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There are two basic types of seismic sensors:iahex¢ismometers which measure ground
motion relative to an inertial reference (a susgehnehass), and strainmeters or extensometers
which measure the motion of one point of the grorteldtive to another. Since the motion of
the ground relative to an inertial reference isnost cases much larger than the differential
motion within a vault of reasonable dimensionsrtineseismometers are generally more sen-
sitive to earthquake signals. However, at very foaquencies it becomes increasingly diffi-
cult to maintain an inertial reference, and for tioservation of low-order free oscillations of
the Earth, tidal motions, and quasi-static deforomat strainmeters may outperform inertial
seismometers. Strainmeters are conceptually sintipderinertial seismometers although their
technical realization and installation may be maifécult (see IS 5.1). This Chapter is con-
cerned with inertial seismometers only. For a mooenprehensive description of inertial
seismometers, recorders and communication equipseentiavskov and Alguacil (2002).

An inertial seismometer converts ground motion iatoelectric signal but its properties can
not be described by a single scale factor, suabugsut volts per millimeter of ground mo-
tion. The response of a seismometer to ground matepends not only on the amplitude of
the ground motion (how large it is) but also ontitse scale (how sudden it is). This is be-
cause the seismic mass has to be kept in placengchanical or electromagnetic restoring
force. When the ground motion is slow, the mas$ midve with the rest of the instrument,
and the output signal for a given ground motior thierefore be smaller. The system is thus a
high-pass filter for the ground displacement. Thisst be taken into account when the ground
motion is reconstructed from the recorded signatl & the reason why we have to go to
some length in discussing the dynamic transfergnas of seismometers.

The dynamic behavior of a seismograph system witkitinear range can, like that of any
linear time-invariant (LTI) system, be describedhathe same degree of completeness in four
different ways: by a linear differential equatidhe Laplace transfer function (see 5.2.2), the
complex frequency response (see 5.2.3), or the Isapiesponse of the system (see 5.2.4).
The first two are usually obtained by a mathemataelysis of the physical system (the
hardware). The latter two are directly related eotain calibration procedures (see 5.7.4 and
5.7.5) and can therefore be determined from cdldwaexperiments where the system is con-
sidered as a “black box”(this is sometimes calleddantification procedure). However, since
all four are mathematically equivalent, we can eeach of them either from a knowledge
of the physical components of the system or frooaldoration experiment. The mutual rela-
tions between the “time-domain” and “frequency-dothaepresentations are illustrated in
Fig. 5.1. Practically, the mathematical descripta@ina seismometer is limited to a certain
bandwidth of frequencies that should at least mhelthe bandwidth of seismic signals. Within
this limit then any of the four representationsallig® the system's response to arbitrary input
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signals completely and unambiguously. The viewpéioin which they differ is how effi-
ciently and accurately they can be implementedfferént signal-processing procedures.

In digital signal processing, seismic sensors &enaepresented with other methods that are
efficient and accurate but not mathematically exaath as recursive (IIR) filters. Digital
signal processing is however beyond the scopeigktttion. A wealth of textbooks is avail-
able both on analog and digital signal procesdmggxample Oppenheim and Willsky (1983)
for analog processing, Oppenheim and Schafer (1f@r3jigital processing, and Scherbaum
(1996) for seismological applications.

The most commonly used description of a seismograpponse in the classical observatory
practice has been thenagnification curve’, i.e. the frequency-dependent magnification @ th
ground motion. Mathematically this is the modulabdolute value) of the complex frequency
response, usually called thenplitude response. It specifies the steady-state harmonic respon-
sivity (amplification, magnification, conversionctar) of the seismograph as a function of
frequency. However, for the correct interpretatddrseismograms, also the phase response of
the recording system must be known. It can in @piecbe calculated from the amplitude re-
sponse, but is normally specified separately, oivdd together with the amplitude response
from the mathematically more elegant descriptiothef system by itsomplex transfer func-

tion or itscomplex frequency response.

While for a purely electrical filter it is usualtfear what the amplitude response is - a dimen-
sionless factor by which the amplitude of a sindabinput signal must be multiplied to ob-
tain the associated output signal - the situasamot always as clear for seismometers because
different authors may prefer to measure the inpgihad (the ground motion) in different
ways: as a displacement, a velocity, or an acdeeraBoth the physical dimension and the
mathematical form of the transfer function dependttee definition of the input signal, and
one must sometimes guess from the physical dimensiavhat sort of input signal it applies.
The output signal, traditionally a needle deflectis now normally a voltage, a current, or a
number of counts.

Calibrating a seismograph means measuring (andtsogseadjusting) its transfer properties
and expressing them as a complex frequency respormee of its mathematical equivalents.
For most applications the result must be availaslgparameters of a mathematical formula,
not as raw data; so determining parameters bwydité theoretical curve of known shape to
the data is usually part of the procedure. Prdbticeeismometers are calibrated in two steps.

The first step is an electrical calibration (se@) % which the seismic mass is excited with an
electromagnetic force. Most seismometers have B-ibucalibration coil that can be con-
nected to an external signal generator for thippse. Usually the response of the system to
different sinusoidal signals at frequencies actbessystem's passband (steady-state method,
5.7.4), to impulses (transient method, 5.7.5) ooarbitrary broadband signals (random signal
method, 5.7.6) is observed while the absolute ni@gtion or gain remains unknown. For the
exact calibration of sensors with a large dynamitge such as those employed in modern
seismograph systems, the latter method is mosbppate.

The second step, the determination of the absghite is more difficult because it requires
mechanical test equipment in all but the simplases (see 5.8). The most direct method is to
calibrate the seismometer on a shake table. Thqudérey at which the absolute
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gain is measured must be chosen so as to mininoize and systematic errors, and is often
predetermined by these conditions within narrowitBmA calibration over a large bandwidth

can not normally be done on a shake table. At tliecé this Chapter we will propose some
methods by which a seismometer can be absolutébrated without a shake table.

5.2 Basictheory

This section introduces some basic concepts offthery of linear systems. For a more com-

plete and rigorous treatment, the reader shouldudba textbook such as by Oppenheim and
Willsky (1983). Digital signal processing is basedthe same concepts but the mathematical
formulations are different for discrete (sampleidnals (see Oppenheim and Schafer, 1975;
Scherbaum, 1996; PleSinger et al., 1996). Readessane familiar with the mathematics may

proceed to section 5.2.7.

5.2.1 Thecomplex notation
A fundamental mathematical property of linear timeariant systems such as seismographs
(as long as they are not driven out of their lingperating range) is that they do not change

the waveform of sinewaves and of exponentially gieca or growing sinewaves. The
mathematical reason for this fact is explainedhariext section. An input signal of the form

f(t) = e’ (a, cosawt + b, sinawt) (5.1)
will produce an output signal
g(t) = €' (a, [Coswt + b, [Sinat) (5.2)

with the sameo and «, but possibly differena andb. Note thate is the angular frequency,
which is 27 times the common frequency. Using Euler’s idgntit

el = cosat + jsinat (5.3)
and the rules of complex algebra, we may writeioput and output signals as
f(t) =0[c, 7] ,q9(t) = O[c, 191 (5.4)

respectively, wheré] [] denotes the real part, ad=a, — jb,, ¢, =a, — jb,. It can now be
seen that the only difference between the inputa@rtgut signal lies in the complex ampli-
tude c, not in the waveform. The ratio, /c, is the complex gain of the system, and for
o =0, it is the value of the complex frequency respoaisthe angular frequency . What
we have outlined here may be called the engineeqapyoach to complex notation. The sign
O [ ] for the real part is often omitted but always wstizod.
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The mathematical approach is slightly differenthiat real signals are not considered to be the
real parts of complex signals but the sum of twmglex-conjugate signals with positive and
negative frequency:

f (t) =c, |]3(0'+ja))t + Cl* @(J—j(u)t (55)

where the asterisk * denotes the complex conjuddte.mathematical notation is slightly less
concise, but since for real signals only the terti w, must be explicitly written down (the
other one being its complex conjugate), the twatabs become very similar. However, the
c, term describes the whole signal in the engineeroryention but only half of the signal in

the mathematical notation! This may easily caus#&usion, especially in the definition of
power spectra. Power spectra computed after thmesgs method (such as the USGS Low
Noise Model, see 5.5.1 and Chapter 4 ) attributpader to positive frequencies and there-
fore have twice the power appearing in the mathigadatotation.

5.2.2 TheL aplace transfor mation

A signal that has a definite beginning in time (sas the seismic waves from an earthquake)
can be decomposed into exponentially growing, @taty, or exponentially decaying sinu-
soidal signals with theaplace integral transformation:

f(t) =2imj:ij(s) elds, F(9 :j:’ f(t) e Ya (5.6)

The first integral defines the inverse transfororatithe synthesis of the given signal) and the
second integral the forward transformation (thelymis). It is assumed here that the signal
begins at or after the time origin. s is a complaxable that may assume any value for which
the second integral converges (dependingf ¢, it may not converge when s has a negative

real part). The Laplace transfofifs i9 then said to “exist” for this value of The real pa-

rametero which defines the path of integration for the irsgeetransformation (the first inte-
gral) can be arbitrarily chosen as long as the patkains on the right side of all singularities
of F(s) in the complex s plane. This parameter decideghenef (t) is synthesized from

decaying @ <0), stationary ¢ = 0 or growing (o > 0) sinusoidals (remember that the

mathematical expressice® with complexs represents a growing or decaying sinewave, and
with imaginarys a pure sinewave).

The time derivativef (t )has the Laplace transforsi F(s , the second derivativé (t Has

s? [F(s), etc. Suppose now that an analog data-acquisitiafata-processing system is char-
acterized by the linear differential equation

c, (1) +c,f(t) +co f (1) = doG(t) +dyg(t) + dog(t) (5.7)

where f(t )is the input signalg(t )s the output signal, and tleeandd; are constants. We
may then subject each term in the equation to dakcagransformation and obtain



5.2 Basic theory |

C,S°F (S) + ¢, SF(S) + CoF (8) = d,5°G(8) + d,SG(8) + d,G(S) (5.8)
from which we get

C,s? +¢;S+¢,
d,s® +d,s+d,

G(s) = F(s) (5.9)

We have thus expressed the Laplace transform obubmut signal by the Laplace transform
of the input signal, multiplied by a known ratioriahction of s. From this we obtain the out-
put signal itself by an inverse Laplace transfoiomatThis means, we can solve the differen-
tial equation by transforming it into an algebraguation for the Laplace transforms. Of
course, this is only practical if we are able talaate the integrals analytically, which is the
case for a wide range of “mathematical” signalsalRggnals must be approximated by suit-
able mathematical functions for a transformatiohe Tnethod can obviously be applied to
linear and time-invariant differential equationsasfy order. (Time-invariant means that the
properties of the system, and hence the coeffigiehthe differential equation, do not depend
on time.)

The rational function

C,S% +¢;S+ ¢,
d,s? +d;s+d,

H(s) = (5.10)

is the (Laplace) transfer function of the systeracdbed by the differential equation (5.7). It
contains the same information on the system aditfezential equation itself.

Generally, the transfer function H(s) of an LTIt&ys is the complex function for which

with F(s) and G(s) representing the Laplace trans$oof the input and output signals.

A rational function likeH(s) in (5.10), and thus an LTU system, can be chanaet®up to a
constant factor by its poles and zeros. This isudised in section 5.2.6.

5.2.3 TheFourier transformation

Somewhat closer to intuitive understanding but midtically less general than the Laplace
transformation is the Fourier transformation

f(t) = %I:E(w) el“'dw, F(w) =f_°; f(t) et (5.12)

The signal is here assumed to have a finite enssghat the integrals converge. The condi-
tion that no signal is present at negative timeshmdropped in this case. The Fourier trans-
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formation decomposes the signal into purely harmésinusoidal) waveg'“!. The direct
and inverse Fourier transformation are also knosva harmonic analysis and synthesis.

