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3.1 Introduction to seismic sources and source parameters  
(P. Bormann) 

 
3.1.1  Types and peculiarities of seismic source processes 
 
Fig. 3.1 depicts the main kinds of sources which generate seismic waves (see Chapter 2). 
Seismic waves are oscillations due to elastic deformations which propagate through the Earth 
and can be recorded by seismographic sensors (see Chapter 5). The energy associated with 
these sources can have a tremendous range and, thus, can have a wide range of intensities (see 
Chapter 12) and magnitudes (see 3.2 below).  
 

    
 
Fig. 3.1  Schematic classification of various kinds of events which generate seismic waves. 
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3.1.1.1 Tectonic earthquakes 
 
Tectonic earthquakes are caused when the brittle part of the Earth’s crust is subjected to stress 
that exceeds its breaking strength. Sudden rupture will occur, mostly along pre-existing faults 
or sometimes along newly formed faults. Rocks on each side of the rupture "snap" into a new 
position. For very large earthquakes, the length of the ruptured zone may be as much as 1000 
km and the slip along the fault can reach several meters.  
 
Laboratory experiments show that homogeneous consolidated rocks under pressure and 
temperature conditions at the Earth's surface will fracture at a volume strain on the order of 
10-2 - 10-3 (i.e., about 0.1 % to 1% volume change) depending upon their porosity. Rock 
strength is generally smaller under tension or shear than under compression. Shear strains on 
the order of about 10-4 or less may cause fracturing of solid brittle rock. Rock strength is 
further reduced if the rock is pre-fractured, which is usually the case in the crust.  The strength 
of pre-fractured rock is much less than that of unbroken competent rock and is mainly 
controlled by the frictional resistance to motion of the two sides of the fault. Frictional 
resistance, which depends on the orientation of the faults with respect to the stress field and 
other conditions (see Scholz, 1990), can vary over a wide range. Accordingly, deformations 
on the order of only 10-5 to 10-7, which correspond to bending of a lithospheric plate by about 
0.1 mm to 1 cm over a distance of 1 km, may cause shear faulting along pre-existing zones of 
weakness. But the shear strength depends also on the composition and fabric (anisotropy) of 
rock, its temperature, the confining pressure, the rate of deformation, etc. as well as the total 
cumulative strain. More details on the physics of earthquake faulting and related geological 
and seismotectonic conditions in the real Earth can be found in Scholz (1990) and in section 
3.1.3 on Source representation. Additional recommended overview articles on the rheology of 
the stratified lithosphere and its relation to crustal composition, age and heat flow were 
published by Meissner and Wever (1988), Ranalli and Murphy (1987) and Wever et al. 
(1987). They also explain the influence of these parameters on the thickness and maximum 
depth of the seismogenic zone in the crust, i.e., the zone within which brittle fracturing of the 
rocks is possible when the strains exceed the breaking strength or elastic limit of the rock (see 
Fig. 2.1). 
 
The break-up of the lithosphere into plates due to deformation and stress loading is the main 
cause of tectonic earthquakes. The plates are driven, pushed and pulled by the slow motion of 
convection currents in the more plastic hot material of the mantle beneath the lithosphere. 
These relative motions are in the order of several cm per year. Fig. 3.2 shows the global 
pattern of earthquake belts and the major tectonic plates. There are also numerous small plates 
called sub- or micro-plates. Shallow earthquakes, within the upper part of the crust, take place 
mainly at plate boundaries but may also occur inside plates (interplate and intraplate 
earthquakes, respectively). Intermediate (down to about 300 km) and deep earthquakes (down 
to a maximum of 700 km depth) occur under ocean trenches and related subduction zones 
where the lithosphere plates are thrusted or pulled down into the upper mantle. The major 
trenches are found around the Circum-Pacific earthquake and volcanic belt (see Fig. 3.2). 
However, intermediate and deep earthquakes may occur also in some other marine or 
continental collision zones (e.g., the Tyrrhenian and Aegean Sea or the Carpathians and 
Hindu Kush, respectively).  
 
Most earthquakes occur along the main plate boundaries. These boundaries constitute either 
zones of extension (e.g., in the up-welling zones of the mid-oceanic ridges or intra-plate rifts), 
transcurrent shear zones (e.g., the San Andreas fault in the west coast of North America or the 
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North Anatolian fault in Turkey), or zones of plate collision (e.g., the Himalayan thrust front) 
or subduction (mostly along deep sea trenches). Accordingly, tectonic earthquakes may be 
associated with many different faulting types (strike-slip, normal, reverse, thrust faulting or 
mixed; see Figs. 3.32 and 3.33 in 3.4.2).  
 
The largest strain rates are observed near active plate boundaries (about 10-8 to 3×10-10 per 
year). Strain rates are significantly less in active plate interiors (about 5×10-10 to 3×10-11 per 
year) or within stable continental platforms (about 5×10-11 to 10-12 per year) (personal 
communication by Giardini, 1994). Consequently, the critical cumulative strain for the pre-
fractured/faulted seismogenic zone of lithosphere, which is on the order of about 10-6 to 10-7, 
is reached roughly after some 100, 1000 to 10,000 or 10,000 to 100,000 years of loading, 
respectively. This agrees well with estimates of the mean return period of the largest possible 
events (seismic cycles) in different plate environments (Muir-Wood ,1993; Scholz, 1990). 
 

 
Fig. 3.2  Global distribution of earthquake epicenters according to the data catalog of the 
United States National Earthquake Information Center (NEIC), January 1977 to July 1997, 
and the related major lithosphere plates.  
 
 
Although there are hundreds of thousands of weak tectonic earthquakes globally every year, 
most of them can only be recorded by sensitive nearby instruments. But in the long-term 
global statistical average about 100,000 earthquakes are strong enough (M  ≥ 3) to be 
potentially perceptible by humans in the near-source area. A few thousand are strong enough 
(M ≥ 5) to cause slight damage and some 100 with magnitude M > 6 can cause heavy 
damage, if there are nearby settlements and built-up areas; while about 1 to 3 events every 
year (with M ≥ 8) may result in wide-spread devastation and disaster. During the 20th century 
the 1995 Great Hanshin/Kobe earthquake caused the greatest economic loss (about 100 billion 
US$), the 1976 Tangshan earthquake inflicted the most terrible human loss (about 243,000 
people killed) while the Chile earthquake of 1960 released the largest amount of seismic 
energy ES (see 3.1.2.2 below) of about 5⋅1018 to 1019 Joule. The latter corresponds to about 25 
to 100 years of the long-term annual average of global seismic energy release which is about 
1 - 2 × 1017 J (Lay and Wallace, 1995) and to about half a year of the total kinetic energy 
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contained in the global lithosphere plate motion. The total seismic moment (see 3.1.2.3. 
below) of the Chile earthquake was about 3×1023 Nm. It ruptured about 800 - 1000 km of the 
subduction zone interface at the Peru-Chile trench in a width of about 200 km (Boore 1977; 
Scholz 1990). In summary: about 85 % of the total world-wide seismic moment release by 
earthquakes occurs in subduction zones and more than 95 % by shallow earthquakes along 
plate boundaries. The other 5 % are distributed between intraplate events and deep and 
intermediate focus earthquakes. The single 1960 Chile earthquake accounts for about 25 % of 
the total seismic moment release between 1904 and 1986.  
 
It should be noted that most of the total energy release, ET, is required to power the growth of 
the earthquake fracture and the production of heat. Only a small fraction of ET = ES + Ef  (with 
Ef - friction energy) goes into producing seismic waves. The seismic efficiency, i.e., the ratio 
of  ES/ET , is perhaps only about 0.01 to 0.1.  It depends both on the stress drop during the 
rupture as well as on the total stress in the source region (Spence, 1977; Scholz, 1990).  
 
 
3.1.1.2   Volcanic earthquakes 
 
Although the total energy released by the strongest historically known volcanic eruptions was 
even larger than  ET of the Chile earthquake, the seismic efficiency of volcanic eruptions is 
generally much smaller, due to their long duration. Nevertheless, in some cases, volcanic 
earthquakes may locally reach the shaking strength of destructive earthquakes (e.g., 
magnitudes of about 6; see 3.1.2.2). Most of the seismic oscillations produced in conjunction 
with sub-surface magma flows are of the tremor type, i.e., long-lasting and more or less 
monochromatic oscillations which come from a two- or three-phase (liquid- and/or gas-solid) 
source process which is not narrowly localized in space and time. They can not be analyzed in 
the traditional way of seismic recordings from tectonic earthquakes or explosions nor with 
traditional source parameters (see Chapter 13). Volcanic earthquakes contribute only an 
insignificant amount to the global seismic moment release (see Scholz 1990). 
 
 
3.1.1.3   Explosions, implosions and other seismic events 
 
Explosions are mostly anthropogenic, i.e., “man-made”, and controlled, i.e., with known 
location and source time. However, strong natural explosions in conjunction with volcanic 
eruptions or meteorite impacts, such as the Tunguska meteorite of 30 June 1908 in Siberia, 
may also occur. Explosions used in exploration seismology for the investigation of the crust 
have yields, Y, of a few kg to tons of TNT (Trinitrotoluol). This is sufficient to produce 
seismic waves which can be recorded from several km to hundreds of km distance. 
Underground nuclear explosions of kt up to Mt of equivalent TNT may be seismically 
recorded even world-wide (1 kt TNT = 4.2 x 1012 J). Nevertheless, even the strongest of all 
underground nuclear tests with an equivalent yield of about 5 Mt TNT produced body-waves 
of only magnitude mb ≈ 7. This corresponds to roughly 0.1% of the seismic energy released 
by the Chile earthquake of 1960. After 1974, underground tests with only Y ≤ 150 kt were 
carried out. Only well contained underground chemical or nuclear explosions have a 
sufficiently good seismic coupling factor ε (ε ≈ 10-2 to 10-3, i.e., only 1 % to 0.1 % of the total 
released explosion energy is transformed into seismic energy). The coupling factor of 
explosions on the surface or in the atmosphere is much less (ε ≈ 10-3 to 10-6 depending on the 
altitude).  
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Fig. 3.3 depicts schematically an idealized sub-surface explosion and tectonic earthquake (of 
pure strike-slip type) in a homogeneous medium. 
 

 
Fig. 3.3  Schematic sketches of an idealized underground explosion and of a strike-slip 
earthquake along a vertically dipping fault. The fault motion is "left-lateral", i.e., counter-
clockwise. The arrows show the directions of compressional (outward, polarity +, red shaded) 
and dilatational (inward, polarity -, green shaded) motions. The patterns shown on the surface, 
termed amplitude or polarity patterns indicate the azimuthal variation of observed amplitudes 
or of the direction of first motions in seismic records, respectively. While point-like 
explosions in an isotropic medium should show no azimuth-dependent amplitudes and 
compressional first motions only, amplitudes and polarities vary for a tectonic earthquake. 
The dotted amplitude lobes in Fig. 3.3, right side, indicate qualitatively the different azimuth 
dependence of shear (S) waves as compared to longitudinal (P) waves (rotated by 45°) but 
their absolute values are much larger (about 5 times) than that of P waves. 
 
It is obvious that the explosion produces a homogeneous outward directed compressional first 
motion in all directions while the tectonic earthquake produces first motions of different 
amplitude and polarity in different directions. These characteristics can be used to identify the 
type of source process (see 3.4) and to discriminate between explosions and tectonic 
earthquakes.  
 
Compared to tectonic earthquakes, the duration of the source process of explosions and the 
rise time to the maximum level of displacement is much shorter (milliseconds as compared to 
seconds up to a few minutes) and more impulsive (Fig. 3.4). Accordingly, explosions of 
comparable body-wave magnitude excite more high-frequent oscillations (see Fig. 3.5). Rock 
falls may last for several minutes and cause seismic waves but generally with less distinct 
onsets and less separation of wave groups.  
 
The collapse of karst caves, mining-induced rock bursts or collapses of mining galleries are 
generally of an implosion type. Accordingly, their first motion patterns should show 
dilatations in all azimuths if a secondary tectonic event has not been triggered by the collapse. 
The strongest events may reach magnitudes up to about M = 5.5 and be recorded world-wide 
(e.g., Bormann et al., 1992). Reservoir induced earthquakes have been frequently observed in 
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conjunction with the impoundment of water or rapid water level changes behind large dams. 
Since these events are triggered along pre-existing and pre-stressed tectonic faults they show 
the typical polarity patterns of tectonic earthquakes (e.g., Fig. 3.3). The strongest events 
reported so far have reached magnitudes up to 6.5 (e.g., Koyna earthquake in 1967).  
 

    
 
Fig. 3.4  Schematic diagrams of the different source functions of explosions (left) and 
earthquakes (right). P - pressure in the explosion cavity, D - fault displacement, t - time, t0 - 
origin time of the event, tr - rise time of  P or D to its maximum values, trf  - rise time of fast 
rupture, trs - rise time of slow rupture; the step function in the right diagram would correspond 
to an earthquake with infinite velocity of crack propagation vcr. Current rupture models 
assume vcr  to be about 0.6 to 0.9 times  of the velocity of shear-wave propagation, vs. 
 
 
3.1.1.4   Microseisms 
 
Very different seismic signals are produced by storms over oceans or large water basins (seas, 
lakes, reservoirs) as well as by wind action on topography, vegetation or built-up surface 
cover.  These seismic signals are called microseisms. Seismic signals due to human activities 
such as rotating or hammering machinery, traffic etc., are  cultural seismic noise. Rushing 
waters or gas/steam (in rivers, water falls, dams, pipelines, geysers) may be additional sources 
of  natural or anthropogenic seismic noise. They are not well localized in space nor fixed to a 
defined origin time. Accordingly, they produce  more or less permanent on-going non-
coherent interfering signals of more or less random amplitude fluctuations in a very wide 
frequency range of about 16 octaves (about 50 Hz to 1 mHz) which are often controlled in 
their intensity by the season (natural noise) or time of day (anthropogenic noise). Despite the 
large range of ambient noise displacement amplitudes (about 6 to 10 orders of magnitude; see 
Fig. 4.7) they are generally much smaller than those of earthquakes and not felt by people. 
The differences between signals from coherent seismic sources on the one hand and  
microseisms/seismic noise on the other hand are dealt with in more detail in Chapter 4. 
 
 
3.1.2  Parameters which characterize size and strength of seismic sources 
 
3.1.2.1  Macroseismic intensity 
 
The effect of a seismic source may be characterized by its macroseismic intensity, I . Intensity 
describes the strength of shaking in terms of human perception, damage to buildings and other 
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structures, as well as changes in the surrounding environment. I  depends on the distance from 
the source and the soil conditions and is mostly classified according to macroseismic scales of 
12 degrees (e.g., Grünthal, 1998). From an analysis of the areal distribution of felt reports and 
damage one can estimate the epicentral intensity I 0 in the source area as well as the source 
depth, h. There exist empirical relationships between I 0 and other instrumentally determined  
measures of the earthquake size such as the magnitude and ground acceleration. For more 
details see Chapter12.  
 
 
3.1.2.2  Magnitude and seismic energy 
 
Magnitude is a logarithmic measure of the size of an earthquake or explosion based on 
instrumental measurements. The magnitude concept was first proposed by Richter (1935). 
Magnitudes are derived from ground motion amplitudes and periods or from signal duration 
measured from instrumental records. There is no a priori scale limitation to magnitudes as 
exist for macroseismic intensity scales. Magnitudes are often misleadingly referred to in the 
press as "... according to the open-ended RICHTER scale...". In fact, the maximum size of  
tectonic earthquakes is limited by nature, i.e., by the maximum size of a brittle fracture in a 
finite and heterogeneous lithospheric plate. The largest moment magnitude, Mw, observed so 
far was that of the Chile earthquake in 1960 (Mw ≈ 9.5; Kanamori 1977). On the other hand, 
the magnitude scale is open at the lower end. Nowadays, highly sensitive instrumentation 
close to the sources may record events with magnitude smaller than zero.  According to 
Richter´s original definition these magnitude values become negative. With empirical energy-
magnitude-relationships the seismic energy, ES radiated by the seismic source as seismic 
waves can be estimated. Common relationships are those given by Gutenberg and Richter 
(1954, 1956) between ES and the surface-wave magnitude MS and the body-wave magnitude 
mB: log ES = 11.8 + 1.5 Ms and log ES = 5.8 + 2.4 mB, respectively (when ES is given in erg; 
1 erg = 10-7 Joule). According to the first relationship, a change of M by two units 
corresponds to a change in ES by a factor of 1000. Based on the analysis of digital recordings, 
there exist also direct procedures to estimate ES (e.g., Purcaru and Berckhemer, 1978; Seidl 
and Berckhemer, 1982; Boatwright and Choy, 1986; Kanamori et al., 1993; Choy and 
Boatwright, 1995) and to define an "energy magnitude" Me (see 3.3). Since most of the 
seismic energy is concentrated in the higher frequency part around the corner frequency of the 
spectrum, Me is a more suitable measure of the earthquakes’ potential for damage. In 
contrast, the seismic moment (see below) is related to the final static displacement after an 
earthquake and consequently, the moment magnitude, Mw, is more closely related to the 
tectonic effects of an earthquake.  
 
 
3.1.2.3  Seismic source spectrum, seismic moment and size of the source area 
 
Another quantitative measure of the size and strength of a seismic shear source is the scalar 
seismic moment M0 (for its derivation see IS 3.1): 
 

M0 = µD A        (3.1) 
 
with µ - rigidity or shear modulus of the medium, D - average final displacement after the 
rupture, A - the surface area of the rupture. M0 is a measure of the irreversible inelastic 
deformation in the rupture area. This inelastic strain is described in (1) by the product D A. 
On the basis of reasonable average assumptions about µ and the stress drop ∆σ (i.e., with 
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∆σ/µ = constant) Kanamori (1977) derives the relationship ES = 5×10 -5 M0 (in J). More 
information about the deformation in the source is described by the seismic moment tensor (IS 
3.1). Its determination is now standard in the routine analysis of strong earthquakes by means 
of waveform inversion of long-period digital records (see 3.5). 
 
In a homogeneous half-space M0 can be determined from the spectra of seismic waves 
observed at the Earth's surface by using the relationship: 
 

M0 = 4π d ρ v3
p,s u0/

sp,
φθ,R       (3.2) 

 
with: d - hypocentral distance between the event and the seismic station; ρ - average density 
of the rock and vp,s - velocity of the P or S waves around the source; sp,

φθ,R - a factor correcting 

the observed seismic amplitudes for the influence of the radiation pattern of the seismic 
source, which is different for P and S waves (see Figs. 3.3, 3.25 and 3.26), u0 - the low-
frequency amplitude level as derived from the seismic spectrum of P or S waves, corrected for 
the instrument response, wave attenuation and surface amplification. For details see EX 3.4.  
 

           
 
Fig. 3.5  "Source spectra" of ground displacement (left) and velocity (right) for a seismic 
shear source. “Source spectrum” means here the attenuation-corrected ground displacement 
u(f) or ground velocity u& (f) respectively, multiplied by the factor 4π d ρ v3

p,s/
sp,
φθ,R . The 

ordinates do not relate to the frequency-dependent spectra proper but rather to the low-
frequency scalar seismic moments or moment rates that correspond to the depicted spectra. 
The broken line (long dashes) shows the increase of corner frequency fc with decreasing 
seismic moment of the event, the short-dashed line gives the approximate “source spectrum” 
for a well contained underground nuclear explosion (UNE) of an equivalent yield of 1 kt 
TNT. Note the plateau (uo = const.) in the displacement spectrum towards low frequencies ( f 
< fc) and the high-frequency decay ∼ f2 for frequencies f > fc. 
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According to Aki (1967) a simple seismic shear source with linear rupture propagation shows 
in the far-field smooth displacement and velocity spectra. When corrected for the effects of 
geometrical spreading and attenuation we get "source spectra" similar to the generalized ones 
shown in Fig. 3.5. There the low-frequency values have been scaled to the scalar seismic 
moment M0 (left) and moment rate dM0/dt (right), respectively. The given magnitude values 
Ms correspond to a non-linear Ms-log M0 relationship which is based on work published by 
Berckhemer (1962) and Purcaru and Berckhemer (1978). Note that the 1960 Chile earthquake  
had a seismic moment M0 of about 3⋅1023 Nm and a “saturated” magnitude (see discussion 
below) of Ms = 8.5. This corresponds well with Fig. 3.5. There exist also other, non-linear 
empirical Ms-log M0 relationships (e.g., Geller, 1976). 
 
The following general features are obvious from Fig. 3.5: 
 

• "source spectra" are characterized by a "plateau" of constant displacement for 
frequencies smaller than the "corner frequency" fc which is inversely proportional to 
the source dimension, i.e., fc ∼ 1/L ; 

• the decay of spectral displacement amplitude beyond f > fc is proportional to f -2; 
• the plateau amplitude increases with seismic moment M0 and magnitude, while at 

the same time fc decreases proportional to M0
-3 (see Aki, 1967); 

• the surface-wave magnitude, Ms, which is, according to the original definition by 
Gutenberg (1945), determined from displacement amplitudes with frequencies 
around 0.05 Hz, is not linearly scaled with M0 for Ms > 7. While for larger events 
the amplitudes in the spectral plateau, i.e., for f < fc, still increase proportional to M0 
there is no further (or only reduced) increase in spectral amplitudes at frequencies f 
> fc. Accordingly, for Ms > 7 these magnitudes are systematically underestimated as 
compared to moment magnitudes Mw determined from M0 (see 3.2.5.3). No MS > 
8.5 has ever been measured although moment magnitudes up to 9.5 to 10 have been 
observed. This effect is termed magnitude saturation; 

• this saturation occurs much earlier for mb, which is determined from amplitude 
measurements around 1 Hz. No mb > 7 has been determined from narrowband short-
period recordings, even for the largest events;  

• since wave energy is proportional to the square of ground motion particle velocity, 
i.e., ES∼ (2πf u)2 = (ω u(ω))2, its maximum occurs at fc; 

• compared with an earthquake of the same seismic moment or magnitude, the corner 
frequency fc of a well contained underground nuclear explosion (UNE) in hard rock 
is about ten times larger. Accordingly, an UNE produces relatively more high-
frequent energy and thus has a larger ES as compared with an earthquake of 
comparable magnitude mb. 

 
The main causes for this difference in ES and high-frequency content between UNE and 
earthquakes are: 

• the duration of the source process or rise time, tr, to the final level of static 
displacement is much shorter for the case of explosions than for earthquakes (see 
Fig. 3.4); 

• the shock-wave front of an explosion, which causes the deformation and fracturing 
of the surrounding rocks and thus the generation of seismic waves, propagates with 
approximately the P-wave velocity vp while the velocity of crack propagation along 
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a shear fracture/fault is only about 0.5 to 0.9 of the S-wave velocity, i.e., about 0.3 to 
0.5 times that of vp; 

• the equivalent wave radiating surface area in the case of an explosion is a sphere A 
= 4π r2 and not a plane  A = π r2. Accordingly, the equivalent source radius in the 
case of an explosion is smaller and thus the related corner frequency larger. 

 
Note: Details of theoretical "source spectra" depend on the assumptions in the model of the 
rupture process, e.g., when the rupture is - more realistically - bilateral, the displacement 
spectrum of the source-time function is for f >> fc proportional to f -2, whereas this high-
frequency decay is proportional to f –3 for an unilateral rupture. On the other hand, when the 
linear dimensions of the fault rupture differ in length and width then two corner frequencies 
will occur. Another factor is related to the details of the source time function. Whether the 
two or three corner frequencies are resolvable will depend on their separation.  In the case of 
real spectra derived from data limited in both time and frequency domain, resolvability will 
depend on the signal-to-noise ratio. Normally, real data are too noisy to allow the 
discrimination between different types of rupture propagation and geometry. 
 
The general shape of the seismic source spectra can be understood as follows: We know from 
optics that under a microscope no objects can be resolved which are smaller than the 
wavelength λ of the light with which it is observed. In this case the objects appear as a blurred 
point or dot. In order to resolve more details, electron microscopes are used which operate 
with much smaller wavelength. The same holds true in seismology. When observing a seismic 
source of radius r with wavelengths λ >> r at a great distance, one can not see any information 
about  the details of the source process. One can only see the overall (integral) source process, 
i.e., one "sees" a point source. Accordingly, spectral amplitudes with these wavelengths are 
constant and form a spectral plateau (if the source duration can be neglected). On the other 
hand, wavelengths that have  λ << r can resolve internal details of the rupture process. In the 
case of an earthquake they correspond to smaller and smaller elements of the rupture 
processes or of the fault roughness (asperities and barriers). Therefore, their spectral 
amplitudes decay rapidly with higher frequencies. The corner frequency, fc , marks a critical 
position in the spectrum which is obviously related to the size of the source. According to 
Brune (1970) and Madariaga (1976), both of whom modeled a circular fault, the corner 
frequency in the P- or S-wave spectrum, respectively, is fc p/s = cm vp,s / π r. In contrast, 
assuming a rectangular fault, Haskell (1964) gives the relationship fc p/s = cm vp,s / (L ×W)1/2 

with L the length and W the width of the fault. The values cm are model dependent constants. 
Accordingly, the critical wavelength λc = v/ fc, beyond which the source can be realized as a 
point source only, is λc = cm π r  or  λc = cm (L ×W)1/2, respectively. 
 
Thus, from both the source area (which, of course, is based on model assumptions of the 
shape of the rupture) and the seismic moment from seismic spectra, one can estimate from Eq. 
(3.1) the average total displacement,D. KnowingD, other parameters such as the stress drop 
in the source area can be inferred. Stress drop means the difference in acting stress at the 
source region before and after the earthquake. For more details see Figure 10 in IS 3.1 and for 
practical determination the exercise EX 3.4.  
 
 
3.1.2.4  Orientation of the fault plane and the fault slip 
 
Assuming that the earthquake rupture occurs along a planar fault surface the orientation of 
this plane in space can be described by three angles: strike φ (0° to 360° clockwise from 
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north), dip δ (0° to 90° against the horizontal) and the direction of slip on the fault by the rake 
angle λ (- 180° to + 180° against the horizontal). Fig. 3.30 and 3.31 in section 3.4.2 define 
these angles and show how to determine them from a stereographic (Wulff) net or equal area 
(Lambert-Schmidt) projection using observations of first motion polarities. It can be shown 
that a rupture along a plane perpendicular to the above mentioned fault plane with a slip 
vector perpendicular to the slip on the first plane causes an identical angular distribution of 
first motions. Therefore, on the basis of first motion analysis alone one can not decide which 
of the two planes is the true fault plane.  
 
Note that in the case of a shear model the fault-plane solution (i.e., the information about the 
orientation of the fault plane and of the fault slip in space) forms, together with the 
information about the static seismic moment M0 (see 3.1.2.3), the seismic moment tensor Mij 
(see Equation (25) in IS 3.1). Its principal axes coincide with the direction of the pressure 
axis, P, and the tension axis, T, associated with fault-plane solutions. They should not be 
mistaken for the principal axes σ1, σ2 and σ3 (with σ1 > σ2 > σ3) of the acting stress field in 
the Earth which is described by the stress tensor. Only in the case of a fresh crack in a 
homogeneous isotropic medium in a whole space with no pre-existing faults and vanishing 
internal friction is P in the direction of σ1 while T has the opposite sense of σ3. P and T are 
perpendicular to each other and each one forms, under the above conditions, an angle of 45° 
with the two possible conjugate fault planes (45°-hypothesis) which are in this case 
perpendicular to each other (see Figs. 3.24 and 3.31 in 3.4). The orientation of  P and T is also 
described by two angles each: the azimuth and the plunge. They can be determined by 
knowing the respective angles of the fault plane (see EX 3.2). If the above model assumptions 
hold true, one can, knowing the orientation of P and T in space, estimate the orientations of σ1 

and σ3. Most of the data used for compiling the global stress map (Zoback 1992) come from 
earthquake fault-plane solutions calculated under these assumptions.  
 
