of the total India-Eurasia
relative rate of 28 ± 4 mm/year, measured from Karachi; Mohadjer et al., 2010), increasing along strike
eastward (Figures 2 and 3). Convergence across the Alai Valley, the topographic margin of the Pamir,
accommodates ~15 mm/year of this total N-S convergence across less than 50 km centered on or near the
Main Pamir Fault (e.g., Burtman & Molnar, 1993; Ischuk et al., 2013; Liao et al., 2017; Zubovich et al.,
2016) and Vakhsh Thrust. Between the Western Pamir and the Tajik Depression, there is approximately
15 mm/year of NW-SE convergence (Figure 3). Sites in the western Tajik Depression move with negligible
velocities relative to Eurasia (Figures 2 and 3).

The southern margin of the Pamir-Hindu Kush-Karakorum from Peshawar to Chitral accommodates not
more than 10 mm/year of India-Asia convergence over >250 km (Figures 2 and 3). Little convergence is
allowed south of Peshawar, such as on the Salt Range Front Fault, since Karachi (KCHI in Table S1)
moves north toward stable Eurasia at about 28 mm/year, while Peshawar (NCEG in Table S1) moves
north at about 26 mm/year (Ischuk et al., 2013; Mohadjer et al., 2010). The Central and Northern
Pamir also move only slightly less rapidly than Peshawar, at 18–24 mm/year relative to Eurasia

Figure 3. Eurasia-fixed velocities decomposed into (a) profile-parallel (shortening) and (b) normal (shear) components.
Station color corresponds to colored profiles shown in Figure 2.
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(Ischuk et al., 2013), precluding rapid north-south shortening in the Wakhan Corridor or southernmost
Tajikistan (Figures 2 and 3).

GPS installations around Fayzabad, Afghanistan, between the High Hindu Kush and the Darvaz-Karakul’
Fault converge at about 18 mm/year with Eurasia, like those in the western Pamir (Figure 2b). This includes
at most 10 mm/year of shortening between the Hindu Kush and the Tajik Depression perpendicular to the
eastern margin of the Depression. Velocities at sites further to the southwest, just north of Kabul, are slightly
slower, converging with Eurasia at 10–12mm/year (Figure 3) andwith the Tajik Depression at 6–8mm/year.
The Fayzabad sites move nearly perpendicular to the trend of the Hindu Kush with SW-NE shear compo-
nents of 1–2 mm/year. Sites closer to Kabul have somewhat larger shear components of 4–8 mm/year.

4. Model Selection Results

The ΔAICc (Tables 1 and S2) compares the favorability of plausible tested models. The smallest AICc score
corresponds to the model with the most empirical support; small ΔAICc values indicate models of similar
favorability. Larger ΔAICc values indicate either that total misfit is large, that there are many undercon-
strained free parameters, or both.

Unsurprisingly, based on the AICc scores, a rigid rotation model with no boundaries is the least favorable,
with the maximum ΔAICc of the configurations tested. Adding a curving boundary at the location of the
steepest velocity gradients (green line in Figure 1) minimizes the AIC and AICc (Tables 1 and S2), indicating
the most favored (in the AIC sense) model among those that describe the deformation in terms of bound-
aries. An alternative boundary on the north side of the Tajik Depression gives a similar AICc (ΔAICc = 1.7;
Table S2), indicating that the observations support either variant, and we cannot distinguish between a
boundary on the north or south side of the Tajik Depression with the available observations. However, a
model with boundaries on both sides of the Tajik Depression is less favorable (Figures S1–S4 and Table
S2). Adding an additional boundary on the south side of the Hindu Kush increases the AIC and AICc by
5.3 and 8.9, respectively, for a model that is considerably less favorable but still with some empirical support
(Tables 1 and S2). Adding additional boundaries through the Central Pamir produces unfavorable models,
with large ΔAICc. Therefore, the presence of Eurasian lithosphere underthrusting the Main Pamir Fault
footwall is well constrained by the velocity observations, but a slab of Indian lithosphere attached to the sur-
face and underthrusting the Hindu Kush either south of or within the zone of anomalous seismicity is less so.

5. Discussion

Three explanations have been proposed for the Pamir-Hindu Kush intermediate depth earthquake zone: a
contorted subducting slab of Eurasian material (one-sided subduction; Figure 4a), distinct slabs of
Eurasian and Indian origin subducting beneath the Pamir and Hindu Kush, respectively (two-sided subduc-
tion; Figure 4b; e.g., Burtman & Molnar, 1993; Kufner et al., 2017; Liao et al., 2017), and foundering litho-
sphere (one-sided subduction plus convective overturn; Fillerup et al., 2010; Houseman & Gemmer, 2007;
Lorinczi & Houseman, 2009). The first of these options is consistent with available constraints from prior
geodesy (Ischuk et al., 2013; Mohadjer et al., 2010; Zhou et al., 2016; Zubovich et al., 2010) and the additional
results presented here, plus slip on known faults (Arrowsmith & Strecker, 1999; Bernard et al., 2000;
Coutand et al., 2002; Cowgill, 2010; Kuchai & Trifonov, 1977; Nikonov et al., 1983; Sobel et al., 2011;
Strecker et al., 1995; Trifonov, 1978, 1983) and seismic imaging (e.g., Schneider et al., 2013; Sippl, Schurr,