Although the mathematical concepts behind the Eownd Laplace transformations are dif-
ferent, we may consider the Fourier transforma#isra special version of the Laplace trans-
formation for real frequencies, i.e. far= ja . In fact, by comparison with Eg. (5.6), we see

that E(a)) = F(jw), i.e. the Fourier transform for real angular fregciesc« is identical to
the Laplace transform for imaginay= ja . For practical purposes the two transformations
are thus nearly equivalent, and many of the refatigps between time-signals and their trans-
forms (such as the convolution theorem) are sinaitathe same for both. The functiﬁ(w )
is called the complex frequency response of theesysSome authors use the name “transfer
function” for IE(a)) as well; however,lf(a)) =F(jw )s not the same function d5(«.), so

different names are appropriate. The distinctiotwben F(w ) and F(s) is essential when
systems are characterized by their poles and z&hese are equivalent but not identical in
the complex s andplanes, and it is important to know whether thplaee or Fourier trans-
form is meant. Usually, poles and zeros are gieeritfe Laplace transform. In case of doubt,
one should check the symmetry of the poles andszerahe complex plane: those of the
Laplace transform are symmetric to the real axisnaBig. 5.2 while those of the Fourier
transform are symmetric to the imaginary axis.

The absolute valu}ef(a))‘ is called the amplitude response, and the phas@(aﬁ) the phase

response of the system. Note that amplitude andeptl@ not form a symmetric pair; however
a certain mathematical symmetry (expressed by the i transformation) exists between the
real and imaginary parts of a rational transfercfiom, and between the phase response and
the natural logarithm of the amplitude response.

The definition of the Fourier transformation acaogdto Eqg. (5.12) applies to continuous
transient signals. For other mathematical represients of signals, different definitions must
be used:

RN 2mve/T 1T “2mivtIT
f(t)= 2 be b, = = [, e ™ M (5.13)

V = —00
)

for periodic signal$(t) with a periodT, and

foo 1 Mz_lc Q27K 1M c = Mz_lf o 27kl I M
SVE | I = k (5.14)
1=0 k=0

for time seriedy consisting ofM equidistant samples (such as digital seismic d&¥&) have
noted the inverse transform (the synthesis) firgdach case.

The Fourier integral transformation (Eq. (5.12))vainly an analytical tool; the integrals are
not normally evaluated numerically because theréiscFourier transformation Eq. (5.14)
permits more efficient computations. Eq. (5.13}he Fourier series expansion of periodic
functions, also mainly an analytical tool but als®ful to represent periodic test signals. The
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discrete Fourier transformation Eq. (5.13) is somes$ considered as being a discretized,
approximate version of Egs. (5.12) or (5.14) buacesually a mathematical tool in its own
right: it is a mathematical identity that does depend on any assumptions on the sdgidts
relationship with the other two transformationsd aspecially the interpretation of the sub-
scriptl as representing a single frequency, do howeveerdepn the properties of the origi-
nal, continuous signal. The most important condit®that the bandwidth of the signal before
sampling must be limited to less than half of tampling ratds, otherwise the sampled series
will not contain the same information as the orainthe bandwidth limif, = f4/2 is called
the Nygvist frequency. Whether we consider a signal as periodic or agbaa finite duration
(and thus a finite energy) is to some degree artyitsince we can analyze real signals only
for finite intervals of time, and it is then a netbf definition whether we assume the signal
to have a periodic continuation outside the inteovanot.

The Fast Fourier Transformation or FFT (see Coaleg Tukey, 1965) is a recursive algo-
rithm to compute the sums in Eq. (5.14) efficienly it does not constitute a mathematically
different definition of the discrete Fourier tramshation.

5.2.4 Theimpulseresponse

A useful (although mathematically difficult) fictiois the Dirac “needle” pulsé(t) (e.g. Op-

penheim and Willsky, 1983), supposed to be anitefynshort, infinitely high, positive pulse
at the time origin whose integral over time equhldt can not be realized, but its time-
integral, the unit step function, can be approxedaby switching a current on or off or by
suddenly applying or removing a force. Accordinghe definitions of the Laplace and Fou-
rier transforms, both transforms of the Dirac puisee the constant value 1. The amplitude
spectrum of the Dirac pulse is “white” , this meahgontains all frequencies with equal am-
plitude. In this case Eq. (5.11) reduces3(@)=H(s), which means that the transfer function
H(s) is the Laplace transform of the impulse respag{te Likewise, the complex frequency
response is the Fourier transform of the impulspaase. All information contained in these
complex functions is also contained in the impuksgponse of the system. The same is true
for the step response, which is often used tootesalibrate seismic equipment.

Explicit expressions for the response of a lingatesn to impulses, steps, ramps and other
simple waveforms can be obtained by evaluatingrtherse Laplace transform over a suitable
contour in the complex s plane, provided that thiepand zeros are known. The result, gen-
erally a sum of decaying complex exponential floreti can then be numerically evaluated
with a computer or even a calculator. Although ikign elegant way of computing the re-
sponse of a linear system to simple input signatls any desired precision, a warning is nec-
essary: the numerical samples so obtained areheatame as the samples that would be ob-
tained with an ideal digitizer. The digitizer mushit the bandwidth before sampling and
therefore does not generate instantaneous samptiesoime sort of time-averages. For com-
puting samples of band-limited signals, differerathematical concepts must be used (see
Schuessler, 1981).

Specifying the impulse or step response of a systeplace of its transfer function is not
practical because the analytic expressions are ergoime to write down and represent sig-
nals of infinite duration that can not be tabulateéull length.
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5.2.5 Theconvolution theorem

Any signal may be understood as consisting of aieece of pulses. This is obvious in the

case of sampled signals, but can be generalizedritnuous signals by representing the sig-
nal as a continuous sequence of Dirac pulses. Wecaastruct the response of a linear sys-
tem to an arbitrary input signal as a sum ovemblytdelayed and scaled impulse responses.
This process is called a convolution:

=["h@) f(t-t)dt=[ h(t-t) f ) dt
g(t) = [ he) f(t-t)dt= [ "ht-t) f () ct 515

Heref(t) is the input signal ang(t) the output signal whil&(t) characterizes the system. We
assume that the signals are causal (i.e. zerogatie time), otherwise the integration would
have to start at- © . Taking f (t) =d(t), i.e. using a single impulse as the input, we get

gt) = J'h(t')é'(t —t")dt'=h(t), so h(t) is in fact the impulse response of thstey.

The response of a linear system to an arbitrarytispgnal can thus be computed either by
convolution of the input signal with the impulsspense in time domain, or by multiplication
of the Laplace-transformed input signal with trensfer function, or by multiplication of the
Fourier-transformed input signal with the compleagluency response in frequency domain.

Since instrument responses are often specifiedfasction of frequency, the FFT algorithm
has become a standard tool to compute output sighbke FFT method assumes, however,
that all signals are periodic, and is thereforehmatatically inaccurate when this is not the
case. Signals must in general be tapered to apoidagis results. Fig. 5.1 illustrates the inter-
relations between signal processing in the timefeagliency domains.

time

 g=h® ) | toman

F Fourier
F- 1 transf.
frequency

‘ é((;)):ﬁ((o) ‘IE((’)) ’ domain

input filter output

Fig.5.1 Pathways of signal processing in the time and ®eaqy domains. The asterisk
betweerf(t) andg(t) indicates a convolution.

In digital processing, these methods translate auiavolving discrete time series or trans-
forming them with the FFT method and multiplyinge ttransforms. For impulse responses
with more than 100 samples, the FFT method is lsuabre efficient. The convolution
method is also known as a FIR (finite impulse rese) filtration. A third method, the recur-
sive or IIR (infinite impulse response) filtratias,only applicable to digital signals; it is often
preferred for its flexibility and efficiency althgh its accuracy requires special attention (see
contribution by Scherbaum (1997) to the Manual wage undehttp://www.seismo.coin
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5.2.6 Specifying a system

When P(s) is a polynomial o and P(a) = Q thens=a is called a zero, or a root, of the
polynomial. A polynomial of orden hasn complex zerosa,, and can be factorized as

P(s) = pEI_l (s—s).Thus, the zeros of a polynomial together withfemor p determine the

polynomial completely. Since our transfer functidd¢s) are the ratio of two polynomials as
in Eq. (5.10), they can be specified by their zgtbe zeros of the numerat@(s ), their
poles (the zeros of the denomindigs ), gnd a gain factor (or equivalently the totalngai a

given frequency). The whole system, as long asrtains in its linear operating range and
does not produce noise, can thus be describedsimall number of discrete parameters.

Transfer functions are usually specified accordongne of the following concepts:
1. The real coefficients of the polynomials in the rasator and denominator are listed.

2. The denominator polynomial is decomposed into ntm®a first-order and second-order
factors with real coefficients (a total decompasitinto first-order factors would require
complex coefficients). The factors can in genemalaltributed to individual modules of
the system. They are preferably given in a fornrmfrehich corner periods and damping
coefficients can be read, as in Egs. (5.31) to3)5.Bhe numerator often reduces to a gain
factor times a power &

3. The poles and zeros of the transfer function atedi together with a gain factor. Poles
and zeros must either be real or symmetric toeaeaxis, as mentioned above. When the
numerator polynomial is", thens = 0 is anm-fold zero of the transfer function, and the
system is a high-pass filter of ordar Depending on the orderof the denominator and
accordingly on the number of poles, the responsg lmedlat at high frequencies € m),
or the system may act as a low-pass filter there ih). The cas& <m can occur only as
an approximation in a limited bandwidth becauseraxtical system can have an unlim-
ited gain at high frequencies.

In the header of the widely-used SEED-format ds¢® (10.4), the gain factor is split up into a
normalization factor bringing the gain to unitysame normalization frequency in the pass-
band of the system, and a gain factor represemtiagactual gain at this frequency. EX 5.5
contains an exercise in determining the responsen fpoles and zeros. A program
POL_ZERO (in BASIC) is also available for this pose (see 5.9).

5.2.7 Thetransfer function of a WW SSN-L P seismograph

The long-period seismographs of the now obsolete ¥8W (Worldwide Standardized Seis-
mograph Network) consisted of a long-period elabtramic seismometer normally tuned to
a free period of 15 sec, and a long-period mir@xgnometer with a free period around 90
sec. (In order to avoid confusion with the frequenariables = jwof the Laplace transforma-
tion, we use the non-standard abbreviation ,sec'séxronds in the present subsection.) The
WWSSN seismograms were recorded on photographierpafating on a drum. We will now
derive several equivalent forms of the transfercfiom for this system. In our example the
damping constants are chosen as 0.6 for the seisteomnd 0.9 for the galvanometer. Our
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treatment is slightly simplified. Actually, the &geriods and damping constants are modified
by coupling the seismometer and the galvanometmther; the above values are understood
as being the modified ones.

As will be shown in section 5.2.9, Eq.(5.31), trensfer function of an electromagnetic seis-
mometer (input: displacement, output: voltage) is

H(s) = ES® /(s? + 2sw;h, + w?) (5.16)

where wg = 277/ Ty is the angular eigenfrequency ahdthe numerical damping. (see EX 5.2

for a practical determination of these parametdiise) factork is the generator constant of the
electromagnetic transducer, for which we assumawse\wof 200 Vsec/m.

The galvanometer is a second-order low-pass alterhas the transfer function

H(s) = o [(S* + 2swgh, +wp) (5.17)

Herey is the responsivity (in meters per volt) of thdvgaometer with the given coupling
network and optical path. We use a value of 393\3, mwhich gives the desired overall mag-
nification. The overall transfer functiddy of the seismograph is obtained in our simplified
treatment as the product of the factors givengs.£5.16) and (5.17):

Cs?
(s2+ 2swghg + wg)(s” + 2swyhy + wy)

The numerical values of the constants@reE ywy” = 383.6/sec, &hs= 0.5027/sec,
@ = 0.1755/s€T 2ay hy=0.1257/sec, andy® = 0.00487/s€c

As the input and output signals are displacemehtsabsolute valugdj(s)| of the transfer
function is simply the frequency-dependent magatfan of the seismograph. The gain factor
C has the physical dimension esoHq (5) is in fact a dimensionless quantiy.itself is
however not the magnification of the seismographobtain the magnification at the angular
frequencyw, we have to evaluatd(aw) = |Hq(j)|:

Cw?