In reality, the internal friction of rocks is not zero. For most rocks this results, according to 
Andersons´s theory of faulting (1951), in the formation of conjugate pairs of faults which are 
oriented at about ± 30° to σ1. In this case, the directions of P and T, as derived from fault-
plane solutions, will not coincide with the principal stress directions. Near the surface of the 
Earth one of the principal stresses is almost always vertical. In the case of a horizontal 
compressive regime, the minimum stress σ3 is vertical while σ1 is horizontal. This results, 
when fresh faults are formed in unbroken rock, in thrust faults dipping about 30° and striking 
parallel or anti-parallel to σ2. In an extensional environment, σ1 is vertical and the resulting 
dip of fresh normal faults is about 60°. When both σ1 and σ3 are horizontal, vertical strike-slip 
faults will develop, striking with ± 30° to σ1. But most earthquakes are associated with the 
reactivation of pre-existing faults rather than occurring on fresh faults. Since the frictional 
strength of faults is generally less than that of unbroken rock, faults may be reactivated at 
angles between σ1 and fault strike that are different from 30°. In a pre-faulted medium this 
tends to prevent failure on a new fault. Accordingly, there is no straightforward way to infer 
from the P and T directions determined for an individual earthquake the directions of the 
acting principal stress. On the other hand, it is possible to infer the regional stress based on 
the analysis of many earthquakes in that region since the possible suite of rupture mechanisms 
activated by a given stress regime is constrained. This method aims at finding an orientation 
for σ1 and σ3 which is consistent with as many as possible of the actually observed fault-plane 
solutions (e.g., Gephart and Forsyth, 1984; Reches, 1987; Rivera, 1989). 
 
 



3. Seismic Sources and Source Parameters 
 

12 

 
3.1.3 Mathematical source representation  
 
It is beyond the scope of the NMSOP to dwell on the physical models of seismic sources and 
their mathematical representation. There exists quite a number of good text books on these 
issues (e.g., Aki and Richards, 1980 and 2002; Ben-Menahem and Singh, 1981; Das and 
Kostrov, 1988; Scholz, 1990; Lay and Wallace, 1995; Udías, 1999). However, most of these 
texts are rather elaborate and more research oriented. Therefore, we have appended a more 
concise introduction into the theory of source representation in IS 3.1. It outlines how the 
basic relationships used in practical applications of source parameter determinations have 
been derived, on what assumptions they are based and what their limitations are.  
 
 
3.1.4   Detailed analysis of rupture kinematics and dynamics in space and 

time 
 

Above we have considered earthquake models to derive suitable parameters for describing the 
size and behavior of faulting of earthquakes and to some extent also of explosions. In 
actuality, earthquakes do not rupture along  perfect planes, nor are their rupture areas circular 
or rectangular. They do not occur in homogeneous rock, nor do they slip unilaterally or 
bilaterally. All these features are at best first order approximations or simplifications to the 
truth in order to make the problem mathematically and with limited data tractable. Real faults 
show jogs, steps, branching, splays, etc., both in their horizontal and vertical extent (Fig. 6). 
Such jogs and steps, depending on their severity, are impediments to smooth or ideal rupture, 
as are bumps or rough features along the contacting fault surfaces. More examples can be 
found in Scholz (1990). Since these features exist at all scales, which implies the self-
similarity of fracture and faulting processes and their fractal nature, this will necessarily result 
in heterogeneous dynamic rupturing and finally also in rupture termination. 
 

 
Fig. 3.6  Several fault zones mapped at different scales and viewed approximately normal to 
slip (from Scholz, The mechanics of earthquakes and faulting, 1990, Fig. 3.6, p. 106; with 
permission of Cambridge University Press). 
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As shown in Fig. 3.7 the complexity of the rupture process over time is a common feature of 
earthquakes, i.e., they often occur as multiple ruptures. This holds true for small earthquakes 
as well as very large earthquakes (Kikuchi and Ishida, 1993; Kikuchi and Fukao, 1987). And 
obviously, each event has its own "moment-rate fingerprint". 
 
Only in a few lucky cases have dense strong-motion networks been fortuitously deployed in 
the very source region of a strong earthquake. Strong-motion records enable a detailed 
analysis of the rupture history in space and time using the moment-rate density. As an 
example, Fig. 3.8 depicts an inversion of data by Mendez and Anderson (1991) for the rupture 
process of the 1985 Michoacán, Mexico earthquake. Shown are snapshots, 4 s apart from each 
other, of the dip-slip velocity field. One recognizes two main clusters of maximum slip 
velocity being about 120 km and 30 s apart from each other. The related maximum 
cumulative displacement was more than 3 m in the first cluster and more than 4 m in the 
second cluster at about 55 km and 40 km depth, respectively. About 90 % of the total seismic 
moment was released within these two main clusters which had a rupture duration each of 
only 8 s while the total rupture lasted for about 56 s (Mendez and Anderson, 1991).  

 
Fig. 3.7  Moment-rate (source time) functions for the largest earthquakes in the1960s and 
1970s as obtained by Kikuchi and Fukao (1987) (modified from Fig. 9 in Kikuchi and Ishida, 
Source retrieval for deep local earthquakes with broadband records, Bulletin Seismological 
Society of America, Vol. 83, No. 6, p. 1868, 1993,  Seismological Society of America.  
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Fig. 3.8  Snapshots of the development in space and time of the inferred rupture process of 
the 1985 Michoacán, Mexico, earthquake. The contours represent dip-slip velocity at 5 cm/s 
interval, the cross denotes the NEIC hypocenter. Three consecutively darker shadings are 
used to depict areas with dip-slip velocities in the range: 12 to 22, 22 to 32, and greater than 
32 cm/s, respectively. Abbreviations used: t - snapshot time after the origin time of the event, 
h - depth, D - distance in strike direction of the fault (redrawn and modified from Mendez and 
Anderson, The temporal and spatial evolution of the 19 September 1985 Michoacán 
earthquake as inferred from near-source ground-motion records, Bull. Seism. Soc. Am., Vol. 
81, No. 3, Fig. 6, p. 857-858, 1991;  Seismological Society of America). 
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This rupturing of local asperities produces most of the high-frequency content of earthquakes. 
Accordingly, they contribute more to the cumulative seismic energy release than to the 
moment release. This is particularly important for engineering seismological assessments of 
expected earthquake effects. Damage to (predominately low-rise) structures is mainly due to 
frequencies > 2 Hz. They are grossly underestimated when analyzing strong earthquakes only 
on the basis of medium and long-period teleseismic records or when calculating model 
spectra assuming smooth rupturing along big faults of large earthquakes.  
 
A detailed picture of the fracture process can be obtained only with dense strong-motion 
networks in source areas of potentially large earthquakes and by complementary field 
investigations and related modeling of the detailed rupture process in the case of clear surface 
expressions of the earthquake fault. Although this is beyond the scope of seismological 
observatory practice, observatory seismologists need to be aware of these problems and the 
limitations of their simplified standard procedures. Nevertheless, the value of these 
simplifications is that they allow a quick and rough first order analysis of the dominant type 
and orientation of earthquake faulting in a given region and  their relationship to regional 
tectonics and stress field. The latter can also been inferred from other kinds of data such as 
overcoring experiments, geodetic data or field geological evidence. Their comparison with 
independent seismological data, which are mainly controlled by conditions at greater depth, 
may provide a deeper insight into the nature of the observed stress fields. 
 
 
3.1.5 Summary and conclusions 

 
The detailed understanding and quantification of the physical processes and geometry of 
seismic sources is one of the ultimate goals of seismology, be it in relation to understanding 
tectonics, improving assessment of seismic hazard or discriminating between natural and 
anthropogenic events. Earthquakes can be quantified with respect to various geometrical and 
physical parameters such as time and location of the (initial) rupture and orientation of the 
fault plane and slip, fault length, rupture area, amount of slip, magnitude, seismic moment, 
radiated energy, stress drop, duration and time-history (complexity) of faulting, particle 
velocity, acceleration of fault motion etc. It is impossible, to represent this complexity with 
just a single number or a few parameters.  
 
There are different approaches to tackle the problem. One aims at the detailed analysis of a 
given event, both in the near- and far-field, analyzing waveforms and spectra of various kinds 
of seismic waves in a broad frequency range up to the static displacement field as well as 
looking into macroseismic data. Such a detailed and complex investigation requires a lot of 
time and effort. It is feasible only for selected important events. The second simplified 
approach describes the seismic source only by a limited number of parameters such as the 
origin time and (initial rupture) location, magnitude, intensity or acceleration of observed/ 
measured ground shaking, and sometimes the fault-plane solution. These parameters can 
easily be obtained and have the advantage of rough but quick information being given to the 
public and concerned authorities. Furthermore, this approach provides standardized data for 
comprehensive earthquake catalogs which are fundamental for other kinds of research such as 
earthquake statistics and seismic hazard assessment. But we need to be aware that these 
simplified, often purely empirical parameters can not give a full description of the true nature 
and geometry, the time history nor the energy release of a seismic source. In the following we 
will describe only the most common procedures that can be used in routine seismological 
practice.  
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3.2 Magnitude of seismic events (P. Bormann) 
 
3.2.1 History, scope and limitations of the magnitude concept 
 
The concept of magnitude was introduced by Richter (1935) to provide an objective 
instrumental measure of the size of earthquakes. In contrast to seismic intensity I , which is 
based on the assessment and classification of shaking damage and human perceptions of 
shaking and thus depends on the distance from the source, the magnitude M uses instrumental 
measurements of the ground motion adjusted for epicentral distance and source depth. 
Standardized instrument characteristics were originally used to avoid instrumental effects on 
the magnitude estimates. Thus it was hoped that M could provide a single number to measure 
earthquake size which is related to the released seismic energy, ES. However, as outlined in 
3.1 above, such a simple empirical parameter is not directly related to any physical parameter 
of the source. Rather, the magnitude scale aims at providing a quickly determined simple " ... 
parameter which can be used for first-cut reconnaissance analysis of earthquake data (catalog) 
for various geophysical and engineering investigations; special precaution should be exercised 
in using the magnitude beyond the reconnaissance purpose" (Kanamori, 1983).  
 
In the following we will use mainly the magnitude symbols, sometimes with slight 
modification, as they have historically developed and are still predominantly applied in 
common practice. However, as will be shown later, these “generic” magnitude symbols are 
often not explicit enough as to recognize on what type of records, components and phases 
these magnitudes are based. This requires more “specific” magnitude names where higher 
precision is required (see IS 3.2). 
 
The original Richter magnitude, ML or ML, was based on maximum amplitudes measured in 
displacement-proportional records from the standardized short-period Wood-Anderson (WA) 
seismometer network in Southern California, which was suitable for the classification of local 
shocks in that region. In the following we will name it Ml (with “l” for “local”) in order to 
avoid confusion with more specific names for magnitudes from surface waves where the 
phase symbol L stands for unspecified long-period surface waves. Gutenberg and Richter 
(1936) and Gutenberg (1945a, b and c) then extended the magnitude concept so as to be 
applicable to ground motion measurements from medium- and long-period seismographic 
recordings of both surface waves (Ms or Ms) and different types of body waves (mB or mB) in 
the teleseismic distance range. For the magnitude to be a better estimate of the seismic 
energy, they proposed to divide the measured displacement amplitudes by the associated 
periods to obtain ground velocities. Although they tried to scale the different magnitude scales 
together in order to match at certain magnitude values, it was realized that these scales are 
only imperfectly consistent with each other. Therefore, Gutenberg and Richter (1956a and b) 
provided correlation relations between various magnitude scales (see 3.2.7).  
 
After the deployment of the World Wide Standardized Seismograph Network (WWSSN) in 
the 1960s it became customary to determine mB on the basis of short-period narrow-band P-
wave recordings only. This short-period body-wave magnitude is called mb (or mb). The 
introduction of mb increased the inconsistency between the magnitude estimates from body 
and surface waves. The main reasons for this are:  

• different magnitude scales use different periods and wave types which carry 
different information about the complex source process;  
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• the spectral amplitudes radiated from a seismic source increase linearly with its 
seismic moment for frequencies f < fc (fc – corner frequency). This increase with 
moment, however, is reduced or completely saturated (zero) for f > fc (see Fig. 3.5). 
This changes the balance between high- and low-frequency content in the radiated 
source spectra as a function of event size; 

• the maximum seismic energy is released around the corner frequency of the 
displacement spectrum because this relates to the maximum of the ground-velocity 
spectrum (see Fig. 3.5). Accordingly, M, which is supposed to be a measure of 
seismic energy released, strongly depends on the position of the corner frequency in 
the source spectrum with respect to the pass-band of the seismometer used for the 
magnitude determination; 

• for a given level of long-period displacement amplitude, the corner frequency is 
controlled by the stress drop in the source. High stress drop results in the excitation 
of more high frequencies. Accordingly, seismic events with the same long-period 
magnitude estimates may have significantly different corner frequencies and thus 
ratios between short-period/long-period energy or mb/Ms, respectively; 

• seismographs with different transfer functions sample the ground motion in different 
frequency bands with different bandwidth. Therefore, no general agreement of the 
magnitudes determined on the basis of their records can be expected;  

• additionally, band-pass recordings distort the recording amplitudes of transient 
seismic signals, the more so the narrower the bandwidth is. This can not be fully 
compensated by correcting only the frequency-dependent magnification of different 
seismographs based on their amplitude-frequency response. Although this is 
generally done in seismological practice in order to determine so-called "true ground 
motion" amplitudes for magnitude calculation, it is not fully correct. The reason is 
that the instrument magnification or amplitude-frequency response curves are valid 
only for steady-state oscillation conditions, i.e., after the decay of the seismograph’s 
transient response to an input signal (see 4.2). True ground motion amplitudes can 
be determined only by taking into account the complex transfer function of the 
seismograph (see Chapter 5) and, in the case of short transient signals, by signal 
restitution in a very wide frequency band (Seidl, 1980; Seidl and Stammler, 1984; 
Seidl and Hellweg, 1988). Only recently a calibration function for very broadband 
P-wave recordings has been published (Nolet et al., 1998), however it has not yet 
been widely applied, tested and approved. 

 
Efforts to unify or homogenize the results obtained by different methods of magnitude 
determination into a common measure of earthquake size or energy have generally been 
unsuccessful (e.g., Gutenberg and Richter, 1956a; Christoskov et al., 1985). Others, aware of 
the above mentioned reasons for systematic differences, have used these differences for better 
understanding the specifics of various seismic sources, e.g., for discriminating between 
tectonic earthquakes and underground nuclear explosions on the basis of the ratio mb/Ms. 
Duda and Kaiser (1989) recommend the determination of different spectral magnitudes, based 
on measurements of the spectral amplitudes from one-octave bandpass- filtered digital 
broadband velocity records.  
 
Another effort to provide a single measure of the earthquake size was made by Kanamori 
(1977). He developed the seismic moment magnitude Mw. It is tied to Ms but does not 
saturate for big events because it is based on seismic moment M0, which is made from the 
measurement of the (constant) level of low-frequency spectral displacement amplitudes for f 
<< fc. This level increases linearly with M0. According to Eq. (3.1), M0 is proportional to the 
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average static displacement and the area of the fault rupture and is so a good measure of the 
total deformation in the source region. On the other hand it is (see the above discussion on 
corner frequency and high-frequency content) neither a good measure of earthquake size in 
terms of seismic energy release nor a good measure of specifying seismic hazard since most 
earthquake damage is usually related to medium and low-rise structures with eigenfrequencies 
f > 0.5 Hz (i.e., lower than about 20 stories) and mainly  caused by high-frequency strong 
ground motion. Consequently, there is no single number parameter available which could 
serve as a good estimate of earthquake “size” in all its different aspects. What is needed in 
practice are at least two parameters to characterize roughly both the size and related hazard of 
a seismic event, namely M0 and fc  or Mw together with mb or Ml (based on short-period 
measurements), respectively, or a comparison between the moment magnitude Mw and the 
energy magnitude Me. The latter can today be determined from direct energy calculations 
based on the integration of digitally recorded waveforms of broadband velocity (Seidl and 
Berckhemer, 1982; Berckhemer and Lindenfeld, 1986; Boatwright and Choy 1986; Kanamori 
et al. 1993; Choy and Boatwright 1995) (see 3.3). 
 
Despite their limitations, standard magnitude estimates have proved to be suitable also for 
getting, via empirical relationships, quick but rough estimates of other seismic source 
parameters such as the seismic moment M0, stress drop, amount of radiated seismic energy 
ES, length L, radius r or area A of the fault rupture, as well as the intensity of ground shaking, 
I0, in the epicentral area and the probable extent of the area of felt shaking (see 3.6 ).  
 
Magnitudes are also crucial for the quantitative classification and statistical treatment of 
seismic events aimed at assessing seismic activity and hazard, studying variations of seismic 
energy release in space and time, etc. Accordingly, they are also relevant in earthquake 
prediction research. All these studies have to be based on well-defined and stable long-term 
data. Therefore, magnitude values – notwithstanding the inherent systematic biases as 
discussed above - have to be determined over decades and even centuries by applying 
rigorously clear and well documented stable procedures and well calibrated instruments. Any 
changes in instrumentation, gain and filter characteristics have to be precisely documented in 
station log-books or event catalogs and data corrected accordingly. Otherwise, serious 
mistakes may result from research based on incompatible data.  
 
Being aware now on the one hand of the inherent problems and limitations of the magnitude 
concept in general and specific magnitude estimates in particular and of the urgent need to 
strictly observe reproducible long-term standardized procedures of magnitude determination 
on the other hand we will review below the magnitude scales most commonly used in 
seismological practice. An older comprehensive review of the complex magnitude issue was 
given by Båth (1981), a more recent one by Duda (1989). Various special volumes with 
selected papers from symposia and workshops on the magnitude problem appeared in 
Tectonophysics (Vol. 93, No.3/4 (1983); Vol. 166, No. 1-3 (1989); Vol. 217, No. 3/4 (1993). 
 

 
3.2.2.  General assumptions and definition of magnitude  
 
Magnitude scales are based on a few simple assumptions, e.g.: 
 
• for a given source-receiver geometry "larger" events will produce wave arrivals of larger 

amplitudes at the seismic station. The logarithm of ground motion amplitudes A is used 
because of the enormous variability of earthquake displacements; 
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• magnitudes should be a measure of seismic energy released and thus be proportional to  
the velocity of ground motion, i.e., to A/T with T as the period of the considered wave; 

• the decay of ground displacement amplitudes A with epicentral distance ∆ and their 
dependence on source depth, h, i.e., the effects of geometric spreading and attenuation of 
the considered seismic waves is known at least empirically in a statistical sense. It can be 
compensated for by a calibration function σ(∆, h). The latter is the log of the inverse of the 
reference amplitude A0(∆, h) of an event of zero magnitude, i.e., σ(∆, h) = -log A0(∆, h);  

• the maximum value (A/T)max in a wave group for which σ(∆, h) is known should provide 
the best and most stable estimate of the event magnitude; 

• regionally variable preferred source directivity may be corrected by a regional source 
correction term, Cr  , and the influence of local site effects on amplitudes (which depend 
on local crustal structure, near-surface rock type, soft soil cover and/or topography) may 
be accounted for by a station correction, CS, which is not dependent on azimuth. 

 
Accordingly, the general form of all magnitude scales based on measurements of ground 
displacement amplitudes Ad and periods T is: 
 

M = log(Ad/T)max + σ(∆, h) + Cr + CS.    (3.3) 
 
Note: Calibration functions used in common practice do not consider a frequency 
dependence of σσσσ. This is a serious omission. Theoretical calculations by Duda and 
Janovskaya (1993) show that, e.g., the differences in σ(∆, T) for P waves may become > 0.6 
magnitude units for T < 1 s, however they are < 0.3 for T > 4 s and thus they are more or less 
negligible for magnitude determinations in the medium- and long-period range (see Fig. 
3.15). 
 
 
3.2.3  General rules and procedures for magnitude determination 
 
Magnitudes can be determined on the basis of Eq. (1) by reading (A/T)max for any body wave 
(e.g., P, S, Sg, PP) or surface waves (LQ or Lg, LR or Rg) for which calibration functions for 
either vertical (V) and/or horizontal (H) component records are available. If the period being 
measured is from a seismogram recorded by an instrument whose response is already 
proportional to velocity, then (Ad/T)max = Avmax/2π, i.e., the measurement can be directly 
determined from the maximum trace amplitude of this wave or wave group with only a 
correction for the velocity magnification. In contrast, with displacement records one may not 
know with certainty where (A/T)max is largest in the displacement waveform. Sometimes 
smaller amplitudes associated with smaller periods may yield larger (A/T)max. In the following 
we will always use A for Ad, if not otherwise explicitely specified. 
 
In measuring A and T from  seismograms  for magnitude determinations and reporting them 
to national or international data centers, the following definitions and respective instructions 
given in the Manual of Seismological Observatory Practice (Willmore, 1979) as well as in the 
recommendations by the IASPEI Commission on Practice from its Canberra meeting in 1979 
(slightly modified and amended below) should be observed: 
 
• the trace amplitude B of a seismic signal on a record is defined as its largest peak (or 

trough) deflection from the base-line of the record trace; 
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• for many phases, surface waves in particular, the recorded oscillations are more or less 
symmetrical about the zero line. B should then be measured either by direct measurement 
from the base-line or - preferably - by halving the peak-to-trough deflection (Figs. 3.9 a 
and c - e). For phases that are strongly asymmetrical (or clipped on one side) B should be 
measured as the maximum deflection from the base-line (Fig. 3.9 b);  

• the corresponding period T is measured in seconds between those two neighboring peaks 
(or troughs) - or from (doubled!) trace crossings of the base-line - where the amplitude 
has been measured (Fig. 3.9); 

• the trace amplitudes B measured on the record should be converted to ground 
displacement amplitudes A in nanometers (nm) or some other stated SI unit, using the A-
T response (magnification) curve Mag(T) of the given seismograph (see Fig.3.11); i.e., A 
= B /Mag(T). (Note: In most computer programs for the analysis of digital seismograms, 
the measurement of period and amplitude is done automatically after marking the 
position on the record where A and T should be determined); 

• amplitude and period measurements from the vertical component (Z = V) are most 
important. If horizontal components (N - north-south; E - east-west) are available, 
readings from both records should be made at the same time (and noted or reported 
separately) so that the amplitudes can be combined vectorially, i.e., AH = √ (AN

2 + AE
2) ; 

• when several instruments of different frequency response are available (or in the case of 
the analysis of digital broadband records filtered with different standard responses), Amax 
and T measurements from each should be reported separately and the type of instrument 
used should be stated clearly (short-, medium- or long-period, broadband, Wood-
Anderson, etc., or related abbreviations given for instrument classes with standardized 
response characteristics; see Fig. 3.11 and Tab. 3.1). For this, the classification given in 
the old Manual of Seismological Observatory Practice (Willmore 1979) may be used; 

• broadband instruments are preferred for all measurements of amplitude and period; 
• note that earthquakes are often complex multiple ruptures. Accordingly, the time, tmax , at 

which a given seismic body wave phase has its maximum amplitude may be quite some 
time after its first onset. Accordingly, in the case of P and S waves the measurement 
should normally be taken within the first 25 s and 40-60 s, respectively, but in the case of 
very large earthquakes this interval may need to be extended to more than a minute. For 
subsequent earthquake studies it is also essential to report the time tmax (see Fig. 3.9). 

• for teleseismic (∆ > 20°) surface waves the procedures are basically the same as for body 
waves. However, (A/T)max in the Airy phase of the dispersed surface wave train occurs 
much later and should normally be measured in the period range between 16 and 24 s 
although both shorter and longer periods may be associated with the maximum surface 
wave amplitudes (see 2.3).  

• note that in displacement proportional records (A/T)max may not coincide in time with 
Bmax. Sometimes, in dispersed surface wave records in particular, smaller amplitudes 
associated with significantly smaller periods may yield larger (A/T)max. In such cases also 
Amax should be reported separately. In order to find (A/T)max on horizontal component 
records it might be necessary to calculate A/T for several amplitudes on both record 
components and select the largest vectorially combined value. In records proportional to 
ground velocity, the maximum trace amplitude is always related to (A/T)max. Note, 
however, that as compared to the displacement amplitude Ad the velocity amplitude is  
Av = Ad 2π/T. 

• if mantle surface waves are observed, especially for large earthquakes (see 2.3), 
amplitudes and periods of the vertical and horizontal components with the periods in the 
neighborhood of 200 s should also be measured; 
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• on some types of short-period instruments (in particular analog) with insufficient 
resolutions it is not possible to measure the period of seismic waves recorded from 
nearby local events and thus to convert trace deflections properly to ground motion. In 
such cases  magnitude scales should be used which depend on measurements of 
maximum trace amplitudes only; 

• often local earthquakes will be clipped in (mostly analog) records of high-gain short-
period seismographs with insufficient dynamic range. This makes amplitude readings 
impossible. In this case magnitude scales based on record duration (see 3.2.4.3) might be 
used instead, provided that they have been properly scaled with magnitudes based on 
amplitude measurements. 

 
Fig. 3.9  Examples for measurements of trace amplitudes B and periods T in seismic records 
for magnitude determination: a) the case of a short wavelet with symmetric and b) with 
asymmetric deflections, c) and d) the case of a more complex P-wave group of longer 
duration (multiple rupture process) and e)  the case of a dispersed surface wave train. Note: c) 
and d) are P-wave sections of the same event but recorded with different seismographs 
(classes A4 and C) while e) was recorded by a seismograph of class B3 (see Fig. 3.11). 
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Tab. 3.1  Example from the former bulletin of station Moxa (MOX), Germany, based on the 
analysis of analog photographic recordings. The event occurred on January 1967. Note the 
clear annotation of the type of instruments used for the determination of onset times, 
amplitudes and periods. Multiple body wave onsets of distinctly different amplitudes, which 
are indicative of a multiple rupture process, have been separated. Seismographs of type A, B 
and C were nearly identical with the response characteristics A4, B3 and C in Fig. 3.11. V = Z 
- vertical component; H - vectorially combined horizontal components; Lm - maximum of the 
long-period surface wave train.  
 
Day Phase Seismograph  h   m     s Remarks 
5. +eiP1 

  iP2 
  iP3 
  Pmax 
  ePP2 
  ePP3 
  eS2 
  i S3 
 eiSS 
 iSSS 
LmH 
 

A 
A 

A,C 
C 
C 
C 
C 
C 
B 
B 
C 

00 24  15.5 
      24  21.5 

24 28.0 
24 31 
26  27.5 
26  34 
32 04 
32 11 
35 56 
36 44 
48.0 

Mongolia  48.08°N  102.80°E 
H = 00 14 40.4  h = normal  MAG = 6.4 
∆ = 55.7°  Az = 309.6° (USCGS) 
 
PV1   A   1.2s    71.8nm     MPV1(A)=5.6 
PV2   A    1.8s  1120nm     MPV2(A)=6.6 
PV3   A    1.6s  1575nm     MPV3(A)=6.8 
PV3   C     8s     16.3µm     MPV3(B)=7.1 
SH3   C   18s        60µm     MSH3(B)=7.3 
LmV  C   17s      610µm     MLV(B) =7.8 
Note: P has a period of about 23s in the long-
period seismograph of type B! 

 
Note in Tab. 3.1 the distinct differences between individual magnitude determinations and the 
clear underestimation of short-period (type A) magnitudes. This early practice of specifying 
magnitude annotation has been officially recommended by the IASPEI Sub-Committee on 
Magnitudes in 1977 (see Willmore, 1979) but is not yet standard. However, current 
deliberations in IASPEI stress again the need for more specific magnitude measurements and 
reports to databases along these lines (see IS 3.2). When determining magnitudes according to 
more modern and physically based concepts such as radiated energy or seismic moment, 
special procedures have to be applied (see 3.3 and 3.5 ).  
 
