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Abstract Including satellite-derived snow cover data for hydrologic model calibration can be a good
way to improve model internal consistency. This study applied a multiobjective genetic algorithm to charac-
terize the trade-off curve between model performance in terms of discharge and snow cover area (SCA).
Using a Monte Carlo-based approach, we further investigated the additional information content of an
increasing number of SCA scenes used in the calibration period. The study was performed in six snowmelt-
dominated headwater catchments of the Karadarya Basin in Kyrgyzstan, Central Asia, using the hydrological
model WASA and snow cover data from four melt seasons retrieved from AVHRR (Advanced Very High Reso-
lution Radiometer). We generally found only small trade-offs between good simulations with respect to dis-
charge and SCA, but good model performance with respect to discharge did not exclude low performance
in terms of SCA. On average, the snow cover error in the validation period could be reduced by very few
images in the calibration period. Increasing the number of images resulted in only small further improve-
ments. However, using only a small number of images involves the risk that these particular images cause
the selection of parameter sets which are not representative for the catchment. It is therefore advisable to
use a larger number of images. In this study, it was necessary to include at least 10–16 images.

1. Introduction

Mountain water resources play an important role for the water supply of downstream areas [Viviroli et al.,
2011]. Particularly in dry regions with large populations, such as Central Asia, they are essential for irrigation,
hydropower generation, and sustaining ecosystems that depend directly or indirectly on the river flow.
Potential impacts of climate change on mountain water resources are thus of great concern for water man-
agement. Assessments of the hydrologic impacts are required for developing strategies to cope with chang-
ing conditions, which is often approached using hydrological models in combination with climate
scenarios.

For such a task, the hydrological model needs to be able to extrapolate beyond the conditions during
model calibration. This implicates that also internal processes, which have not undergone validation against
observations, need to be simulated correctly [Seibert, 2000]. It has been recognized for a while that good
discharge simulations at the catchment outlet cannot guarantee good internal functioning of the model
[Refsgaard, 1997], as this may be an effect of error compensation [Klemes, 1986; Seibert and McDonnell,
2002]. Model consistency may be increased by including internal variables in the model calibration and
evaluation procedure [G€untner et al., 1999; Seibert, 2000]. Several studies have shown the utility of multivari-
able model calibration and validation, using variables like groundwater [Juston et al., 2009; Lamb et al., 1998;
Madsen, 2000; Seibert, 2000], soil moisture [Franks et al., 1998; Parajka et al., 2009], streamflow salinity
[Mroczkowski et al., 1997], snow cover [Parajka et al., 2007], or glacier mass balance [Finger et al., 2011; Konz
and Seibert, 2010; Schaefli and Huss, 2011; Stahl et al., 2008].

In mountain catchments dominated by snowmelt runoff, the correct representation of snow processes is
crucial. Snow cover patterns from remote sensing can therefore be a useful data source for constraining
model parameters. While these data do not contain information on the snow water equivalent (SWE), they
are spatially distributed, which makes them particularly useful for the evaluation of distributed models.
They can thus be seen as complementary to the discharge time series, which are spatially integrated but
give quantitative information on the water balance [Finger et al., 2011]. Remotely sensed snow cover data
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have been applied for hydrological modeling in different ways: as model forcing for snowmelt runoff mod-
els [e.g., Li and Williams, 2008], for model updating in data assimilation approaches [Andreadis and Letten-
maier, 2006; De Lannoy et al., 2012; Liu et al., 2013; Rodell and Houser, 2004; Yatheendradas et al., 2012;
Zaitchik and Rodell, 2009], and for model calibration [Corbari et al., 2009; Engeset et al., 2003; Finger et al.,
2011; Koboltschnig et al., 2008; Parajka and Bl€oschl, 2008; Pellicciotti et al., 2012; Shrestha et al., 2013; Sorman
et al., 2009; Udnaes et al., 2007]. Parajka and Bl€oschl [2008] performed an extensive study over 148 catch-
ments in Austria on the value of MODIS (Moderate-resolution Imaging Spectroradiometer) snow cover data
for calibration of the HBV (Hydrologiska Byråns Vattenbalansavdelning) model. Their results are very encour-
aging, as they showed that, on average, the inclusion of MODIS snow cover during model calibration led to
better snow cover and runoff simulations in the validation period. Finger et al. [2011] applied a Monte Carlo
approach for the calibration of a grid-based model against discharge, satellite snow cover, and glacier mass
balance. Their investigation of which data combinations are particularly useful for model conditioning
showed a superior performance of the combination of discharge and snow cover data. However, studies
explicitly showing the trade-off between snow cover and discharge performance are rare. Parajka et al.
[2007] analyzed trade-off curves of model performance for discharge and snow cover area (SCA) derived
from interpolated measurements of snow water equivalent (SWE). Parajka and Bl€oschl [2008] used a
weighted sum approach to combine the objective functions for satellite-derived SCA and discharge into
one criterion, but also analyzed the effects of varying the weights. In this study, we therefore explicitly ana-
lyze trade-offs between good model performance with respect to discharge and SCA. The results from the
multiobjective optimization are also contrasted with results from Monte Carlo sampling and single-
objective optimizations.

A further question concerns the amount of snow cover scenes required for model calibration. Whereas
some remote sensing snow cover data, such as those from MODIS, can be obtained as ready product,
others, like AVHRR (Advanced Very High Resolution Radiometer) or Landsat data, first need to be processed,
as only the raw data are available. This can be very time consuming, e.g., due to the need for manual geore-
ferencing and sensor calibration. It is therefore very valuable to know how the added information content
of additional images declines with an increasing number of observation scenes. While for discharge data
this question has been addressed by a number of studies [see, e.g., Perrin et al., 2007; Juston et al., 2009, and
references therein], we could not find any information on how much remote sensing snow cover data
should be used for model calibration. This study therefore investigates the value of increasing the number
of snow cover scenes for the calibration of a hydrological model.

In the present study, a hydrological model is applied to headwater catchments of the Karadarya Basin in
Kyrgyzstan, Central Asia. In these catchments, the runoff regime is strongly influenced by snowmelt runoff
in spring and early summer and snow cover data are therefore expected to be very well suited for constrain-
ing the model and improving model consistency. Due to lower data availability after 1990, a time period
before 1990 was selected for model calibration. MODIS snow cover data, which are only available from
2000, could therefore not be used and we instead resorted to AVHRR data.