M(a)): 2 2\2 2. 21,2 2 2\2 2. 212
\/(a)s—a)) +4w a)shs\/(a)g—a)) + 4w wy hg

(5.19)

Eq. (5.18) is a factorized form of the transferduon in which we still recognize the sub-
units of the system. We may of course insert thaarical constants and expand the denomi-
nator into a fourth-order polynomial

Hq(s) =3836s°/(s* + 0.6283° +0.2435" + 0.0245 + 0.000855 (5.20)

but the only advantage of this form would be itsraiess.

10
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The poles and zeros of the transfer function arstreasily determined from Eq. (5.18). We
read immediately that a triple zero is presergt=a. Each factois® + 2sayh + & in the de-
nominator has the zeros

Sy = wy(~h+ jv1-h?) forh<1
s, = wy(-h=+/h? 1) forh >1

so the poles dfi4 (S) in the compless plane are (Fig. 5.2):

s, =w,(-h, + j41-h?)  =-0.2513 + 0.3351 [sec ]
s, =w,(-h, - jy1-h?)  =-0.2513-0.3351 [sec’]

S; =wy(-hy + j1-hZ)  =-0.0628 + 0.0374 [sec ']
s, =wy(~hy — jy[1-hZ)  =-0.0628 - 0.03G4 [sec ]
Aims
x
__/triple zero =
Sax | # es
0: 83X€$) ,\ /4 0I5=
—0.5 A s
‘\st

Fig. 5.2 Position of the poles of the WWSSN-LP system indbeaplex s plane

In order to reconstru¢iy(s) from its poles and zeros and the gain facterywite

H.(s) = Cs® (5.21)
| (s—s)(S—$)(s—S3)(S—Sy) |

It is now convenient to pairwise expand the factoirghe denominator into second-order
polynomials:

Cs?®
(52 - S(Sl + Sz) + S152)(52 - S(Ss + 54) + S354) '

Hq(s) = (5.22)

11
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This makes all coefficients real because=s and s, =s;. Since s, +s, = —2w;h,,
$S, =Wh, S3+s, = —2wyhy ands;s, =}, Eq. (5.22) is in fact the same as Eqg. (5.18). We

may of course also reconstrig (s) from the numerical values of the poles and zerospb
ping the physical units, we obtain

3836s°
(s + 05027+ 0.1755(s” + 0.1257s + 0.00487)

Hy(s) = (5.23)

in agreement with Eq.(5.20).

Fig. 5.3 shows the corresponding amplitude respohsige WWSSN seismograph as a func-
tion of frequency. The maximum magnification is #&har a period of 15 sec. The slopes of
the asymptotes are at each frequency determingldebgominant powers &fin the numera-
tor and denominator of the transfer function. Gatgrthe low-frequency asymptote has the
slopem (the number of zeros, here = 3) and the high-ieaqy asymptote has the slomen
(wheren is the number of poles, here = 4). What happet®iween depends on the position
of the poles in the complexplane. Generally, a pair of poles s, corresponds to a second-

order corner of the amplitude response with=s; s, and 2aw,h =-s, —s,. A single pole at
S is associated with a first-order corner widly =s,. The poles and zeros however do not

indicate whether the respective subsystem is aplass, high-pass, or band-pass filter. This
does not matter; the corners bend the amplitudeorse downward in each case. In the
WWSSN-LP system, the low-frequency corner at 90csgpesponding to the pole paif; s,
reduces the slope of the amplitude response frém13 and the corner at 15 sec correspond-
ing to the pole paiss, 4 reduces it further from 1 to -1.

1000

Magnification
o
o

10 : : :
0.001 0.01 0.1 1 10
Frequency (Hz)

Fig. 5.3 Amplitude response of the WWSSN-LP system with gsptes (Bode plot).

Looking at the transfer functiads (Eq. (5.16)) of the electromagnetic seismometena| we
see that the low-frequency asymptote has the Sdprause of the triple zero in the numera-
tor. The pole pais;, s, corresponds to a second-order corner in the amlglitesponse abg
which reduces the slope to 1. The resulting respasmishown in a normalized form in the
upper right panel of Fig. 5.6. As stated in sec&26 under point 3, this case akm can
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5.2 Basic theory |

only be an approximation in a limited bandwidth.nhodern seismograph systems, the upper
limit of the bandwidth is usually set by an anatwgligital cut-off (anti-alias) filter.

As we will see in section 5.2.9, the classificatadma subsystem as a high-pass, band-pass or
low-pass filter may be a matter of definition rattigan hardware; it depends on the type of
ground motion (displacement, velocity, or accelergtto which it relates. We also notice
that interchangingy, hs with ay, hg will change the gain factor C in the numerator=of.
(5.19) fromEych2 to Eywa? and thus the gain, but will leave the denominatat therefore the
shape of the response unchanged. While the trafsfetion is insensitive to arbitrary fac-
torization, the hardware may be quite sensitival eartain engineering rules must be ob-
served when a given transfer function is realizedvardware. For example, it would have
been difficult to realize a WWSSN seismograph witi5 sec galvanometer and a 90 sec
seismometer; the restoring force of a Lacoste-syspension can not be made small enough
without becoming unstable.

Fig. 5.4 illustrates the impulse responses of gdignsometer, the galvanometer, and the whole
WWSSN-LP system. We have chosen a pulse of actieler@r of calibration current) as the
input, so the figure does not refer to the tranfifectionHy of Eq. (5.18) but tdd, = s Hg.

H, has a single zero at= 0 but the same poles Hg. The pulse was slightly broadened for a
better graphical display (thepulse is not plottable). The output signal (djhis convolution

of the input signal to the galvanometer (b) with tinpulse response (c) of the galvanometer.
(b) itself is the convolution of the broadband ingau(a) with the impulse response of the
seismometer. (b) is then nearly the impulse respohshe seismometer, and (d) is nearly the
impulse response of the seismograph.

A
A 30s
(a) acceleration impulse (c) galvanometer imp. resp.
(b) seismometer imp. resp. (d) seismograph imp. resp.

Fig. 54 WWSSN-LP system: Impulse responses of the seisnewmitte galvanometer,
and the seismograph. The input is an impulse oflacation. The length of each trace is 2
minutes.

5.2.8 The mechanical pendulum

The simplest physical model for an inertial seisreten is a mass-and-spring system with
viscous damping (Fig. 5.5).

We assume that the seismic mass is constraine@ve along a straight line without rotation
(i.e., it performs a pure translation). The mecbahelements are a massMfkilograms, a
spring with a stiffnesS (measured in Newtons per meter), and a dampimgeglewith a con-
stant of viscous frictiofR (in Newtons per meter per second). Let the tingeddent ground

13



|5. Seismic Sensors and their Calibration |

motion bex(t), the absolute motion of the mag$), and its motion relative to the ground
Z(t) = y(t) — x(t) . An accelerationy(t) of the mass results from any external forcg ac)-

ing on the mass, and from the forces transmittetheéypring and the damper.

M (1) = f (t) - Sz(t) - R(t). (5.24)

Since we are interested in the relationship betwégandx(t), we rearrange this into

M 2(t) + R2(t) + Sz(t) = f (1) - M X(t). (5.25)

We observe that an accelerati®(t) of the ground has the same effect as an exterrzg faf
magnitude f (t) = —M X(t) acting on the mass in the absence of ground aetiele. We may
thus simulate a ground motiox(t) by applying a force- M X(t) to the mass while the

ground is not moving. The force is normally genedaby sending a current through an elec-
tromagnetic transducer, but it may also be apphedhanically.

< M: y() § > 2(t)

RH %s

Ground: x(t) i

Fig. 5.5 Damped harmonic oscillator.

5.2.9 Transfer functions of pendulums and electr omagnetic seismometers

According to Egs.(5.7) and (5.8), Eq. (5.25) camdweritten as

(s?M +sR+S)Z = F -s’M X (5.26)
or
Z=(FIM -s*X)/(s*+sR/M +S/M). (5.27)

From this we can obtain directly the transfer fiores T; = Z/F for the external forcé andTy
= Z/X for the ground displacemeKt We arrive at the same result, expressed by thedfo

transformed quantities, by simply assuming a tirmg¥tonic motionx(t) = Xel 1277 as well

as a time-harmonic external forddt) = Fel“ /277, for which Eq. (5.25) reduces to

(~w?M + jaR+S)Z = F + w?MX (5.28)
or

14



5.2 Basic theory |

Z=(FIM+w?X)/(~w?+jwRIM +SIM). (5.29)

While in mathematical derivations it is conveni¢émtuse the angular frequency= 2 7 to
characterize a sinusoidal signal of frequefiand some authors omit the word ,,angular in
this context, we reserve the term ,frequency” t® tlumber of cycles per second.

By checking the behavior o‘Z(a)) in the limit of low and high frequencies, we firftat the

mass-and-spring system is a second-order high{gessfor displacements and a second-
order low-pass filter for accelerations and extefoeces (Fig. 5.6). Its corner frequency is

fo=aw/2rwith ap =4/S/IM . This is at the same time the ,eigenfrequency’,ratural fre-
quency*“ with which the mass oscillates when the glagis negligible. At the angular fre-

quencya , the ground motionX is amplified by a factory M/R and phase shifted byf2.
The imaginary term in the denominator is usuallyttem as2ww,h whereh = R/(2ayM )is

the numerical damping, i.e., the ratio of the alctoathe critical damping. Viscous friction
will no longer appear explicitly in our formulagiet symbolR will later be used for electrical
resistance.

In order to convert the motion of the mass inteelattric signal, the mechanical pendulum in
the simplest case is equipped with an electromagmetocity transducer (see 5.3.7) whose

output voltage we denote with . We then have an electromagnetic seismometer, alkalc
a geophone when designed for seismic exploratidrei\the responsivity of the transducer is

E (volts per meter per second: = —Ejai) we get
U =-jaE(F/M +a?X)/(~w? + 2jww,h + af) (5.30)

from which, in the absence of an external force. {i(t) = 0,|5=O), we obtain the fre-
quency-dependent complex response functions

Hy(w):=U/X =-jw’E I(~w? + 2 jww,h + w?) (5.31)
for the displacement,

H,(w)=U /(jwX) = ~w?E [(~w? + 2 jwwh + w?) (5.32)
for the velocity, and

H,(w):=U /[(~w?X) = joE I(-w?® + 2 jww,h + wf) (5.33)

for the acceleration.

With respect to its frequency-dependent respomgeekectromagnetic seismometer is a sec-
ond-order high-pass filter for the velocity, andband-pass filter for the acceleration. Its re-
sponse to displacement has no flat part and noismmame. These responses (or, more pre-
cisely speaking, the corresponding amplitude resg®nare illustrated in Fig. 5.6. IS 5.2
shows response curves for different subsystems ohlog seismographs in
more detail and EX 5.1 illustrates the constructodrthe simplified response curve (Bode
diagram) of a now historical electronic seismograph
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mech. seismometer el. magn. seismometer

nt

displaceme

velocity

acceleration

L response to — normalized frequency
Fig. 5.6 Response curves of a mechanical seismometer (gpeimdulum, left) and electro-
dynamic seismometer (geophone, right) with respeclifferent kinds of input signals (dis-
placement, velocity and acceleration, respectivelyle normalized frequency is the signal
frequency divided by the eigenfrequency (cornegueancy) of the seismometer. All of these
response curves have a second-order corner abthealized frequency 1. In analogy to it,

Fig. 5.26 shows the normalized step responsescohsgeorder high-pass, band-pass and low-
pass filters.
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5.3 Design of seismic sensors

5.3 Design of seismic sensors

Although the mass-and-spring system of Fig. 5.8 isseful mathematical model for a seis-
mometer, it is incomplete as a practical desigre Sinspension must suppress five out of the
six degrees of freedom of the seismic mass (theeeslational and three rotational) but the
mass must still move as freely as possible in émeaining direction. This section discusses
some of the mechanical concepts by which this eaadhieved. In principle it is also possible
to let the mass move in all directions and obsésv/enotion with three orthogonally arranged
transducers, thus creating a three-component sevidoronly one suspended mass. Indeed,
some historical instruments have made use of tmeept. It is, however, difficult to mini-
mize the restoring force and to suppress parasitations of the mass when its translational
motion is unconstrained. Modern three-componersnsemeters therefore have separate me-
chanical sensors for the three axes of motion.