Global or regional data analysis centers calculate mean magnitudes on the basis of many A/T 
or M data reported by seismic stations from different distances and azimuths with respect to 
the source. This will more or less average out the influence of regional source and local 
station conditions. Therefore, A/T or M data reported by individual stations to such centers 
should not yet be corrected for Cr and CS. These corrections can be determined best by 
network centers themselves when comparing the uncorrected data from many stations (e.g., 
Hutton and Boore, 1987). They may then use such corrections for reducing the scatter of 
individual readings and thus improve the average estimate.  
 
When determining new calibration functions for the local magnitude Ml, station corrections 
have to be applied before the final data fit in order to reduce the influence of systematic biases 
on the data scatter. According to the procedure proposed by Richter (1958) these station 
corrections for Ml are sometimes determined independently for readings in the N-S and E-W 
components (e.g., Hutton and Boore, 1987). When calculating network magnitudes some 
centers prefer the median value of individual station reports of Ml as the best network 
estimate. As compared to the arithmetic mean it minimizes the influence of widely diverging 
individual station estimates due to outliers or wrong readings (Hutton and Jones, 1993).  
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Fig. 3.11  Relative magnification curves for ground displacement for various classes of 
standardized analog recordings (partially redrawn from the old Manual of Seismological 
Observatory Practice, Willmore 1979 and amended). A4 and C are the magnification curves 
of the standard short-period and displacement broadband (Kirnos SKD) seismographs of the 
basic network of seismological stations in the former Soviet Union and Eastern European 
states while A2 and B1 are the standard characteristics for short- and long-period recordings 
at stations of the World Wide Standardized Seismograph Network (WWSSN) which was set 
up by the United States Geological Survey (USGS) in the 1960s and 1970s. The other 
magnification curves are: WA - Wood-Anderson torsion seismometer (see below), which was 
instrumental in the definition of the magnitude scale; HGLP - High Gain Long Period system.  
 
 
In the following we will outline the origin, general features, formulae and specific differences 
of various magnitude scales currently in use. We will highlight which of these scales are at 
present accepted as world-wide standards and will also spell out related problems which still 
require consideration, clarifying discussion, recommendations or decisions by the IASPEI 
Commission on Seismological Observation and Interpretation. Data tables and diagrams on 
calibration functions used in actual magnitude determinations are given in Datasheet 3.1. 
 
 
3.2.4  Magnitude scales for local events 
  
The large variability of velocity and attenuation structure of the crust does in fact not permit 
the development of a unique, internationally standardized calibration function for local 
events. However, the original definition of magnitude by Richter (1935) did lead to the 
development of the local magnitude scale Ml (originally ML) for California. Ml scales for 
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other areas are usually scaled to Richter’s definition and also the procedure of measurement is 
more or less standardized.  
 
3.2.4.1  The original Richter magnitude scale Ml 
 
Following a recommendation by Wadati, Richter (1935) plotted the logarithm of maximum 
trace amplitudes, Amax, measured from standard Wood-Anderson (WA) horizontal component 
torsion seismometer records as a function of epicentral distance ∆. The WA seismometers 
had the following parameters: natural period TS = 0.8 s, damping factor DS = 0.8, maximum 
magnification Vmax = 2800. Richter found that log Amax decreased with distance along more 
or less parallel curves for earthquakes of different size. This led him to propose the following 
definition for the magnitude as a quantitative measure of earthquake size (Richter 1935, p. 7): 
" The magnitude of any shock is taken as the logarithm of the maximum trace amplitude, 
expressed in microns, with which the standard short-period torsion seismometer ... would 
register that shock at an epicentral distance of 100 km". 
 
Note 1: Uhrhammer and Collins (1990) found out that the magnification of 2800 of WA 
seismometers had been calculated on the basis of wrong assumptions on the suspension 
geometry. A more correct value (also in Fig. 3.11) is 2080 ±±±± 60 (see also Uhrhammer et al., 
1996). Accordingly, magnitude estimates based on synthesized WA records or amplification 
corrected amplitude readings assuming a WA magnification of 2800 systematically 
underestimate the size of the event by 0.13 magnitude units!  
 
This local magnitude was later given the symbol ML (Gutenberg and Richter, 1956b). In the 
following we use Ml (l = local). In order to calculate Ml also for other epicentral distances, ∆, 
between 30 and 600 km, Richter (1935) provided attenuation corrections. They were later 
complemented by attenuation corrections for ∆ < 30 km assuming a focal depth h of 18 km 
(Gutenberg and Richter, 1942; Hutton and Boore, 1987). Accordingly, one gets 
 

    Ml = log Amax - log A0      (3.4) 
 
with Amax in mm of measured zero-to-peak trace amplitude in a Wood-Anderson seismogram. 
The respective corrections or calibration values –log A0 were published in tabulated form by 
Richter (1958) (see Table 1 in DS 3.1). 
 
Note 2: In contrast to the general magnitude formula (3.3), Eq. (3.4) considers only the 
maximum displacement amplitudes but not their periods. Reason: WA instruments are short-
period and their traditional analog recorders had a limited paper speed. Proper reading of the 
period of high-frequency waves from local events was rather difficult. It was assumed, 
therefore, that the maximum amplitude phase (which in the case of local events generally 
corresponds to Sg, Lg or Rg) always had roughly the same dominant period. Also, - log A0 
does not consider the above discussed depth dependence of σ(∆, h) since seismicity in 
southern California was believed to be always shallow (mostly less than 15 km). Eq. (3.4) 
also does not give regional or station correction terms since such correction terms were 
already taken into account when determining -log A0 for southern California. 
 
Note 3: Richter's attenuation corrections are valid for southern California only. Their shape 
and level may be different in other regions of the world with different velocity and attenuation 
structure, crustal age and composition, heat-flow conditions and source depth. Accordingly, 
when determining Ml calibration functions for other regions, the amplitude attenuation law 
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has to be determined first and then this curve has to be scaled to the original definition of Ml 
at 100 km epicentral distance (or even better at closer distance; see problem 1 below). 
Examples for other regional Ml calibration functions are shown in Fig. 3.12). 
 
Note 4: The smallest events recorded in local microearthquake studies have negative values 
of Ml  while the largest Ml is about 7 , i.e., the Ml scale also suffers saturation (see Fig. 3.18). 
Despite these limitations, Ml estimates of earthquake size are relevant for earthquake 
engineers and risk assessment since they are closely related to earthquake damage. The main 
reason is that many structures have natural periods close to that of the WA seismometer (0.8s) 
or are within the range of its pass-band (about 0.1 - 1 s).  
 
A review of the development and use of the Richter scale for determining earthquake source 
parameters is given by Boore (1989). 
 
Problems: 
1)  According to Hutton and Boore (1987) the distance corrections developed by Richter for 

local earthquakes (∆ < 30 km) are incorrect. This leads to magnitude estimates from 
nearby stations that are smaller than those from more distant stations. Bakun and Joyner 
(1984) came to the same conclusion for weak events recorded in Central California at 
distances of less than 30 km.  

2)  In 3.2.3 it was said that, as a general rule, in the case of horizontal component recordings, 
AHmax is the maximum vector sum amplitude measured at tmax in both the N and E 
component. Deviating from this, Richter (1958) says: "... In using ...both horizontal 
components it is correct to determine magnitude independently from each and to take the 
mean of the two determinations. This method is preferable to combining the components 
vectorially, for the maximum motion need not represent the same wave on the two 
seismograms, and it even may occur at different times." In most investigations aimed at 
deriving local Ml scales AHmax = (AN + AE)/2 has been used instead to calculate ML 
although this is not fully identical with Ml = (MlN + MlE)/2 and might give differences in 
magnitude of up to about 0.1 units.  

3)  The Richter Ml from arithmetically averaged horizontal component amplitude readings 
will be smaller by at least 0.15 magnitude units as compared to Ml from AHmax vector 
sum! In the case of significantly different amplitudes ANmax and AEmax this difference 
might reach even several tenths of magnitude units. However, the method of combining 
vectorially the N and E component amplitudes, as generally practiced in other procedures 
for magnitude determination from horizontal component recordings, is hardly used for Ml 
because of reasons of continuity in earthquake catalogs, even though it would be easy 
nowadays with digital data. 

 
 
3.2.4.2  Other Ml scales based on amplitude measurements 
 
The problem of vector summing of amplitudes in horizontal component records or of 
arithmetic averaging of independent Ml determinations in N and E components can be 
avoided by using AVmax from vertical component recordings instead, provided that the 
respective -log A0 curves are properly scaled to the original definition of Richter for ∆ = 100 
km. Several new formulas for Ml determinations based on readings of AVmax have been 
proposed for other regions (see Tab. 2 in DS 3.1). They mostly use Lg waves, sometimes well 
beyond the distance of 600 km for which -log A0 was defined by Richter (1958). Alsaker et 
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al. (1991) and Greenhalgh and Singh (1986) showed that AZmax is ≈ 1 to 1.2 times AHmax = 0.5 
(ANmax + AEmax) and thus yields practically the same magnitudes.  
 
Since Richter’s σ(∆) = -log A0 for southern California might not be correct for other regions, 
local calibration functions have been determined for other seismotectonic regions. Those for 
continental shield areas revealed significantly lower body-wave attenuation when compared 
with southern California. Despite scaling –log A0(∆) for other regions to the value given by 
Richter for ∆ = 100 km, deviations from Richter's calibration function may become larger 
than one magnitude unit at several 100 km distances. Fig. 3.12 shows examples of Ml scaling  
relations for other regions. Although cut in this figure for epicentral distances ∆ > 600 km 
some of the curves shown are defined for much larger distances (see Table 2 in DS 3.1).  
 
Problem: 
Hutton and Boore (1987) proposed that local magnitude scales be defined in the future such 
that Ml = 3 correspond to 10 mm of motion on a Wood-Anderson instrument at 17 km 
hypocentral distance rather than 1 mm of motion at 100 km. While being consistent with the 
original definition of magnitude in southern California this definition will allow more 
meaningful comparison of earthquakes in regions having very different wave attenuation 
within the first 100 km. This proposal has already been taken into consideration when 
developing a local magnitude scale for Tanzania, East Africa (Langston et al., 1998) and 
should be considered by IASPEI for assuring standardized procedures in the further 
development of local and regional Ml scales. 
 

    
 
Fig. 3.12  Calibration functions for Ml determination for different regions. Note that the one 
for Central Europe is frequency dependent. The related Ml relationships and references are 
given in Table 2 of DS 3.1.  
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Some of the calibration functions shown in Fig. 3.12 for Lg waves extend in fact far beyond 
600 km, e.g., that for Norway up to 1500 km distance. At this distance -log A0 differs by 1.7 
magnitude units from the extrapolated calibration curve for southern California!  
 
Note 1: Station corrections in some of these studies varied between -0.6 to +0.3 magnitude 
units (Bakun and Joyner, 1984; Greenhalgh and Singh, 1986; Hutton and Jones, 1993) and 
correlated broadly with regional geology. This points to the urgent need to determine both 
calibration functions and station corrections for Ml  on a regional basis.  
 
Note 2: Since sources in other regions may be significantly deeper than in southern 
California, either σ(∆, h) should be determined or at least the epicentral distance ∆ should be 
replaced in the magnitude formulas by the "slant" or hypocentral distance R = √(∆2 + h2). The 
latter is common practice now.  
 
Procedures are currently available to synthesize precisely the response characteristic of 
Wood-Anderson seismographs from digital broadband recordings (e.g., Plešinger et al., 1996; 
see also 11.3.2). Therefore, WA seismographs are no longer required for carrying out Ml 
determinations. Savage and Anderson (1995) and Uhrhammer, et al. (1996) demonstrated the 
ability to determine an unbiased measure of local magnitude from synthetic WA 
seismograms. Thus, a seamless catalog of Ml could be maintained at Berkeley, California. In 
a first approximation (although not identical!) this can also be achieved by converting record 
amplitudes from another seismograph with a displacement frequency response Mag(Ti) into 
respective WA trace amplitudes by multiplying them with the ratio MagWA(Ti)/Mag(Ti) for 
the given period of Amax.  
 
Sufficient time resolution of today’s high-frequency digital records is likewise no longer a 
problem. There have been efforts to develop frequency-dependent calibration functions 
matched to the Richter scale at 100 km distance (e.g., Wahlström and Strauch, 1984; see Fig. 
3.12) but this again breaks with the required continuity of procedures and complicates the 
calibration relationship for Ml.  
 
The increasing availability of strong-motion records and their advantage of not being clipped 
even by very strong nearby events have led to the development of (partially) frequency- 
dependent MlSM scales for strong-motion data (Lee et al., 1990; Hatzidimitriou et al., 1993). 
The technique to calculate synthetic Wood-Anderson seismograph output from strong-motion 
accelerograms was first introduced by Kanamori and Jennings (1978). 
 
 
3.2.4.3  Duration magnitude Md  
 
Analog paper or film recordings have a very limited dynamic range of only about 40 dB and 
analog tape recordings of about 60 dB. For many years widely used digital recorders with 12 
or 16 bit A-D converters enabled amplitude recordings with about 66 or 90 dB, respectively. 
Nevertheless, even these records were often clipped for strong local seismic events. This 
made magnitude determinations based on measurements of Amax impossible. Therefore, 
alternative magnitude scales such as Md were developed. They are based on the signal 
duration of an event. Nowadays with 24 bit A-D converters and ≈140 dB usable dynamic 
range, clipping is no longer a pressing problem. It is rare that an event is not considered for 
analysis. 
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In the case of local seismic events the total signal duration, d, is primarily controlled by the 
length of the coda which follows the Sg onset. A theoretical description of the coda envelopes 
as an exponentially decaying function with time was presented by Herrmann (1975). He 
proposed a duration magnitude formula of the general form: 
 

Md = a0 + a1 logd + a2 ∆      (3.5) 
 
Different procedures have been proposed for determining signal or coda duration such as: 
 

• duration from the P-wave onset to the end of the coda, i.e., where the signal 
disappears in the seismic noise of equal frequency; 

• duration from the P-wave onset to that time when the coda amplitudes have decayed 
to a certain threshold level, given in terms of average signal-to-noise ratio or of 
absolute signal amplitudes or signal level; 

• total elapsed time = coda threshold time minus origin time of the event. 
 
An early formula for the determination of local magnitudes based on signal duration was 
developed for earthquakes in Kii Peninsula in Central Japan by Tsumura (1967) and scaled to 
the magnitudes MJMA reported by the Japanese Meteorological Agency: 
 

Md = 2.85 log (F - P) + 0.0014 ∆ - 2.53 for 3 < MJMA < 5   (3.6) 
 
with P as the onset time of the P wave and F as the end of the event record (i.e., where the 
signal has dropped down to be just above the noise level), F – P in s and ∆ in km. 
 
Another duration magnitude equation of the same structure has been defined by Lee et al. 
(1972) for the Northern California Seismic Network (NCSN). The event duration, d (in s), is 
measured from the onset of the P wave to the point on the seismogram where the coda 
amplitude has diminished to 1 cm on the Develocorder film viewer screen with its 20 times 
magnification. With ∆ in km these authors give: 
 

Md = 2.00 log d + 0.0035 ∆ - 0.87  for 0.5 < Ml < 5.   (3.7) 
 
The location program HYPO71 (Lee and Lahr, 1975) employs Eq. (3.7) to compute duration 
magnitudes, called FMAG. But it was found that Eq. (3.7) yields seriously underestimated 
magnitudes of events Ml > 3.5. Therefore, several new duration magnitude formulae have 
been developed for the NCSN, all scaled to Ml. One of the latest versions by Eaton (1992) 
uses short-period vertical-component records, a normalization of instrument sensitivity, 
different distant correction terms for ∆ < 40 km, 40 km ≤ ∆ ≤ 350 km and ∆ > 350 km, as well 
as a depth correction for h > 10 km.  
 
According to Aki and Chouet (1975) coda waves from local earthquakes are commonly 
interpreted as back-scattered waves from numerous heterogeneities uniformly distributed in 
the crust. Therefore, for a given local earthquake at epicentral distances shorter than 100 km 
the total duration of a seismogram is therefore almost independent of distance and azimuth 
and of structural details of the direct wave path from source to station. Also the shape of coda 
envelopes, which decay exponentially with time, remains practically unchanged. The 
dominating factor controlling the amplitude level of the coda envelope and signal duration is 
the earthquake size. This allows development of duration magnitude scales without a distance 
term, i.e.: 
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Md = a0 + a1 log d       (3.8) 

 
Thus, quick magnitude estimates from local events are feasible even without knowing the 
exact distance of the stations to the source.  
 
Note: Crustal structure, scattering and attenuation conditions vary from region to region. No 
general formulas can therefore be given. They must to be determined locally for any given 
station or network and be properly scaled to the best available amplitude-based Ml scale. In 
addition, the resulting specific equation will depend on the chosen definition for d, the local 
noise conditions and the sensor sensitivity at the considered seismic station(s) of a network. 
 
 
3.2.5 Common teleseismic magnitude scales 
 
Wave propagation in deeper parts of the Earth is more regular than in the crust and can be 
described sufficiently well by 1-D velocity and attenuation models. This permits derivation of 
globally applicable teleseismic magnitude scales. Fig. 3.13 shows smoothed A-∆ relationships 
for short-period P and PKP waves as well as for long-period surface waves for teleseismic 
distances, normalized to a magnitude of 4.  

 
Fig. 3.13  Approximate smoothed amplitude-distance functions for P and PKP body waves (at 
about 1 Hz) and of long-period Rayleigh surface waves (LR, Airy phase, T ≈ 20 s) for an 
event of magnitude 4.  
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From Fig. 3.13 the following general conclusions can be drawn: 
 

• surface waves and body waves have a different geometric spreading and attenuation. 
While the former propagate in two dimension only, the latter spread three-
dimensionally. Accordingly, for shallow seismic events of the same magnitude, 
surface waves have generally larger amplitudes than body waves;  

• surface wave amplitudes change smoothly with distance. They generally decay up to 
about 140° and increase again beyond about 150°-160°. The latter is due to the 
increased geometric focusing towards the antipode of the spherical Earth's surface 
which then overwhelms the amplitude decay due to attenuation; 

• in contrast to surface waves, the A-∆ relations for first arriving longitudinal waves 
(P and PKP) show significant amplitude variations. The latter are mainly caused by 
energy focusing and defocusing due to velocity discontinuities in deeper parts of the 
Earth. Thus the amplitude peaks at around 20° and 40° are related to discontinuities 
in the upper mantle at 410 km and 670 km depth, the rapid decay of short-period P-
wave amplitudes beyond 90° is due to the strong velocity decrease at the core-
mantle boundary (“core shadow”), and the amplitude peak for PKP near 145° is 
caused by the focusing effect of the outer core (see Fig. 11.59).  

 
Other body wave candidates for magnitude determinations again behave differently, e.g. PP 
which is reflected at the Earth's surface half way between the source and receiver. PP does not 
have a core shadow problem and is well observed up to antipode distances. Furthermore, one 
has to consider that body waves are generated efficiently by both shallow and deep 
earthquakes. This is not the case for surface waves. Accordingly, the different A-∆-h behavior 
of surface and body waves requires different calibration functions if one wants to use them for 
magnitude determination.  
 
 
3.2.5.1  Surface-wave magnitude scale Ms 
 
Gutenberg (1945a) developed the magnitude scale Ms for teleseismic surface waves: 
 

Ms = log AHmax (∆) + σS(∆).      (3.9) 
 
It is based on measurements of the maximum horizontal "true" ground motion displacement 
amplitudes AHmax = √(AN

2 + AE
2) of the surface wave train at periods T = 20 ± 2 s. This 

maximum corresponds to the Airy phase, a local minimum in the group velocity dispersion 
curve of Rayleigh surface waves which arises from the existence of a low-velocity layer in the 
upper mantle (see 2.3). There was no corresponding formula given for using vertical 
component surface waves because no comparably sensitive and stable vertical component 
long-period seismographs were available at that time.  
 
The calibration function σS(∆) is the inverse of a semi-empirically determined A-∆-
relationship scaled to an event of Ms = 0, thus compensating for the decay of amplitude with 
distance. Richter (1958) gave tabulated values for σS (∆) in the distance range 20° ≤ ∆ ≤ 180° 
(see Table 3 in DS 3.1).  
 
This relationship was further developed by Eastern European scientists. Soloviev (1955) 
proposed the use of the maximum ground particle velocity (A/T)max instead of the maximum 
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ground displacement Amax since the former is more closely related to seismic energy. It also 
better accounts for the large variability of periods at the surface-wave amplitude maximum 
(Airy phase) depending on distance and crustal structure (see 2.3). For most continental 
Rayleigh waves the Airy phase periods are around 20 s and fall indeed within the narrow 
period window of 20 ± 2 s set by Gutenberg. However, periods as small as 7 s have been 
observed at 10° and of 16 s at 100° epicentral distances while the largest periods observed for 
continental paths may reach 28 s and be still somewhat higher for oceanic paths.  
 
Collaboration between research teams in Prague, Moscow and Sofia resulted in the proposal 
of a new Ms scale and calibration function, termed Moscow-Prague formula, by Karnik et al. 
(1962): 

Ms = log (A/T)max + σS (∆) = log (A/T)max + 1.66 log ∆ + 3.3            (3.10) 
 
for epicentral distances 2° < ∆ < 160° and source depth h < 50 km. The IASPEI Committee on 
Magnitudes recommended at its Zürich meeting in 1967 the use of this formula as standard 
for Ms  determination for shallow seismic events (h ≤≤≤≤ 50 km).  
 
Another scale, said to be well calibrated with the Gutenberg and Richter Ms scale, however 
based on records from 5-s instruments, is used by the Japan Meteorological Agency for 
regional events only (Tsuboi, 1954): 
 

M(JMA) = log √(AN
2 + AE

2) + 1.73 log ∆ - 0.83               
 
with ∆ in km and A ground amplitudes in µm. 
 
Note 1: For 20 s surface waves of the same amplitudes Eq. (3.10) yields, on average, 
magnitudes which are about 0.2 units larger than the original Gutenberg-Richter Ms 
according to (3.9) and tabulated in Table 3 of DS 3.1. This has been confirmed by Abe 
(1981). He gave the following relationship between Ms determinations by NEIC using Eq. 
(3.10) and Ms according to Gutenberg-Richter: 
 

Ms(“Prague”, NEIC) = Ms(Gutenberg-Richter) + 0.18.            (3.11)  
 
Note 2: Eq. (3.10) is defined only up to 160°. It does not account for the amplitude increase 
beyond 160°. However, the latter is obvious in the tabulated version of σ(∆)H issued by the 
Moscow-Prague-Sofia group (see Table 4 in DS 3.1).  
 
Note 3: As shown in Fig. 3.5, surface-wave spectra from events with Ms > 7 and a seismic 
moment M0 > 1020 Nm will have their corner period at T > 20 s. Consequently, Ms scales 
based on (A/T)max measurements for periods T ≈ 20 s will systematically underestimate the 
size of larger events and saturate around Ms = 8.5 (see Fig. 3.18). Such was the case with the 
strongest earthquake of the 20th century in Chile 1960, which had a seismic moment M0 = 2-3 
× 1023 Nm for the main shock but an Ms of only 8.5 (see Lay and Wallace, 1995). Several 
efforts have therefore been made to develop a moment magnitude Mw (see 3.2.5.3) and other 
non-saturating magnitude scales (see 3.2.6.1 and 3.2.6.2). 
 
Note 4: There may be significant regional biases due to surface-wave path effects. Lateral 
velocity variations in the crust and upper mantle as well as refraction at plate boundaries may 
result in significant focusing and de-focusing effects and related regional over- or 
underestimation of Ms (Lazareva and Yanovskaya, 1975). According to Abercrombie (1994) 
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this seems to be the main cause for the anomalous high surface-wave magnitudes of 
continental earthquakes relative to their seismic moments rather than differences in the source 
process. Therefore, in order to obtain reliable, unbiased estimates of regional seismic strain 
rate and hazard, local/regional moment-magnitude relationships should be preferred to global 
ones. 
 
The 1979 edition of MSOP (Willmore 1979) recommends the use of the standard formula Eq. 
(3.10) for both horizontal and vertical components. Bormann and Wylegalla (1975) and 
Bormann and Khalturin (1975) used a large global data set of long-period surface-wave 
magnitudes MLH and MLV determined at station MOX, Germany to show that this is 
justified. They used (A/T)max surface-wave readings for the horizontal (H) and vertical (V) 
components of instruments of type C (see Fig. 3.11) in the magnitude range 3.7 < Ms < 8.2 
and adjusted them with the tabled calibration values (Table 4 in DS 3.1) corresponding to Eq. 
(3.10). They obtained the orthogonal regression relationship MLV - 0.97 MLH = 0.19 with a 
correlation coefficient 0.98 and a standard deviation of only ± 0.11.  
 
The NEIC adopted the vertical component as its standard in May 1975 (Willmore 1979), i.e., 
Ms is determined from the Rayleigh-wave maximum only. Table 5 in DS 3.1 may aid in 
finding the appropriate part of the record.  
 
Today, both the ISC and NEIC use Eq. (3.10) for the determination of Ms from events with 
focal depth h < 60 km without specifying the type of waves or components considered. The 
ISC accepts both vertical or resultant horizontal amplitudes of surface waves with periods 
between 10 - 60 s from stations in the distance range 5° - 160° but calculates the 
representative average Ms only from observations between 20° - 160°. In contrast, the NEIC 
calculates Ms only from vertical component readings of stations between 20° ≤ ∆ ≤ 160° and 
for reported periods of 18 s ≤ T ≤ 22 s. This limitation in period range is not necessary and 
limits the possibility of Ms determinations from regional earthquakes. 
 
Very recently Yacoub (1998) presented a method for accurate estimation of Rayleigh-wave 
spectral magnitudes MR by velocity and frequency window analysis of digital records. He 
applied it to records of underground nuclear explosions in the distance range 5° to 110°and 
compared MR with the classical time-window magnitude estimates, Ms, according to Eq. 
(3.10). While both agreed well, in general MR had smaller standard deviations. Another 
advantage is that the procedure for MR determination can easily be implemented for on-line 
automated magnitude measurements. (Note: According to proposed specific magnitude names 
MR should be termed MLR; see IS 3.2). 
 
Problems: 
1)  Herak and Herak (1993) found that σS(∆) in the Moscow-Prague formula does not yield 

consistent magnitude estimates independent of ∆. They proposed instead the formula: 
 

Ms = log (A/T)max + 1.094 log ∆ + 4.429.              (3.12) 
 

This formula is based on USGS data, i.e., on amplitude readings in the period range 18 to 
22 s. It provides distance-independent estimates of Ms over the whole distance range 4° < 
∆ < 180°. Ms values according to Eq. (3.12) are equal to those from Eq. (3.10) at ∆ = 
100°, larger by 0.39 magnitude units at ∆ = 20° and smaller by 0.12 units for ∆ = 160°. 
Eq. (3.12) is practically equal to the magnitude formulae earlier proposed by von Seggern 
(1977) and similar to more recent results obtained by Rezapour and Pearce (1998).  
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2)  The possible introduction of Eq. (3.12) as a new standard calibration function for Ms has 
not yet been discussed or recommended by the IASPEI Commission on Practice. The 
same applies to depth corrections for σS. Empirically derived corrections for intermediate 
and deep earthquakes were published by Båth (1985). They range between 0.1 and 0.5 
magnitude units for focal depths of 50 - 100 km and between 0.5 and 0.7 units for depths 
of 100 - 700 km. But theoretical calculations by Panza et al. (1989) indicate that the depth 
correction may already exceed one magnitude unit even for shallow sources (h ≤ 60 km). 
This is confirmed by an empirical formula used at seismic stations in Russia for 
determining the depth of shallow earthquakes (h < 70 km) from the ratio mB/Ms 
(Ochozimskaya, 1974): h (in km) = 54 mB – 34 Ms – 107 (correlation coefficient 0.88). 