We first analyze the trade-offs between the model performance with respect to discharge and SCA using a
multiobjective genetic algorithm to identify pareto optimal solutions. Second, the study investigates within
a Monte Carlo approach how the model performance in terms of snow cover prediction changes with an
increasing number of SCA scenes in the calibration period. For the model evaluation against gridded satel-
lite snow cover data, we suggest an approach which makes use of the information on the snow cover distri-
bution with elevation and does not require threshold values for the comparison between simulated SWE
and observed SCA.

2. Study Area

This study focuses on six headwater catchments of the Karadarya Basin located in Kyrgyzstan (Figure 1).
Together with the Naryn River, the Karadarya forms the Syrdarya, which drains into the Aral Sea. The
selected catchments are all upstream of the Andijan Reservoir and the influence of water management is
generally assumed to be only marginal, except for the catchment Gulcha, where water is sometimes
diverted into an irrigation channel. The catchment areas range from 170 to 3840 km2 (Table 1). The catch-
ments are characterized by high-elevation gradients and maximum elevations up to 4750 m (Figure 2).
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The predominant land cover is mostly grassland, and two catchments with lower elevations (Tosoi and Don-
gutzoo) also have a larger fraction of agricultural land. Forest, which often impedes remote sensing of snow
cover [Raleigh et al., 2013], only covers small fractions with a maximum value of 5% in Gulcha. A previous
study analyzed the precipitation input to these catchments using hydrological modeling and observed dis-
charge [Duethmann et al., 2013]. While average annual precipitation at the gauges in vicinity to the study
catchments ranges from 350 mm a21 (measured at the stations in the lowland west of the study catch-
ments) to 1050 mm a21 (for the station in the northern mountain range), catchment average precipitation
in the six study catchments is estimated to be between 700 and 1200 mm a21. Mean annual runoff over
the period 1961–1990 ranges from <300 mm a21 in the catchment Gulcha to nearly 800 mm a21 in Ak-
Tash (Table 1), resulting in annual runoff coefficients of approximately 0.4–0.6. The discharge regime is
dominated by snowmelt with maximum discharges in spring and early summer.

3. Data and Methods

3.1. Extraction of Snow Cover From AVHRR Satellite Imagery
Snow cover data were extracted from images of the AVHRR instrument onboard the NOAA-9 and NOAA-11
satellites. The AVHRR sensor provides images with a resolution of 1.1 km at nadir. Scenes were selected

Figure 1. The six study catchments in the Karadarya Basin, including elevation, discharge gauges and precipitation gauges in the area. The
inlet shows the location of the upper Karadarya Basin in Kyrgyzstan.

Table 1. Area, Glacier Coverage, Elevation Range, Mean Annual Runoff, and Runoff Coefficient of the Studied Subcatchments of the
Karadarya Basin

Area (km2)
Glacier

Coverage (%)

Elevation (m)
Runoffa

(mm a21)
Runoff

CoefficientbMin. Max. Mean

Tosoi 216 0.0 1253 3165 2001 432 0.43
Donguztoo 166 0.0 1271 3502 1999 505 0.46
Salamalik 1180 0.5 1288 4381 2592 585 0.55
Ak-Tash 907 2.3 1728 4752 3121 778 0.62
Cholma 3840 1.9 1352 4753 3117 410 0.50
Gulcha 2010 0.7 1557 4623 3013 267 0.38

aMean annual runoff over the period 1961–1990.
bCalculated for the period 1961–1990 using precipitation estimates by Duethmann et al. [2013].
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from the melt seasons (March–July) of the years 1986–1989, when both AVHRR data and suitable input data
to drive the hydrological model were available. We focused on the melt season, as the parameters of the
hydrological model were expected to be most sensitive to observed snow cover during this time. The time
step between the images was approximately 9–14 days, but larger time steps were sometimes necessary in
order to avoid high cloud coverage and poor data quality.

Before the images could be employed for snow cover delineation, careful calibration was required, includ-
ing the calculation of albedo and radiances from the raw data as well as corrections for the sensor degrada-
tion and for nonlinearities in the measurements. In order to correct for the sensor degradation of channel 1
and 2, the calibration formulae of Rao and Chen [1995] were applied. Nonlinearities of the radiance meas-
urements in channel 4 and 5 were adjusted using the corresponding error values from the NOAA Polar
Orbiter Data User’s Guide [National Climate Data Center, 1998]. Finally, radiances of channel 3–5 were con-
verted to temperatures using the inverted Planck’s radiation equation, and the Normalized Differential Veg-
etation Index (NDVI) was calculated from channels 1 and 2.

The data were then classified into snow, no snow, and clouds using a dichotomous multichannel classifica-
tion scheme based on a model developed by Voigt et al. [1999]. Inputs to this model were differences in sur-
face temperature, albedo, and NDVI, which is used for the extraction of the vegetation coverage. Initial
values for the thresholds were taken from H€oppner and Prechtel [2002]. On the basis of visual interpretation
of the scenes, these thresholds were subsequently adapted to the study region and to the respective sea-
son with different values for spring and summer. The seasonal variation proved to be particularly important
for the correct discrimination between snow and clouds.

3.2. Hydrological Model
The hydrological model WASA (Model of Water Availability in Semi-Arid Environments) [G€untner, 2002;
G€untner and Bronstert, 2004] was originally developed for large semiarid basins, and later extended for ero-
sion and sediment transport [Mueller et al., 2010] and for mountainous regions influenced by snow and gla-
cier melt [Duethmann et al., 2013].

The model uses a semidistributed approach. The spatial discretization may either be based on hillslopes
[Francke et al., 2008; G€untner and Bronstert, 2004], which also allows for lateral surface and subsurface redis-
tribution along the hillslope, or on hydrological response units (HRUs), which enables faster simulations.
This study applied the latter approach. HRUs were delineated based on 200 m elevation bands, resulting in
11–18 HRUs with a median size of 51 km2 and a range of 0.01–452 km2. Each HRU was associated with its
dominant soil type, dominant land cover type, and its glacier fraction.

The model includes routines for snow accumulation, snow and glacier melt, interception, infiltration, perco-
lation through a multilayer soil, and evapotranspiration. Runoff processes considered by the model are infil-
tration and saturation excess surface runoff, interflow and groundwater runoff. The model version used in
this study separates subsurface flow into interflow and base flow based on a calibration parameter, and also
considers that in a small fraction of the catchment (e.g., riparian areas, roads or rock areas connected to a
stream) rainfall directly results into streamflow. The following section presents details of the snow module,

Figure 2. Distribution of the catchment area with altitude for the six study catchments (by 200 m elevation zones).
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detailed descriptions of other model components can be found in G€untner [2002] and G€untner and Bronstert
[2004].