5.3.1 Pendulum-type seismometers

Most seismometers are of the pendulum type, ey tet the mass rotate around an axis
rather than move along a straight line (Fig. 5.Fitp 5.10). The point bearings in our figures
are for illustration only; most seismometers harassed flexural hinges. Pendulums are not
only sensitive to translational but also to angaleceleration. Since the rotational component
in seismic waves is normally small, there is notcmpractical difference between linear-
motion and pendulum-type seismometers. Howevey, ity behave differently in technical
applications or on a shake table where it is nobommon to have noticeable rotations.

a b

Fig. 5.7 (a) Garden-gate suspension; (b) Inverted pendulum.

For small translational ground motions the equatdmmotion of a pendulum is formally
identical to Eq. (5.25) but z must then be intetgmteas the angle of rotation. Since the rota-
tional counterparts of the constants M, R, and &dn(5.25) are of little interest in modern
electronic seismometers, we will not discuss tharthér and refer the reader instead to the
older literature, such as Berlage (1932) or Willen(k979).

The simplest example of a pendulum is a mass sdepewith a string or wire (like Fou-
cault's pendulum). When the mass has small dimessammpared to the length of the
string so that it can be idealized as a point mhes) the arrangement is called a mathemati-
cal pendulum. Its period of oscillation Is = 277,/¢/ g where g is the gravitational accelera-

tion. A mathematical pendulum of 1 m length hag®aqga of nearly 2 seconds; for a period of
20 seconds the length has to be 100 m. Clearly,ishnot a suitable design for a long-period
seismometer.
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5.3.2 Decreasingtherestoring force

At low frequencies and in the absence of an extdorae, Eqg. (5.25) can be simplified to

S = -MXand read as follows: a relative displacement ofsiemic mass by- Az indi-
cates a ground acceleration of magnitude

X=(SIM) Az = w,°Az = (2711 T,)? Az (5.34)

where @, is the angular eigenfrequency of the pendulum,Tandits eigenperiod. IfAz is

the smallest mechanical displacement that can kesuned electronically, then the formula
determines the smallest ground acceleration thatbeaobserved at low frequencies. For a
given transducer, it is inversely proportionallie square of the free period of the suspension.
A sensitive long-period seismometer therefore megueither a pendulum with a low eigen-
frequency or a very sensitive transducer. Sinceifpenfrequency of an ordinary pendulum is
essentially determined by its size, and seismomabterst be reasonably small, astatic suspen-
sions have been invented that combine small oveirl with a long free period.

The simplest astatic suspension is the “garden-getedulum used in horizontal seismome-
ters (Fig. 5.7a). The mass moves in a nearly hot&#@lane around a nearly vertical axis. Its
free period is the same as that of a mass suspdmaiadthe point where the plumb line
through the mass intersects the axis of rotationg.(F5.8a). The eigenperiod

To =2/t 1 gsina is infinite when the axis of rotation is verticar €0), and is usually

adjusted by tilting the whole instrument. This seoof the earliest designs for long-period
horizontal seismometers.

(b)

| |
Fig. 5.8 Equivalence between a tilted “garden-gate” pendudunth a string pendulum. For
a free period of 20 sec, the string pendulum mast@ m long. The tilt angle of a garden-
gate pendulum with the same free period and aheoigBO cm is about 0.2°. The longer the

period is made, the less stable it will be underittiluence of small tilt changes. (b) Period-
lengthening with an auxiliary compressed spring.
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Another early design is the inverted pendulum heldtable equilibrium by springs or by a
stiff hinge (Fig. 5.7b); a famous example is Wiatkehorizontal pendulum built around
1905.

An astatic spring geometry for vertical seismoneetevented by LaCoste (1934) is shown in
Fig. 5.9a. The mass is in neutral equilibrium a@ag therefore an infinite free period when
three conditions are met: the spring is pre-staesseero length (i.e. the spring force is pro-
portional to the total length of the spring), itelgooints are seen under a right angle from the
hinge, and the mass is balanced in the horizowisitipn of the boom. A finite free period is
obtained by making the angle of the spring sliglstiyaller than 90°, or by tilting the frame
accordingly. By simply rotating the pendulum, astatuspensions with a horizontal or
oblique (Fig. 5.9b) axis of sensitivity can be donsted as well.

I

@

a b

Fig. 5.9 LaCoste suspensions.

The astatic leaf-spring suspension (Fig. 5.10a,|aNdt, 1975), in a limited range around its
equilibrium position, is comparable to a LaCostgpamsion but is much simpler to manufac-
ture. A similar spring geometry is also used inttixial seismometer Streckeisen STS2 (see
Fig. 5.10b and DS 5.1). The delicate equilibriunfartes in astatic suspensions makes them
susceptible to external disturbances such as ceangemperature; they are difficult to oper-
ate without a stabilizing feedback system.

= - AN
e \\
S |
L | [T1 S
| |
a v b

Fig. 5.10 Leaf-spring astatic suspensions.

Apart from genuinely astatic designs, almost angnsie suspension can be made astatic with
an auxiliar spring acting normal to the line of matof the mass and pushing the mass away
from its equilibrium (Fig. 5.8b). The long-perio@niormance of such suspensions, however,
Is quite limited. Neither the restoring force oetbriginal suspension nor the destabilizing
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force of the auxiliary spring can be made perfetitigar (i.e. proportional to the displace-
ment). While the linear components of the force roaycel, the nonlinear terms remain and
cause the oscillation to become non-harmonic aed ewstable at large amplitudes. Viscous
and hysteretic behavior of the springs may alssegquoblems. The additional spring (which
has to be soft) may introduce parasitic resonarMedern seismometers do not use this con-
cept and rely either on a genuinely astatic spgagmetry or on the sensitivity of electronic
transducers.

5.3.3 Senditivity of horizontal seismometersto tilt

We have already seen (Eq. (5.25)) that a seisntel@@tion of the ground has the same ef-
fect on the seismic mass as an external forceldrgest such force is gravity. It is normally
cancelled by the suspension, but when the seisneomsetilted, the projection of the vector of
gravity onto the axis of sensitivity changes, prmdg a force that is in most cases undistin-
guishable from a seismic signal (Fig. 5.11). Unakitilt at seismic frequencies may be
caused by moving or variable surface loads suctaes people, and atmospheric pressure.
The resulting disturbances are a second-order tefieaell-adjusted vertical seismometers
but otherwise a first-order effect (see Rodger§81®Rodgers, 1969). This explains why hori-
zontal long-period seismic traces are always notbi@n vertical ones. A short, impulsive tilt
excursion is equivalent to a step-like change ofugd velocity and therefore will cause a
long-period transient in a horizontal broadbandgreeimeter. For periodic signals, the appar-
ent horizontal displacement associated with a gtifeimcreases with the square of the period
(see also 5.8.1).

seismic mass

QO [ O

- | -

Fig. 5.11 The relative motion of the seismic mass is the satmn the ground is accelerated
to the left as when it is tilted to the right.

Fig. 5.12 illustrates the effect of barometricalgluced ground tilt. Let us assume that the
ground is vertically deformed by as littel um over a distance of 3 km, and that this defor-
mation oscillates with a period of 10 minutes. Mmpgie calculation then shows that seis-
mometers A and C see a vertical acceleratioh b¥'° m/s2 while B sees a horizontal accel-
eration of+ 10° m/s. The horizontal noise is thus 100 times largen ttie vertical one. In
absolute terms, even the vertical acceleratioly ig factor of four above the minimum ground
noise in one octave, as specified by the USGS LowdéNModel (see 5.5.1)

20



5.3 Design of seismic sensors

Fig. 5.12 Ground tilt caused by the atmospheric pressurédsmain source of very-long-
period noise on horizontal seismographs.

5.3.4 Direct effects of barometric pressure

Besides tilting the ground, the continuously flattog barometric pressure affects seismome-
ters in at least three different ways: (1) when ghsmometer is not enclosed in a hermetic
housing, the mass will experience a variable buoyavhich can cause large disturbances in
vertical sensors; (2) changes of pressure alsaupsoddiabatic changes of temperature which
affect the suspension (see the next subsectionh. &tects can be greatly reduced by making
the housing airtight or installing the sensor iesah external pressure jacket; however, then
(3) the housing or jacket may be deformed by thessure and these deformations may be
transmitted to the seismic suspension as stretslé. M hile it is always worthwhile to protect
vertical long-period seismometers from changesefldarometric pressure, it has often been
found that horizontal long-period seismometerslass sensitive to barometric noise when
they are not hermetically sealed. This, however oaaise other problems such as corrosion.

5.3.5 Effectsof temperature

The equilibrium between gravity and the spring éong a vertical seismometer is disturbed
when the temperature changes. Although thermalliypsmsated alloys are available for
springs, a self-compensated spring does not makengpensated seismometer. The geometry
of the whole suspension changes with temperatbhees¢ismometer must therefore be com-
pensated as a whole. However, the different tirmstamts involved prevent an efficient com-
pensation at seismic frequencies. Short-term cleaofeemperature, therefore, must be sup-
pressed by the combination of thermal insulatiod #ermal inertia. Special caution is re-
quired with seismometers where electronic companarg enclosed with the mechanical sen-
sor: these instruments heat themselves up whetateduand are then very sensitive to air
drafts, so the insulation must at the same timemags any possible air convection (see
5.5.3). Long-term (seasonal) changes of temperatoneot interfere with the seismic signal
(except when they cause convection in the vault)nbay drive the seismic mass out of its
operating range. Eq. (5.34) can be used to caktitat thermal drift of a vertical seismometer
when the temperature coefficient of the spring éascformally assigned to the gravitational
acceleration.
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5.3.6 The homogeneoustriaxial arrangement

In order to observe ground motion in all directioadriple set of seismometers oriented to-
wards North, East, and upward (Z) has been thalatdrfor a century. However, horizontal

and vertical seismometers differ in their consinrgtand it takes some effort to make their
responses equal. An alternative way of manufagjuairthree-component set is to use three
sensors of identical construction whose sensitkes are inclined against the vertical like the

edges of a cube standing on its corner (Fig. 5d8an angle of arctaf2 , or 54.7 degrees.

- = cube /4
corner

Fig. 5.13 The homogeneous triaxial geometry of the STS2 smseter

At this time of writing, only one commercial seismeter, the Streckeisen STS2, makes use
of this geometry, although it was not the first dnedo so (see Gal perin, 1955; Knothe,
1963; Melton and Kirkpatrick, 1970; Gal’'perin, 197%ince most seismologists want finally
to see the conventional E, N and Z components dgiomothe oblique components U, V, W
of the STS2 are electrically recombined according t

X -2 1 1 \(u
Y | = % 0 /3 -43||V (5.35)
Z °lv2 vz V2 Jlw

The X axis of the STS2 seismometer is normallyrded towards East; the Y axis then points
North. Noise originating in one of the sensors dfiaxial seismometer will appear on all
three outputs (except for Y being independent ofltd)origin can be traced by transforming
the X, Y and Z signals back to U, V and W with theerse (transposed) matrix. Disturbances
affecting only the horizontal outputs are unlikétyoriginate in the seismometer and are, in
general, due to tilt. Disturbances of the verticatput only may be related to temperature,
barometric pressure, or electrical problems affigcall three sensors in the same way as an
unstable power supply.
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5.3.7 Electromagnetic velocity sensing and damping

The simplest transducer both for sensing motionsfanexerting forces is an electromagnetic
(electrodynamic) device where a coil moves in ibklfof a permanent magnet, as in a loud-
speaker (Fig. 5.14). The motion induces a voltagéhe coil; a current flowing in the coil
produces a force. From the conservation of endrfpllows that the responsivity of the coil-
magnet system as a force transducer, in NewtonAmpeere, and its responsivity as a veloc-
ity transducer, in Volts per meter per second,ideatical. The units are in fact the same (re-
member that INm = 1Joule = 1VAS). When such a wgldansducer is loaded with a resis-
tor, thus permitting a current to flow, then acéogdto Lenz's law it generates a force, oppos-
ing the motion. This effect is used to damp themeccal free oscillation of passive seismic
sensors (geophones and electromagnetic seismoineters

Fig. 5.14 Electromagnetic velocity and force transducer.