3)  Recently, there has been again a tendency to determine the surface-wave magnitude by 
specifying the type of the waves and/or components used, e.g., MLRH or MLRV from 
Rayleigh waves and MLQH from Love waves or simply MLH and MLV as was the 
practice in Eastern Germany in the 1960’s (see Tab. 3.1) and recommended already in 
1967 by the IASPEI Committee on Magnitude at Zürich. Since the newly proposed 
IASPEI Seismic Format (see 10.2.5) accepts such specifications in data reports to data 
centers, the IASPEI WG on Magnitude Measurements will elaborate recommendations 
for unambiguous standards  and “specific” magnitude names (see IS 3.2).  

 
 
3.2.5.2  Magnitude scales for teleseismic body waves 
 
Gutenberg (1945b and c) developed a magnitude relationship for teleseismic body waves such 
as P, PP and S in the period range 0.5 s to 12 s. It is based on theoretical amplitude 
calculations corrected for geometric spreading and (only distance-dependent!) attenuation and 
then adjusted to empirical observations from shallow and deep-focus earthquakes, mostly in 
intermediate-period records:  

mB = log (A/T)max + Q(∆, h).               (3.13) 
 
Gutenberg and Richter (1956a) published a table with Q(∆) values for P-, PP- and S-wave 
observations in vertical (V=Z) and horizontal (H) components for shallow shocks (see Tab. 6 
in DS 3.1), complemented by diagrams Q(∆, h) for PV, PPV and SH (Figures. 1a-c in DS 3.1) 
which enable also magnitude determinations for intermediate and deep earthquakes. These 
calibration functions are correct when ground displacement amplitudes are measured in 
intermediate-period records and given in micrometers (1 µm = 10-6 m). 
 
Gutenberg and Richter (1956a) also proposed a unified magnitude m as a weighted average of 
the individual mB values determined for these different types of body waves. Because of their 
different propagation paths they also differ in their frequency spectra. In addition, these body 
waves leave the source at different take-off angles and have different radiation pattern 
coefficients. Using these body waves jointly for the computation of magnitude significantly 
reduces the effect of the source mechanism on the magnitude estimate. Gutenberg and Richter 
(1956a) also scaled m (and thus, in a first approximation, also individual mB) to the earlier 
magnitude scales Ml and Ms so as to match these scales at magnitudes between about 6 to 7. 
Since mB is based on amplitude measurements at shorter periods than those observed in the 
Airy phase of surface waves, the mB scale saturates somewhat earlier than Ms (see Fig. 3.18).  
 
Later, with the introduction of the WWSSN short-period 1s-seismometers (see Fig. 3.11, type 
A2) it became common practice at the NEIC to use the calibration function Q(∆, h) for short-
period PV only. In addition, it was recommended that the largest amplitude be taken within 
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the first few cycles (see Willmore, 1979) instead of measuring the maximum amplitude in the 
whole P-wave train. One should be aware that this practice was due to the focused interest on 
discriminating between earthquakes and underground nuclear explosions. The resulting short-
period mb values strongly underestimated the body-wave magnitudes for mB > 5 (see Tab. 
3.1) and, as a consequence, overestimated the annual frequency of small earthquakes in the 
magnitude range of kt-explosions. Also, mb saturated much earlier than the original 
Gutenberg-Richter mB for intermediate-period body waves or Ms for long-period surface 
waves (see Figs. 3.5 and 3.16). Therefore, the IASPEI Commission on Practice issued a 
revised recommendation in 1978 according to which the maximum P-wave amplitude for 
earthquakes of small to medium size should be measured within 20 s from the time of the first 
onset and for very large earthquakes even up to 60 s (see Willmore, 1979, p. 85). This 
somewhat reduced the discrepancy between mB and mb but in any event both are differently 
scaled to Ms and the short-period mb necessarily saturates earlier than medium-period mB 
(see Fig. 3.5). Interestingly, the effect of the source radiation pattern on the amplitudes used 
for mb determination is relatively small (Schweitzer and Kværna, 1999). 
 
However, some of the national and international agencies have only much later or not even 
now changed their practice of measuring (A/T)max for mb determination in a very limited 
time-window, e.g., the International Data Centre for the monitoring of the CTBTO still uses a 
time window of only 6 s (5.5s after the P onset), regardless of the event size. In contrast with 
this and early practice at the NEIC of measuring A/T in P-wave records, the Soviet/Russian 
practice of analyzing short-period records was always to measure the true maximum on the 
entire record. These magnitudes were denoted as mPVA (or mSKM, using the abbreviation of 
the short-period Kirnos instrument type code) in order to differentiate them from mb of NEIC 
derived from short-period Benioff instruments. Nevertheless, for the latter, similar 
magnitudes were determined for large earthquakes when using (A/T)max in the whole P-wave 
train, e.g., by Koyama and Zeng (1985), denoted as mb

*, and by Houston and Kanamori 
(1986), denoted bm

)
.With respect to saturation, mSKM, mb

* and bm
)

behave much like Ml, as 

could be expected from their common frequency band and considering that Ml is determined 
also from the maximum amplitude in the whole short-period record. Ml saturates around 7.5. 
 
Problems: 
1) Despite the strong recommendation of the Committee on Magnitudes at the IASPEI 

General Assembly in Zürich (1967) to report the magnitude for all waves for which 
calibration functions are available, both the ISC and NEIC continue to determine body-
wave magnitudes only from vertical component short-period P wave readings of T ≤ 3 s. 
No body-wave magnitudes from PP or S waves are determined despite their merits 
discussed above and the fact that digital broadband records, which now allow easy 
identification and parameter determination of these later phases, are more and more 
widely available.  

2) Both NEIC and ISC still use for short-period mb determination the Gutenberg and 
Richter (1956a) Q(∆, h)PZ functions although these were mainly derived from and used 
for intermediate-period data, as the Q-functions for PP and S too. However, in this 
context one has to consider that Gutenberg and Richter did not believe in the frequency-
dependent attenuation model. The calibration curves were derived by assuming a linear 
model for attenuation proportional to exp-0.00006 L, where L is the total length of the ray 
path from the station to the source. This seems to make the Q(∆, h) functions equally 
applicable to 10 s data and 10 Hz data, which is not the case. Duda and Yanovskaya 
(1993) showed that theoretical spectral logA-D curves, calculated on the basis of the 
PREM model (see Fig. 2.53), differed in the teleseismic distance range between 20° and 
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100° for periods of 1 s and 10 s, respectively, by about 0.3 to 0.6 and, when calculated for 
the ABM attenuation model, by even 0.9 to 1.4 magnitude units (see Fig. 3.15). Between 
1 Hz and 10 Hz these differences are even larger. When neglecting the frequency-
dependent attenuation, amplitude readings at higher frequency systematically 
underestimate the magnitude when scaled with Q(∆, h)PV. For medium-period waves, 
however, e.g., for periods between 4 and 16 s, these differences become < 0.3 magnitude 
units, independent of the attenuation model. This is another strong argument in favor of 
using preferably medium-period or even better broadband data for the determination of 
teleseismic body-wave magnitudes, thus also reducing or avoiding the saturation effect. 

3) None of the more recent studies (see 3.2.6) has received world-wide consideration and 
endorsement for routine use, and the major international agencies are therefore continuing 
to apply the tables of Gutenberg and Richter (1956a) as recommended in 1967 by the 
Committee on Magnitudes. 

4) No proper discrimination has been made yet at the international data centers between data 
readings from different kinds of instruments or filters although respective 
recommendations have already been made at the joint IASPEI/IAVCEI General 
Assembly in Durham, 1977 (see below).  

5) Observations less than 21° or more than 100° are also ignored although good PP readings 
are available far beyond 100° and calibration functions Q(∆, h) exist for PPH and PPV up 
to 170°. As shown by Bormann and Khalturin (1975), mB for P and PP waves are 
perfectly scaled (orthogonal regression mB(PP) – mB(P) = 0.05 with a standard deviation 
of only ±0.15 magnitude units!). When using short-period amplitude readings for P and 
PP instead, the orthogonal relationship becomes magnitude-dependent (mb(PP) = 1.25 
mb(P) -1.22) and the standard deviation is much larger (±0.26). This testifies the greater 
stability of body-wave magnitude determinations based on medium-period readings. 

6) The suitability of PKP readings in the distance range of the core caustic around 145° and 
beyond has also been ignored so far (see 3.2.6.5).  

 
Recommendations: 
 

1) The IASPEI Commission on Seismological Observation and Interpretation with its 
WG on Magnitude Measurements must take the lead in recommending standards for 
magnitude-parameter readings.  It should also propose a nomenclature that permits a 
more specific and unique reporting of measurements. For preliminary discussions 
along these lines see IS 3.2. They further develop earlier practices (as demonstrated 
with Tab. 3.1) and earlier recommendations at the joint General Assembly of the 
IASPEI/IAVCEI at Durham (1977). The latter are reproduced in the old MSOP (see 
Willmore, 1979, page 124) which is still accessible on the web site 
http://216.103.65.234/iaspei.html via the links “Supplementary Volumes on CDs”, 
“Literature in Seismology”, and then “MSOP”. 

 
2) While these early recommendations for standard magnitude determinations were 

based on analog instrument classes as depicted in Fig. 3.11 and given in detail in 
Chapter INST 1.1 of the old MSOP, p. 41, broadband digital recordings are becoming 
more and more the standard. This requires to define the standard response 
characteristics required for standard magnitude determinations in terms of poles and 
zeros, with the range of tolerance for appropriate filters. These are required to 
synthesize these standard responses from original, usually velocity-proportional, 
digital broadband records (see 11.3.2).  
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3) More recently developed magnitude scales for short-period and broadband P-wave 
readings, PKP and mantle surface waves etc. (see 3.2.6) should be rigorously tested and, 
in the case of their suitability and known relationship to other commonly used scales, be 
recommended for standardized routine practice. 

 
 
3.2.5.3  Moment magnitude Mw  
 
According to Eq. (3.2) and Fig. 3.5 the scalar seismic moment M0 = µD A is determined 
from the asymptote of the displacement amplitude spectrum as frequency f → 0 Hz and it 
does not saturate. Kanamori (1977) proposed, therefore, a moment magnitude, Mw, which is 
tied to Ms but which would not saturate. He reasoned as follows: According to Kostrov 
(1974) the radiated seismic strain energy is proportional to the stress drop ∆σ, namely ES ≈ 
∆σD A/2. With Eq. (3.2) one can write ES ≈ (∆σ/2µ) M0. (For definition and determination 
of M0 and ∆σ see IS 3.1 and EX 3.4). Assuming a reasonable value for the shear modulus µ in 
the crust and upper mantle (about 3-6 × 104 MPa) and assuming that, according to Kanamori 
and Anderson (1975) and Abe (1975), the stress drop of large earthquakes is remarkably 
constant (ranging between about 2 and 6 MPa; see Fig. 3.39), one gets as an average ES ≈ 
Mo/2x104 (see Fig. 3.38). Inserting this into the relationship proposed by Gutenberg and 
Richter (1956c) between the released seismic strain energy ES and Ms, namely 
 

 log ES = 4.8 + 1.5 Ms (in SI units Joule J = Newton meter Nm)            (3.14) 
it follows: 

log M0 = 1.5 Ms + 9.1.               (3.15) 
 
Solving (3.15) for the magnitude and replacing Ms with Mw one gets 
 

Mw = 2/3 (log M0 – 9.1).               (3.16) 
 
Note that Mw scales well with the logarithm of the rupture area (see Eq. (3.107)). The 
determination of M0 on the basis of digital broadband records is becoming increasingly 
standard at modern observatories and network centers. This applies not only to very strong 
and teleseismic events but also to comparable scaling of moderate and weak events, both in 
the teleseismic and the local/regional range. The computed M0, however, depends on details 
of the individual inversion methodologies and thus related Mw may differ. A simple, fast and 
robust method of Mw determination from broadband P waveforms has been developed by 
Tsuboi et al. (1995) for rapid evaluation of the tsunami potential of large earthquakes.  
 
 
3.2.6  Complementary magnitude scales 
 
Below we describe several other complementary procedures for magnitude estimation. They 
are not (yet) based on internationally recommended standards but are also useful for 
applications in seismological practice. 
 
 
3.2.6.1  Mantle magnitude Mm  
 
Okal and Talandier (1989;1990) describe in detail the further development and use of a 
“mantle magnitude” which was earlier introduced by Brune and Engen (1969). Based on 
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observations of very long-period mantle surface waves (see 2.3), Mm was first developed for 
Rayleigh waves and later extended to Love waves. Mm is a magnitude scale which is also 
firmly related to the seismic moment M0 and thus avoids saturation. On the other hand, it is 
closer to the original philosophy of a magnitude scale by allowing quick, even one-station 
automated measurements (Hyvernaud et al., 1993), that do not require the knowledge of either 
the earthquake's focal geometry or its exact depth. The latter parameters would be crucial for 
refining a moment estimate and require (global) network recordings. Mm is defined as Mm = 
log X(ω) + CS + CD - 0.90 with X(ω) as the spectral amplitude of a Rayleigh wave in µm-s. 
CS is a source correction, and CD is a frequency-dependent distance correction. For details of 
the correction terms, see Okal and Talandier (1989 and 1990).  
 
Applications of Mm to the reassessment of the moment of shallow, intermediate and deep 
historical earthquakes are extensively described by Okal (1992 a and b). Mm is an estimate of 
(log M0 - 13) (when M0 is given in Nm). For the Chile 1960 earthquake Okal (1992a) 
calculated values Mm ≈ 10 to 10.3 and for M0 = 3.2·1023 Nm. Mm determinations were 
extensively verified and are said to be accurate by about ± 0.2 magnitude units (Hyvernaud et 
al., 1993).  
 
 
3.2.6.2 Energy magnitude Me  
 
According to Kanamori (1977) Mw agrees very well with Ms for many earthquakes with a 
rupture length of about 100 km . Furthermore, he suggested that Eq. (3.14) also gives a 
correct value of the seismic-wave energy for earthquakes up to rupture dimensions ≤ about 
100 km. Thus, he considered the Mw scale to be a natural continuation of the Ms scale for 
larger events. Inserting into the log ES-Ms relationship the value of Mw = 9.5 for the Chile 
1960 earthquake instead of the saturated value Ms = 8.5 one gets a seismic energy release that 
is 30 times larger!  
 
When substituting in Eq. (3.14) the surface-wave magnitude Ms by an energy magnitude Me, 
one gets  

Me = 2/3 (log ES – 4.8)              (3.17) 
 
which reduces to Me = 2/3 (log M0 – 9.1) = Mw (see Eq. (3.16)) if Kanamori´s condition 
ES/M0 ≈ 5·10-5 holds. This result has been published earlier by Purcaru and Berckhemer 
(1978). But this is valid only for the average apparent stresses (and related stress drop) on 
which the Kanamori condition is based. As Choy and Boatwright (1995) showed, apparent 
stress, which is related to the ratio of ES/M0, may vary even for shallow events over a wide 
range between about 0.03 and 20.7 MPa. They found systematic variations in apparent stress 
as a function of focal mechanism, tectonic environment and seismic setting. Oceanic 
intraplate and ridge-ridge transform earthquakes with strike-slip mechanisms tend to have 
higher stress drops than interplate thrust earthquakes. Accordingly, Me for the former will 
often be significantly larger than Mw. The opposite will be true for the majority of thrust 
earthquakes: Mw will be larger than Me. Riznichenko (1992) gave a correlation on the basis 
of data from various authors. It predicts (despite rather large scatter) an average increase of 
∆σ with source depth h according to ∆σ = 1.7 + 0.2 h, i.e., stress drops ranging over 100 MPa 
can be expected for very deep earthquakes. On the other hand, Kikuchi and Fukao (1988) 
found from analyzing 35 large earthquakes in all depth ranges that ES/M0 ≈ 5⋅10-6, i.e., a ratio 
that is one order of magnitude less than the condition used by Kanamori for deriving Mw. 
Therefore, Me is not uniquely determined by Mw. Me and Mw can be considerably different. 
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A striking example has been presented by G. Choy at the spring meeting 2002 of the 
American Geophysical Society (see Tab. 3.2 in 3.3.5). Nowadays, with digital broadband 
recordings and fast computer programs, it is feasible to determine directly the seismic energy, 
ES, by integrating the radiated energy flux in velocity-squared seismograms over the duration 
of the source process and correcting it for the effects of geometric spreading, attenuation and 
radiation pattern. A method developed by Boatwright and Choy (1986) is now routinely 
applied at NEIC to compute radiated energies for shallow earthquakes of mb > 5.8 (see 3.3) 
but its application is not so trivial and not for use with single stations. Using almost 400 
events, Choy and Boatwright derived the relationship for ES-Ms as  
 

log ES = 1.5 Ms + 4.4                           (3.18) 
 
It indicates that (3.14) slightly overestimates ES. On the basis of these direct energy estimates 
these authors developed the non-saturating energy magnitude (see also 3.3.3) 
 

Me = 2/3 (log ES – 4.4)               (3.19) 
 
which yields for earthquakes satisfying Kanamori´s condition  
 

Me = 2/3 log M0 – 5.80 = Mw + 0.27             (3.20) 
 
i.e., an Me that is somewhat larger than Mw and an Me derived from the Gutenberg-Richter 
Es/Ms relationship. Me may become significantly larger for high stress drop earthquakes and 
much smaller than Mw for slow or “tsunami” earthquakes. The latter may generate a strong 
(namely long-period) tsunami but only weak short-period ground motion, which may cause 
no shaking-damage and might not even be felt by people such as the September 2, 1992 
Nicaragua mb 5.3 and Mw 7.6 earthquake (see also 3.2.6.9). 
 
A strong argument to use Me instead of Mw is that it follows more closely the original intent 
of the Gutenberg-Richter formula by relating magnitude to the velocity power spectrum and, 
thus, to energy. In contrast, Mw is related to the seismic moment M0 that is derived from the 
low-frequency asymptote of the displacement spectrum. Consequently, Me is more closely 
related to the seismic potential for damage while Mw is related to the final static displacement 
and the rupture area and thus related more to the tectonic consequences of an earthquake.  
 
 
3.2.6.3  Broadband and spectral P-wave magnitude scales 
 
A calibration function Qb(∆, h) based on broadband recordings of P waves (bandpass between 
0.01 and 2 Hz) was derived recently by Nolet et al. (1998). It differs markedly from both P(∆, 
h)SP and Q(∆, h)PZ. 
 
Duda and Kaiser (1989) recommended instead the determination of spectral magnitudes based 
on measurements of spectral amplitudes from one-octave bandpass-filtered digital broadband 
records of P waves. As can be seen from Fig. 3.14, earthquakes of about the same magnitude 
mb and recorded within about the same distance range may have, depending also on focal 
depth and the type of rupture mechanism, very different amplitudes in different spectral 
ranges. This is due to regional differences in ambient stress conditions and related stress drop. 
Duda and Yanovskaya (1993) also calculated theoretical spectral amplitude-distance curves 
based on the IASP91 velocity model (Kennett and Engdahl, 1991) and two different 
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attenuation models so as to allow the magnitude calibration of spectral amplitude 
measurements (see Fig. 3.15). This effort is a response to the problems discussed above. It 
also yields smoothed averaged estimates of the radiated seismic spectrum, its spectral plateau, 
corner frequency and high-frequency decay and thus of M0 and stress drop of the given event. 
Thus one may draw inferences on systematic differences in the prevailing source processes 
(e.g., low, normal or high stress drop) and related ambient stress conditions in different source 
regions. However, this is not so much the concern of seismological routine practice, which is 
aimed at providing a simple one (or two) parameter size-scaling of seismic events for general 
earthquake statistics and hazard assessment. Rather, this is more a research issue, which can 
be best tackled, along with proper quantification of earthquake size, by determining both Me 
and Mw or analyzing both M0 and the shape of the overall source spectrum. On the other hand 
there is merit in determining the maximum spectral amplitude Avmax of ground velocity 
directly from velocity broadband records by filtering them with constant bandwidth around 
the predominant period of the considered body-wave group and correcting it for the 
frequency-dependent attenuation. This should yield a saturation-free mB based on simple 
amplitude and period measurements at a single station, which comes closest to Me and thus to 
the original intention of Gutenberg for the teleseismic body-wave magnitude.  Preconditions 
are that the period of  Avmax is within the passband of the velocity response and the frequency-
dependent attenuation is sufficiently well known. Such an mB, given together with the period 
of  Avmax, allows to assess the frequency content where the maximum seismic energy has been 
released. This is of great importance for assessing the damage potential of a given event.  
 
 

  
 
Fig. 3.14  Examples of broadband digital records proportional to ground velocity of the P-
wave group from two earthquakes of similar magnitude mb in different source regions 
(uppermost traces) and their one-octave bandpass-filtered outputs. The numbers 1 to 9 on the 
filtered traces relate to the different center periods between 0.25 s (1) and 64 s (9) in one-
octave distance. Note that the event record on the left has its maximum ground velocity (or 
maximum A/T) at trace 7, which corresponds to a center period of 16 s while it is at 1 s in the 
case of the records from the Kuril earthquake (copied from Duda, 1986; with permission of 
the BGR Hannover). 
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Fig. 3.15  Spectral amplitude-distance curves (in one-octave steps) as calculated for the 
IASP91 velocity model (Kennett and Engdahl, 1991) and two alternative Q-models according 
to Liu et al. (1976) as in the PREM model (upper diagram) and according to the ABM model 
of Anderson and Given (1982) (lower diagram) (modified from Tectonophysics, Vol. 217, 
Duda and Yanovskaya, 1993, Fig. 5, p. 263; with permission from Elsevier Science). 
 
 
3.2.6.4  Short-period P-wave magnitude scale 
 
Veith and Clawson (1972) developed a calibration function, P(∆, h)SP , for short-period 
vertical-component P waves (Fig. 3.16) using data from underground nuclear explosions. It is 
consistent with observations and present-day concepts of attenuation. It looks much smoother 
than the curves Q(∆, h)PZ published by Gutenberg and Richter (1956a) and resembles an 
inverse A-∆ relationship for short-period P waves (see Fig. 3.13). For shallow events mb(P) 
values agree well with mb(Q) (average difference of - 0.03 magnitude units; Veith, 2001) but 
have less scatter. For deeper events, however, mb(P) is systematically lower than mb(Q) (up 
to about 0.4 magnitude units) due to a different attenuation law assumed in the upper mantle 
and transition zone (Veith, 2001). Deviating from the use of the Gutenberg-Richter Q 
functions, P values as given in Fig. 3.16 have to be used in conjunction with maximum P-
wave peak-to-trough (2A) displacement amplitudes in units of nm (instead of µm). The Veith-
Clawson calibration functions P(∆, h) for short-period mb determination should be carefully 
considered by the IASPEI WG on Magnitude Measurements and existing discrepancies for 
deep earthquakes should be clarified. If P(∆, h) in its present form or corrected for the 
currently best available attenuation model for short-period P waves promises to yield more 
reliable and stable mb values than mb(Q) its introduction as a new standard may be 
considered. Some related discussion is given below. 
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Fig. 3.16  Calibration functions P(∆, h) for mb determination from narrow-band vertical-
component short-period records with peak displacement magnification around 1 Hz 
(WWSSN-SP characteristic) according to Veith and Clawson (1972). Note: P values have to 
be used in conjunction with maximum P-wave peak-to-trough (2A!) amplitudes in units of 
nanometers (1 nm = 10-9m). (Modified from Veith and Clawson, Magnitude from short-period 
P-wave data, BSSA, 62, 2, p. 446,   Seismological Society of America). 
 
 
The Veith-Clawson magnitude calibration functions are officially used by the IDC in Vienna 
for mb determination although the IDC filter applied to the digital velocity-proportional 
broadband data prior to the amplitude measurements for mb results in a displacement 
response peaked around 4.5 Hz instead of around 1 Hz as required for the use of P(∆, h). 
According to the spectral logA-D curves calculated by Duda and Yanovskaya (1993) for the 
PREM attenuation model, logA is, in the distance range between 10° and 100°, at 5 Hz at 
least 0.1 to 0.5 units smaller than at 1 Hz. The deviation may be even larger for other 
attenuation models (e.g., ABM; see Fig. 3.15). Thus, the use of P(∆, h) in conjunction with 
the IDC filter response is physically not correct and tends to systematically underestimate mb. 
This is further aggravated by the fact that IDC determines Amax within a time window of only 
5 s after the P onset. This heuristic procedure, although very suitable for a best possible 
discrimination between earthquakes and underground explosions on the basis of the mb/Ms 
criterion (see 11.2.5.2), is not appropriate, however, for proper earthquake scaling, at least for 
larger events with corner frequencies fc < 1 Hz  and multiple rupture process longer than 5 s.  
 
Granville et al. (2002) analyzed 10 medium-size earthquakes in the depth range > 0 km to 530 
km and with magnitudes mb between 6.4 and 6.8 according to the PDE (Preliminary 
Determination of Epicenters) reports of the United States Geological Survey (USGS) and 13 
underground nuclear tests (UNTs) with PDE magnitudes mb between 4.6 and 6.1. They 
compared these data, which were derived from simulated WWSSN-SP records, by using the 
traditional procedure of mb determination based on the Gutenberg-Richter Q-functions, with 
a) the mb for the same WWSSN-SP data but calibrated with the Veith-Clawson relationship 
and b) the body-wave magnitudes reported in the REB (Reviewed Event Bulletin) of the 
PIDC. From this study the following conclusions were drawn: 
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• the agreement between mb(Q) (Gutenberg-Richter) and mb(P) (Veith-Clawson) 
based on WWSSN-SP data was reasonably good for the earthquakes (average 
difference mb(Q)-mb(P) = 0.2); 

• for underground explosions (only shallow-depth events!) the agreement was even 
better (average mb(P)-mb(Q) = 0.09); 

• the average discrepancy between mb(P) and mb(PIDC/REB) is much larger (0.5 
magnitude units), although the latter are also scaled with the Veith-Clawson 
calibration functions. For 63% of the earthquake observations the difference was at 
least 0.4 mb units, and several of them had even an mb offset greater than 1 
magnitude unit!;  

• in contrast, the average discrepancy between mb(P) and mb(PIDC/REB) is 0.0 and 
75% of the observations fall between – 0.1 and +0.1; 

• the PIDC (now IDC in Vienna) procedure is adequate for mb determination of 
underground nuclear explosions, but not for earthquakes. 

 
 
3.2.6.5 Short-period PKP-wave magnitude 
 
Calibration functions Q(∆, h)PKP for short-period amplitude and period readings from all three 
types of direct core phases (PKPab, PKPbc and PKPdf) have been developed by Wendt (see 
Bormann and Wendt, 1999; explanations and Figure 3 in DS 3.1). These phases appear in the 
distance range ∆ = 145° - 164° (see Fig. 3.13, Figs. 11.62-63 and Figure 1 in EX 11.3) with 
amplitude levels comparable to those of P waves in the distance range 25° < ∆ < 80°. Many 
earthquakes, especially in the Pacific (e.g., Tonga-Fiji-Kermadec Islands) occur in areas with 
no good local or regional seismic networks. Often these events, especially the weaker ones, 
are also not well recorded by more remote stations in the P-wave range but often excellently 
observed in the PKP distance range, e.g., in Central Europe. This also applies to several other 
event-station configurations. Available seismic information from PKP wave recordings could, 
therefore, improve magnitude estimates of events not well covered by P-wave observations.  
 