For the calculation of snow accumulation, precipitation is separated into rainfall or snowfall based on a cali-
brated threshold temperature. Snowmelt is simulated using a temperature index approach [Hock, 2003],
where the melt factor varies in a sinusoidal form between a minimum value at the winter solstice and a
maximum value at the summer solstice. The increase of the melt factor from winter to summer reflects an
increase in incoming solar radiation and a decrease of the snow albedo associated with aged snow [Ander-
son, 2006].

Due to wind drift, avalanches, and the spatial variability of precipitation, snow is rarely uniformly distributed
after snowfall, and variability in the melt processes (for example, due to variations in shading) may further
increase the variability of SWE within an elevation zone, which is however often neglected in hydrological
models. Neglecting this variability of SWE within an elevation zone or HRU implicates that an elevation
zone can only be snow covered or snow free, resulting in abrupt changes from completely snow-covered
conditions to completely snow free at the end of a melt season. Furthermore, the comparison to remotely
sensed snow cover is easier if also fractional snow cover areas are simulated. In the WASA model, the vari-
ability of SWE within an elevation zone is parameterized using a snow depletion curve, as for example
described by Liston [2004]. The snow depletion curve in this case describes the fractional SCA as a function
of the SWE divided by the maximum SWE at the end of the accumulation season (snow depletion curves
may also be defined in other ways, for example, SCA as a function of time). During accumulation a spatially
continuous snow cover is simulated; snowmelt then results in a gradually decreasing SCA. It has been
observed that for a given catchment the spatial distribution of relative snow amounts is similar from year to
year so that the shape of the snow depletion curve can be assumed constant in time [e.g., Luce and Tarbo-
ton, 2004]. The distribution of the observed SWE is often approximated by a lognormal distribution [Donald
et al., 1995]. SCA can then be calculated analytically from the maximum simulated SWE at the end of the
accumulation season and the cumulative melt depth [Liston, 2004]. This parameterization for the description
of the fractional SCA has only one additional parameter, the coefficient of variation of the SWE distribution.
It assumes that within each elevation zone there is always some part with a very thin snow cover so that
with the beginning of snowmelt a snow-free area is created. For cases where this is not considered appro-
priate, one could introduce an additional parameter defining the SWE that must melt before any snow-free
area starts to be exposed [Donald et al., 1995]. The situation that snowfall occurs during the melting phase
needs to be considered separately. In this case, the model simulates a SCA of 100% and melt affects the
whole area until the new snow is melted; the model then proceeds on the established snow depletion
curve. If the sum of the remaining snow from the main accumulation period and the new snow exceed the
previous maximum accumulation, the model considers this to be a new accumulation period and a new
snow depletion curve is started. For HRUs containing a glacier, it is assumed that snow remains longest on
the glacier so that glacier melt does not start until the snow covered area in that HRU is smaller than the
glacier area.

This version of the model has 13 calibration parameters (Table 2). The parameter ranges were established
based on literature values and previous experiences with the WASA model. The glacier melt parameter is

Table 2. Calibration Parameters Including Values for the Lower and Upper Bounds

Routine Parameter Unit Lower Bound Upper Bound

Snow and glacier melt Min. snowmelt factor mm �C21 d21 1 15
Max. snowmelt factor mm �C21 d21 1 15
Glacier melt parameter – 0 1
Threshold melt temperature �C 22 2
Coefficient of variation (cv) – 0.001 1

Infiltration and percolation kf_corr_f – 0.01 100
k_sat factor – 0.01 100

Subsurface flow frac2gw – 0 1
Interflow delay factor days 10 100
Groundwater delay factor days 200 400

Generation of direct runoff from areas connected to the stream frac_riparian – 0 0.05
Spatial variability of saturated areas within a model unit sat_area_var – 0 0.3
Precipitation input Precipitation bias factor – 0.75 1.5
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recalculated into a glacier melt factor with values ranging between the snowmelt factor and an upper
boundary of 15 mm �C21 d21.

The following input data were used to set up the WASA model for the Karadarya Basin: the SRTM (Shuttle
Radar Topography Mission) digital elevation model [Jarvis et al., 2008] with a resolution of 90 m, the MODIS
land cover product at a resolution of 500 m (MCD12Q1) [Friedl et al., 2002], mean monthly leaf area index
(LAI) values from the 8 day MODIS LAI product for 2001–2008 at a resolution of 1 km (MOD15A2) [Myneni
et al., 2002] aggregated by elevation zone, subcatchment, and land cover class, a soil map (1:1,500,000) digi-
tized from the Kyrgyz Atlas [Academy of Science of the Kyrgyz SSR, 1987], and glacier areas delineated from a
Landsat Multispectral Scanner (MSS) scene (resolution 79 m) in summer 1977.

A previous analysis evaluated various precipitation estimates for this area [Duethmann et al., 2013] and con-
cluded that the precipitation product interpolated from gauge data using monthly precipitation fields
derived by multilinear regression against elevation, longitude, and latitude was best suited for this area.
This precipitation product (‘‘MLR-all’’ in Duethmann et al. [2013]) was therefore also applied in the current
study. The model further uses daily time series of solar radiation, temperature, temperature lapse rate and
humidity. Due to the lack of observational data these data were derived from the ERA-40 reanalysis data
[Uppala et al., 2005] downscaled to a resolution of 12 km using the regional climate model Weather
Research and Forecasting Model (WRF) [Skamarock et al., 2008]. For details of the WRF simulations please
refer to Duethmann et al. [2013]. The meteorological time series were applied to the hydrological model as
area-mean values for each catchment.

Discharge data used for model calibration were provided by the Hydrometeorological Service of Kyrgyzstan.
Water stage is recorded twice daily manually and continuously at the larger rivers under high flow condi-
tions using a float driven recording sensor. Discharge is estimated about four times per month during low
flow and eight times per month during high flow conditions using the velocity-area method with velocities
derived from current meter measurements. Data at the gauge Gulcha are influenced by diversions into an
irrigation channel upstream of this gauge. As timing and volume of these abstractions were not known,
they could not be considered in the model.