We have so far treated the damping of passive se@asaf it were a viscous effect in the me-
chanical receiver. Actually, only a small phgt of the damping is due to mechanical causes.
The main contribution normally comes from the alatiagnetic transducer which is suitably
shunted for this purpose. Its contribution is

hy = E? /2Maw,R, (5.36)

whereRy is the total damping resistance (the sum of teesta@nces of the coil and of the ex-

ternal shunt). The total dampimg+hg is preferably chosen d9+/2, a value that defines a
second-order Butterworth filter characteristic, agides a maximally flat response in the
passband (such as the velocity-response of the@lezgnetic seismometer in Fig. 5.6).

5.3.8 Electronic displacement sensing

At very low frequencies, the output signal of elentagnetic transducers becomes too small
to be useful for seismic sensing. One then us@geaglectronic transducers where a carrier
signal, usually in the audio frequency range, islatated by the motion of the seismic mass.
The basic modulating device is an inductive or cdpe half-bridge. Inductive half-bridges
are detuned by a movable magnetic core. They requirelectric connections to the moving
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part and are environmentally robust; however thensitivity appears to be limited by the
granular nature of magnetism. Capacitive half-kegl@~ig. 5.15) are realized as three-plate
capacitors where either the central plate or therqulates move with the seismic mass. Their
sensitivity is limited by the ratio between theatteal noise of the demodulator and the elec-
trical field strength; which is typically a hundréches better than that of the inductive type.
The comprehensive paper by Jones and Richards)d8#8e design of capacitive transduc-
ers still represents state-of-the-art in all esaéatspects.

O osc.in

phase—
sensitive
rectifier

O sig. out

(O ground

Fig. 5.15 Capacitive displacemetrtansducer (Blumlein bridge).

5.4 Force-balance accelerometers and seismometers

5.4.1 Theforce-balanceprinciple

In a conventional passive seismometer, the ineidi@e produced by a seismic ground mo-
tion deflects the mass from its equilibrium positi@nd the displacement or velocity of the
mass is then converted into an electric signals Phinciple of measurement is now used for
short-period seismometers only. Long-period or 8baad seismometers are built according
to the force-balance principle. The inertial forsecompensated (or 'balanced’) with an elec-
trically generated force so that the seismic magses as little as possible; of course some
small motion is still required because otherwise itkertial force could not be observed. The
feedback force is generated with an electromagiietoe transducer or ‘forcer’ (Fig. 5.14).
The electronic circuit (Fig. 5.16) is a servo loap,in an analog chart recorder.

+ o
Force |
transducer @ E R D # C
|
|
|

leration
accelerati transducer accel. out

Seismic Mass M

Fig. 5.16 Feedback circuit of a force-balance accelerom@&BAjJ. The motion of the mass
is controlled by the sum of two forces: the inértaace due to ground acceleration, and the
negative feedback force. The electronic circuituaty the feedback force so that the forces
very nearly cancel each other.
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A servo loop is most effective when it containsigtegrator, in which case the offset of the
mass is exactly nulled in the time average (in atcrecorder, the difference between the in-
put signal and a voltage indicating the pen pasijtis nulled). Due to unavoidable delays in
the feedback loop, force-balance systems have itetinlbandwidth; however, at frequencies
where they are effective, they force the mass teamwith the ground by generating a feed-
back force strictly proportional to ground acceliera When the force is proportional to the
current in the transducer, then the current, tHeage across the feedback resistor R, and the
output voltage are all proportional to ground aecsion. Thus we have converted the accel-
eration into an electric signal without dependimgtioe precision of a mechanical suspension.

The response of a force-balance system is approsiyniaverse to the gain of the feedback

path. It can be easily modified by giving the feaclh path a frequency-dependent gain. For
example, if we make the capacitor C large so théetermines the feedback current, then the
gain of the feedback path increases linearly wiglgiency and we have a system whose re-
sponsivity to acceleration is inverse to frequeaoy thus flat to velocity over a certain pass-

band. We will look more closely at this option gcton 5.4.3.

5.4.2 Force-balance accelerometers

Fig. 5.16 without the capacitdC represents the circuit of a force-balance acceleter
(FBA), a device that is widely used for earthquak®ng-motion recording, for measuring
tilt, and for inertial navigation. By equating tieertial and the electromagnetic force, it is
easily seen that the responsivity (the output gelteer ground acceleration) is

U, /%=MR/E (5.37)

out

whereM is the seismic masR the total resistance of the feedback path, ERtige responsiv-
ity of the forcer (in N /A) The conversion is determined by only three passiveponents of
which the mass is error-free by definition (it defs the inertial reference), the resistor is a
nearly ideal component, and the force transducey peecise because the motion is small.
Some accelerometers do not have a built-in feedbegiktor; the user can insert a resistor of
his own choice and thus select the gain. The respionin terms of current per acceleration

is simply I ., /X=M/E.

FBAs work down to zero frequency but the servo Ib@gomes ineffective at some upper
corner frequency, (usually a few hundred to a few thousand Hz), abefhich the arrange-
ment acts like an ordinary inertial displacementsse. The feedback loop behaves like an
additional stiff spring; the response of the FBAs® corresponds to that of a mechanical
pendulum with the eigenfrequentyy as is schematically represented in the left gaokFig.
5.6.

5.4.3 Velocity broadband seismometers
For broadband seismic recording with high sensytivan output signal proportional to
ground acceleration is unfavorable. At high freques, sensitive accelerometers are easily

saturated by traffic noise or impulsive disturbano&t low frequencies, a system with a re-
sponse flat to acceleration generates a permadage at the output as soon as the suspen-
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sion is not completely balanced. The system wouolthsbe saturated by the offset voltage
resulting from thermal drift or tilt. What we needa band-pass response in terms of accelera-
tion, or equivalently a high-pass response in teofnground velocity, like that of a normal
electromagnetic seismometer (geophone, right panéigy. 5.6) but with a lower corner fre-
quency.

The desired velocity broadband (VBB) response tsiobd from the FBA circuit by adding
paths for differential feedback and integral feedko@rig. 5.17). A large capacit@ is chosen

so that the differential feedback dominates thraughhe desired passband. While the feed-
back current is still proportional to ground accal®n as before, the voltage across the ca-
pacitorC is a time integral of the current, and thus préipoal to ground velocity. This volt-
age serves as the output signal. The output volftagground velocity, i.e. the apparent gen-
erator constarE,,p of the feedback seismometer, is

Eapp =Vou / X=M/EC. (5.38)
Again the response is essentially determined Betpassive components. Although a capaci-

tor with a solid dielectric is not quite as ideat@nponent as a good resistor. the response is
still linear and very stable.

Force |
transducer E Rl |=—C Ri U
G Displacement
round
transducer = Integrator g
with integrator Pos. out

Seismic MassM BB vel. out

|

Fig. 5.17 Feedback circuit of a VBB (velocity-broadband) saisneter. As in Figure 5.16,
the seismic mass is the summing point of the iakfidrce and the negative feedback force.

The output signal of the second integrator is ndisneccessible at the ,,mass position" out-
put. It does not indicate the actual position @& thass but indicates where the mass would go
if the feedback were switched off. "Centering” tinass of a feedback seismometer has the
effect of discharging the integrator so that ith @perating range is available for the seismic
signal. The mass-position output is not normallgduor seismic recording but is useful as a
state-of-health diagnostic, and is used in someredion procedures.

The relative strength of the integral feedbackeases at lower frequencies while that of the
differential feedback decreases. These two compsridthe feedback force are of opposite
phase (772 and 772 relative to the output signal, respectively).céttain low frequency, the
two contributions are of equal strength and cameeh other out. This is the lower corner
frequency of the closed-loop system. Since theeddsop response is inverse to that of the
feedback path, one would expect to see a resonarnte closed-loop response at this fre-
quency. However, the proportional feedback remams damps the resonance; the resistor R
acts as a damping resistor. At lower frequencies,integral feedback dominates over the
differential feedback, and the closed-loop respaiesground velocity decreases with the
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square of the frequency. As a result, the feedisgskem behaves like a conventional elec-
tromagnetic seismometer and can be described byghal three parameters: free period,
damping, and generator constant. In fact, eleatrtnoadband seismometers, even if their
actual electronic circuit is more complicated tipaesented here, follow the simple theoretical
response of electromagnetic seismometers morelglitss those ever did.

As far as the response is concerned, a force-balkinuit as described here may be seen as a
means to convert a moderately stable short- to uneghieriod suspension into a stable elec-
tronic long-period or very-long-period seismomefédre corner period may be increased by a
large factor, for example 24-fold (from 5 to 12@)sa the STS2 seismometer or even 200-
fold (from 0.6 to 120 sec) in a version of the CM@&a8it this factor says little about the per-
formance of the system. Feedback does not rededastrumental noise; a large extension of
the bandwidth is useless when the system is néisgording to Eq. (5.34), short-period sus-
pensions must be combined with extremely sensitasesducers for a satisfactory sensitivity
at long periods.

At some high frequency, the loop gain falls belavityr This is the upper corner frequency of
the feedback system which marks the transition &éetwa response flat to velocity and one
flat to displacement. A well-defined and nearlyablbehavior of the seismometer, as at the
lower corner frequency, should not be expected betle because the feedback becomes inef-
fective and because most suspensions have pan&sitoances slightly above the electrical
corner frequency (otherwise they could have beeaigded for a larger bandwidth). The de-
tailed response at the high-frequency corner, hewewarely matters since the upper corner
frequency is usually outside the passband of tberder. Its effect on the transfer function in
most cases can be modeled as a small, constanyt @efew milliseconds) over the whole
VBB passband.

5.4.4 Other methods of bandwidth extension

The force-balance principle permits the constructid high-performance, broadband seismic
sensors but is not easily applicable to geophope-gensors because fitting a displacement
transducer to these is difficult. Sometimes it ésicAble to broaden the response of an exist-
ing geophone without a mechanical redesign.

The simplest solution is to send the output sigifalhe geophone through a filter that re-
moves its original response (this is called an lisediltration) and replaces it by some other
desired response, preferably that of a geophonle avibbwer eigenfrequency. The analog,
electronic version of this process would only bedughn connection with direct visible re-
cording; for all other purposes, one would implettee filtration digitally as part of the data
processing. Suitable filter algorithms are contdimeseismic software packages, as listed in
5.9.

Alternatively, the bandwidth of a geophone may hlamged by strong damping. This does
not enhance the gain outside the passband but ratthgces it inside the passband; neverthe-
less, after appropriate amplification, the net @ffie an extension of the bandwidth towards
longer periods. Strong damping is obtained by coting the coil to a preamplifier whose
input impedance is negative. The total dampingstasce, which is otherwise limited by the
resistance of the coil (Eqg. (5.36)), can then belenarbitrarily small. The response of the
over-damped geophone is flat to acceleration arotsétee period. It can be made flat to
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velocity by an approximate (band-limited) integoati This technique is used in the Lennartz
Le-1d and Le-3d seismometers (see DS 5.1) whostr@iéc corner period can be up to 40
times larger than the mechanical one. Althoughdla® not strictly force-balance sensors,
they take advantage of the fact that active dampwigch is a form of negative feedback)
greatly reduces the relative motion of the mass.