 
3.2.6.6  Lg-wave magnitudes 
 
Sg and Lg waves (see 2.3.3), recorded at local and regional distances and with periods T < 3 
s, are often used for magnitude determination. Lg propagates well in continental platform 
areas and may be prominent up to about 30°. Lg magnitudes are calibrated either with respect 
to (or in a similar way as) Ml or to teleseismic mb. In the latter case they are usually termed 
mbLg or Mn (Ebel, 1982). Lg magnitudes allow rather stable magnitude estimates with small 
scatter. NEIC uses the original formulas derived by Nuttli (1973) for eastern North America: 
 

mbLg = 3.75 + 0.90 log∆ + log(A/T), for 0.5° ≤ ∆ ≤ 4°          (3.21a) 
mbLg = 3.30 + 1.66 log∆ + log(A/T), for    4° ≤ ∆ ≤ 30°.          (3.21b) 

 

where A is the ground amplitude of the Lg trace maximum in µm and T its period in the range 
0.6 s ≤ T ≤ 1.4 s. Båth et al. (1976) developed a similar Lg scale for Sweden which is widely 
used in Scandinavia. Street (1976) recommended a unified mbLg magnitude scale between 
central and northeastern North America. Herrmann and Nuttli (1982) showed (later also Kim, 
1998) that mbLg values are commonly similar to Ml when based on amplitude readings with 
periods around 1 s. They also proposed to define regional attenuation relations so that 
mbLg/Mn from different regions predict the same near source ground motions. Herrmann and 
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Kijko (1983) developed a frequency-dependent scales mLg(f) in order to broaden the 
frequency domain within which mbLg is applicable. Ebel (1994) proposed mLg(f), calibrated 
to mb and computed with appropriate Lg spatial attenuation functions, to become the standard 
for regional seismic networks in northeastern North America. Ambraseys (1985) published 
calibration Qg (for Sg and Lg) and QR (for crustal Rayleigh waves), respectively that are 
applicable for northwestern European earthquakes in the distance range 0.5° < D < 11°.  
 
Stable single-station estimates of magnitudes from Nevada test site underground nuclear 
explosions have been made by Mayeda (1993) using 1-Hz Lg-coda envelopes. As compared 
with Lg-magnitude estimates using third peak or RMS amplitudes, these coda magnitudes 
have generally a five times smaller scatter (0.03 to 0.04 magnitude units only). Rautian et al. 
(1981) had proposed earlier the use of coda amplitude, not duration, in the definition of coda-
based magnitude. They designed two particular scales based on the records of short-period 
(SP) and medium-period (MP) instruments. A scale of this kind is used routinely by the 
Kamchatka seismic network (Lemzikov and Gusev, 1989). The main advantage of such 
magnitude scales is their unique intrinsic accuracy; even a single-station estimate has a root-
mean-square (RMS) error of only 0.1 or even less. 
 
 
3.2.6.7  Macroseismic magnitudes 
 
Other efforts are directed at developing magnitude scales which are best suited for earthquake 
engineering assessment of potential damage and thus seismic risk. These efforts go in two 
directions: by relating M to macroseismic intensity I and/or shaking area AI or by focusing on 
the high-frequency content of seismic records.  
 
Macroseismic magnitudes, Mms are particularly important for the analysis and statistical 
treatment of historical earthquakes. They were initially proposed by Kawasumi (1951) as the 
intensity at the 100 km distance, following Richter’s definition of Ml as closely as possible. 
This approach is physically quite reasonable because for most earthquakes a distance of 100 
km is already the far field and source finiteness can be ignored. This approach was further 
developed by Rautian et al. (1989). On the other hand, I0 based definitions implicitly assume 
the point source model and must be often misleading. Of course, with historic catalogs, there 
is no other way. There are three main ways to compute macroseismic magnitudes: 
 

1) Mms is derived from the epicentral intensity I0 (or the maximum reported intensity, 
Imax) assuming that the earthquake effects in the epicentral area are more or less 
representative of the strength of the event; 

2) Mms is derived from taking into consideration the whole macroseismic field, i.e., the 
size of the shaking is related to different degrees of intensity or the total area of 
perceptibility, A; 

3) Mms is related to the product P = I0 × A which is nearly independent of the focal depth, 
h, which is often not reliably known. 

 
Accordingly, formulae for Mms have the general form of 
 

Mms = a I0 + b ,                (3.22) 
 
or, whenever the focal depth h (in km) is known 
 



3. Seismic Sources and Source Parameters 
 

44 

Mms = c I0 + log h + d ,               (3.23) 
 
or, when using the shaking area AIi (in km2) instead, 
 

Mms = e log AIi + f               (3.24) 
 
with AIi in km2 shaken by intensities Ii with i ≥ III, ..., VIII, respectively. Sometimes the mean 
radius RIi of the shaking area related to a given isoseismal intensity is used instead of the area 
A i and (3.22) is then written (e.g., by Greenhalgh et al. 1989 and with Mms scaled to ML ) as 
 

Mms = g log RIi
2 + h log RIi + j.              (3.25) 

 
In these relationships a through j are different constants. They have to be determined 
independently for different regions. Most often Mms is scaled to Ml which has proven to be 
best related to earthquake damage and engineering applications. Examples for regionally best 
fitting relationships according to equation (3.22) to (3.25) have been published for California 
and Western Nevada by Toppozada (1975), for Italy by Tinti et al. (1987) and for Australia by 
Greenhalgh et al. (1989). For Europe, the relationship by Karnik (1969) yields the best 
results: 
 

Mms = 0.5 I0 + log h + 0.35.               (3.26) 
 
Frankel (1994) compared felt area and moment magnitudes for California with its young 
mountain ranges with a global data set of earthquakes in stable continental regions (SCRs) 
such as central USA ( Fig. 3.17). The main reason is that the average attenuation is at 
frequencies around 2-4 Hz, which is the range of best human perceptibility to ground shaking, 
is very different in these regions. After Frankel (1994), Q is about 490 and 1600, respectively.  

 

Fig. 3.17  Felt area Af (in km2) plotted against moment magnitude, Mw, for global data from 
stable continental regions (SCR) (open circles; from Johnston, 1993) and California data 
(triangles, from Hanks et al., 1975; Hanks and Johnston, 1992). Solid and dashed lines are fits 
according to an equation given by Frankel (1994) (modified from Frankel, Implications of felt 
area-magnitude relations for earthquake scaling and the average frequency of perceptible 
ground motion, Bull. Seism. Soc. Am., Vol. 84, No. 2, Fig. 1, p. 463, 1994;  Seismological 
Society of America). 
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Another Mms scale based on P = I0 × A (in km2) had been published by Galanopoulos (1961): 
 

Mms = log P + 0.2 (log P – 6).              (3.27) 
 
A macroseismic magnitude scaled to the body-wave magnitude of Central United States 
earthquakes in the range 2.7 ≤ mb ≤ 5.5 was developed by Nuttli and Zollweg (1974): 
 

mb = 2.65 + 0.098 log Af + 0.054 (log Af)
2.             (3.28) 

 
It is applicable for magnitude estimates of central United States earthquakes with felt areas of 
shaking Af ≤ 106 km2 for which there are intensity maps but no instrumental data available.  
 
A related problem is the determination of magnitudes of prehistoric and historic (pre-
instrumental) earthquakes from dimensions (length L, width W and/or dislocation D) of 
observed seismo-dislocations (e.g., Khromovskikh, 1989; Wells and Coppersmith, 1994; 
Mason, 1996) based on correlation relationships between magnitudes and respective field data 
from recent events (see 3.6).  
 
 
3.2.6.8  High-frequency moments and magnitudes 
 
Koyama and Zheng (1985) developed a kind of short-period seismic moment M1 which is 
related to the source excitation of short-period seismic waves and scaled to mb according to  
 

log M1 = 1.24 mb + 10.9   (with Ml in J = Nm).             (3.29) 
 
They determined M1 from WWSSN short-period analog recordings by applying an innovative 
approximation of spectral amplitudes  
 

Y(f) = 1.07 Amax (τ/f0)
1/2                (3.30) 

 
with Amax - maximum amplitude, f0 - dominant frequency and τ - a characteristic duration of 
the complicated wave-packets. They analyzed more than 900 short-period recordings from 79 
large earthquakes throughout the world in the moment range 7.5 × 1017 ≤ M0 ≤ 7.5 × 1022 Nm. 
M1 did not saturate in this range! 
 
More recently, Atkinson and Hanks (1995) proposed a high-frequency magnitude scale 
 

m = 2 log ahf  + 3                (3.31) 
 
with ahf as the high-frequency level of the Fourier amplitude spectrum of acceleration in cm/s, 
i.e., for f >> fc. They use average or random horizontal component accelerometer amplitudes 
at a distance of 10 km from the hypocenter or from the closest fault segment. m has been 
scaled to the moment magnitude M  = Mw for events of average stress drop in eastern North 
America and California. When M is known, m is a measure of stress drop. For large pre-
instrumental earthquakes m can more reliably be estimated than M from the felt area of 
earthquake shaking (see 3.2.6.7). When used together, m and M  provide a good index of 
ground motion over the entire engineering frequency band, allow better estimates of response 
spectra and peak ground motions and thus of seismic hazard. 
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3.2.6.9  Tsunami magnitudes 
 
A different kind of magnitude is the tsunami magnitude scale Mt. According to Abe (1989) 
 

M t = log Hmax + a log ∆ + C               (3.32) 
 
where Hmax is the maximum single (crest or trough) amplitude of tsunami waves in m as 
measured by tide-gage records and /or as derived from maximum inundation height, ∆ - 
epicentral distance in km to the respective tide station and a and C - constants (a was found to 
be almost 1). In case of the long-wave approximation, i.e., with tsunami wavelengths being 
much larger than the bathymetric depths, the maximum tsunami height is strictly related to the 
maximum vertical deformation of the ocean bottom, D⊥max, and thus to the seismic moment 
M0. Mt was calibrated, therefore, with the average condition Mt = Mw for the calibration data 
set. This resulted in: 
 

M t = log Hmax + log ∆ + 5.8.                (3.33) 
 
(3.33) shows no saturation. For the Chile earthquake 1960 Mt = 9.4 while Mw = 9.5. 
Sometimes, very slow but large ruptures with a large seismic moment cause much stronger 
tsunami than would have been expected from their surface wave, energy or body-wave 
magnitudes Ms, Me or mb, respectively. Such events are called "tsunami earthquakes". A 
striking example is the April 1, 1946 Aleutian earthquake with Ms = 7.3 and Mt = 9.3. Such 
strong but very slow earthquakes may have negligibly small energy in the high-frequency 
range and cause no or only minor shaking damage (see paragraph below Eq. 3.20).  
 
 
3.2.7  Relationships among magnitude scales 
 
Gutenberg and Richter (1956a and b) provided correlation relations between various 
magnitude scales:  

m  = 2.5 + 0.63 Ms                (3.34) 
 

m  = 1.7 + 0.8 Ml - 0.01 Ml2  and             (3.35) 
 

Ms = 1.27 (Ml - 1) - 0.016 Ml2,              (3.36) 
 
where m is the unified magnitude as the weighted mean of the body-wave magnitudes mB 
determined from medium-period recordings. Practically the same relation as (3.34) was 
derived later by Abe and Kanamori (1980): mB = 2.5 + 0.65 Ms, which is good up to Mw = 
8-8.5; thereafter it shows saturation. Note, however, when using Eq. (3.34) and Eq. (3.84) in 
section 3.6.2 that the average difference between the Gutenberg-Richter Ms and the “Prague” 
Ms is  about  0.2 magnitude units (see Eq. (3.11). 
 
Note that all these relations resulted from single random-variable parameter regression 
analysis assuming that the independent variable X (on the right side of the equation) is known 
and not afflicted with random errors and that the data scatter observed is due to random errors 
in the Y- (ordinate) direction only. Often they are wrongly applied, e.g., by solving Eq. (3.34) 
for Ms and calculating Ms for short-period mb values as published by international data 
centers and finally calculating seismic energy ES via ES-Ms relationships (see 3.6). Note that 
Eq. (3.34) is an optimal estimator for mB but not for Ms! In fact, both mB and Ms 
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determinations are afflicted with random errors and both account for the data scatter in an 
empirical mB-Ms diagram. Therefore, only a two random-variable parameter regression (so-
called "orthogonal regression") analysis yields equations which can be used both ways for 
optimal parameter estimation (Bormann and Khalturin, 1975; Bormann and Wylegalla, 1975, 
Ambraseys, 1990). Equivalent to it are non-linear “maximum-likelihood” regressions as they 
have been systematically applied by Gusev (1991) to investigate the relationship between Mw 
and the magnitudes mb (with Amax within first few seconds only), mSKM (with Amax in the 
whole P-wave group), mB, mb

* and bm
)

, Ml, Ms, and M(JMA) in both graphic and tabular 

form. Another paper comparing different magnitude scales was published by Utsu (1982). 
 
When using medium-period readings of P and surface waves in displacement broadband 
records of type C (Kirnos SKD; see Fig. 3.11) and single random parameter regression, 
practically identical relationships to Eq. (3.34) were found both by Bune et al. (1970) on the 
basis of records of the former Soviet station network and by Bormann and Wylegalla (1975) 
for a single station in Germany (MOX; magnitude range 4.7 to 8.5). The latter is  
 

MPV =  2.5 + 0.60 MLH.               (3.37) 
 
Note that the related orthogonal regression to Eq. (3.37), calculated for the same data set, is 
rather different: 

MPV - 0.70 MLH = 1.83               (3.38) 
 
and that the respective best fitting single random-parameter regression with respect to MLH is 
 

MLH = - 1.54 + 1.25 MPV.             (3.39) 
 
The latter is clearly different from 
 

MLH = - 4.17 + 1.67 MPV               (3.40) 
 
which one gets when resolving incorrectly Eq. (3.37) for MLH. As compared to Eq. (3.39), 
Eq. (3.40) results in an overestimation of MLH by about 1.2 magnitude units for mB = 8 and 
an underestimation of 0.8 units for mB = 5! 
 
The single random-parameter regression relationship between short-period mb and Ms is very 
different from Eq. (3.34), namely, according to Gordon (1971),  
 

mb = (0.47 ± 0.02) Ms + (2.79 ± 0.09)             (3.41) 
 
for a global station-earthquake data set. This agrees very well with the single-station average 
formula derived by Karnik (1972) for the Czech station Pruhonice (PRU): 
 

mb(sp, PRU) = 0.47 MLH + 2.95.              (3.42) 
 
The orthogonal correlation between surface-wave magnitudes determined from vertical and 
horizontal component recordings using the so-called Prague-Moscow calibration function Eq. 
(3.10) is, according to Bormann and Wylegalla (1975), nearly ideal, namely: 
 

MLV - 0.97 MLH = 0.19                (3.43) 
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with a standard deviation of only 0.11 and a correlation coefficient of r = 0.98. This clearly 
justifies the use of this calibration function, which was originally derived from horizontal 
amplitude readings, for vertical component (Rayleigh wave) magnitude determinations, too. 
 
When using medium-period broadband data only, the orthogonal regression relation between 
magnitude determinations from PV and PPV or SH waves, respectively, are almost ideal. 
Gutenberg and Richter (1956a) had published Q-functions for all three phases (see Figures 
1a-c and Table 6 in DS 3.1). Bormann and Wylegalla (1975) found for a global earthquake 
data set recorded at station MOX the orthogonal fits:  
 

MPPV - MPV = 0.05                (3.44) 
 
with a standard deviation of only ± 0.15 magnitude units and  
 

MSH - 1.1 MPV = - 0.64,               (3.45) 
 
with a standard deviation of ± 0.19 and magnitude values for P and S waves, which differ in 
the whole range of MPV(=mB) between 4 and 8 less than 0.25 units from each other. This 
confirms the good mutual scaling of these original body-wave calibration functions with each 
other, provided that they are correctly applied to medium-period data only. Therefore, it is not 
understandable why the international data centers do not encourage data producers to report 
also amplitudes from PPV and SH waves for proper determination of mB. 
 
Kanamori (1983) summarized the relationship between the various magnitude scales in 
graphical form (Fig. 3.18). It also gives the ranges of uncertainty for the various magnitude 
scales due to observational errors and intrinsic variations in source properties related to 
differences in stress drop, complexity, fault geometry and size, source depth etc. The range of 
periods for which these magnitudes are determined are for mb: ≈1 s; for Ml: ≈ 0.1 - 3 s; for 
mB: ≈ 0.5 - 15 s; for Ms: ≈ 20 s and for Mw: ≈ 10 → ∞ s. Accordingly, these different 
magnitude scales saturate differently: the shorter the dominating periods the earlier saturation 
occurs, i.e., for mb around 6.5, Ml around 7, mB at about 8 and Ms at about 8.5 while Mw 
does not saturate. This is in good agreement with the general conclusions drawn on the basis 
of seismic source spectra (see Fig. 3.5).  

 

Fig. 3.18  Relations between magnitude scales (reprinted from Tectonophysics, 93, No. 3/4 
Kanamori, Magnitude scale and quantification of earthquakes, 1983, Fig. 4, p. 193; with 
permission from Elsevier Science Publishers). Note the saturation of mb, mB, Ml and Ms. 
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Ambrasseys (1990), in an effort to arrive at uniform magnitudes for European earthquakes, 
re-evaluated magnitudes in the range 3 < M < 8. He derived the following orthogonal 
regression relationships between the various common magnitude scales: 
 

0.75 mb - 0.66 mB = 0.21               (3.46) 
 

0.77 mb - 0.64 Ml = 0.73               (3.47) 
 

0.86 mb - 0.49 Ms = 1.94               (3.48) 
 

0.80 Ml - 0.60 Ms = 1.04               (3.49) 
 

with mb being determined according to the ISC procedure from short-period P-wave 
recordings and mB using medium-period P-wave records. These relations can be solved for 
either one of the two variables. Other relationships have been published by Nuttli (1985) 
which allow estimating Ms for plate-margin earthquakes when mb is known. For mb > 5 their 
results differ less than 0.2 magnitude units from those of  Eq. (3.48) when solved for Ms.  
 
 
3.2.8 Summary remarks about magnitudes and their perspective 
 
Magnitude was originally intended to be a measure of earthquake size in terms of the seismic 
energy ES released by the source.  ES, which is proportional to the squared velocity of ground 
motion, can theoretically be obtained by integrating spectral energy density over all 
frequencies contained in the transient waveform, e.g., of the P-, S- or surface-wave train. This 
procedure could not be carried out efficiently with analog recordings. Therefore, Gutenberg 
(1945 a, b and c) assumed that the maximum amplitude observed in a wave group was a good 
measure of the total energy in that arrival.  As classical seismographs were relatively 
broadband displacement sensors, he obtained a measure of ground motion velocity by 
dividing the measured maximum ground displacement by the associated period [see Eqs. 
(3.10) and (3.13) for surface- and body-wave magnitudes]. Note, however, that the related 
calibration functions did not account for frequency-dependent attenuation. Calibration 
functions are, therefore, usually applied only over rather limited frequency ranges, e.g., 
around 1 Hz and 0.05 Hz, respectively. 
 
According to Fig. 3.5, magnitude can be a reasonable measure of ES only if it samples the 
maximum amplitudes in the velocity spectrum which occur at the corner frequency fc of the 
displacement "source spectrum"; fc decreases with increasing seismic moment and, thus, with 
magnitude. Most classical band-limited seismic recordings sampled the ground motion over a 
bandwidth of not more than 0.3 to 0.9 decades (see Fig. 3.11). Hence, sampling of spectral 
amplitudes at frequencies smaller or larger than fc of the wave spectrum underestimates the 
maximum ground velocity and, thus, ES. This is the case for the body-wave magnitude mb, 
which is determined from narrow-band short-period recordings centered around 1 Hz, for 
magnitudes larger than about 5. Similarly, Ms, which is determined from surface waves with 
T ≈ 20 s, underestimates maximum ground velocity and ES for Ms < 6 and for Ms> 7.5.  
 
One must also recognize that all band-limited magnitudes saturate, e.g., mb saturates for 
magnitudes > 6.5 and Ms saturates for magnitudes > about 8.5.  However, mB, determined 
from medium-period records saturates later than mb (see Fig. 3.18). To overcome this 
problem, magnitude determinations should be based on broadband digital recordings with a 
bandwidth of ideally about 4 decades or even more. Only then it can be assured  that the peak 
of the ground-velocity spectrum as well as a fair part of higher and lower frequencies on both 
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sides of the corner frequency are covered within the passband of the seismograph. This 
passband is sufficient to allow determination of both the scalar seismic moment M0 (and the 
associated moment magnitude Mw) and the radiated energy ES (and the associated energy 
magnitude Me). Both Mw and Me do not saturate. However, note that they express different 
aspects of the seismic source and may differ by more than one magnitude unit (see Tab. 3.2).  
Also, direct determination of ES is not trivial and requires a good distribution of stations. 
Nevertheless, a single station, when equipped with a velocity-proportional digital broadband 
sensor, could easily determine a non-saturating mB (see 3.2.6.3) by sampling the maximum 
amplitudes of ground velocity. Such an mB might be a good preliminary estimate of Me and 
the high-frequency energy released by the source. This needs to be tested with real data, 
however, the required frequency-dependent calibration functions are not yet well established. 
This should become a priority task of the IASPEI WG on magnitudes.  
 
Despite the advantage of more physically based broadband magnitudes, the overwhelming 
majority of magnitude data is and will continue to be based for quite some more time on 
band-limited recordings using the classical formulas. In many earthquake-prone regions, 
particularly those lacking historical macroseismic data and strong-motion records, seismic 
hazard assessment rests on the availability of such data. Moreover, band-limited magnitudes 
sometimes have value for purposes other than energy or moment estimates. E.g., the mb/Ms 
ratio is a very powerful teleseismic discriminator between earthquakes and underground 
nuclear explosions, and Ml is, at least up to medium-size earthquakes, well scaled with 
macroseismic intensity and, thus, damage. Therefore, magnitudes of different kinds will still 
be needed in the foreseeable future. Their proper use, however, requires an understanding of  
their potentials, limitations, original definitions and mutual relationships. Finally, one has to 
assure the long-term continuity and stability of magnitude values according to agreed 
standards of measurement by annotating different magnitudes in an unambiguous way (see IS 
3.2), and by refraining from one-sided, internationally unrecognized and improperly 
documented changes in procedures which may cause baseline changes in earthquake catalogs. 
This section aimed at creating awareness and setting standards on this important issue. 
 
 

3.3 Radiated seismic energy and energy magnitude (G. L. Choy 
and J. Boatwright) 

 
3.3.1 Introduction  
 
One of the most fundamental parameters for describing an earthquake is radiated seismic 
energy. In theory, its computation simply requires an integration of radiated energy flux in 
velocity-squared seismograms. In practice, energy has historically almost always been 
estimated with empirical formulas. The empirical approach dominated for two major reasons. 
First, until the 1980’s most seismic data were analog, a format which was not amenable to 
spectral processing on a routine basis. Second, an accurate estimate of radiated energy 
requires the analysis of spectral information both above and below the corner frequency of an 
earthquake, about which energy density is most strongly peaked.  
 
Prior to the worldwide deployment of broadband seismometers, which started in the 1970’s, 
most seismograms were recorded by conventional seismographs with narrowly peaked 
instrument responses. The difficulties in processing analog data were thus compounded by the 
limitations in retrieving reliable spectral information over a broad bandwidth. Fortunately, 
theoretical and technological impediments to the direct computation of radiated energy have 
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been removed. The requisite spectral bandwidth is now recorded digitally by a number of 
seismograph networks and arrays with broadband capability, and frequency-dependent 
corrections for source mechanism and wave propagation are better understood now than at the 
time empirical formulas were first developed. 
 
 
3.3.2  How is radiated seismic energy measured? 
 
3.3.2.1  Method 
 
The method described below for estimating the radiated seismic energy of teleseismic 
earthquakes is based on Boatwright and Choy (1986). Velocity-squared spectra of body 
waves are corrected for effects arising from source mechanism, depth phases, and propagation 
through the Earth.  
 
For shallow earthquakes where the source functions of direct and surface-reflected body-wave 
arrivals may overlap in time, the radiated energy of a P-wave group (consisting of P, pP and 
sP) is related to the energy flux by  
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where the P-wave energy flux,ε ∗
gP , is the integral of the square of the ground velocity, taken 

over the duration of the body-wave arrival,  
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Here, 
•
u is velocity, which must be corrected for frequency-dependent attenuation; ρ and α are 

density and velocity at the receiver, respectively; <FP>2 is the mean-square radiation-pattern 
coefficient for P waves; RP is the P-wave geometrical spreading factor; FgP is the generalized 
radiation pattern coefficient for the P-wave group defined as  
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where Fi are the radiation-pattern coefficients for i = P , pP , and sP; 
∧

PP and 
∧

SPare plane-
wave reflection coefficients of pP and sP at the free surface, respectively, corrected for free-
surface amplification; and q is 15.6, the ratio of S-wave energy to P-wave energy (Boatwright 
and Fletcher, 1984). The correction factors explicitly take into account our knowledge that the 
earthquake is a double-couple, that measurements of the waveforms are affected by 
interference from depth phases, and that energy is partitioned between P and S waves. For 
teleseismically recorded earthquakes, energy is radiated predominantly in the bandwidth 0.01 
to about 5.0 Hz. The wide bandwidth requires a frequency-dependent attenuation correction 
(Cormier, 1982). The correction is easily realized in the frequency domain by using 
Parseval’s theorem to transform Eq. (3.51), 
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where t
∗

α  is proportional to the integral over ray path of the imaginary part of complex 
slowness in an anelastic Earth. An appropriate operator, valid over the requisite broad 
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bandwidth, is described by Choy and Cormier (1986) and shown in Fig. 3.19. The t ∗
α  of the 

P-wave operator ranges from 1.0 s at 0.1 Hz to 0.5 s at 2.0 Hz. 
 

       
 
Fig. 3.19  Teleseismic t

∗
α derived by Choy and Cormier (1986) plotted as a function of 

frequency for a surface-focus source and a surface receiver at a distance of 60°. The split in 
the curve at frequencies higher than 0.3 Hz indicates the variation in regional t ∗

α  expected for 
different receiver sites. In practice the mean of the two curves is used for the attenuation 
correction. 
 
The numerical integration of Eq. (3.53) is limited to either the frequency at which signal falls 
below the noise level (typically at frequencies greater than 2.0-3.0 Hz) or to the Nyquist 
frequency. If this limiting or cutoff frequency, ωc, is greater than the corner frequency, the 

remainder of the velocity spectrum is approximated by a curve that falls off by ω 1− . In 
practice, therefore, Eq. (3.53) consists of a numerical integral, N, truncated at ωc, and a 
residual integral, R, which approximates the remainder of the integral out to infinite 
frequency,  

RNgP ραραε +=∗                 (3.54) 

 
where, as shown in Boatwright and Choy (1986),   
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in which cu
•

 is the attenuation-corrected value of velocity at ωc. 
 