3.3. Model Calibration
3.3.1. Objective Functions
For the calibration to discharge data, the following objective function was used:

objf q50:53 NSE1LogNSEð Þ;

with

NSE512

XT

t51
QobsðtÞ2QsimðtÞð Þ2XT

t51
QobsðtÞ2Qobs
� �2

and LogNSE512

XT

t51
log QobsðtÞð Þ2log QsimðtÞð Þð Þ2XT

t51
log QobsðtÞð Þ2log Qobsð Þ
� �2 (1)

NSE is the Nash-Sutcliffe efficiency value between daily observed (Qobs(t)) and simulated (Qsim(t)) discharge
and LogNSE is the Nash-Sutcliffe efficiency calculated on logarithmic flows. As the Nash-Sutcliffe efficiency
is particularly responsive to errors in high discharge values, and the Nash-Sutcliffe efficiency for logarithmic
flows is more sensitive to errors in low flows, an average of these two measures results in a more balanced
evaluation of high and low flows. The maximum possible value of the objective function is 1, which would
indicate perfect agreement between simulated and observed discharge.

Previous studies used different methods for evaluating model performance of semidistributed models with
respect to raster-based remote sensing snow cover. Several studies simply compared catchment average
simulated and observed SCA [Engeset et al., 2003; Sorman et al., 2009; Udnaes et al., 2007]. This approach
however neglects the information of the SCA distribution with elevation, which is also contained in the
snow cover data. The method suggested by Parajka and Bl€oschl [2008] takes account of the observed SCA
in each elevation zone. As the hydrological model they applied simulated a uniform distribution of SWE in
each elevation zone, they used an indirect approach for the comparison between simulated SWE and
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observed SCA. They defined two kinds of errors—a snow underestimation error, if the model simulated no
snow in an elevation zone, but the snow covered area was larger than a threshold, and a snow overestima-
tion error, if the simulated SWE was above an SWE threshold, but the remote sensing data indicated no
snow for this elevation zone. A disadvantage of this approach is the subjective choice of the thresholds,
which can influence the results of the comparison. For the snow underestimation error it is for example not
clear to what value the threshold for observed SCA should be set. A SCA threshold of, e.g., 0.05 means that
the model has to simulate at least some snow (SWE> 0) if the observed SCA is larger than 5%, otherwise
this produces an underestimation error. By assuming a uniform SWE distribution this, however, also has the
consequence that the model generates snowmelt from the entire elevation zone, while in reality snowmelt
is only produced from the much smaller snow covered area. In the present study, this problem was avoided
by introducing the parameterization for the fractional SCA in an elevation zone as described in section 3.2,
which then allowed a direct comparison between simulated and observed snow cover fraction for each ele-
vation zone. While introducing such a parameterization increased the number of parameters by one, it also
allowed a more realistic representation of the fractional SCA, which could potentially also improve the run-
off simulations.

For the comparison to simulated snow cover, the AVHRR snow cover data were summarized by catchment
and elevation zone. An AVHRR cell (1.1 km 3 1.1 km) was assigned to an elevation zone according to its
median elevation, calculated from the 90 m SRTM digital elevation model. In a next step, the fractional
snow and cloud cover by catchment and elevation zone were calculated. This approach thus particularly
considers the large-scale heterogeneity at a scale larger than the AVHRR cell size. Observed snow cover val-
ues were only considered for model comparison if >20% of that elevation zone was cloud free and if there
were more than three cloud-free cells. The objective function with respect to snow cover was then defined
as root-mean-squared error (RMSE) between simulated and observed SCA:

objf sca5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i51

nðiÞ
 !21

�
Xm

i51

XnðiÞ
j51

SCAobsði; jÞ2SCAsimði; jÞð Þ2
vuut (2)

where SCAobsði; jÞ and SCAsimði; jÞ are the observed, respectively, simulated, SCA on observation day i in ele-
vation zone j; m is the number of days with snow cover observations; and n(i) the number of elevation
zones with valid observations on day i. The best possible value of this objective function is 0, which would
indicate perfect agreement between simulated and observed SCA.

Due to the formulation of the two objectives, multiobjective model calibration aims at identifying parame-
ter sets which maximize objf_q and minimize objf_sca.

3.3.2. Multiobjective Calibration to Determine Pareto Fronts
As the optimum solutions for different objectives in general do not converge, multiobjective optimization
aims at identifying a set of pareto optimal solutions instead of one single best solution. A solution is classi-
fied as pareto optimal (or nondominated) if there is no other solution which improves in one or more objec-
tives without degrading at least one objective. Evolutionary algorithms are particularly suited to solve such
multiobjective problems, as due to their population-based approach they can return a set of solutions
within a single run [Konak et al., 2006]. For this study, we applied the Epsilon-Dominance Nondominated
Sorted Genetic Algorithm II (e-NSGAII) [Kollat and Reed, 2006]. This algorithm was selected, as in comparison
studies which also included hydrological model calibration in their test problems, this algorithm was com-
petitive or superior to other state-of-the-art multiobjective algorithms [Kollat and Reed, 2006; Tang et al.,
2006]. e-NSGAII is based on the NSGAII-algorithm [Deb et al., 2002], which uses a fast nondominated sorting
algorithm and elitism. Elitism means that the nondominated solutions found so far are preserved and sur-
vive to the next generation. As an extension compared to the original NSGAII-algorithm, e-NSGAII intro-
duced the concept of e-dominance, adaptive population sizing and automatic termination, reducing the
number of algorithm parameters to be tuned. e-dominance allows the user to specify the required precision
in each objective. The user should set it to the difference in objective function values he or she considers to
be relevant. The objective space is divided into multidimensional cells, with the dimension according to the
number of objectives and the cell size in each dimension according to the e-value in this objective. If there
is more than one solution within a cell, only one solution—in case of minimization of all objectives, the
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solution closest to the origin—is retained. This way the density of the final nondominated solutions is con-
trolled. In a series of connected runs, the population size is adapted according to the number of archived non-
dominated solutions. A new run is started if there is no significant increase in the number or quality of the
nondominated solutions over a selected number of generations. The overall search is terminated if there is no
significant improvement between the archived solutions of two successive runs. For this study, we used an ini-
tial population size of 16 and a maximum run time of 40,000 generations. e-values were set to 0.005 for objf_q
and 0.001 for objf_sca. Other algorithm parameters were set to the values as suggested by Kollat and Reed
[2006]. In order to reduce run time, a parallel version of the code [Tang et al., 2007] was applied.