Table 1
Table Summarizing AIC Model Selection

Model Boundaries K n RMS AIC ΔAIC AICc ΔAICc Notes

0 0 4 63 9.80 295.59 39.10 296.28 37.12 No boundary
1a 1 8 63 6.74 256.49 0.00 259.15 0.00 Figure 1 green boundary
2c 2 12 63 6.60 261.79 5.30 268.03 8.88 Figure 1 green + red boundaries
3b 3 16 63 6.38 265.53 9.04 277.36 18.20 Figure 1 green + red + blue
4 4 20 63 6.36 273.14 16.65 293.14 33.98 Figure 1 green + red + blue + orange

Note. The lowest calculated AICc and ΔAICc values of zero represent the most favorablemodel of those tested. AIC =Akaike Information Criterion; RMS= root-
mean-square.
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Tympel, et al., 2013), except for the inferred rapid sinking of the deepest part of the Hindu Kush anomaly
from moment summation (Kufner et al., 2017; Zhan & Kanamori, 2016). Such a single slab model implies
relatively simple dynamics: subduction needs to initiate and persist only once in continental lithosphere,
presumably in an area of previous crustal thinning (Leith, 1982). In the single-slab case ~15–35% of the
total India-Eurasia rate is accommodated south of the Pamir throughout the broadly distributed region of
high topography. Alternatively, if Indian lithosphere hosts Hindu Kush intermediate depth seismicity, the

Figure 4. Cartoons showing two endmember models. (a) One of the possible “one-sided”models (model family 1) with a
convoluted geometry of downgoing Eurasian lithosphere. Note that whether the surface intersection of the contorted
slab wraps around the northern or southern side of the Tajik Depression is not distinguished by the AICc results.
Furthermore, surface velocities from geodesy cannot constrain the arrangement of lithosphere at depth, only whether it is
attached to the surface or not. Therefore, the one-sided endmember allows Hindu Kush intermediate depth seismicity
to be hosted in either the deepest part of a Eurasian slab as depicted, in a detached Indian slab, or in a foundering “blob” of
Hindu Kush-Pamir lithosphere. (b) “Two-sided” model (model family 2) with downgoing Eurasian and Indian lithosphere,
the former hosting intermediate depth Pamir seismicity and the latter hosting intermediate depth Hindu Kush seismicity.
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Indian material must be mostly or entirely detached from the surface, such that there is no longer an active,
high strain rate thrust system separating downgoing Indian lithosphere from overriding Hindu Kush crust.
A third option, convective instability arising from lithospheric thickening, has been invoked in the
Carpathians (Houseman & Gemmer, 2007; Lorinczi & Houseman, 2009; Fillerup et al., 2010) and also
matches the observed lack of a surface boundary as well as the spatial distribution of intermediate depth seis-
micity and inferred high stretching rates (Kufner et al., 2017; Zhan & Kanamori, 2016). In this case, the ori-
gin of the foundering material could be Indian, Eurasian, or Tethyan lithosphere.

Although subduction is generally thought to initiate in old oceanic lithosphere (e.g., Carlson et al., 1983;
McKenzie, 1977; Turcotte et al., 1977; Stein & Stein, 1996), which is typically more dense than astheno-
sphere, subduction of Eurasian continental lithosphere at the Pamir is now supported by many different
observations and demonstrates at least the possibility of subduction initiation within continental lithosphere
(Burtman & Molnar, 1993; Chatelain et al., 1980; Jay et al., 2017). Combined with the possibility of a Hindu
Kush example of convective overturn of continental lithosphere like that invoked in the Carpathians
(Houseman & Gemmer, 2007; Fillerup et al., 2010; Lorinczi & Houseman, 2009) or detachment of an
Indian lithospheric slab, we infer greater exchange of mass between the continental lithosphere and the
asthenosphere than has previously been assumed likely.

6. Conclusion

Most of the convergence between India and Eurasia is accommodated on the northern side of the Pamir and
between the Fayzabad-area (NE Afghanistan) and the Tajik Depression. Based on an AIC, the most favor-
able regional tectonic boundary model of the options considered consists of a single tectonic boundary
extending from the Main Pamir Fault to thrusts wrapping around the eastern and southern margins of
the Tajik Depression then linking to the Chaman Fault system through Afghanistan (Lawrence et al.,
1992; Szeliga et al., 2012). Additional tectonic boundaries introduce more free parameters to models without
fitting the surface velocities much better. The paucity of localized shortening south of the Hindu Kush there-
fore favors one-sided subduction at the Pamir, at least in the present day, rather than two-sided subduction
invoked in several recent dynamic models (e.g., Kufner et al., 2017; Liao et al., 2017; Schurr et al., 2014). One-
sided models allow Hindu Kush seismicity to be hosted in the overturned Asian slab, a detached Indian slab,
or convectively foundering lithosphere. Shortening in the Pamir-Hindu Kush-Karakorum is much slower
and much more diffuse than at the Main Pamir Fault, precluding a present-day India-Hindu Kush subduc-
tion boundary in the crust.
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