Although teleseismic SH- and SV-wave groups from shallow earthquakes can be analyzed 
through a straightforward extension of Eq. (3.50) as described in Boatwright and Choy 
(1986), shear waves suffer substantially more attenuation in propagation through the Earth 
than the P waves. The loss of seismic signal due to shear attenuation usually precludes 
retrieving useful spectral information for frequencies higher than about 0.2-0.3 Hz for all but 
the largest earthquakes. Thus, for the routine estimation of energy, it is more practical and 
more accurate to use only the P-wave group (Eqs. (3.50) and (3.53)). The formula for 
computing the total radiated energy when using the P-wave group alone is  
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3.3.2.2   Data 
 
Data used in the direct measurement of energy must satisfy three requirements. First, the 
implementation of Eq. (3.53) requires that the velocity data contain spectral information 
about, above and below the corner frequency of an earthquake. Because the corner frequency 
can vary from earthquake to earthquake depending on source size and rupture complexity, the 
bandwidth of the data must be sufficiently wide so that it will always cover the requisite range 
of frequencies above and below the corner frequency. For body waves from teleseismically 
recorded earthquakes, a spectral response that is flat to ground velocity between 0.01 Hz 
through 5.0 Hz is usually sufficient. The second requirement is that the duration of the time 
window extracted from a seismogram should correspond to the time interval over which the 
fault is dynamically rupturing. As shown by the examples in Fig. 3.20, when broadband data 
are used, delimiting the time window is generally unequivocal regardless of the complexity of 
rupture or the size of the earthquake. The initial arrival of energy is obviously identified with 
the onset of the direct P wave. The radiation of energy becomes negligible when the 
amplitude of the velocity-squared signal decays to the level of the coda noise. The final 
requirement is that we use waveforms that are not complicated by triplications, diffractions or 
significant secondary phase arrivals. This restricts the usable distance range to stations within 
approximately 30°-90° of the epicenter. In addition, waveforms should not be used if the 
source duration of the P-wave group overlaps a significant secondary phase arrival. For 
example, this may occur when a very large earthquake generates a P-wave group with a 
duration of such length that it does not decay before the arrival of the PP-wave group. 
 

                     
Fig. 3.20  (Left) Broadband displacement, velocity, and velocity-squared records for the large 
(Ms = 7.8, Me = 7.5, Mw = 7.7) Chilean earthquake of 3 March 1985. Rupture complexity, in 
the form of a tiny precursor and a number of sub-events, is typical for large earthquakes. 
(Right) Broadband displacement, velocity and velocity-squared records for an aftershock (mb 
= 5.9, Me = 6.2, Mw = 6.6) to the Chilean earthquake that occurred 17 March 1985. The 
waveforms are less complex than those of the main shock. Despite the differences in rupture 
complexity, duration and amplitude, the time window over which energy arrives is 
unequivocal. In each part of the figure the arrows indicate when the velocity-squared 
amplitude has decreased to the level of the coda noise. 
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3.3.3   Development of an energy magnitude, Me 
 
In the Gutenberg-Richter formulation, an energy is constrained once magnitude is known 
through log ES = a + b M where a and b are constants. For surface-wave magnitude, Ms, the 
Gutenberg-Richter formula takes the form 
 

log ES = 4.8 + 1.5 Ms                (3.57) 
 
where ES is in units of Joules (J). In the normal usage of Eq. (3.57), an energy is derived after 
an Ms is computed. However, it is now recognized that for very large earthquakes or very 
deep earthquakes, the single frequency used to compute Ms is not necessarily representative 
of the dimensions of the earthquake and, therefore, might not be representative of the radiated 
energy. Since radiated energy can now be computed directly, it is an independent parameter 
from which a unique magnitude can be defined. In Fig. 3.21, the radiated energies for a set of 
378 global shallow earthquakes from Choy and Boatwright (1995) are plotted against their 
magnitudes, Ms. The Gutenberg-Richter relationship is plotted as a dashed line in Fig. 3.21. 
Assuming a b-value of 1.5, the least-squares regression fit between the actual energies and 
magnitude is  

log ES = 4.4 + 1.5 Ms                 (3.58) 
 
which is plotted as the solid line in Fig. 3.21. The a-value of 4.4 indicates that on average the 
original Gutenberg-Richter formula overestimates the radiated energy by a factor of two. To 
define energy magnitude, Me, we replace Ms with Me in Eq. (3.58) 
 

log ES = 4.4 + 1.5 Me                (3.59) 
or 

Me = 2/3 log ES - 2.9.                (3.60) 
 

             
 
Fig. 3.21  Radiated energy (ES) of global data as a function of surface-wave magnitude (Ms). 
The energy predicted by the Gutenberg-Richter formula, log ES = 4.8 + 1.5 Ms (in units of 
Newton-meters), is shown by the dashed line. From a least-squares regression, the best-fitting 
line with the slope of 1.5 is log ES= 4.4 + 1.5 Ms (according to Choy and Boatwright, 1995). 
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The usage of Eq. (3.60) is conceptually antithetical to that of Eq. (3.57). In Eq. (3.60) 
magnitude is derived explicitly from energy, whereas in Eq. (3.57) energy is dependent on the 
value of magnitude. 
 
 
3.3.4 The relationship of radiated energy to moment and apparent stress 
 
The energy and moment for a particular earthquake are related by apparent stress, σapp (see 
Equation (59) in IS 3.1),  

    σapp = µ ES / M0                (3.61) 
 
where µ is the average rigidity at the source. When radiated energy, ES, is plotted against 
seismic moment, M0,  for global shallow earthquakes (Fig. 3.22), the best fit by least-squares 
regression of ES on M0 (solid line) yields  
  

    ES = 1.6·10-5 M0.               (3.62) 
 

                   
 
Fig. 3.22  Radiated energy, ES, of 394 shallow-focus earthquakes as a function of seismic 
moment, M0 . The slope of the least-squares log-normal regression (solid line) yields a global 
average apparent stress σ app of about 0.5 MPa assuming a source rigidity of 0.3·105 MPa. 
The 95% spread (or width of distribution) about the regression line is indicated by the dashed 
lines (according to Choy and Boatwright, 1995). 
 
 
Assuming an average rigidity for shallow earthquakes of 0.3·105 MPa, the slope of the 
regression line yields a worldwide average apparent stress, σ app of about 0.47 MPa. The 
spread about the regression line is very large. In terms of apparent stress it is between 0.03 to 
6.69 MPa. Empirical formulas, like those employing M0 or Ms, ignore the spread and, thus, 
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would be poor predictors of energy. Viewing the spread of ES-M0 values about the regression 
line in terms of apparent stress, rather than random scatter, may provide significant insight 
into the physics of earthquake occurrence. For example, the release of energy and apparent 
stress could vary systematically as a function of faulting type, lithospheric strength and 
tectonic region (Choy and Boatwright,1995). As more statistics on the release of energy are 
accumulated, spatial and temporal variations in energy release and apparent stress might also 
be identified.  
 
 
3.3.5 The relationship of Me to Mw 
 
Although Me and Mw are magnitudes that describe the size of an earthquake, they are not 
equivalent. Me, being derived from velocity power spectra, is a measure of the radiated 
energy in form of seismic waves and thus of the seismic potential for damage to 
anthropogenic structures. Mw, being derived from the low-frequency asymptote of 
displacement spectra, is physically related to the final static displacement of an earthquake. 
Because they measure different physical properties of an earthquake, there is no a priori 
reason that they should be numerically equal for any given seismic event. The usual definition 
of Mw is:  

Mw = 2/3 log M0 - 6.0    (with M0 in Nm).            (3.63) 
 
The condition under which Me is equal to Mw, found by equating Eq. (3.60) and Eq. (3.63), 
is ES/M0 ∼ 2.2·10-5. From Eq. (3.61) this ratio is equivalent to σapp ∼ 2.2·10-5µ . For shallow 
earthquakes, where µ ∼ 0.3-0.6 × 105 MPa, this condition implies that Me and Mw will be 
coincident only for earthquakes with apparent stresses in the range 0.66-1.32 MPa. As seen in 
Fig. 3.22, this range is but a tiny fraction of the spread of apparent stresses found for 
earthquakes. Therefore, the energy magnitude, Me, is an essential complement to moment 
magnitude, Mw, for describing the size of an earthquake. How different these two magnitudes 
may be is illustrated in Tab. 3.2. Two earthquakes occurred in Chile within months of each 
other and their epicenters were less than 1º apart.  Although their Mw’s and Ms’s were 
similar, their  mb’s and Me’s differed by 1 to 1.4 magnitude units! Table 3.2 describes the 
macroseismic effects from the two earthquakes. The event with larger  Me caused 
significantly greater damage! 
 
Tab. 3.2  (Reprinted from Choy et al., 2001.) 
Date LAT 

 (°) 
LON 
(Ε) 

Depth 
(km) 

Me Mw mb Ms sigmaa 

(bars) 
Faulting Type 

6 JUL  
1997 (1) 

-30.06 -71.87 23.0 6.1 6.9 5.8 6.5 1 interplate-thrust 

15 OCT  
1997 (2) 

-30.93 -71.22 58.0 7.5  7.1 6.8 6.8 44 intraslab-normal 

(1) Felt (III) at Coquimbo, La Serena, Ovalle and Vicuna. 
(2)  Five people killed at Pueblo Nuevo, one person killed at Coquimbo, one person killed at La 

Chimba and another died of a heart attack at Punitaqui. More than 300 people injured, 5,000 
houses destroyed, 5,700 houses severely damaged, another 10,000 houses slightly damaged, 
numerous power and telephone outages, landslides and rockslides in the  epicentral region. Some 
damage (VII) at La Serena and (VI) at Ovalle. Felt (VI) at Alto del Carmen and Illapel; (V) at 
Copiapo, Huasco, San Antonio, Santiago and Vallenar; (IV) at Caldera, Chanaral, Rancagua  and 
Tierra Amarilla; (III) at Talca; (II) at Concepcion and Taltal.  Felt as far south as Valdivia. Felt 
(V) in Mendoza and San Juan Provinces,  Argentina. Felt in Buenos Aires, Catamarca, Cordoba, 
Distrito Federal and  La Rioja Provinces, Argentina. Also felt in parts of Bolivia and Peru. 
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3.3.6 Regional estimates of radiated seismic energy 
 
Radiated energy from local and regional records can be computed in a fashion analogous to 
the teleseismic approach if suitable attenuation corrections, local site and receiver effects, and 
hypocentral information are available or can be derived. Boatwright and Fletcher (1984) 
demonstrated that integrated ground velocity from S waves could be used to estimate radiated 
energy in either the time or frequency domain by, 
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where the ground velocity has been corrected for anelastic attenuation, C is a correction for 
radiation pattern coefficient and free-surface amplification, r is the source-receiver distance, 
and ρr and βr are density and S-wave velocity at the receiver. The attenuation correction is 
usually of the type exp(ωr/βQ), where Q is the whole-path attenuation. Similarly, Kanamori et 
al. (1993) use a time-domain method to estimate the S-wave energy radiated by large 
earthquakes in southern California, 
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where ρ0 and β0 are hypocentral density and S-wave velocity, Cf is the free-surface 
amplification factor, r is the source-receiver distance estimated from the epicentral distance ∆ 
and a reference depth h of 8 km (such that r2=∆2+h2). Attenuation is described by 

)exp()( krcrrq n −= − , which is the Richter (1935) attenuation curve as corrected by Jennings 
and Kanamori (1983). For southern California earthquakes, c=0.49710, n=1.0322, and 
k=0.0035 km-1. 
 
 
3.3.7 Conclusions  
 
Energy gives a physically different measure of earthquake size than moment. Energy is 
derived from the velocity power spectra, while moment is derived from the low-frequency 
asymptote of the displacement spectra. Thus, energy is a better measure of the severity of 
shaking and thus of the seismic potential for damage, while moment, being related to the final 
static displacement, is more related to the long-term tectonic effects of the earthquake process. 
Systematic variations in the release of energy and apparent stress as a function of faulting 
type and tectonic setting can now be identified that were previously undetectable because of 
the lack of reliable energy estimates. An energy magnitude, Me, derived from an explicit 
computation of energy, can complement Mw and Ms in evaluating seismic and tsunamigenic 
potential. 
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3.4 Determination of fault-plane solutions (M. Baumbach, H. Grosser) 
 

3.4.1 Introduction 
 
The direction (polarity) and amplitude of motion of a seismic wave arriving at a distant 
station depends both on the wave type considered and the position of the station relative to the 
motion in the earthquake source. This is illustrated by Figs. 3.23a and b. 
 
Fig. 3.23a represents a linear displacement of a point source S while Fig. 3.23b depicts a right 
lateral (dextral) shear dislocation along a fault plane F. Shear dislocations are the most 
common model to explain earthquake fault ruptures. Note that in the discussion below we 
consider the source to be a point source with rupture dimension much smaller than the 
distance to the stations and the wave length considered. First we look into the situation 
depicted in Fig. 3.23a. When S moves towards ∆1 then this station will observe a 
compressional (+) P-wave arrival (i.e., the first motion is away from S), ∆4 will record a P 
wave of opposite sign (-) , a dilatation (i.e., first motion towards S), and station ∆2 will 
receive no P wave at all. On the other hand, S waves, which are polarized parallel to the 
displacement of S and perpendicular to the direction of wave propagation, will be recorded at 
∆2 but not at ∆1 and ∆4 while station ∆3 will receive both P and S waves. 

 
 
Fig. 3.23  Direction of source displacement with respect to seismic stations ∆i for a) a single 
force at point S and b) a fault rupture F. Note that in the discussion below we consider the 
source to be a point source with a rupture dimension much smaller than the distance to the 
stations. 
 
 
Somewhat different is the case of a fault rupture (Fig. 3.23b). At stations ∆1 and ∆5, which 
are positioned in the strike direction of the fault, the opposite signs of P motion on both side 
of the fault will cancel, i.e., no P waves will be observed. The latter also applies for station ∆3 
which is sited perpendicular to the fault. On the other hand, stations ∆2 and ∆4, which are 
positioned at an angle of 45° with respect to the fault, will record the P-wave motions with 
maximum amplitudes but opposite sign. This becomes clear also from Fig. 3.25a. It shows the 
different polarities and the amplitude "lobes" in the four quadrants. The length of the 
displacement arrows is proportional to the P-wave amplitudes observed in different directions 
from the fault. Accordingly, by observing the sense of first motions of P waves at many 
stations at different azimuths with respect to the source it will be possible to deduce a "fault-
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plane solution". But because of the symmetry of the first-motion patterns, two potential 
rupture planes, perpendicular to each other, can be constructed. Thus, on the basis of polarity 
data alone, an ambiguity will remain as to which one was the acting fault plane. This can only 
be decided by taking into account additional data on azimuthal amplitude and frequency or 
wave-form patterns, which are controlled by the Doppler effect of the moving source, and/or 
field data on the orientation and nature of seismotectonic faults. 
 
In accordance with the above, the amplitude distribution of P waves for a point source with 
pure double-couple shear mechanism is described in a spherical co-ordinate system (θ, φ) 
(Aki and Richards, 1980; see Fig. 3.24) by 
 
    AP (θ, φ) = cos φ sin 2θ.               (3.67) 
 
This expression divides the focal sphere into four quadrants. The focal sphere for a seismic 
point source is conceived of as a sphere of arbitrarily small radius centered on the source. 
Within each quadrant the sign of the P-wave first motion (polarity) does not change but 
amplitudes are large in the center of the quadrant and small (or zero) near to (or at) the fault 
plane and the auxiliary plane. The nodal lines for P waves, on which AP (θ, φ) = cos φ sin 2θ = 
0, separate the quadrants. They coincide with the horizontal projection of the two orthogonal 
fault planes traces through the focal sphere. Opposite quadrants have the same polarity, 
neighboring quadrants different polarities. Note that compression is observed at stations 
falling in the tension quadrant (force directed away from the point source) while dilatation is 
observed at stations falling in the compression quadrant (force directed towards the point 
source). 
 

           
 
Fig. 3.24  Map view of P-wave radiation pattern for a shear fault. θ is the azimuth in the plane 
while φ is in fact three-dimensional. See also Fig. 3.23. Black areas: polarity +, white areas - . 
 
 
The position of the quadrants on the focal sphere depends on the orientation of the active fault 
and of the slip direction in space. This is illustrated by Fig. 3.25, which shows the P-wave 
radiation pattern for a thrust event with some strike-slip component. Thus, the estimation of 
the P-wave first motion polarities and their back-projection onto the focal sphere allows us to 
identify the type of focal mechanism of a shear event (fault-plane solution). The only problem 
is, that the hypocenter and the seismic ray path from the source to the individual stations must 
be known. This may be difficult for a heterogeneous model with 2-D or 3-D velocity 
structure. 
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 Fig. 3.25  Radiation pattern of the radial displacement component (P wave) due to a 
double-couple source: a) for a plane of constant azimuth (with lobe amplitudes proportional to 
sin2θ) and b) over a sphere centered on the origin. Plus and minus signs of various sizes 
denote amplitude variation (with θ and φ) of outward and inward directed motions. The fault 
plane and auxiliary plane are nodal lines on which cosφ sin2θ = 0. The pair of arrows in a) at 
the center denotes the shear dislocation. P and T mark the penetration points of the pressure 
and tension axes, respectively, through the focal sphere. Note the alternating quadrants of 
inward and outward directions of motion (compressional quadrant +; dilatational quadrant -) 
(modified from Aki and Richards 1980 ; with kind permission of the authors). 
 
 
Fault-plane solutions based on P-wave first motion polarities will be better constrained if 
additionally the different radiation pattern of S waves displacement amplitudes is taken into 
account. An example is given in Fig. 3.26 for the same fault-plane solution as shown in Fig. 
3.25 for P waves. 
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Fig. 3.26  Radiation pattern of the transverse displacement component (S wave) due to a 
double-couple source. a) in the plane φ = 0, φ = π and b) over a sphere centered on the 
origin. Arrows imposed on each lobe in a) show the direction of particle displacement 
associated with the lobe while the arrows with varying size and direction in the spherical 
surface in b) indicate the variation of the transverse motions with θ and φ. P and T mark the 
penetration points of the pressure and tension axes, respectively, through the focal sphere. 
There are no nodal lines as in Fig. 3.25 but only nodal points where there is zero motion. The 
nodal point for transverse motion at (θ, φ) = (45°, 0°) at T is a maximum in the pattern for 
longitudinal motion (see Fig.3.25) while the maximum transverse motion (e.g., at θ = 0) 
occurs on a nodal line for the longitudinal motion. The pair of arrows in a) at the center 
denotes the shear dislocation (modified from Aki and Richards 1980; with kind permission of 
the authors). 
 
 
In the case of a double-couple mechanism, according to Fig. 3.24, the S-wave amplitude 
pattern follows the relationship (see Aki and Richards, 1980) 
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    AS = cos2θ cosφθθθθ - cosθ sinφφφφφ              (3.68) 
 

with θθθθ and φφφφ - unit vectors in θ and φ direction, AS - shear-wave displacement vector. 
 
 
3.4.2 Manual determination of fault-plane solutions 

 
Manually determined fault-plane solutions are normally based on P-wave polarity readings 
only which are plotted on two kinds of projections, either the equal-angle Wulff net or the 
Lambert-Schmidt equal area projection (Figs. 3.27a and b; see also Aki and Richards, 1980, 
Vol. 1, p. 109-110). The latter provides a less cluttered plot of data with take-off angles less 
than 45° but in principle the procedure of constructing the fault planes is the same (see EX 3.2 
and EX 3.3). 
 
 

 
 

Fig. 3.27a  The equal angle Wulff net. Note: Only the meridians are great circles! 
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Fig. 3.27b  The equal area Lambert-Schmidt net. Note: Only the meridians are great circles! 
 

 
To obtain a fault-plane solution basically three steps are required: 
 
(1) Calculating the positions of the penetration points of the seismic rays through the focal 

sphere which are defined by the ray azimuth AZM and the take-off (incidence) angle AIN 
of the ray from the source.  

(2) Marking these penetration points through the upper or lower hemisphere in a horizontal 
projection of that sphere using different symbols for compressional and dilatational first 
arrivals. Usually, lower hemisphere projections are used. Rays which have left the upper 
hemisphere have to be transformed into their equivalent lower hemisphere ray. This is 
possible because of spherical symmetry of the radiation pattern (see Figs. 3.28 and 3.29). 

(3) Partitioning the projection of the lower focal sphere by two perpendicular great circles 
which separate all (or at least most) of the + and - arrivals in different quadrants. 
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Fig. 3.28  Transformation of a ray leaving the focal sphere upwards with an incidence (take-
off) angle AIN into an equivalent downward ray with same polarity and changed incidence 
angle AINc and azimuth AZMc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.29  Two rays, leaving the focal sphere in opposite directions, reach - because of the 
symmetry of radiation pattern - the stations 1 and 2 with the same polarity. The crossing point 
of the up-going ray with the focal sphere can, therefore, be remapped according to the 
formulas given in Fig. 3.28 into a crossing point with the lower hemisphere which coincides 
with the ray crossing-point for station 2. 
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Fig. 3.30 shows the angles which describe the orientation and motion of a fault plane and Fig. 
3.31 shows their determination in the net projections. The strike angle φφφφ is measured 
clockwise against North ( 0° ≤ φ ≤ 360° ). To resolve the 180° ambiguity, it is assumed that 
when looking into the strike direction the fault dips to the right hand side (i.e., its fault-trace 
projection is towards the right of the net center). The dip angle δδδδ describes the inclination of 
the hanging wall against the horizontal ( 0° ≤ δ ≤ 90° ). The rake angle λλλλ describes the 
displacement of the hanging wall relative to the foot wall ( -180° ≤ λ ≤ 180° ). λ = 0 
corresponds to slip in strike direction, λ > 0 means upward motion of the hanging wall (i.e., 
reverse or thrust faulting component) and λ < 0 downward motion (i.e., normal faulting 
component). 

 

 
 

Fig. 3.30  Angles describing the orientation and motion of faults (see text). 
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In Fig. 3.31 P1, P2 and P3 mark the positions of the poles of the planes FP1 (fault plane), FP2 
(auxiliary plane) and EP (equatorial plane) in their net projections. From Fig. 3.30 it is 
obvious that all three planes are perpendicular to each other (i.e., 90o apart) and intersect in 
the poles of the respective third plane, i.e., FP1 and FP2 in P3, FP1 and EP in P2 etc. Note 
that on the basis of polarity readings alone it can not be decided whether FP1 or FP2 was the 
active fault. Discrimination from seismological data alone is still possible but requires 
additional study of the directivity effects such as azimuthal variation of frequency (Doppler 
effect), amplitudes and/or waveforms. For sufficiently large shocks these effects can more 
easily be studied in low-frequency teleseismic recordings while in the local distance range, 
high-frequency waveforms and amplitudes may be strongly influenced by resonance effects 
due to low-velocity near-surface layers. Seismotectonic considerations or field evidence from 
surface rupture in case of strong shallow earthquakes may allow us to resolve this ambiguity, 
too. Figs. 3.32 and 3.33 depict several basic types of earthquake faulting and their related 
fault-plane solutions in so-called "beach-ball" presentations of the net projections.  
 

       
 
Fig. 3.31  Determination of the fault plane parameters φ, δ and λ in the net diagrams. The 
polarity distribution, slip direction and projection of FP1 shown qualitatively correspond to 
the faulting case depicted in Fig. 3.30. For abbreviations used see text. Note: λ* = 180° - λ 
when the center of the net lies in the tension (+) quadrant (i.e., event with thrust component) 
or λ* = -λ when the center of the net lies in the pressure quadrant (i.e., event with normal 
faulting component. P1, P2 and P3 are the poles (i.e., 90° off) of FP1, FP2 and EP, 
respectively. P and T are the penetration points (poles) of the pressure and tension axes, 
respectively, through the focal sphere. + and − signs mark the quadrants with compressional 
and dilatational P-wave first motions. 
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Fig. 3.32  Basic types of earthquake faulting for some selected dip and rake angles. Note that  
mixed types of faulting occur when λ ≠ 0, 180o or ± 90o, e.g., normal faulting with strike-slip 
component or strike-slip with thrust component. Also, dip angles may vary between 0o < δ ≤ 
90o. For fault plane traces and polarity distributions of these faulting types in their "beach-ball 
presentation" see Fig. 3.33. 
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Fig. 3.33  “Beach-ball” presentation of the net projections of the fault plane cut-traces and of 
the penetration points (poles) of the P- and T-axes through the lower focal hemisphere for 
different faulting mechanisms. White sectors correspond to negative and black sectors to 
positive first-motion polarities. 
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3.4.3 Accuracy of fault-plane solutions 
 
Fault planes determined by eye-fit to the polarity data may be uncertain by about ± 10o. This 
is acceptable. Even computer assisted best fits to the data will produce different acceptable 
solutions within about the same error range with only slightly different standard deviations 
(e.g., Figure 1 in EX 3.3, NEIC and HRVD solutions, respectively).  
 
In addition, one has to be aware that different fitting algorithm or error-minimization 
procedures may produce different results within this range of uncertainty for the same data. A 
poor distribution of seismograph stations (resulting in insufficient polarity data for the net 
diagram), erroneous polarity readings and differences in model assumptions (e.g., in the 
velocity models used) may result in still larger deviations between the model solution and the 
actual fault planes. One should also be aware that the assumed constant angular (45o) 
relationship between the fault plane on the one hand and the pressure and tension axis on the 
other hand is true in fact only in the case of a fresh rupture in a homogeneous isotropic 
medium. It may not be correct in the stress environment of real tectonic situations (i.e., P and 
T ≠ σ1 and -σ3, respectively; see discussion in 3.1.2.4). 
 
 
3.4.4 Computer-assisted fault-plane solutions 
 
There exist quite a number of computer programs for the determination of both single and 
joint fault-plane solutions from first-motion data (e.g., Brillinger et al., 1980; Buforn and 
Udías, 1984; Udías and Buforn, 1988, and others referred to below). In most applications for 
local earthquakes homogeneous flat-layered velocity models are acceptable, i.e., layers with 
constant velocities and velocity discontinuities at the boundaries. The majority of location 
programs (e.g., HYPO71 by Lee and Lahr, 1975; HYPOELLIPSE by Lahr, 1989; 
HYPOINVERS by Klein, 1985) are based on this type of velocity model. Additionally, 
HYPOINVERS and HYPOELLIPSE do accept layers with linear velocity gradients. 
Moreover, HYPOELLIPSE may locate local events with predefined travel-time tables, too. 
During the location procedure the ray paths to the stations are calculated. The azimuth AZM 
and the take-off angle AIN at which the P wave, arriving at a given station, leaves the focal 
sphere are listed in the output files. The remaining problem to be solved is to find the 
distribution of P-polarities on the focal sphere and to estimate the angles describing the focal 
mechanism.  
 
The computer program FPFIT (Reasenberger and Oppenheimer, 1985) calculates double- 
couple fault-plane solutions based on P-wave polarity readings. It accepts as input the output 
files of the localization programs HYPO71, HYPOELLIPSE and HYPOINVERSE. The 
inversion is accomplished through a grid-search procedure that finds the source model by 
minimizing a normalized weighted sum of first-motion polarity discrepancies. Two weighting 
factors are incorporated in the minimization. One of them reflects the estimated variance of 
the data while the other one is based on the absolute value of the P-wave radiation amplitude. 
In addition to the minimum-misfit solution, FPFIT finds alternative solutions corresponding 
to significant relative misfit minima. The existence of several minima may be due to 
insufficient number of polarity readings, localization errors, polarity misreadings or an 
inadequate velocity model (e.g., not modeled refractions) resulting in an incorrect position of 
the P-wave first-motion polarities on the focal sphere. One has also to be aware that it 
sometimes may happen that the seismometer component outputs have been wrongly plugged 
at a given station, resulting in systematically wrong polarity reportings by such a station. In 
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the case of models which perfectly fit the data, FPFIT applies an additional constraint. Its 
effect is to maximize the distance sum between the observation points and the nodal planes on 
the focal sphere. The display program FPPLOT shows the final fault-plane solution and the 
estimated uncertainty in terms of the range of possible orientations of the pressure and tension 
axes which is consistent with the data.  
 
While the above programs accept only the output files of the hypocenter localization 
programs for local events, another widely used program package for seismogram analysis, 
SEISAN (Havskov, 1996; version 1.2 now available as CD-ROM from the International 
Seismological Centre in Thatcham, UK) uses a modified version of the program 
HYPOCENTER (Lienert et al., 1988; Lienert, 1991; Lienert and Havskov, 1995). The main 
modifications are that it can also accept secondary phases and locate teleseismic events. The 
output files are used in conjunction with the FOCMEC program (Snoke et al., 1984) for the 
determination of the fault plane parameters but currently on the basis of polarity readings 
only. The implementation of the additional use of S-P amplitude ratios is intended.  