55 Seasmicnoisg, site selection and installation

Electronic seismographs can be designed for anyedesiagnification of the ground motion.
A practical limit, however, is imposed by the pmese of undesired signals which must not be
magnified so strongly as to obscure the recordhS&ignals are usually referred to as noise
and may be of seismic, instrumental, or environaleatigin. Seismic noise is treated in
Chapter 4. Instrumental self-noise may have mecha@ind electronic sources and will be
discussed in the next section. Here we focus osetlggneral aspects of site selection and of
seismometer installation aimed at the reductiorrofironmental noise. For technical details
on site selection as well as vault, tunnel and lhaleeinstallations see Chapter 7.

55.1 TheUSGS low-noise modd

The USGS low-noise model (see Peterson, 1993 5Fi) is a graphical and numerical rep-
resentation of the lowest vertical seismic noisele observed worldwide, and is extremely
useful as a reference for the quality of a sitefoan instrument. Its origin and properties are
discussed in Chapter 4.

noise amplitude in dB re. 1 m/s%2 rms in 1/6 decade
-140

dB
-160

-180

-200

-220
0.01 0.1 1 Period 10 sec 100 1000 10000

Fig. 5.18 The USGS New Low Noise Model (NLNM), here expresasdRMS amplitude of
ground acceleration in a constant relative bandwaditone-sixth decade.

5.5.2 Site selection

Site selection for a permanent station is alway®mpromise between two conflicting re-
guirements: infrastructure and low seismic noidee hoise level depends on the geological
situation and on the proximity of sources, someloich are usually associated with the infra-
structure. A seismograph installed on solid baseémuek can be expected to be fairly insensi-
tive to local disturbances while one sitting onheck layer of soft sediments will be noisy
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even in the absence of identifiable sources. Asl@ the distance from potential sources of
noise, such as roads and inhabited houses, sheukgrly much larger than the thickness of
the sediment layer. Broadband seismographs carudmessfully operated in major cities
when the geology is favourable; in unfavourabl@atibns, such as in sedimentary basins,
only deep mines (4.3.2 and 7.4.3) and boreholds5)7/may offer acceptable noise levels.

Obviously, most sites have a noise level abovelLthe Noise Model, some of them by a
large factor. This factor, however, is not unifoower time or over the seismic frequency
band. At short periods (< 2 s), a noise level withifactor of 10 of the NLNM may be con-
sidered very good in most areas. Short-period ratiseost sites is predominantly man-made
and somewhat larger in the horizontal componeran th the vertical. At intermediate peri-
ods (2 to 20 s), marine microseisms dominate. Faye similar amplitudes in the horizontal
and vertical directions and have large season@ti@ns. In winter they may be 50 dB above
the NLNM. At longer periods, the vertical groundiseis often within 10 or 20 dB of the
NLNM even at otherwise noisy stations. The horiabhdng-period noise may nevertheless
be horrible at the same station due to tilt-graabypling (see 5.3.3). It may be larger than
vertical noise by a factor of up to 300, the fadtmreasing with period. Therefore, a site can
be considered as favourable when the horizontalenai 100 to 300 sec is within 20 dB (i.e.,
a factor of 10 in amplitude) above the verticalseoiTilt may be caused by traffic, wind, or
local fluctuations of the barometric pressure. keatiff noise is sometimes observed on con-
crete floors when an unventilated cavity existsarndath; the floor then acts like a mem-
brane. Such noise can be identified by its linedangzation and its correlation with the baro-
metric pressure. Even on an apparently solid fotiowlathe long-period noise often corre-
lates with the barometric pressure (see Beauduial.etl996). If the situation can not be
remedied otherwise, the barometric pressure shoellcecorded with the seismic signal and
used for a correction. An example is shown in Ri@1. For very-broadband seismographic
stations, barometric recording is generally recomuhed.

Besides ground noise, environmental conditions rbestonsidered. An aggressive atmos-
phere may cause corrosion, wind and short-ternmatrans of temperature may induce noise,
and seasonal variations of temperature may exteechanufacturer’s specifications for unat-
tended operation. Seismometers must be protectathshighese conditions, sometimes by
hermetic containers as described in the next stibee@s a precaution, cellars and vaults
should be checked for signs of flooding.

5.5.3 Seismometer installation

We will briefly describe the installation of a paiole broadband seismometer inside a build-
ing, vault, or cave. First, we mark the orientatadrthe sensor on the floor. This is best done
with a geodetic gyroscope, but a magnetic compasslovin most cases. The magnetic dec-
lination must be taken into account. Since a compaay be deflected inside a building, the
direction should be taken outside and transfereeth¢ site of installation. A laser pointer
may be useful for this purpose. When the magneddimation is unknown or unpredictable
(such as at high latitudes or in volcanic are&®) drientation should be determined with a sun
compass.

To isolate the seismometer from stray currents,llsgiass or perspex plates should be ce-

mented to the ground under its feet. Then the seiseter is installed, tested, and wrapped
with a thick layer of thermally insulating materidlhe type of material does not matter very
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much; alternate layers of fiborous material and mefi¢cting blankets are probably most ef-
fective. The edges of the blankets should be tépdae floor around the seismometer.

Electronic seismometers produce heat and may indageection in any open space inside
the insulation; it is therefore important that thsulation has no gap and fits the seismometer
tightly. Another method of insulation is to surrautihe seismometer with a large box which is
then filled with fine styrofoam seeds. For a pergrdnnstallation under unfavourable envi-
ronmental conditions, the seismometer should besed in a hermetic container. A problem
with such containers (as with all seismometer hmsi, however, is that they cause tilt noise
when they are deformed by the barometric pres&ssentially three precautions are possi-
ble: (1) either the base-plate is carefully cemerntethe floor, or (2) it is made so massive
that its deformation is negligible, or (3) a “warnpe” design is used, as described by Hol-
comb and Hutt (1992) for the STS1 seismometers &.1). Also, some fresh desiccant
(silicagel) should be placed inside the contaimeen into the vacuum bell of STS1 seis-
mometers. Fig. 5.19 illustrates the shielding & 8TS2 seismometers (see DS 5.1) in the
German Regional Seismic Network (GRSN).

.— heat-reflecting blanket

L— fiber wool
A _|— stainless steel jacket
| heat-reflecting blanket
| fiber wool

| | — STS2 seismometer
L H
ﬁ rubber gasket
N

— gabbro baseplate

-—
®‘\_’/-—— connector
_/\

| lead pads

Fig. 5.19 The STS2 seismometer of the GRSN inside its shields

Installation procedures for broadband seismomete¥proposed in sub-Chapter 7.4 as well
as on the web sites of the GeoForschungsZentrunsd®wot underhttp://www.gfz-
potsdam.de/geofon/index.htrgdlick on How to get a well-performing VBB Statidhand of
the Seismological Lab, University of CaliforniaBrkeley: http://www.seismo.berkeley.edu/
seismo/bdsn/instrumentation/guidelines.html.

5.5.4 Magnetic shielding

Broadband seismometers are to some degree sertsitimagnetic fields since all thermally
compensated spring materials are slightly magné&tics may be noticeable when the seis-
mometers are operated in industrial areas or iwvitheity of dc-powered railway lines. Mag-
netic interferences are definitely suspect whenlong-period noise follows a regular time
table. Shields can be manufactured from permallgyr{etal) but they are expensive and of
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limited efficiency. An active compensation is oftpreferable. It may consist of a three-
component fluxgate magnetometer that senses tlhierfear the seismometer, an electronic
driver circuit in which the signal is integratedthva short time constant (a few milliseconds),
and a three-component set of Helmholtz coils wildtompensate changes of the magnetic
field. The permanent geomagnetic field should rotcbmpensated; the resulting offsets of
the fluxgate outputs can be compensated elecyritafore the integration, or with a small

permanent magnet mounted near the fluxgate.

5.6 Instrumental self-noise

All modern seismographs use semiconductor amgifighich, like other active (power-
dissipating) electronic components, produce coptisuelectronic noise whose origin is
manifold but ultimately related to the quantisatiohthe electric charge. Electromagnetic
transducers, such as those used in geophonegyraldace thermal electronic noise (resistor
noise). The contributions from semiconductor na@gd resistor noise are often comparable,
and together limit the sensitivity of the systermogher source of continuous noise, the
Brownian (thermal) motion of the seismic mass, rbaynoticeable when the mass is very
small (less than a few grams). Presently, howewanufactured seismometers have sufficient
mass to make the Brownian noise negligible agalestronic noise and we will therefore not
discuss it here. Seismographs may also suffer foi@nsient disturbances originating in
slightly defective semiconductors or in the mechahparts of the seismometer when subject
to stresses. The present section is mainly condewith identifying and measuring instru-
mental noise.

5.6.1 Electromagnetic short-period seismographs

Electromagnetic seismometers and geophones arévgasnsors whose self-noise is of
purely thermal origin and does not increase at fimguencies as it does in active (power-
dissipating) devices. Their output signal levebwkver, is comparatively low, so a low-noise
preamplifier must be inserted between the geoplamukethe recorder (Fig. 5.20). Unfortu-

nately the noise of the preamplifier does increaisow frequencies and limits the overall

sensitivity. We will call this combination an eleminagnetic short-period seismograph or ,
EMS for short. It is now rarely used for long-pefior broadband recording because of the
superior performance of feedback instruments.

The sensitivity of an EMS is normally limited by phfier noise(see Fig. 5.20). However, this
noise does not depend on the amplifier alone lsat @h the impedance of the electromagnetic
transducer (which can be chosen within wide limit#) to a certain impedance the amplifier
noise voltage is nearly constant, but then it iases linearly with the impedance, due to a
noise current flowing out of the amplifier inputn@he other hand, the signal voltage in-
creases with the square root of the impedance.b&kesignal-to-noise ratio is therefore ob-
tained with an optimum source impedance definethbycorner between voltage and current
noise, which is different for each type of amplifeand also depends on frequency. Vice versa,
when the transducer is given, the amplifier mussdlected for low noise at the relevant im-
pedance and frequency.
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Fig. 5.20 Two alternative circuits for an EMS preamplifiertivia low-noise op-amp. The
non-inverting circuit is generally preferable whtwe damping resistor|is much larger than
the colil resistance and the inverting circuit wlieis comparable or smaller. However, the
relative performance also depends on the noisafgadions of the op-amp. The gain is ad-
justed with R.

The electronic noise of an EMS can be predictedwthe technical data of the sensor and the
amplifier are known. Semiconductor noise increage®w frequencies; amplifier specifica-
tions must apply to seismic rather than audio feegies. In combination with a given sensor,
the noise can then be expressed as an equivalsntiseoise level and compared to real
seismic signals or to the NLNM (Fig. 5.18). As aamaple, Fig. 5.21 shows the self-noise of
one of the better seismometer-amplifier combinatidhresolves minimum ground noise be-
tween 0.1 and 10 s period. Discussions and monages are found in Riedesel et al. (1990)
and in Rodgers (1992, 1993 and 1994). The resalsdy summarized:

Most well-designed seismometer-amplifier combinadioresolve minimum ground
noise up to 6 or 8 s period, that is, to the mielgmic peak. A few of them may make it
to about 15 s; they marginally resolve the secondaicroseismic peak. To resolve
minimum ground noise up to 30 s is hopeless, asbisous from Fig. 5.21. Ground
noise falls and electronic noise rises so rapidlydmd a period of 20 s that the cross-
over point can not be substantially moved towaadgyér periods. Of course, at a re-
duced level of sensitivity, restoring long-periddnals from short-period sensors may
make sense, and the long-period surface wavesfidiently large earthquakes may
well be recorded with short-period electromagnstismometers.