Snow cover data only were available for the period 1986–1989. As a 2 year period was regarded as being
too short for model calibration with respect to discharge, and the model could not be run in the 1990s due
to missing data, the model was first calibrated in simulation period A (1978–1981 and 1986–1987) and vali-
dated in simulation period B (1982–1985 and 1988–1989), and then calibration and validation period were
swapped (calibration in simulation period B and validation in simulation period A). Thus, calibration and val-
idation periods usually included 2 years of snow cover and 6 years of discharge data. Simulations were
always performed for a continuous period. For example, for calibration in period A, simulations were per-
formed for the period 1976–1987. From these simulations, obj_q was evaluated over 1978–1981 and 1986–
1987, and objf_sca was evaluated over 1986–1987. Due to gaps in the discharge data (21 May to 31 Decem-
ber 1980 in Ak-Tash and 1989 in Salamalik) the calibration or validation periods were accordingly shorter in
these two catchments. An additional 2 year period prior to the actual simulation period was used for model
initialization.

3.3.3. Monte Carlo Parameter Calibration for Investigating the Value of an Increasing Number of
Snow Cover Scenes
The additional information content of an increasing number of snow cover scenes was explored by calibrat-
ing the model using different subsets of snow cover images during the calibration period and evaluating
the model performance against the snow cover images in the validation period. This resulted in a very large
number of different calibration settings, as different possibilities of, e.g., selecting 5 snow cover images
from 20 available images in the calibration period have to be considered. Optimizing the parameters for
each subset of observations was therefore not a suitable approach. While for a small number of calibration
settings multiobjective calibration usually results in better model performances with a lower number of sim-
ulations, Monte Carlo simulations can be more efficient if the number of different subsets of observations
to which the model should be calibrated is very large. After once performing a large number of simulations,
it is then possible to simply select well-performing simulations for a large number of different calibration
settings without further computational cost. Assuming uniform distributions between the minimum and
maximum bounds, 50,000 random parameter sets were generated using Latin hypercube sampling.

For each catchment, the RMSE of observed versus simulated SCA of each image was evaluated. Snow cover
images for which the range of RMSE values over the 50,000 simulations was zero were not considered in
the next step since they did not exert any constraining power. These were generally images where only ele-
vation zones far below or above the snowline were cloud free and which were thus not challenging for the
model. In the next step, the value of increasing the number of snow cover scenes was evaluated. Calibration
and validation period were defined as described in section 3.3.2 and all simulations where objf_q in the cali-
bration period was above 0.5 were selected. Now n 5 0, 1, . . ., m images were randomly chosen from the
calibration period, where m denotes the number of available images in the calibration period. In order to
calculate the median, minimum, and maximum value of objf_sca during the validation period, the following
procedure was applied (summarized in Figure 3). For each simulation, objf_sca with respect to the selected
images in the calibration period was calculated and the best s 5 20 parameter sets were selected (for n 5 0,
s parameter sets were chosen randomly). Selecting an ensemble of best performing parameter sets instead
of selecting just one best parameter set is expected to result in a more robust behavior during the valida-
tion period. For the selected simulations, the model performance over the validation period was evaluated
and averaged over the selected simulations. This was repeated j 5 10,000 times in order to sample different
combinations of selecting n from m images. Finally, the median, minimum, and maximum objf_sca of these
10,000 repetitions were calculated. The procedure depicted in Figure 3 was repeated for n 5 0, 1, . . ., m
images. It was also performed for the two different calibration periods (calibration in period A and valida-
tion in period B, and vice versa).
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4. Results and Discussion

4.1. Characterization of the Trade-
Offs Between Good Performance
for Discharge and Snow Cover
Area
Using a multiobjective evolutionary
algorithm, it was investigated how
well discharge and SCA can be mod-
eled simultaneously. Overall the
model achieved good performances
with objective function values for
discharge between 0.62 and 0.93
(optimum 5 1) and objective func-
tion values for SCA between 0.1 and
0.29 (optimum 5 0). Plots of the par-
eto fronts show that the trade-offs

between good simulations with respect to discharge and SCA are generally small in the studied catchments
(Figure 4). In this figure, the red and blue dots indicate the solutions for calibration period A and B, respec-
tively. Optimum solutions plot in the lower left corner. Only for the catchment Gulcha, a larger spread of sol-
utions can be seen, for all other catchments, only up to six solutions were found. Solutions which differ by
less than the specified e-values of 0.005 for objf_q and 0.001 for objf_sca were not retained by the algorithm,
avoiding overly precise trade-offs, which are not meaningful [Kollat et al., 2012]. Thus in most of the studied
catchments a good model performance in terms of SCA did not preclude a good simulation of discharge.
The model performances in the validation periods are close to the performances if the respective period was
used for calibration (Figure 4), except for the catchment Gulcha, where the model seems to be less transferra-
ble between different periods. The peculiarities at Gulcha with overall lower performances, a larger trade-off
between discharge and snow cover performance, and lower transferability between the calibration and

Figure 3. Procedure for calculating the minimum, median, and maximum snow cover
error during the validation period, when using n snow cover images for model
calibration.

Figure 4. Trade-off curves of model performance against SCA (objf_sca) and discharge (objf_q) for the six study catchments. The x axis is
plotted in reverse order so that optimum solutions plot in the lower left corner. Dots: calibration period; crosses: validation period; blue:
simulation period A (1978–1981 and 1986–1987); red: simulation period B (1982–1985 and 1988–1989). For example, blue dots indicate
the model performance in simulation period A of the solutions from the calibration in simulation period A, and blue crosses show the
model performance in simulation period A of solutions from the calibration in simulation period B. Additionally, the stars show the per-
formance of the uncalibrated model. Please note the different scales of the x axis.
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validation period are likely to be caused by the unconsidered flow diversions into an irrigation channel
upstream of this gauge.

We also compared the performance of the calibrated model to an uncalibrated model which simply uses
mean parameter values between the upper and lower parameter bound of Table 2 (Figure 4). This shows
that in all cases model performance was improved by calibration, and on average, objf_q improved by 0.33
and objf_sca improved by 0.03 (Figure 4).