 
In the case of sparse networks or weak events, the number of polarity data may be too small 
for reliable estimation of fault-plane solutions. In this case P-, SV- and SH-amplitudes can be 
used in addition to polarities in order to get more stable and better constrained, i.e., less 
ambiguous fault-plane solutions. This is due to the difference in P-wave (Fig. 3.25) and S-
wave (Fig. 3.26) polarity and angular amplitude pattern for a given source mechanism.  
 
The program FOCMEC (Snoke, 1984) allows us to calculate best fitting double-couple fault-
plane solutions from P, SH and SV polarities and/or SV/P, SH/P or SV/SH amplitude ratios 
provided that the ratios are corrected to the focal sphere by taking into account geometrical 
spreading, attenuation and free-surface effects. For surface correction the program 
FREESURF, which is supplied together with FOCMEC, can be used. The applied Q-model 
has to be specified according to the regional attenuation conditions or related corrections. 
When adopting a constant VP/VS velocity ratio, the geometrical spreading is the same for P 
and S waves and absolute changes in amplitude cancel each other in the above amplitude 
ratios. Head waves and amplitude changes at velocity boundaries require special treatment. 
The solution is obtained by grid search over strike, dip and slip of the double-couple source. 
The program FOCPLT, also provided together with FOCMEC, allows us to plot upper or 
lower hemisphere projections of the focal sphere and to show the data, i.e., the fault planes 
together with the poles of the pressure (P) and tension (T) axes for SH and SV waves. Note 
that S-wave amplitudes are zero in the direction of P and T. 
 
While the program HYPO71 is available as part of Vol.1 of the IASPEI software library (Lee, 
1995) the programs FOCMEC, FPFIT, HYPOELLIPSE and HYPOINVERSE are freely 
available through the Internet under the following addresses: 
FOCMEC:  http://www.iris.washington.edu or as for FPFIT 
FPFIT:   http://orfeus.knmi.nl/other.services/software.links.html#focalmech 
HYPOELLIPSE: http://giseis.alaska.edu/pub/SOFTWARE/hypoel/ 
HYPOINVERSE: http://orfeus.knmi.nl/other.services/software.links.html#location 
 
 
 
 
 
 



3.5 Source parameters and moment-tensor solutions  
 

71 

3.5 Source parameters and moment-tensor solutions (G. Bock �) 
 

3.5.1 Introduction 
 
The concept of first order moment tensor provides a complete description of equivalent body 
forces of a general seismic point source (see Fig. 3.34 in section 3.5.2). A source can be 
considered a point source if both the distance D of the observer from the source and the 
wavelength λ of the data are much greater than the linear dimension of the source. Thus, 
moment-tensor solutions are generally derived from low-frequency data and they are 
representative of the gross properties of the rupture process averaged over tens of seconds or 
more.  The double-couple source model describes the special case of shear dislocation along a 
planar fault. This model has proven to be very effective in explaining the amplitude and 
polarity pattern of P, S and surface waves radiated by tectonic earthquakes. In the following, 
we briefly outline the relevant relations (in a first order approximation) between the moment 
tensor of a seismic source and the observed seismogram. The latter may be either the 
complete seismogram, one of its main groups (P, S or surface waves), or specific features of 
seismograms such as peak-to-peak amplitudes of body waves, amplitude ratios or spectral 
amplitudes. Then we outline a linear inversion scheme for obtaining the moment tensor using 
waveform data in the time domain. Finally, we will give an overview of some useful 
programs for moment-tensor analysis. Applications of moment-tensor inversions to the rapid 
(i.e., generally within 24 hours after the event) determination of source parameters after 
significant earthquakes will also be described.  

 
3.5.2 Basic relations 
 
Following Jost and Herrmann (1989), the displacement d on the Earth’s surface at a station 
can be expressed, in case of a point source, as a linear combination of time-dependent 
moment-tensor elements Mkj (ξξξξ,t) that are assumed to have the same time dependence 
convolved (indicated by the star symbol) with the derivative Gskj (x,ξξξξ,t) of the Green’s 
functions with regard to the spatial j-coordinate: 
 
   )t,(G)t,(M),t(u j,skjks ξ,xξx ∗= .               (3.69) 

 
us (x, t): s component of ground displacement at position x and time t 
Mkj (ξξξξ,t): components of 2nd order, symmetrical seismic moment tensor M 
Gskj (x,ξξξξ,t): derivative of the Green's function with regard to source coordinate ξj 
x: position vector of station with coordinates x1, x2, x3 for north, east and down 
ξξξξ: position vector of point source with coordinates ξ1, ξ2, ξ3 for north, east and down 
 
Eq. (3.69) follows from the representation theorem in terms of the Green´s function (see 
Equations (21) and (38) in IS 3.1).The Green’s function represents the impulse response of 
the medium between source and receiver and thus contains the various wave propagation 
effects through the medium from source to receiver. These include energy losses through 
reflection and transmission at seismic discontinuities, anelastic absorption and geometrical 
spreading. The Mkj (ξξξξ,t) from Eq.(3.69) completely describes the forces acting in the source 
and their time dependence. The Einstein summation notation is applied in Eq. (3.69) and 
below, i.e., the repeated indices k and j = 1, 2, 3 imply summation over x1, x2 and x3. In Eq. 
(3.69) the higher order terms of the Taylor expansion around the source point of the Green's 
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functions Gsk,j (x,ξξξξ,t) have been neglected. Note that the source-time history s(t) (see 3.1, Figs. 
3.4 and 3.7), which describes the time dependence of moment released at the source, is 
contained in c. If we assume that all the components of Mkj (ξξξξ,t) have the same time 
dependence s(t) the equation can be written as:  
 
   us (x, t) = Mkj  [Gsk,j (x,ξξξξ,t) ∗s (t)]              (3.70) 
 
with s(t): source time history. 
 
When determining Mkj (ξξξξ,t) from seismic records, us(x, t) is calculated by convolution of the 
observed seismogram components ys(x, t) with the inverse of the seismograph's displacement 
response function i(t): 
 

us(x, t) = ys(x, t) ∗ Inv{i(t)} 
 

In the frequency domain (see Eq. (14) in IS 3.1) convolution is replaced by multiplication: 
 

Ds(x, ω) = Ys (x, ω) I(ω)-1 
 
where ω is circular frequency. The Ds(x, ω), Ys (x, ω), and I(ω)-1 are the respective Fourier 
transforms of the time series ds(x, t), ys(x, t), and i(t)-1 (see 5.2.7 where I(ω)-1 is denoted as 
Hd(ω)-1). 
 

 
Fig. 3.34  The nine generalized couples representing Gsk,j(x, ξξξξ, t) in Eq. (3.69). Note that force 
couples acting on the y axis in x direction or vice versa (i.e., (x,y) or (y,x)) will cause shear 
faulting in the x and y direction, respectively. Superimposition of vector dipoles in x and y 
direction with opposite sign, e.g., (x,x) + (-y,-y) will also cause shear faulting but 45° off the 
x and y direction, respectively. Both representations are equivalent (reproduced from Jost and 
Herrmann, A student’s guide to and review of moment tensors. Seismol. Res. Lett., 60, 2, 
1989, Fig. 2, p. 39; Seismological Society of America). 
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In the following we assume that the source-time function s(t) is a delta function (i.e., a 
"needle" impulse). Then, Mkj(ξξξξ, t) = Mkj(ξξξξ)⋅δ(t), and the right side of Eq.(3.70) simplifies to 
Mkj(ξξξξ)⋅Gsk,j(t). The seismogram recorded at x can be regarded as product of Gsk,j and Mkj. 
(e.g., Aki and Richards, 1980, Lay and Wallace, 1995; Udias, 1999). Thus, the derivative of 
Gskj  with regard to the source coordinate ξi describes the response to a single couple with its 
lever arm pointing in the ξj direction (see Fig. 3.34). For k = j we obtain a vector dipole; these 
are the couples (x,x), (y,y), and (z,z) in Fig. 3.34. A double-couple source is characterized by 
a moment tensor where one eigenvalue of the moment tensor vanishes (equivalent to the Null 
or B axis), and the sum of eigenvalues vanishes, i.e., the trace of the moment tensor is zero. 
Physically, this is a representation of a shear dislocation source without any volume changes. 
 
Using the notation of Fig. 3.32, double-couple displacement fields are represented by the sum 
of two couples such as (x,y)+(y,x), (x,x)+(y,y), (y,y)+(z,z), (y,z)+(z,y) etc. An explosion 
source (corresponding to M6 in Eq. (3.76) and Fig. 3.34) can be modeled by the sum of three 
vector dipoles (x,x) + (y,y) + (z,z). A compensated linear vector dipole (CLVD, see 3.5.4 
below) can be represented by a vector dipole of strength 2 and two vector dipoles of unit 
strength but opposite sign in the two orthogonal directions.  
 
The seismic moment tensor M  has, in general, six independent components which follows 
from the condition that the total angular momentum for the equivalent forces in the source 
must vanish. For vanishing trace, i.e., without volume change, we have five independent 
components that describe the deviatoric moment tensor. The double-couple source is a special 
case of the deviatoric moment tensor with the constraint that the determinant of M  is zero, 
i.e., that the stress field  is two-dimensional. 
 
In general, M  can be decomposed into an isotropic and a deviatoric part: 
 
    M  = M isotropic + Mdeviatoric.               (3.71) 
 
The decomposition of M  is unique while further decomposition of Mdeviatoric is not. 
Commonly, Mdeviatoric is decomposed into a double couple and CLVD: 
 
    Mdeviatoric = MDC + MCLVD.               (3.72) 
 
For a double-couple source, the Cartesian components of the moment tensor can be expressed 
in terms of strike φ, dip δ and rake λ of the shear dislocation source (fault plane), and the 
scalar seismic moment M0 (Aki and Richards, 1980): 
 
 

Mxx = - M0(sinδ cosλ sin2φ  +  sin2δ sinλ sin2φ) 

Mxy =   M0(sinδ cosλ cos2φ  +  0.5 sin2δ sinλ sin2φ) 

Mxz = - M0(cosδ  cosλ cosφ  +  cos2δ sinλ sinφ)             (3.73) 

Myy =   M0(sinδ cosλ sin2φ  -  sin2δ sinλ cos2φ) 

Myz = - M0(cosδ cosλ sinφ  -  cos2δ sinλ cosφ) 

Mzz =   M0 sin2δ sinλ  
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As the tensor is always symmetric it can be rotated into a principal axis system such that all 
non-diagonal elements vanish and only the diagonal elements are non-zero. The diagonal 
elements are the eigenvalues (see Eq. (6) in Information Sheet 3.1) of M ; the associated 
directions are the eigenvectors (i.e., the principal axes). A linear combination of the principal 
moment-tensor elements completely describes the radiation from a seismic source. In the case 
of a double-couple source, for example, the diagonal elements of M  in the principal axis 
system have two non-zero eigenvalues M0 and -M0 (with M0 the scalar seismic moment) 
whose eigenvectors give the direction at the source of the tensional (positive) T axis and 
compressional (negative) P axis, respectively, while the zero eigenvalue is in the direction of 
the B (or Null) axis of the double couple (for definition and determination of M0 see Exercise 
3.4). 
 
Eq. (3.70) describes the relation between seismic displacement and moment tensor in the time 
domain. If the source-time function is not known or the assumption of time-independent 
moment-tensor elements is dropped, e.g., for reasons of source complexity, the frequency-
domain approach is chosen: 
 
    us(x, f) = Mkj(f)Gsk,j(x, ξ, f)               (3.74) 
 
where f denotes frequency. Procedures for the linear moment-tensor inversion can be 
designed in both the time and frequency domain using Eq. (3.70) or (3.74). We can write 
(3.70) or (3.74) in matrix form: 
     u = Gm.                (3.75) 
 
In the time domain, the u is a vector containing n sampled values of observed ground 
displacement at various times, stations and sensor components, while G is a 6 × n matrix and 
the vector m contains the six independent moment-tensor elements to be determined. In the 
frequency domain, u contains k complex values of the displacement spectra determined for a 
given frequency f at various stations and sensor components. G is a 6 × k matrix and is 
generally complex like m. For more details on the inversion problem in Eq. (3.75) the reader 
is referred to Chapter 6 in Lay and Wallace (1995), Chapter 12 in Aki and Richards (1980), or 
Chapter 19 of Udias (1999).  
 
To invert Eq. (3.75) for the unknownm, one has to calculate the derivatives of the Green's 
functions. The calculation of the Green's functions constitutes the most important part of any 
moment-tensor inversion scheme. A variety of methods exists to calculate synthetic 
seismograms (e.g., Müller, 1985; Doornbos, 1988; Kennett, 1988). Some of the synthetic 
seismogram codes allow calculations for the moment-tensor elements as input source while 
others allow input for double-couple and explosive point sources. The general moment tensor 
can be decomposed in various ways using moment-tensor elements of double-couple and 
explosive sources so that synthetic seismogram codes employing these source 
parameterizations can also be used in the inversion of (3.75). 

 
 
3.5.3 An inversion scheme in the time domain 
 
In this section, we will describe in short the moment-tensor inversion algorithm of Kikuchi 
and Kanamori(1991), where the moment tensor is decomposed into elementary double-couple 
sources and an explosive source. Adopting the notation used by Kikuchi and Kanamori(1991), 
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the moment tensor Mkj is represented by a linear combination of Ne = 6 elementary moment 
tensors Mn (Fig. 3.35):  
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The M1 and M2 represent pure strike-slip faults; M3 and M4 represent dip-slip faults on vertical 
planes striking N-S and E-W, respectively, and M5 represents a 45° dip-slip fault. The M6 
represents an isotropic source radiating energy equally into all directions (i.e., an explosion).  
 

Fig. 3.35  Elementary moment tensors used in the inversion of the full moment tensor (after 
Kikuchi and Kanamori, 1991) 
 
 
A pure deviatoric moment tensor (trace(Mkj) = 0) is entirely represented by the five 
elementary moment tensors M1 to M5. The following brief description of the linear inversion 
for the moment tensor (Kikuchi and Kanamori, 1991) is an example of an inversion 
performed in the time domain. It can be easily adopted for an inversion in the frequency 
domain by replacing the time series by their spectra. Let wsn(t) denote the Green's function 
derivative at station s in response to the elementary moment tensor Mn, and let xS(t) be the 
observed ground displacement as function of time at station s. The best estimate for the 
coefficients an in Eq. (3.76) can be obtained from the condition that the difference between 
observed and synthetic displacement functions be zero: 
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The Ne is the number of elementary moment tensors, and Ns is the number of displacement 
records used. The other terms in (3.77) are given by: 
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Integration is carried out over selected portions of the waveforms. Evaluating ∂∆/∂ na  = 0 for 

n = 1,..., Ne yields the normal equations 
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with n ranging from 1 to Ne. The solution for an is given by: 
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The inverse Rnm

−1 of matrix Rnm can be obtained by the method of generalized least squares 
inversion (e.g., Pavlis, 1988). The resultant moment tensor is then given by 
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The variance of the elements an can be calculated under the assumption that the data are 
statistically independent: 
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where 2

mσ  is the variance of the data Gn. In the case where the variance of the data is not 

known, )²( 1

1

−
=∑ nm
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m
Re  can be used as relative measure for the uncertainty.  

 
 
3.5.4 Decomposition of the moment tensor 
 
Except for the volumetric and deviatoric components, the decomposition of the moment 
tensor is not unique. Useful computer programs for decomposition were written by Jost and 
distributed in Volume VIII of the Computer Programs in Seismology by Herrmann of Saint 
Louis University (http://www.eas.slu.edu/People/RBHerrmann/ComputerPrograms.html or e-
mail to R. W. Herrmann: rbh@slueas.slu.edu). The first step in the decomposition is the 
calculation of eigenvalues and eigenvectors of the seismic moment tensor. For this the 
program mteig can be used. It performs rotation of the moment tensor M  into the principal 
axis system. The eigenvector of the largest eigenvalue gives the T (or tensional) axis; the 
eigenvector of the smallest eigenvalue gives the direction of the P (or compressional) axis, 
while the eigenvector associated with the intermediate eigenvalue gives the direction of the 
Null axis. The output of mteig is the diagonalized moment tensor 
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whose elements are input to another program, mtdec, which performs a moment-tensor 
decomposition. First, the moment tensor is decomposed into an isotropic and a deviatoric part 
(see Eq. 3.71):  
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with tr(M ) = m1 + m2 + m3 being the trace of M . The isotropic part of M  is important in 
quantifying volume changes of the source, but it is usually difficult to resolve so that isotropic 
parts of less than 10% are often not considered to be significant. The deviatoric part of the 
moment tensor can be further decomposed. Options include decompositions into three vector 
dipoles, into three double couples, into 3 CLVD sources, into a major and minor double 
couple, and into a best double couple and a CLVD having the same principal axis system. The 
source mechanisms reported by Harvard and USGS are based on the decomposition of the 
moment tensor into a best double couple and a CLVD. In addition to the best double couple 
they also provide the moment-tensor elements. To estimate the double-couple contribution to 
the deviatoric moment tensor, the parameter 
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is used (Dziewonski et al., 1981) where mmin and mmax are the smallest and largest eigenvalues 
of the deviatoric part of M , respectively, both in absolute terms. For a pure double-couple 
source, ε = 0 because mmin = 0; for a pure CLVD, ε = 0.5. The percentage double-couple 
contribution can be expressed as (1-2ε)×100. Significant CLVD components are often 
reported for large intermediate-depth and very deep earthquakes. In many cases, however, it 
can be shown that these are caused by superposition of several rupture events with different 
double-couple mechanisms (Kuge and Kawakatsu, 1990; Frohlich, 1995; Tibi et al., 1999).  
 
Harvard and USGS publish the moment tensors using the notation of normal mode theory. It 
is based on spherical co-ordinates (r;Θ;Φ) where r is the radial distance of the source from the 
center of the Earth, Θ is co-latitude, and Φ is longitude of the point source. The 6 independent 
moment-tensor elements in the (x, y, z) = (north, east, down) coordinate system are related to 
the components in (r;Θ;Φ) by 
 

Mrr = Mzz 
 

MΘΘ = Mxx 
 

MΦΦ = Myy 
 

MrΘ = Mzx 
 

MrΦ = -Mzy 
 

MΘΦ = -Mxy 
 
 

3.5.5 Steps taken in moment-tensor inversion 
 
Generally, the quality of moment-tensor inversion depends to a large extent on the number of 
data available and the azimuthal distribution of stations about the source. Dufumier (1996) 
gives a systematic overview for the effects caused by differences in the azimuthal coverage 
and the effects caused due to the use of only P waves, P plus SH waves or P and SH and SV 
waves for the inversion with body waves. 
 
A systematic overview with respect to the effects caused by an erroneous velocity model for 
the Green function calculation and the effects due to wrong hypocenter coordinates can be 
found in Šílený et al. (1992), Šílený and Pšenčik (1995), Šílený et al. (1996) and Kravanja et 
al. (1999). 
 
The following is a general outline of the various steps to be taken in a moment-tensor 
inversion using waveform data:  
 
1) Data acquisition and pre-processing  

- good signal-to-noise ratio 
- unclipped signals 
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- good azimuthal coverage 
- removing mean value and linear trends 
- correcting for instrument response, converting seismograms to displacement 
low-pass filtering to remove high-frequency noise and to satisfy the point source  
approximation    

 2) Calculation of synthetic Green's functions dependent on 
- Earth model 
- location of the source 
- receiver position 

3) Inversion 
- selection of waveforms, e.g., P, S H or full seismograms 
- taking care to match waveforms with corresponding synthetics 
- evaluation of Eqs. (3.76) and (3.77) 
- decomposition of moment tensor, e.g., into best double couple plus CLVD 

 
The inversion may be done in the time domain or frequency domain. Care must be taken to 
match the synthetic and observed seismograms. Alignment of observed and synthetic 
waveforms is facilitated by cross-correlation techniques. In most moment-tensor inversion 
schemes, focal depth is assumed to be constant. The inversion is done for a range of focal 
depths and as best solution one takes that with the minimum variance of the estimate.  
 
 
3.5.6  Some methods of moment-tensor inversion 
 
3.5.6.1  NEIC fast moment tensors  
 
This is an effort by the U.S. National Earthquake Information Center (NEIC) in co-operation 
with the IRIS Data Management Center to produce rapid estimates of the seismic moment 
tensor for earthquakes with body-wave magnitudes ≥ 5.8. Digital waveform data are quickly 
retrieved from “open" IRIS stations and transmitted to NEIC by Internet. These data contain 
teleseismic P waveforms that are used to compute a seismic moment tensor using a technique 
based on optimal filter design (Sipkin, 1982). The solution is then disseminated by e-mail to a 
list of subscribers. To register send a request by e-mail to sipkin@usgs.gov. More information 
is available under http://gldss7.cr.usgs.gov/neis/FM/fast_moment.html. 
  
 
3.5.6.2  Harvard CMT solutions 
 
The Harvard group maintains an extensive catalog of centroid moment-tensor (CMT) 
solutions for strong (mainly M > 5.5) earthquakes over the period from 1976 till present. 
Their solutions, as well as quick CMT solutions of recent events, can be viewed at 
http://www.seismology.harvard.edu/projects/CMT/. The Harvard CMT method makes use of 
both very long-period (T > 40 s) body waves (from the P wave onset until the onset of the 
fundamental modes) and so-called mantle waves at T > 135 s that comprise the complete 
surface-wave train.  
 
Besides the moment tensor the iterative inversion procedure seeks a solution for the best point 
source location of the earthquake. This is the point where the system of couples is located in 
the source model described by the moment tensor. It represents the integral of the moment 
density over the extended rupture area. This centroid location may, for very large earthquakes, 
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significantly differ from the hypocenter location based on arrival times of the first P-wave 
onsets. The hypocenter location corresponds to the place where rupture started. Therefore, the 
offset of the centroid location relative to the hypocentral location gives a first indication on 
fault extent and rupture directivity. In case of the August 17, 1999 Izmit (Turkey) earthquake 
the centroid was located about 50 km east of the ”P-wave” hypocenter. The centroid location 
coincided with the area where the maximum surface ruptures were observed.  
 
 
3.5.6.3  EMSC rapid source parameter determinations 
 
This is an initiative of the European-Mediterranean Seismological Center (Bruyeres-le-Chatel, 
France, http://www.emsc-csem.org/) and the GEOFON Programs at the GeoForschungs- 
Zentrum Potsdam (http://www.gfz-potsdam.de/geofon/). The EMSC method uses a grid 
search algorithm to derive the fault-plane solutions and seismic moments of earthquakes (M > 
5.5) in the European- Mediterranean area. Solutions are derived within 24 hours after the 
occurrence of the event. The data used are P- and S-wave amplitudes and polarities. Fig. 3.36 
shows an example of the kind of output data produced. More information can be obtained 
through http://www.gfz-potsdam.de/pb2/pb24/emsc/emsc.html. 
 
 
3.5.6.4 Relative moment-tensor inversion 
 
Especially for the inversion of local events so called relative moment-tensor inversion 
schemes have been developed (Oncescu, 1986; Dahm, 1996). If the sources are separated by 
not more than a wavelength, the Green's functions can be assumed to be equal with negligible 
error. In this case it is easy to construct a linear equation system that relates the moment-
tensor components of a reference event to those of another nearby event. This avoids the 
calculation of high-frequency Green's functions necessary for small local events and all 
problems connected with that (especially the necessity of modeling site transfer functions in 
detail). 
 
This is a very useful scheme for the analysis of aftershocks if a well determined moment 
tensor of the main shock is known. Moreover, if enough events with at least slightly different 
mechanisms and enough recordings are available, it is also possible to eliminate the reference 
mechanism from the equations (Dahm, 1996). This is interesting for volcanic areas where 
events are swarm-like and of similar magnitude, and where a reference moment tensor can not 
be provided (Dahm and Brandsdottir, 1997). 
 
 
3.5.6.5 NEIC broadband depths and fault-plane solutions  
 
Moment-tensor solutions, which are generally derived from low-frequency data, reflect the 
gross properties of the rupture process averaged over tens of seconds or more. These solutions 
may differ from solutions derived from high frequency data, which are more sensitive to the 
dynamic part of the rupture process during which most of the seismic energy is radiated. For 
this reason, beginning January 1996, the NEIC has determined, whenever possible, a fault 
plane solution and depth from broadband body waves for any earthquake having a magnitude 
greater than about 5.8 and it has published the source parameters in the Monthly Listings of 
the PDE.  The broadband waveforms that are used have a flat displacement response over the 
frequency range 0.01-5.0 Hz. (This bandwidth, incidentally, is also commensurate with that 
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used by the NEIC to compute teleseismic ES.) Initial constraints on focal mechanism are 
provided by polarities from P, pP and PKP waves, as well as by Hilbert-transformed body 
waves of certain secondary arrivals (e.g., PP), and from transversely polarized S waves.  The 
fault-plane solution and depth are then refined by least-squares fitting of synthetic waveforms 
to teleseismically recorded P-wave groups (consisting of direct P, pP and sP).  More 
information can be found under http://neic.usgs.gov/neis/nrg/bb_processing.html. 
 