-220 : : : : :
0.01 sec 0.1 1 10 100 1000 10000

Fig. 5.21 Electronic self-noise of the input stage of a sipertiod seismograph. The EMS is
a Sensonics Mk3 with two 8 kOhm coils in series amgkd to a free period of 1.5 s. The am-
plifier is the LT1012 op-amp. The curves a andferréo the circuits of Fig. 5.20. NLNM is
the USGS New Low Noise Model (Fig. 5.18). The oatiingives rms noise amplitudes in dB
relative to 1 m/Sin 1/6 decade.
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Amplifier noise can be observed by locking the serms tilting it until the mass is firmly at a
stop, or by substituting it with an ohmic resistbat has the same resistance as the coil. If
these manipulations do not significantly reduce nioése, then obviously the seismograph
does not resolve seismic noise. However, this Ig artest, not a way to precisely measure
the electronic self-noise. A locked sensor or astes do not exactly represent the electric
impedance of the unlocked sensor.

5.6.2 Force-balance seismometers

Force-balance sensors can not be tested for instainoise with the mass locked. Their

self-noise can thus only be observed in the pre&sehseismic signals and seismic noise. Al-
though seismic noise is generally a nuisance mdbntext, natural signals may also be useful
as test signals. Marine microseisms should be leisih any sensitive seismograph whose
seismometer has a free period of one second oeiptigey normally form the strongest con-

tinuous signal on a broadband seismograph. Howéwer, amplitude exhibits large seasonal

and geographical variations.

For broadband seismographs at quiet sites, the @tlthe solid Earth are a reliable and pre-
dictable test signal. They have a predominant desfaslightly less than 12 hours and an am-
plitude in the order of I®m/s2. While normally invisible in the raw datagthmay be ex-
tracted by low-pass filtration with a corner freqag of about 1 mHz. For this purpose it is
helpful to have the original data available witlsampling rate of 1 per second or less. By
comparison with the predicted tides, the gain aothriy of the seismograph may be
checked. A seismic broadband station that recoedthis tides is likely to be up to interna-
tional standards.

For a quantitative determination of the instrumentase, two instruments must be operated
side by side (see Holcomb, 1989; Holcomb, 1990) ©an then determine the coherency
between the two records and assume that coheréd isoseismic and incoherent noise is
instrumental. This works well if the reference mstent is known to be a good one, but the
method is not safe. The two instruments may respmiterently to environmental distur-

bances caused by barometric pressure, temperttarsypply voltage, magnetic fields, vibra-
tions, or electromagnetic waves. Nonlinear behav{miermodulation) may produce coher-

ent but spurious long-period signals. When no gebderence instrument is available, the test
should be done with two sensors of a different typehe hope that they will not respond in

the same way to non-seismic disturbances.

The analysis for coherency is somewhat tricky itadleWhen the transfer functions of both
instruments are precisely known, it is in fact tietically possible to measure the seismic
signal and the instrumental noise of each instrurseparately as a function of frequency.
Alternatively, one may assume that the transfections are not so well known but the refer-
ence instrument is noise-free; in this case theemand the relative transfer function of the
other instrument can be determined. As with allistiaal methods, long time series are re-
quired for reliable results. We offer a computesgyzam UNICROSP (see 5.9) for the analy-
Sis.
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5.6.3 Transient disturbances

Most new seismometers produce spontaneous trandigiirbances, i.e., quasi miniature
earthquakes caused by stresses in the mechanimpbeoents. Although they do not necessar-
ily originate in the spring, their waveform at thetput seems to indicate a sudden and per-
manent (step-like) change in the spring force. pagod seismic records are sometimes
severely degraded by such disturbances. The traasiéten die out within months or years;
if they do not, and especially when their frequemayreases, corrosion must be suspected.
Manufacturers try to mitigate the problem with adstress design and by aging the compo-
nents or the finished seismometer (by extendedagéorvibrations, or heating and cooling
cycles). It is sometimes possible to virtually ehate transient disturbances by hitting the
pier around the seismometer with a hammer, a ptoeetthat is recommended in each new
installation.

5.7 Calibration

5.7.1 Electrical and mechanical calibration

The calibration of a seismograph establishes krmydeof the relationship between its input
(the ground motion) and its output (an electrimally and is a prerequisite for a reconstruc-
tion of the ground motion. Since precisely knowouwrd motions are difficult to generate,
one makes use of the equivalence between grouredeaattons and external forces on the
seismic mass (Eq. (5.25)), and calibrates seisnestith an electromagnetic force gener-
ated in a calibration coil. If the factor of proponality between the current in the coil and the
equivalent ground acceleration is known, then théation is a purely electrical measure-
ment. Otherwise, the missing parameter - eithetrdresducer constant of the calibration coil,
or the responsivity of the sensor itself - mustbermined from a mechanical experiment in
which the seismometer is subject to a known mechhmiotion or a tilt. This is called an
absolute calibration. Since it is difficult to geate precise mechanical calibration signals
over a large bandwidth, one does not attempt ndyntaldetermine the complete transfer
function in this way.

The present section is mainly concerned with tleetatal calibration although the same

methods may also be used for the mechanical cabbran a shake table (see 5.8.1). Specific
procedures for the mechanical calibration withowghake table are presented in 5.8.2 and
5.8.3.

5.7.2 General conditions

Calibration experiments are disturbed by seismisenand tilt and should therefore be carried
out in a basement room. However, the large operatinge of modern seismometers permits
a calibration with relatively large signal ampliegj making background noise less of a prob-
lem than one might expect. Thermal drift is moracges because it interferes with the long-
period response of broadband seismometers. Falibaiat@n at long periods, seismometers
must be protected from draft and allowed sufficime to reach thermal equilibrium. Visible
and digital recording in parallel is recommendedc&ders themselves must be absolutely
calibrated before they can serve to calibrate saiseters. The input impedance of recorders
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as well as the source impedance of sensors sheulddasured so that a correction can be
applied for the loss of signal in the source impega

5.7.3 Calibration of geophones

Some simple electrodynamic seismometers (geophta&s)no calibration coil. The calibra-
tion current must then be sent through the sigodl There it produces an ohmic voltage in
addition to the output signal generated by the omotif the mass. The undesired voltage can
be compensated in a bridge circuit (see Willmo859); the bridge is zeroed with the seismic
mass locked or at a stop. When the calibrationectirand the output voltage are digitally re-
corded, it is more convenient to use only a halfide (Fig. 5.22) and to compensate the oh-
mic voltage numerically. The program CALEX (see.B)%as provisions to do this automati-
cally.

| S I

current adj.
signal geophone
generator

current sense

ch.2: output voltage

digital
recorder

vy vy

LT
I ch.1: input current

Fig. 5.22 Half-bridge circuit for calibrating electromagnetieismometers

An alternative method has been proposed by Rodgeas (1995). A known direct current
through the signal coil is interrupted and the hasy transient response of the seismometer
recorded. The generator constant is then deternfirnedthe amplitude of the pulse.

Electrodynamic seismometers whose seismic masssradorg a straight line require no me-
chanical calibration when the size of the massn@wn. The electromagnetic part of the nu-
merical damping is inversely proportional to theak@lamping resistance (Eq.(5.36)); the fac-

tor of proportionality isE* /2Maw,, so the generator constdhtan be calculated from elec-
trical calibrations with different resistive loafsg. 5.23).
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Fig. 5.23 Determining the generator constant from a plot arhding versus total damping
resistance R= R.oi + Roag. The horizontal units are microsiemens (reciprédajohms).
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5.7.4 Calibration with sinewaves

With a sinusoidal input, the output of a linearteys is also sinusoidal, and the ratio of the
two signal amplitudes is the absolute value oftthasfer function. An experiment with sine-
waves therefore permits an immediate check of thester function, without any a-priori
knowledge of its mathematical form and without wiaven modeling. This is often the first
step in the identification of an unknown systenme(&X 5.3 and 5.4). A computer program,
however, would be required for deriving a parancatepresentation of the response from the
measured values. A calibration with arbitrary signas described later, is more straightfor-
ward for this purpose.

When only analog equipment is available, the catibn coil or the shake table should be

driven with a sinusoidal test signal and the ingiidl output signals recorded with a chart re-
corder or an X-Y recorder. On the latter, the sigiwan be plotted as a Lissajous ellipse (Fig.
5.24) from which both the amplitude ratio and tinage can be read with good accuracy (see
Mitronovas and Wielandt, 1975). For the calibratadrhigh-frequency geophones, an oscillo-

scope may be used in place of an X-Y-recorder.slifpeal period should be measured with a

counter or a stop watch because the frequency etai@e-wave generators is often inaccu-

rate.

- p==* 2arctang—;

Fig. 5.24 Measuring the phase between two sine-waves witlssajous ellipse.

The accuracy of the graphic evaluation dependfiemurrity of the sine-wave. A better accu-
racy, of course, can be obtained with a numerinalysis of digitally recorded data. By fit-
ting sine-waves to the signals, amplitudes and gghaan be extracted for just one precisely
known frequency at a time; distortions of the inpignal don't matter. For best results, the
frequency should be fitted as well, the fit shoodédcomputed for an integer number of cycles,
and offsets should be removed from the data. A caengprogram ,,SINFIT" is offered for
this purpose (see 5.9).

Eigenfrequencyf and damping h of electromagnetic and most othesmgeneters can be
determined graphically with a set of standard rasca curves on double-logarithmic paper.
(an empty sheet of such paper is contained in BX 3he measured amplitude ratios are
plotted as a function of frequency f on the sanpe t9f paper and overlain with the standard
curves (Fig. 5.25). The desired quantities candagl directly. The method is simple but not
very precise.
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Fig. 5.25 Normalized resonance curves.

5.7.5 Step response and weight-lift test

The simplest, but only moderately accurate, cailmamethod is to observe the response of
the system to a step input. It can be generatesWwitghing on or off a current through the
calibration coil, or by applying or removing a ctarg mechanical force on the seismic mass,
usually by lifting a weight. Horizontal sensors dige be calibrated with a V-shaped thread
attached to the mass at one end, to a fixed poiheaother end, and to the test weight at half
length. The thread was then burned off for a ssétase.

The step-response experiment can be used both rfelaive and an absolute calibration;
when applicable, it is probably the simplest metfardthe latter. Using a known test weight
w and knowing the seismic makk we also know the test signal: it is a step inebation
whose magnitude is/M times gravity (times a geometry factor when thecdois applied
through a thread). In case of a rotational pendulurrorrection factor must be applied when
the force does not act at the center of gravitye itethod has lost its former importance be-
cause the seismic mass of modern seismometerd sasidy accessible, and the correction
factor for rotational motion is rarely supplied thye manufacturers.

Interestingly, in the case of a simple electroméigreeismometer with linear motion and a
known mass, not even a calibration colil or theritise of a test mass are required for an ab-
solute calibration. A simple experiment where g sterrent is sent through the signal coil of
the undamped sensor can supply all parameterdesest: the generator constditthe free
period, and the mechanical damping. The metho@ssribed in Chapter 4 of the old MSOP
(see Willmore, 1979) and in EX 5.2. An alternatimethod is proposed in section 5.7.3.
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In the context of relative calibration, the steppense method is still useful as a quick and
intuitive test, and has the advantage that it @evaluated by hand. Software like PREPROC
or CALEX covers the step response as well (see bi§) 5.26 shows the characteristic step

responses of second-order high-pass, band-pasdparghss filters withl/ V2 of critical
damping. The amplitude responses of these systems shown in the left column of Fig.
5.6.

Fig. 5.26 Normalized step responses of second-order high-fmssd-pass and low-pass
filters. The respective transfer functions aresame as in Fig. 5.6, left column. Compare also
Fig. 5.4 which shows slightly smoothed impulse ceses.