The multiobjective optimization algorithm always outperformed the best solutions of the Monte Carlo simu-
lations with randomly sampled parameters (Figure 5). The number of model evaluations used by the multi-
objective optimization was between 4,168 and 12,472 with an average of 6,988. Thus, even though the

Figure 5. Scatterplots of the objective function with respect to SCA (objf_sca) against the objective function with respect to discharge
(objf_q) showing both the solutions generated by Monte Carlo sampling (blue) and the solutions from the multiobjective optimization
algorithm (red). The x axis is plotted in reverse order so that optimum solutions plot in the lower left corner. (a) Calibration in simulation
period A (1978–1981 and 1986–1987) and (b) calibration in simulation period B (1982–1985 and 1988–1989).
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average number of model evaluations in the multiobjective optimization was about seven times smaller
than the number of Monte Carlo simulations applied in this study, better solutions were achieved through
multiobjective optimization. The scatterplots in Figure 5 also show that it is possible to achieve good simu-
lations with respect to discharge with a large snow cover error and vice versa. This was also confirmed by
single-objective optimizations where the model was calibrated only against discharge or only against SCA.
For the criterion which was included in the optimization (either discharge or snow cover area), they resulted
in virtually the same model performance as the best performing solution with respect to this criterion from
the multiobjective optimization, but only much lower performances were achieved for the neglected crite-
rion. Namely, for the optimizations against SCA only, objf_q was on average 0.62 worse than the worst solu-
tion from the multiobjective optimization; and for the optimizations against discharge only, objf_sca
degraded on average by 0.05. It is therefore necessary to consider both objectives for model conditioning.

4.2. Model Performance in Terms of Discharge and Snow Cover Area
In addition to the objective function values, which assess the model performance in an aggregated way,
this section provides a more detailed analysis of the model performance with a particular focus on SCA pre-
diction. Time series of simulated and observed fractional SCA can be compared for each elevation zone in
each subcatchment (see examples in Figure 6). As the trade-offs between the solutions from the multiobjec-
tive optimization were only small, the figure depicts only one compromise solution from the multiobjective
optimization indicated by the black line. In many cases, the observed decrease in snow cover is well repre-
sented by the model. Not only start and end point in time of snow cover depletion but also the fractional
snow cover often compares well to the observed one. The model has some difficulties with snow events
during the melt season. Possible reasons for this are uncertainties in the precipitation input, the precipita-
tion phase (solid or liquid) and the model assumptions for snow events during the melt season. The interpo-
lated precipitation is only based on relatively few stations so that the timing of precipitation events cannot
always be representative for the entire catchment. Uncertainties in the precipitation phase are due to uncer-
tainties in the temperature and lapse rate, as well as the fact that the temperature below which precipita-
tion falls as snow is not a fixed value but may vary from event to event. If there are snow events during the
melt season, the simulated SCA of the elevation zones with snowfall is increased to 100% (assuming that
snowfall covers the entire elevation zone, see section 3.2) and only decreases again after this new snow has
completely melted, though in reality this new snow might also disappear more gradually.

Figure 6. Time series of simulated versus observed SCA during the validation period, for selected catchments and elevation zones. The simulations show a compromise solution in terms
of snow cover and discharge performance from the multiobjective optimization, and solutions from the Monte Carlo sample with comparable performance in terms of discharge but
contrasting performance in terms of SCA.
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In order to visualize the difference between simulations with comparable performance in terms of objf_q
but different performance in terms of objf_sca, Figure 6 also shows results from the Monte Carlo sample,
selected as the five best and the five worst simulations in terms of objf_sca from all solutions with
objf_q� objf_qmax 2 0.05, where objf_qmax is the best Monte Carlo solution in terms of objf_q achieved for
this catchment. The solutions with a poor performance considerably overestimate the snow cover. Despite
a comparable performance with respect to discharge, large errors in the simulation of the snow cover can
occur if snow cover observations are not considered during model calibration.

From a different perspective, Figure 7 shows simulated and observed SCA for all elevation zones of all study
catchments as examples for three selected days. These plots generally show a consistent increase of the
observed SCA with elevation with only little noise. A typical pattern, apparent on many dates, is that the ele-
vation zone where for example around 50% of the area is snow covered is at a higher elevation in Cholma
and Gulcha than in Tosoi and Donguztoo (Figures 7b and 7c). The faster decrease of the snow cover in
Cholma and Gulcha may partly be explained by lower precipitation in these two catchments compared to
Tosoi and Donguztoo. Differences in temperature, aspects or shading may furthermore explain the differen-
ces in snow cover decrease between the catchments. In accordance with the observations, the simulations
also represent the gradual increase of SCA with elevation over several elevation bands. On some dates, the
model shows a very abrupt increase of snow cover from 0% to 100% over only one or two elevation zones
not reflected by the observations (e.g., 28 April 1986). This behavior can again be related to snow events
during the melt season.

In order to summarize the behavior over all images, the mean bias by elevation zone averaged over all
dates within the validation period was evaluated. The black dots in Figure 8 show the result for a compro-
mise solution from the multiobjective optimization. This generally reveals only relatively small systematic
biases with elevation. In the catchments with a larger elevation range, there is a tendency for overestima-
tion at high elevations (e.g., Salamalik and Ak-Tash for both periods (Figures 8a and 8b) and Cholma and

Figure 7. Simulated and observed SCA in the six study catchments, for the 28 April 1986, 11 May 1987, and 13 April 1988. Simulated snow
cover is shown for the validation period and a selected compromise solution generated with the multiobjective optimization algorithm.
The simulations also refer to discrete 200 m elevation zones but are drawn as continuous lines for better visibility.
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Gulcha for the model calibrated in period B (Figure 8b). Moreover, in the catchment Gulcha, SCA is overesti-
mated at low elevations if the model is calibrated to simulation period A and validated in simulation period
B (Figure 8a). In this case, the number of observations was very low; there are only four observations for the
1600 m elevation zone in the catchment Gulcha in the period 1986–1987 so that an overestimation of SCA
at two of these dates caused a large average error. Figure 8 additionally also illustrates the bias by elevation
zone for the selected sets of solutions from the Monte Carlo sample with comparable performance for dis-
charge, but contrasting performance in terms of SCA. The simulations with a poor performance in terms of
SCA generally show an overestimation of snow cover. This overestimation is however smaller in the catch-
ments Tosoi and Donguztoo. In contrast to this, the selected solutions from the Monte Carlo sample with a
good performance in terms of snow cover only have low bias values, comparable to the solutions from the
multiobjective optimization.