 
 
 
European-Mediterranean Seismological Centre 
Centre Sismologique Euro-Mediterraneen 
 
Double-couple solution provided by GFZ Potsdam 
 
EMSC event parameters: 21-JUN-2000_00:51:46.6 
                  63.88 N    20.69 W (Iceland) 
                  Depth =  10 km (adopted in inversion) 
                  Depth =   9 km (based on 32 depth phases) 
 
32 stations used in inversion: 
 
Station Delta Azimuth Takeoff Polarity 
-------------------------------------- 
adk    63.06  343.55  20.3    C 
aqu    29.12  121.60  27.6    C 
biny   38.06  262.06  26.1    x 
brg    22.41  109.49  33.8    C 
cart   28.87  146.49  27.7    C 
cmb    60.57  296.59  20.9    C 
cmla   26.31  188.62  28.2    D 
cor    56.07  302.72  22.0    C 
css    43.52  105.32  24.9    C 
dug    55.68  291.95  22.1    C 
eil    48.77  107.33  23.7    C 
ffc    39.71  296.00  25.8    C 
furi   68.86  114.32  19.0    C 
hgn    19.27  120.81  34.9    C 
incn   75.70   26.33  17.4    D 
kev    19.21   51.83  34.9    D 
kmbo   77.57  119.84  17.0    C 
kbs    17.85   20.07  40.1    D 
kwp    27.08  101.36  28.0    C 
morc   24.75  106.92  28.4    C 
mrni   46.08  104.64  24.3    C 
mte    24.76  155.63  28.4    C 
pas    63.05  292.64  20.3    C 
pet    58.94  331.77  21.3    C 
rgn    19.51  103.10  34.8    C 
selv   28.58  151.01  27.7    C 
sfuc   28.62  155.24  27.7    C 
sjg    55.09  235.67  22.2    D 
sspa   40.16  262.47  25.7    D 
suw    24.19   93.73  28.5    C 
tns    20.68  118.00  34.5    C 
tuc    61.55  285.54  20.7    C 
 
Data provided by: 
IRIS/USGS, MedNet, USNSN, GRSN, UCM/SFO/GEOFON, 
IRIS/IDA, GEOFON, GII/GEOFON, KNMI, IRIS/GEOFON, 
IRIS/AWI/GEOFON, TERASCOPE, GRSN/GEOFON, IAG, 
GTSN, U. Arizona 

 

 
 
 
 
 
Corner frequencies of bandpass filter:   0.020 and   0.100 Hz 
 
First fault plane:  Strike =  358 degrees 
                    Rake   =  185 degrees 
                    Dip      =   85 degrees 
 
Second fault plane: Strike =  268 degrees 
                    Rake   =   -5 degrees 
                    Dip      =   85 degrees 
 
M0 = ( 4.3 +/-  2.1)*10**18  N*m 
Mw =  6.4 
 
Source duration = 4 s (from BB displacement seismograms) 
 
Principal axes    Trend      Plunge 
----------------------------------- 
        P          223           7 
        N           43          83 
        T          313           0 
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Done by G. Bock, GeoForschungsZentrum Potsdam. 
Visit the GFZ-EMSC web page under http://www.gfz-
potsdam.de/pb2/pb24/emsc/emsc.html 

 

 
Fig. 3.36  Example of output data produced by the routine procedure for rapid EMSC source 
parameter determinations by the GEOFON group at the GFZ Potsdam. 
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3.6 Seismic scaling relations (P. Bormann) 
 
3.6.1 Definition and use of seismic scaling relations 

 
Empirical formulas relate one measured or calculated parameter to another. We have 
encountered such relationships in our discussions of seismic moment, energy and magnitude. 
Relations can also be found between other physical or geometrical parameters of earthquake 
size such as intensity, stress drop, duration of rupture, area or length of rupture, fault 
dislocation, area of felt shaking, etc. If any of these parameters appear to be related in a 
systematic and predictable manner over a wide range of earthquake size, scaling “laws” and 
similarity conditions may be inferred. These seismic scaling laws and similarity conditions 
allow the rough estimation of one parameter from another (e.g., ES from M0 or magnitude, or 
M0  from field evidence such as surface rupture length and/or displacement). Therefore, the 
knowledge of theoretically well founded scaling laws or empirical scaling relationships is of 
crucial importance for both probabilistic and deterministic seismic hazard analyses. They aim 
at assessing the future earthquake potential of a region on the basis of data from past events, 
dating back as far as possible. Scaling laws are often the only way to estimate parameters of 
historical earthquakes which often lack instrumental measurements of magnitude, seismic 
energy or moment. Specifically, one often has to make reasonable estimates of the size of the 
largest earthquake that might have occurred at or could be generated by a particular fault or 
fault segment and of the kind of seismic spectrum it might (have) radiate(d). However, one 
has to be aware that seismic sources differ not only in their geometrical size and average slip. 
Ambient stress conditions, the dominant modes of faulting, ranges of stress drop and related 
seismic source spectra may also differ significantly from region to region. For instance, 
events of the same seismic moment may release seismic energies which differ by 2 to 3 
orders. Therefore, the globally-derived scaling relations may not be appropriate for use for 
some areas. Regional scaling laws should be used, therefore, whenever available, particularly 
when inferences have to be drawn on regional seismic strain rates or on seismic hazard, the 
latter being mainly controlled by the frequency of occurrence and the potential of earthquakes 
to generate strong high-frequent motions. 
 

 
3.6.2 Energy-magnitude-moment relations 

 
Gutenberg and Richter (1956a) gave the following relationship between seismic energy ES (in 
Joule ; 1 J = 107 erg) and the so-called unified magnitude m which is related to mB (see 
3.2.5.2):  

log ES = 2.4 m - 1.2.                (3.83) 
 
Eq. (3.83) is supposed to have minimum of observation errors and yields, together with the 
relationship mB = 2.5 + 0.63 Ms in the same publication, 
 

log ES = 1.5 Ms + 4.8.               (3.84) 
 
After many revisions, Gutenberg and Richter (1956c) finally published Eq. (3.84) which is 
now most widely applied. It was also used by Kanamori (1977) in developing the seismic 
moment magnitude Mw (see 3.2.5.3). Recently, Choy and Boatwright (1995) found (see 3.3) 
 

log ES = 1.5 Ms + 4.4.               (3.85) 
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From theoretical considerations Randall (1973) derived a relationship between ES and the 
local magnitude Ml which was later confirmed empirically by Seidl and Berckhemer (1982) 
as well as by Berckhemer and Lindenfeld (1986). On the basis of direct energy calculations 
for earthquakes from the Friuli region, Italy, using digital broadband records of the 
Gräfenberg array in Germany, the latter obtained: 
 

log ES ∼ 2.0 Ml.               (3.86) 
 
This is close to the empirical findings by Gutenberg and Richter (1956a) (log ES ∼ 1.92 Ml)  
for southern California and the more recent one by Kanamori et al.(1993). The latter got 
 

log ES = 1.96 Ml + 2.05              (3.87) 
 
for the magnitude range 1.5 < Ml < 6.0. For Ml > 6.5 Ml saturates. 
 
For short-period body-wave magnitudes mb Sadovsky et al. (1986) found the relationship 
 

log ES = 1.7 mb + 2.3               (3.88) 
 
which is applicable for both earthquakes and underground explosions. Note: According to the 
coefficient in the above equations one unit of magnitude increase in Ms, mb, Ml and mB, 
respectively, corresponds to an increase of ES by a factor of about 32, 50, 100 and 250 times!  
 
In this context one should mention that in the countries of the former USSR the energy scale 
after Rautian (1960), K = log ES (with ES in J), is widely used and given in the catalogs. It is 
based on the same elements as any other magnitude scale such as an empirical calibration 
function and a reference distance (here 10 km). K relates to magnitude M via 
 

K = 1.8 M + 4.                (3.89) 
 
Riznichenko (1992) summarized data and relationships published by many authors (see Fig. 
3.37) between magnitude M and K on the one hand and log M0 on the other hand. Depending 
on the range of distance and size M stands here for Ml, mb, mB or Ms.  
 
Kanamori (1983) published linear relationships between log ES and log M0 for both shallow 
and intermediate to deep events (see Fig. 3.38). They are rather similar and correspond, on 
average, to the relationship ES/M0 = 5 x 10-5 which he used in the development of the moment 
magnitude scale Mw (Kanamori 1977).  
 
However, as previously mentioned in the sub-sections 3.2.5.3 and 3.2.6.1 on moment and 
energy magnitudes, scaling laws must be used with caution. Later investigations have 
revealed sometimes significant deviations from this average ES/M0 - relationship (e.g., 
Kikuchi and Fukao, 1988; Choy and Boatwright, 1995). This is due to local and regional 
differences in source mechanism, stress drop, time history of the rupture process, etc. It makes 
global relationships of this type often unsuitable for drawing inferences on regional 
differences in tectonic deformation and stress accumulation rates. Furthermore, scaling laws 
for source parameters derived from low-frequency data may not be suitable for inferring 
seismic hazard, which is affected by the high frequencies that cause most earthquake damage 
and are more relevant for earthquake engineers. 
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Fig. 3.37  Correlation between seismic moment M0 (in Nm = J), magnitude M and Rautian´s 
(1960) energetic class K according to a compilation of data from many authors. Related stress 
drop ∆σ has been given in MPa (full straight lines). Broken lines mark the 68% confidence 
interval. 1 - large global earthquakes; 2 - average values for individual regions; 3 -earthquakes 
in the western USA; 4 - micro-earthquakes in Nevada; 5 - M0 determinations from field data; 
6 to 15 - individual values from different regions (modified from Riznichenko, 1992, Fig. 1; 
with permission from Springer-Verlag).  

 
Fig. 3.38  Relations between seismic moment M0 and energy ES for shallow events (left) and 
intermediate to deep events (right) according to Vassiliou and Kanamori (1982). The solid 
line indicates the relation ES = M0 /(2×104) suggested by Kanamori (1977) on the basis of 
elastostatic considerations (modified from Kanamori, 1983 in Tectonophysics, Vol. 93, p. 191 
and 192, with permission from Elsevier Science). 
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3.6.3 Moment-magnitude relations 

 
Global relations between Ms and M0 were derived by Ekström and Dziewonski (1988) from 
high quality determinations of M0 from the Global Digital Seismic Network (GDSN). M0 is 
given below in Nm (1 Nm = 1 J = 107 dyn cm = 107 ergs): 
 
log M0 = Ms + 12.24      for Ms < 5.3,             (3.90) 
 
log M0 = 23.20 - (92.45 - 11.40Ms)1/2  for 5.3 ≤ Ms ≤ 6.8,             (3.91) 
 
log M0 = 1.5 Ms + 9.14    for Ms > 6.8.             (3.92) 
 
 
Chen and Chen (1989) published detailed global relations between M0 and Ms, as well as 
between mb and Ml, based on data for about 800 earthquakes in the magnitude range 0 < M < 
8.6. These authors also showed that their empirical data are well fit by theoretical scaling 
relations derived from a modified Haskell model of a rectangular fault which produces 
displacement spectra with three corner frequencies. Similar global scaling relations had been 
derived earlier by Gellert (1976), also based on the Haskell (1964 and 1966) model. In both 
papers these relations show saturation for Ml at about 6.3, for mb between about 6.0 and 6.5 
and for Ms between about 8.2 and 8.5.  
 
Other global relationships between M0 and MS were derived from Chen and Chen (1989) 
from a theoretical scaling law based on a modified Haskell source model. They fit well a set 
of global data with a standard deviation of individual values log M0 of about ± 0.4 and 
confirm the saturation of Ms at about 8.5: 
 
log M0 = 1.0 Ms + 12.2    for   Ms ≤ 6.4,             (3.93) 
 
log M0 = 1.5 Ms + 9.0    for   6.4 < Ms ≤ 7.8 ,            (3.94) 
 
log M0 = 3.0 Ms -2.7     for   7.8 < Ms ≤ 8.5, and            (3.95) 
 
Ms = 8.5 = const. for log M0 > 22.8 Nm.                 (3.96) 
 
 
Also Ms-M0 relations (and vice versa) show regional variability. According to Ambraseys 
(1990) the global relations (3.90) - (3.92) systematically underestimate Ms for events in the 
Alpine region of Europe and adjacent areas by 0.2 magnitude units on average. Abercrombie 
(1994) discussed possible reasons for the anomalous high surface-wave magnitudes of 
continental earthquakes relative to their seismic moment. This illustrates the need for regional 
scaling of moment-magnitude relationships even in the relatively long-period range.  
 
For M0 and body-wave magnitudes mb (of 1s period) Chen and Chen (1989) give the 
following global scaling relations (with saturation at mb = 6.5 for log M0 > 20.7): 
 
log M0 = 1.5 mb + 9.0   for  3.8 < mb ≤ 5.2 ,             (3.97) 
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log M0 = 3 mb + 1.2   for  5.2 < mb ≤ 6.5 ,             (3.98) 
 
and for M0 and Ml for California (with saturation at Ml = 6.3 for log M0 > 20.1): 
 
log M0 = Ml + 10.5   for  Ml ≤ 3.6,              (3.99) 
 
log M0 = 1.5 Ml + 8.7   for  3.6 < Ml ≤ 5.0,           (3.100) 
 
log M0 = 3 Ml + 1.2   for  5.0 < Ml ≤ 6.3.           (3.101) 
 
Average scaling relations among mb, Ms and M0 for plate-margin earthquakes have been 
derived by Nuttli (1985). They yield practically identical values as the equations (3.93)-(3.95) 
for M0 when Ms is known while the deviations are not larger than about a factor of 2 when 
using mb and Eqs. (3.97) and (3.98). 
 
The need for regional relationships between M0 and magnitudes is particularly evident for Ml. 
When calculating M0 according to Eqs. (3.98) and (3.100) for California and comparing them 
with the values calculated for a relationship given by Kim et al. (1989) for the Baltic Shield 
 
log M0 = 1.01 Ml + 9.93   for   2.0 ≤  Ml  ≤ 5.2            (3.102) 
 
we get for Ml = 2.0, 4.0 and 5.0, respectively, values for M0 which are 3.5, 5.4 and 16.6 times 
larger for California than for the Baltic Shield. Using instead an even more local relationship 
for travel paths within the Great Basin of California (Chávez and Priestley, 1985), namely 
 
log M0 = 1.2 Ml + 10.49   for   1 ≤ Ml  ≤ 6            (3.103) 
 
we get for the same magnitudes even 9, 21 and 32 times larger values for M0 than for the 
Baltic Shield according to Eq. (3.102). 
 
 
3.6.4 Scaling relations of M, M0 and ES with fault parameters 
 
Scaling relations of magnitude, seismic moment and energy with fault parameters are used in 
two ways:  
 
1) to get a rough estimate of relevant fault parameter when M, M0 or ES of the event are 

known from the evaluation of instrumental recordings; or  
2) in order to get a magnitude, moment and/or energy estimates for historic or even 

prehistoric events for which no recordings are available but for which some fault 
parameters such as (maximum possible) length of surface rupture and/or amount of 
surface displacement can still be determined from field evidence.  

 
The latter is particularly important for improved assessment of seismic hazard and for 
estimating the maximum possible earthquake, especially in areas with long mean recurrence  
times for strong seismic events. Of particular importance for hazard assessment are also 
relationships between macroseismic intensity, I, and magnitude, M, on the one hand (see Eqs. 
(3.22) to (3.28) in 3.2.6.7) and between ground acceleration and I or M, on the other hand. 
Unfortunately, the measured maximum accelerations for equal values of intensity I scatter in 
the whole range of I = III to IX by about two orders of magnitude (Ambraseys, 1975). The 
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reason for this scatter is many-fold, e.g., human perception is strongest for frequencies around 
3 Hz while acceleration and damage might be strongest for more high frequent ground 
motions. Also, damage depends not only on the peak value of acceleration but also depends 
on its frequency with respect to the natural period of the shaken structures and on the duration 
of strong ground shaking. For some structures damage is also more closely related to strong 
ground-motion displacement or velocity and not to acceleration. 
 
Relationships between M0, Ms, and ES with various fault parameters are mostly based on 
model assumptions on the fault geometry, rupture velocity and time history, ambient stress 
and stress drop etc. But sometimes these fault parameters can, at least partially, be confirmed 
or constrained by field evidence or by petrophysical laboratory experiments. As for other 
scaling relations discussed above, global relationships can give only a rough orientation since 
the scatter of data is considerable due to regional variability. Whenever possible, regional 
relationships should be developed. 
 
Sadovsky et al. (1986) found that for both crustal earthquakes and underground explosions the 
following relationship holds between seismic energy ES (in erg) and the seismic source 
volume Vs (in cm3) : 
 

log ES = 3 + log Vs              (3.104) 
 
with Vs for earthquakes being estimated from the linear dimensions of the aftershock zone. 
This means that the critical energy density for both natural and artificial crustal seismic 
sources is about equal, roughly 103 erg/cm3 or 100 J/m3. It does not depend on the energy 
released by the event. ES increases only because of the volume increase of the source. 
Accordingly, it is not the type of seismic source but the properties of the medium that play the 
decisive role in the formation of the seismic wave field. However, local and regional 
differences in ambient stress and related stress drop ∆σ ≈ 2µ ES/M0 may modify this 
conclusion (see 3.3). 
 
Fig. 3.39 shows the relation between seismic moment M0 and the area Ar of fault rupture as 
published by Kanamori and Anderson (1975). Ar is controlled by the stress drop ∆σ; as ∆σ 
increases for a given rupture area, M0 becomes larger. One recognizes that intraplate 
earthquakes have on average a higher stress drop (around 10 MPa = 100 bars) than interplate 
events (around 3 MPa). The data in Fig. 3.39 are also well fit by the average relationship 
suggested by Abe (1975), namely:  
 

M0 = 1.33 × 1015 Ar
3/2              (3.105) 

 
which is nearly identical with the relation by Purcaru and Berckhemer (1982):  
 

log M0 = (1.5 ± 0.02) log Ar + (15.25 ± 0.05)          (3.106) 
 
with M0 in Nm and Ar in km2. Eq. (3.106) corresponds to the theoretical scaling relation 
derived by Chen and Chen (1989) for a modified Haskell model with the assumption L = 2W 
(L - length and W- width of fault rupture, Ar = LW = 0.5 L2) and an average displacement D 
= 4.0 ×10-5 L. Note that experimental data indicate also other aspect ratios L/W up to about 30 
(e.g., Purcaru and Berckhemer, 1982).Wells and Coppersmith (1994) gave another relation 
between moment magnitude and Ar : 
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Mw = (0.98 ± 0.03) log Ar + (4.07 ± 0.06)           (3.107) 

 
derived from a very comprehensive data base of source parameters for historical shallow-
focus earthquakes (h < 40 km) in continental interplate or intraplate environments. 
 

 

Fig. 3.39  Relation between area of fault rupture Ar and seismic moment M0 for inter- and 
intraplate earthquakes. The solid lines give the respective relationships for different stress 
drop ∆σ (in MPa; 1 Pa = 10-5 bars) (modified from Kanamori and Anderson, Theoretical basis 
of some empirical relations in seismology, Bull. Seism. Soc. Am., Vol. 65, p. 1077, Fig. 2, 
1975;  Seismological Society of America). 
 
 
There also exists a linear log-log relation between L and M0. Interestingly, for a given seismic 
moment L is on average about 6 times larger for interplate (strike-slip) events than for 
intraplate ones (see Fig. 3.40). The ratio α between average fault displacement (slip) D and 
fault length L is according to Scholz et al. (1986) α ≈ 1 × 10-5 for interplate and α ≈ 6 × 10-5 
for intraplate events. Since this result is independent of the type of fault mechanism, it implies 
that intraplate faults have a higher frictional strength (and thus stress drop) than plate 
boundary faults but smaller length for the same seismic moments.  
 
The slope of the curves in Fig. 3.40 is 0.5. This corresponds to a relation M0 ∼ L2 (Scholz 
1982; Pegeler and Das, 1996) which is only valid for large earthquakes (M > about 6.5 to 7). 
Then the width W of the fault is already saturated, i.e., equal to the thickness of the brittle 
fracturing zone in the lithosphere. Depending on heat flow and composition, the seismogenic 
zone in the crust is about 10 to 30 km thick. Accordingly, for large earthquakes, the growth of 
the fault area with increasing M0 is in the length direction only.  
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Recently, there has been some serious debate on the scaling of large earthquakes and their 
ratio α (Scholz, 1994 and 1997; Romanowicz 1994; Romanowicz and Rundle, 1993 and 
1994; Sornette and Sornette, 1994; Wang and Ou, 1998). Romanowicz (1992), who prefers to 
scale slip not with length but with width, even gives a relationship of M0 ∼ L in case of very 
large earthquakes. In contrast, Hanks (1977) showed that earthquakes with rupture 
dimensions smaller than this seismogenic thickness scale according to M0 ∼ L3 which is 
equivalent to Eq. (3.104).  
 

 
Fig. 3.40  Fault length L versus seismic moment M0 for large inter- and intraplate 
earthquakes. The solid lines give the respective relationship for the ratio α = D/L (modified 
from Scholz, Aviles, and Wesnousky, Scaling differences between large interplate and 
intraplate earthquakes, Bull. Seism. Soc. Am., Vol. 76, No. 1, p. 68, Fig. 1, 1986;  
Seismological Society of America). 
 
 
According to an older data compilation shown in Fig. 3.41 the correlation between source 
length L, magnitude M and energetic class K is not very good. Relations given by various 
authors for events in different environments often differ strongly.  
 
Ambraseys (1988) published relationships derived from the dimensions of fault surface 
ruptures for Eastern Mediterranean and Middle Eastern earthquakes (with L - observed fault 
length in km, D - relative fault displacement in cm, MSC - predicted surface-wave 
magnitudes): 
 

MSC = 1.43 log L + 4.63              (3.108) 
 
and 
 

MSC = 0.4 log (L1.58 D 2) + 1.1.             (3.109) 
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They yield results which are in good agreement with those by Nowroozi (1985) for Iran but 
they differ significantly from the respective relations given by Tocher (1958) for Western 
USA and from Iida (1959) for Japan (see curves 1 and 2 in Fig. 3.41).  
 
 

 
Fig. 3.41  Correlation of source length L with magnitude M and energetic class K according 
to data from various sources (e.g., curve 1 by Tocher, 1958, curve 2 by Iida, 1959; curve 6 
average by Riznichenko, 1992). Thin straight lines: related stress drops ∆σ are given in MPa; 
broken lines mark the limits of the 68% confidence interval with respect to the average curve 
6 (modified from Riznichenko, 1992, Fig. 3; with permission of Springer-Verlag). 
 
 
Khromovskikh (1989) analyzed available data for more than 100 events of different faulting 
types from different seismotectonic regions of the Earth. He derived 7 different relationships 
between magnitude M and the length L of the rupture zone, amongst them those for the 
following regions: 
 
a) the Circum-Pacific belt:  M = (0.96 ± 0.25) log L + (5.70 ± 0.34)            (3.110) 
b) the Alpine fold belt: M = (1.09 ± 0.28) log L + (5.39 ± 0.42)           (3.111) 
c) rejuvenated platforms: M = (1.25 ± 0. 19) log L + (5.45 ± 0.28)           (3.112) 
 
and compared them with respective relationships of other authors for similar areas. 
 



3.6 Seismic scaling relations  
 

91 

Other relationships for estimating L (in km) when Ms is known were derived by Chen and 
Chen (1989) on the basis of their general scaling law based on the modified Haskell source 
model. These relationships clearly show the effect of width saturation:  
 

log L = Ms/3- 0.873  for   Ms≤ 6.4           (3.113) 
 

log L = Ms/2 - 1.94  for 6.4 < Ms ≤ 7.8            (3.114) 

 

log L = Ms - 5.84  for  7.8 < Ms ≤ 8.5 .           (3.115) 
 
The same authors also gave similar relations between the average dislocation D (in m) and 
Ms, namely: 
 

logD = Ms/3 - 2.271  for  Ms ≤ 6.4            (3.116) 
 

logD = Ms/2 - 3.34  for 6.4 < Ms ≤ 7.8    and           (3.117) 

 

logD = Ms - 7.24  for  7.8 < Ms ≤ 8.5            (3.118) 
 
while Chinnery (1969) derived from still sparse empirical data a linear relation between 
magnitude M and logD (with D in m) for the whole range 3 < M < 8.5  
 

M = 1.32 logD + 6.27               (3.119) 
 
which changes to 
 

M = 1.04 logD + 6.96                (3.120) 
 
when only large magnitude events are considered. 
 
Probably best established are the relations which Wells and Coppersmith (1994) have 
determined for shallow-focus (crustal) continental interplate or intraplate earthquakes on the 
basis of a rather comprehensive data base of historical events. Since most of these relations 
for strike-slip, reverse and normal faulting events were not statistically different (at a 95% 
level of significance) their average relations for all slip types are considered to be appropriate 
for most applications. Best established are the relationships between moment magnitude Mw 
and rupture area (see Eq. (3.107)), surface rupture length (SRL) and subsurface rupture length 
(RLD) (both in km). They have the strongest correlations (r = 0.89 to 0.95) and the least data 
scatter:  
 

Mw = (1.16 ± 0.07) log (SRL) + (5.08 ±0.10)            (3.121) 
 

Mw = (1.49 ± 0.04) log (RLD) + (4.38 ±0.06)            (3.122) 
 

log (SLR) = (0.69 ± 0.04) Mw - (3.22 ± 0.27)            (3.123) 
 

log (RLD) = (0.59 ± 0.02) Mw - (2.44 ± 0.11)            (3.124) 
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Comparing Eqs. (3.123) and (3.124) it follows that in general the surface rupture length is 
only about 75% of the subsurface rupture length. 
 
The correlations between Mw andD as well asD and SLR are somewhat smaller (r = 0.71 to 
0.78): 
 

Mw = (0.82 ± 0.10) logD + (6.693± 0.05)             (3.125) 
 

logD = (0.69 ± 0.08) Mw - (4.80 ± 0.57)             (3.126) 
 

logD = (0.88 ± 0.11) log (SLR) - (1.43 ± 0.18)            (3.127) 
 

log (SLR) = (0.57 ± 0.07) logD + (1.61 ± 0.04).            (3.128) 
 
Wells and Coppersmith (1994) reason that the weaker correlation may reflect the wide range 
of displacement values for a given rupture length (differences up to a factor 50 in their data 
set!). These authors also give relations between SLR and the maximum surface displacement 
which is, on average, twice the observed average surface displacement while the average 
subsurface slip ranges between the maximum and average surface displacement. 
 
Chen and Chen (1989) also derived from their scaling law the following average values:  
 

• rupture velocity vr = 2.65 km/s; 
 
• total rupture time Tr (in s) = 0.35 (s/km) × L (km);              (3.129) 

 
• slip velocity dD/dt = (2.87 - 11.43) m/s.  

 
 
However, vr and dD/dt usually vary along the fault during the fracture process. From 
teleseismic studies we can obtain only spatially and temporally averaged values of fault 
motion but the actual co-seismic slip is largely controlled by spatial heterogeneities along the 
fault rupture (see Fig. 3.8). Large slip velocities over 10 m/s suggest very high local stress 
drop of more than 10 MPa. (Yomogida and Nakata, 1994). On the other hand, sometimes very 
slow earthquakes may occur with very large seismic moment but low seismic energy radiation 
(e.g., "tsunami earthquakes"). This has special relevance when deriving scaling relations 
suitable for the prediction of strong ground motions (e.g., Fukushima, 1996).  
 
Scaling relationships between fault parameters, especially between D and L, are also 
controlled by the fault growth history, by age and by whether the event can be considered to 
be single and rare or composite and frequent (e.g., Dawers et al., 1993; Tumarkin et al., 
1994). There exist also scaling relations between fault length and recurrence interval which 
are of particular relevance for seismic hazard assessment (e.g., Marrett, 1994). 
 
Using Eqs. (3.108), (3.110)-(3.112) and (3.121), one gets for a surface rupture length of 100 
km magnitudes M = 7.5, 7.7, 7.6, 7.95 and 7.4, respectively. Knowing the Ms or Mw and 
calculating L and D according to Eqs. (3.114)-(3.118), (3.123) and (3.126), one gets for 
magnitude 7.0  L = 36 km and 41 km,D = 1,4 m and 1,1 m and for magnitude 8.0 L = 145 
km and 200  km,D = 3.8 m and 5.2 m. The good agreement of the calculated values for 
magnitudes 7 and the stronger disagreement for magnitudes 8 are obviously due to the 
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growing difference between Ms (used in the relations by Chen and Chen, 1989) and Mw 
(used in the relations by Wells and Coppersmith, 1994) for Ms > 7 (saturation effect). For the 
rupture duration we get according to Eq. (3.129) for Ms = 7 and 8 approximately 13 s and 51 
s, respectively. 
 

 
3.6.5  Similarity conditions 
 
Under certain assumptions there exist several conditions of static (geometric) and dynamic 
similarity. With the assumption of a constant stress drop one gets 
 

  W/L = k1 i.e., a constant fault aspect ratio and           (3.130) 
 

 D/L = k2 i.e., constant strain α.              (3.131) 
 
One can combine Eqs. (3.130) and (3.131) with the definition of the seismic moment M0 = 
µD W L = µk1k2L

3 and get M0 ∼ L3 which is valid for source dimensions smaller than the 
thickness of the seismogenic layer.  In addition there is a dynamic similarity, namely, the rise 
time tr required for reaching the total displacement, i.e., the duration of the source-time 
function, is 
 

tr = k3 × L/vcr                 (3.132) 
 
with vcr the crack or rupture velocity (see Fig. 3.4). This is equivalent to the Eq. (3.131) of 
constant strain. Lay and Wallace (1995) showed that this results in period-dependent  
amplitudes of seismic waves which scale with the fault dimension. For periods T >> tr the 
amplitude does not depend on fault length L. This corresponds to the plateau of the "source 
displacement spectrum". But if T << tr then the amplitudes scale as 1/L2 or f -2 (see Fig. 3.5). 
This explains the saturation effect when analyzing frequencies higher than the corner 
frequency of the source spectrum.  
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