As a result of the small trade-offs, the simulated hydrographs of the two extreme solutions from the multi-
objective optimization which result in the best model performance for discharge and SCA, respectively, are
most of the time very similar (results not shown). Therefore, Figure 9 only shows compromise solutions that
are good both in terms of discharge and snow cover. The time series indicates that the degradation
between calibration and validation period in Gulcha is to a large part the result of an underestimation of
discharge in the years 1988–1989 of the model calibrated in simulation period A (1978–1981 and 1986–
1987) and an overestimation in the years 1986–1987 of the model calibrated in simulation period B (1982–
1985 and 1988–1989). These differences are likely a result of different abstraction volumes for irrigation dur-
ing the two periods. Figure 9 also demonstrates some other deficiencies of the model, like too low variabili-
ty of the simulated discharge in Salamalik, or a relatively strong overestimation of discharge of the base
flow during the winter period 1987/1988 in Cholma. However, overall the model performs well, particularly
considering the sparse data availability in this region.

As an example, Figure 10 also shows simulated discharge for solutions from the Monte Carlo sample,
selected as the five best and five worst solutions with respect to objf_sca of all solutions with
objf_q� objf_qmax—0.05, for 1 year in the catchment Ak-Tash. The shown example is typical also for other
catchments and other years. The most striking difference between the two sets of simulations is that, com-
pared to the solutions with poor SCA performance, the solutions with good SCA performance generally
result in higher discharge at the beginning and lower discharge toward the end of the melting period.
Thus, the simulations with a good performance with respect to snow cover have a higher tendency to

Figure 8. SCA bias by elevation zones averaged over the validation periods (top) 1986–1987 and (bottom) 1988–1989. The black dots
show results for a compromise solution in terms of snow cover and discharge performance from the multiobjective optimization. Bars indi-
cate ranges of values from selected Monte Carlo simulations with comparable performance in terms of discharge but contrasting perform-
ance in terms of SCA.
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overestimate the observed discharge at the beginning of the melting season and to underestimate toward
the end, while this is the other way round for the simulations with a high snow cover error. Overall, this
results in a comparable performance with respect to discharge for the two sets of solutions.

4.3. Influence of the Two Objective Functions on Constraining Model Parameters
In order to illustrate the effect of the two different objectives on constraining the different model parame-
ters, sets of solutions which perform well with respect to the two objective functions were selected from

Figure 9. Time series of simulated versus observed discharge for a compromise solution (good performance for discharge and SCA) from the multiob-
jective optimization algorithm and the time period 1986–1989. Gray area: observed discharge; red line: simulated discharge for model calibration in sim-
ulation period A (1978–1981 and 1986–1987); blue line: simulated discharge for model calibration in simulation period B (1982–1985 and 1988–1989).
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the Monte Carlo sample and evaluated
with respect to their parameter distri-
butions. For each catchment and for
the two simulation periods, first the
5% best performing solutions in terms
of objf_q were selected from the
Monte Carlo sample. From these solu-
tions, the 5% best performing solu-
tions in terms of objf_sca were
retained. Figure 11 shows cumulative
density functions of the resulting
parameter distributions. In these plots,
uniform prior distribution would
appear as straight lines. Note that the
minimum and maximum melt factors
were swapped when the minimum
melt factor was larger than the maxi-
mum melt factor so that the prior dis-
tributions are not uniform. The two

snowmelt factors and the threshold melt temperature are conditioned by both objectives. The coefficient
of variation (cv), which determines the heterogeneity of the snow distribution, is largely controlled by
objf_sca. Most other parameters, like frac2gw, the interflow delay factor, sat_area_var, and the precipitation
bias factor are controlled by objf_q. Furthermore, some of the model parameters, in particular the glacier
melt parameter and kf_corr_f hardly get constrained. If one selects all solutions with a comparable dis-
charge performance (objf_q� objf_qmax—0.05) and then contrasts the five best and five worst simulations
in terms of SCA (as also done for Figures 6, 8, and 10), the solutions with a good SCA performance are gen-
erally characterized by larger values for the parameter cv, higher melt factors, and in some cases (Cholma
and Gulcha) lower threshold melt temperatures than the simulations with a poor SCA performance. Addi-
tionally, the solutions with low SCA performance have in some cases also lower values for the interflow
delay factor, indicating that the too late snowmelt is compensated by faster subsurface transport.

Considering how the various parameters impact the model response, the model parameters are affected by
the different objectives in a plausible way. A large variability in the parameter values is typical in many
hydrological modeling applications, where often very different parameter sets may lead to similar perform-
ance of the objective function values [Beven and Binley, 1992]. The parameter distributions indicate that this
problem can to some extent be alleviated when in addition to observed discharge also the performance in
terms of SCA is considered. This is, for example, clearly demonstrated for the parameter cv. In other cases,
adding the snow cover criterion may lead to a shift in the distribution, with possibly only small effects on
further constraining the distribution. The main advantage of taking into account snow cover data should
however be seen in improving model consistency.

4.4. Value of Increasing the Number of Snow Cover Observations During the Calibration Period
In order to determine how many snow cover images are necessary for successful model calibration, we
investigated how the snow cover objective function in the validation period changed with the number of
snow cover images in the calibration period. Generally, the median SCA error continually decreased with an
increasing number of snow cover images in the calibration period (Figure 12). This decrease was strongest
over the first 1–4 mages, while there was little further decrease when increasing the number of images
from 10 to the maximum possible number of images in the calibration period (depending on catchment
and period, 17–22 images).

However, a larger number of images was necessary to reduce the maximum SCA error. If the number of
images is too low, the identified parameter sets may not be representative. A model calibrated to all images
is likely to over- or underestimate individual observations, due to deficiencies of the model (including inputs
and parameters) or errors in these observations. A small sample can in the worst case therefore be domi-
nated by images where such a well-calibrated model would for example always overestimate the SCA. In
such a case the SCA images would shift the model in the wrong direction. The maximum SCA error was

Figure 10. Observed discharge and simulated discharge, for the catchment Ak-
Tash and the year 1987. Simulated discharge is shown for selected parameter sets
from the Monte Carlo sample with overall comparable performance in terms of dis-
charge, but good and poor performance with respect to SCA.
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higher when using few images in the calibration period than when using no image and randomly selecting
20 parameter sets. The reason for this is that there is a very large number of possibilities to draw 20 simula-
tions from the available simulations (all simulations where the objective function value with respect to dis-
charge during the calibration was above 0.5) so that it is very unlikely to draw the 20 worst simulations by
random chance. An image which indicates an overestimation of the model, although the model actually
overall underestimates SCA, is thus much more effective in selecting simulations with poor performance
with respect to SCA. In our study, in most catchments around 10 images were necessary to reduce the max-
imum error below the value for the case where no image was used.

In the catchments Tosoi and Donguztoo up to 16 images were necessary to reduce the maximum error
below the level where no image was used for model calibration. A possible reason why a larger number of
images was needed in these two catchments is the lower elevation range (Figure 2), resulting in a lower

Figure 11. Cumulative distribution functions of parameter sets selected from the Monte Carlo sample as the 5% best performing solutions in terms of objf_q (red lines) and after further
constraining these solutions selecting the 5% best performing solutions in terms of objf_sca (blue lines) for calibration to simulation period A. The six lines indicate the different catch-
ments (for more details please refer to the text).

Figure 12. Value of the objective function with respect to SCA (objf_sca) in the validation period as a function of the number of snow cover images n used in the calibration period. The
black line shows the median over 10,000 repetitions of selecting n images, the gray lines show the minimum and maximum, respectively. (top row) Results for calibration to simulation
period A and validation in simulation period B, and (bottom row) results for the reversed case.
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number of data points per image.
The number of data points per
images is determined by the num-
ber of elevation zones with maxi-
mum 80% cloud cover and more
than three cloud-free cells (see sec-
tion 3.3.1). The average number of
data points per image in Tosoi and
Donguztoo was 6.2 and 5.2, respec-
tively; in contrast it was between
10.7 and 13.4 in the other catch-
ments. Furthermore, many images
in Tosoi and Donguztoo did not
allow locating the transitional eleva-
tion zones between snow and
snow-free areas, as they showed
only snow-free or only snow-
covered elevation zones. It is likely

that images with a lower number of observations and images which do not allow locating the transitional
elevation zones between snow and snow-free areas have a lower constraining power. Therefore, more
images may be necessary to compensate the effect of images which tend to draw the model in the wrong
direction.

Figure 13 illustrates the effect of individual images on objf_sca in the validation period when drawn as first,
second, or third image, shown as the median change in objf_sca in the validation period. The example
depicts the catchment Salamalik with simulation period A for model calibration. When using only one
image for model calibration, most images result in an improvement of objf_sca in the validation period. In
contrast, there are some images (22 March 1986, 1 April 1986, 16 March 1987, and 24 June 1987) which
cause a large deterioration of objf_sca in the validation period. The effect of such images can be compen-
sated when further images are added. Generally, the influence of individual images declines with an
increasing number of images. While the median changes in objf_sca in the validation period, as shown in
Figure 13, are mostly only small, the maximum positive or negative change can be much larger, since the
influence of an image added as the second or third image of course also depends on which other image(s)
are used for constraining the model. For example an image which has little constraining power when added
as the first image, can in combination with particular other images still result in an improvement of the
model performance in the validation period.

Snow cover scenes can only be useful for model calibration if there is variability in the simulated snow cover
at that time. Therefore, the unconstrained model may be used for identifying suitable time periods in which
snow cover data may be beneficial for model calibration. Figure 14 shows the range of simulated SCA of
1000 Monte Carlo simulations (generated using Latin hypercube sampling and the parameter ranges from
Table 2) which have not been constrained by any observational data. Early in the melt season, data points
at high elevations have no value in constraining the model, as there is no variability in the simulations. How-
ever, these snow cover scenes deliver useful observation points at low to medium elevations. In contrast,
snow cover scenes in the late melt season deliver useful data points at medium to high elevations. Such rel-
atively fast initial simulations, which can be performed a priori before snow cover data for model calibration
is available, can be used for identifying variability hotspots in the simulations. Based on this, one can then
select suitable time periods for which snow cover data should be processed.

5. Conclusions

This study evaluates the benefit of satellite-derived snow cover images for the calibration of a hydrological
model in snow-dominated catchments in Central Asia. In most of the catchments, we found only small
trade-offs between good simulations with respect to discharge and SCA. However, if the parameters were
selected based on the discharge objective function only, this could lead to simulations with large snow
cover errors. The fact that good discharge simulations were also achieved with large snow cover errors and

Figure 13. Median effect of individual images on objf_sca in the validation period
when drawn as first (filled dots), second (crosses), or third (gray diamonds) image, for
the catchment Salamalik with simulation period A for model calibration.
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thus for the wrong reasons demonstrates very clearly that SCA observations should be taken into account
for model calibration in order to achieve higher internal consistency of the model. Using a parameterization
for fractional SCA, allowed a direct comparison between simulated and observed SCA for each elevation
zone without requiring any thresholds for the comparison of simulated SWE to observed SCA. This
approach could also be advantageous for other semidistributed models, where the comparison to observed
satellite-derived SCA is generally less straight-forward than in raster-based models.

Figure 14. Simulated snow cover ranges of 1000 Monte Carlo simulations of each elevation zone over the time period 1986–1989 for the
catchment Cholma (gray-shaded area). Red crosses show the snow cover observations. The blue line shows simulated snow cover for the
validation period from a balanced solution of the multiobjective optimization.
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While the average SCA error was already reduced with only few images, it is recommended to use a larger
number of images (10–16 SCA scenes in this study) for model calibration in order to also reduce the maxi-
mum error in case of an unfavorable selection of satellite scenes. Our results should be seen as a starting
point toward a more general understanding of the value of increasing the number of snow cover images
for model calibration. As the six catchments investigated in this study are located in the same region, the
results should at this point only be transferred to catchments with a similar physiographic setting and
snowfall regime. Further studies should investigate how the results change with changes in the physio-
graphic setting (e.g., catchments with a much lower elevation range) or snowfall regime (e.g., many snow
events also during the melt season, or not one distinct snow season but rather a number of shorter snow
events over the winter period). As a further step, it should also be explored whether there are characteristics
of snow cover images (e.g., particular patterns of snow cover) which make them particularly useful for
model calibration. It might for example be important that the set of images contains scenes with the snow-
line at low and at high elevations.

We recommend a wider application of SCA data for model calibration if snowmelt is an important runoff
generation process in the catchment of interest. This study demonstrated that good discharge simulations
could also be attained with large snow cover errors, if snow cover data were not taken into account for cali-
bration. As satellite-derived SCA data are available globally, considering these data for calibration is a very
good opportunity to improve hydrological modeling also in remote, data sparse areas. This is particularly
important if the model is applied for an analysis of hydrological processes or for climate change scenarios.
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