Each response is a strongly damped oscillationrarois asymptotic value. With the speci-

fied damping, the systems are Butterworth filtensg the amplitude decays ®” or 4.3%
within one half-wave. The ratio of two subsequemphtudes of opposite polarity is known
as the overshoot ratio. It can be evaluated fomtimaerical dampindy: whenx andx., are
two (peak-to-peak) amplitudesperiods apart, with integer or half-integetthen

2
A m (5.39)
h? Inx —Inx,,

The free period, in principle, can also be deteadifrom the impulse or step response of the
damped system but should be measured preferabiyuwtielectrical damping so that more
oscillations can be observed. A system with the freriodT, and dampindh oscillates with

the period T,/+/1-h?> and the overshoot ratiexp(7h/1-h*). The determination of
seismometer parameters from the step responssoiegblained in EX 5.2.

5.7.6 Calibration with arbitrary signals

In most cases, the purpose of calibration is taiolthe parameters of an analytic representa-
tion of the transfer function. Assuming that itsthemnatical form is known, the task is to de-
termine its parameters from an experiment in whioth the input and the output signals are
known. Since only a signal that has been digitedigorded is known with some accuracy,
both the input and the output signal should berdamb with a digital recorder. As compared
to other methods where a predetermined input signased and only the output signal is re-
corded, recording both signals has the additiodabatage of eliminating the transfer func-
tion of the recorder from the analysis.
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Calibration is a classical inverse problem that lsarsolved with standard least-squares meth-
ods. The general solution is schematically depiateleig. 5.27. A computer algorithm (filter
1) is implemented that represents the seismomstarfdter and permits the computation of
its response to an arbitrary input. An inversiohesue (3) is programmed around the filter
algorithm in order to find best-fitting filter pareeters for a given pair of input and output
signals. The purpose of filter 2 is explained beldWwe sensor is then calibrated with a test
signal (4) for which the response of the systerseissitive to the unknown parameters but
which is otherwise arbitrary. When the systemnedir, parameters determined from one test
signal will also predict the response to any otignal.

Computer )
™ A »| Filter
Signal 2
generator Seismom. 5 Filter Filter
test signal (4)
Digitizer ?
Compare and adjust (3)|g_

Fig. 5.27 Block diagram of the CALEX procedure. Storage aattieval of the data are
omitted from the figure.

When the transfer function has been correctly patarized and the inversion has converged,
then the residual error consists mainly of noigét,dand nonlinear distortions. At a signal
level of about one-third of the operating rangejdsl residuals are 0.03% to 0.05% rms for
force- balance seismometers add % for passive electrodynamic sensors.

The approximation of a rational transfer functiomiva discrete filtering algorithm is not triv-
ial. For the program CALEX (see 5.9) we have chasenmpulse-invariant recursive filter
(see Schuessler, 1981). This method formally reguihat the seismometer has a negligible
response at frequencies outside the Nyqvist bartdwgge 5.2.3) of the recorder, a condition
that is severely violated by most digital seismpbsa but this problem can be circumvented
with an additional digital low-pass filtration {@r 2 in Fig. 5.27) that limits the bandwidth of
the simulated system. Signals from a typical catibn experiment are shown in Fig. 5.28. A
sweep as a test signal permits the residual esrbetvisualized as a function of time or fre-
guency; since essentially only one frequency isgmeat a time, the time axis may as well be
interpreted as a frequency axis. An exercise iigh@ALEX program is contained in EX 5.4.

With an appropriate choice of the test signal, othethods like the calibration with sine-
waves step functions, random noise or random tapdgsignals, can be duplicated and com-
pared to each other. An advantage of the CALEXrélyn is that it makes no use of special
properties of the test signal, such as being sidakoperiodic, step-like or random. There-
fore, test signals can be short (a few times the freriod of the seismometer) and can be gen-
erated with the most primitive means, even by hgod may turn the dial of a sinewave gen-
erator by hand, or even produce the test signal avitattery and a potentiometer). A breakout
box or a special cable, however, may be requiredeeding the calibration signal into the
digital recorder.
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Some other routines for seismograph calibrationsistem identification are contained in the
PREPROC software package (see PleSinger et al6).188 overview of identification soft-
ware which has also been made publicly availablethan Internet is given by PleSinger
(1998).
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Fig. 5.28 Electrical calibration of an STS2 seismometer WitALEX. Traces from top to
bottom: input signal ( a sweep with a total dunatod 10 min); observed output signal; mod-
eled output signal; residual. The rms residual® Q%6 of the rms output.

5.7.7 Calibration of triaxial se smometers

In a triaxial seismometer such as the StreckeisSEB29Fig. 5.13), transfer functions in a
strict sense can only be attributed to the indialdu,V,W sensors, not to the X,Y,Z outputs.
Formally, the response of a triaxial seismometarhitrary ground motions is described by a
nearly diagonal 3 x 3 matrix of transfer functiomtating the X,Y,Z output signals to the
X,Y,Z ground motions. (This is also true for contienal three-component sets if they are not
perfectly aligned; only the composition of the mats slightly different.) If the U,V,W sen-
sors are reasonably well matched, the effectivesteat functions of the X,Y,Z channels have
the traditional form and their parameters are weidraverages of those of the U,V,W sen-
sors. The X,Y,Z outputs, therefore, can be caldatats usual. For the simulation of horizontal
and vertical ground accelerations via the calibratioils, each sensor must receive an appro-
priate portion of the calibration current. For trextical component, this is approximately ac-
complished by connecting the three calibrationscail parallel. For the horizontal compo-
nents and also for a more precise excitation ofvéréical, the calibration current or voltage
must be split into three individually adjustabledanvertible U,V,W components. These are
then adjusted so that the test signal appearsabithe desired output of the seismometer.
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It is also possible to calibrate the U, V, and Wsses separately - the Z output may be used
for this purpose - and then to average the U, fralisfer functions or parameters with a ma-
trix whose elements are the squares of those ohtiex in Eq. (5.35):

T, 4 1 1) (T,
T, =% 0 3 3||T, (5.40)
T, 2 2 2)(T,

Egs. (5.35) and (5.40) are only approximate siheg assume the mechanical alignment to be
perfect. Actually the resistor network that deteres the matrix in Eq. (5.35) has been ad-
justed in each instrument so as to compensatelifgt snisalignments of the U, V and W
sensors. The difference between the nominal andd¢h&l matrix, however, can be ignored
in the context of calibration.

5.7.8 Calibration against areference sensor

Using ground noise or other seismic signals, amawnk sensor can be calibrated against a
known one by operating the two sensors side by(§ldelis and Vernon, 1994). As a method
of relative (frequency-response) calibration, thethmod is limited to a frequency band where
suitable seismic signals well above the instrumemdsse level are present and spatially co-
herent between the two instruments. However, wherirequency response of the unknown
sensor can be measured electrically, then its atesghin may be determined quite accurately
with this method. The two responses should bealigiequalized before the amplitudes are
compared.

In a similar way, the orientation of a three-com@uainborehole seismometer may be deter-
mined by comparison with a reference instrumeth@surface.

5.8 Proceduresfor the mechanical calibration

5.8.1 Calibration on a shaketable

Using a shake table is the most direct way of oloigi an absolute calibration. In practice,
however, precision is usually poor outside a freqyeband roughly from 0.5 to 5 Hz. At
higher frequencies, a shake table loaded with adirand seismometer may develop parasitic
resonances, and inertial forces may cause undesio&idns of the table. At low frequencies,
the maximum displacement and thus the signal-teenoatio may be insufficient, and the
motion may be non-uniform due to friction or roughksa in the bearings. Still worse, most
shake tables do not produce a purely translatiormion but also some tilt. This has two un-
desired side-effects: the angular acceleration beagensed by the seismometer, and gravity
may be coupled into the seismic signal (see 5.3i8)can be catastrophic for the horizontal
components at long periods since the error inceea#th the square of the signal period. One
might think that a tilt of 1Qurad per mm of linear motion should not matter; hesveat a
period of 30 s, such a tilt will induce seismicrafs twice as large as those originating from
the linear motion. At a period of 1 s, the effettlte same tilt would be negligible. Long-
period measurements on a shake table, if posdilalé, aequire extreme care.
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Although all calibration methods mentioned in tlieyious section are applicable on a shake
table, the preferred method would be to record ttoghmotion of the table (as measured with
a displacement transducer) and the output signddeo§eismometer, and to analyse these sig-
nals with CALEX or equivalent software (see 5.9gpending on the definition of active and
passive parameters, one might determine only teelade gain (responsivity, generator con-
stant) or any number of additional parameters efithquency response.

5.8.2 Calibration by stepwise motion

The movable tables of machine tools like lathesraiiing machines, and of mechanical bal-
ances, can replace a shake table for the absdlibeation of seismometers. The idea is to
place the seismometer on the table, let it comegtalibrium, then move the table manually
by a known amount and let it rest again. The apgaground” motion can then be calculated
by inverse filtration of the output signal and cargdl with the known mechanical displace-
ment. Since the calculation involves triple integnas, offset and drift must be carefully re-
moved from the seismic trace. The main contributiondrift in the apparent horizontal
,,ground" velocity comes from tilt associated witie motion of the table. With the method
subsequently described, it is possible to sepdhsecontributions of displacement and tilt
from each other so that the displacement can benstwcted with good accuracy. This
method of calibration is most convenient becausesés only normal workshop equipment;
the inherent precision of machine tools and theafiselatively large displacements eliminate
the problem of measuring small mechanical displacgma A FORTRAN program named
DISPCAL is available for the evaluation (see 5.9).

The precision of the method depends on avoidingmam sources of error:

1 - The restitution of ground displacement from skeé&smic signal (a process of inverse filtra-

tion) is uncritical for broadband seismometersrequires a precise knowledge of the transfer
function for short-period seismometers. Instrumemts unstable parameters (such as elec-
tromagnetic seismometers) must be electricallybcated while installed on the test table.

However, once the response is known, the restitudf@bsolute ground motion is no problem

even for a geophone with a free period of 0.1 s.

2 - The effect of tilt can only be removed from tlisplacement signal when the motion is
sudden and short. The tilt is unknown during theiomp and is integrated twice in the calcu-
lation of the displacement. So the longer the watkof motion, the larger the effect the un-
known tilt will be on the displacement signal. Rieally, the motion may last about one sec-
ond on a manually-operated machine tool, and ahayiarter-second on a mechanical bal-
ance. It may be repeated at intervals of a fewrs#xo

Static tilt before and after the motion produce=drr trends in the velocity which are easily
removed. The effect of tilt during the motion, hawg can be removed only approximately
by interpolating the trends before and after theéiono The computational evaluation consists
in the following major steps (Fig. 5.29):

1) the trace is deconvolved with the velocity sfan function of the seismometer;

2) the trace is piecewise detrended so thatdlose to zero in the motion-free intervals;
interpolated trends are removed from the intervahotion;
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3) the trace is integrated,;

4) The displacement steps are measured and codnoatfee actual motion.

In principle, a single step-like displacement isthat is needed. However, the experiment
takes so little time that it is convenient to prodwa dozen or more equal steps, average the
results, and do some error statistics. On a milimahine or lathe, it is recommended to in-
stall some mechanical device that stops the maifter each full turn of the spindle. On a
balance, the table is repeatedly moved from stagidp. The displacement may be measured
with a micrometer dial or determined from the motaf the beam (Fig. 5.30). From the mu-
tual agreement between a number of different expts, and from the comparison with
shake-table calibrations, we estimate the absa@ateiracy of the method to be better than
1%.
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Fig. 5.29 Absolute mechanical calibration of an STS1-BB (Z&¥smometer on the table of
a milling machine, evaluated with DISPCAL. The &llas manually moved in 14 steps of 2
mm each (one full turn of the dial at a time). Baérom top to bottom: recorded BB output
signal; restored and de-trended velocity; restdisglacement.
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Fig. 5.30 Calibrating a vertical seismometer on a mecharbedédnce. When a mass of w
grams at some point X near the end of the beam llance with wgrams on the table or
compensated with a corresponding shift of the mjdiveight, then the motion of the table is
by a factor ww, smaller than the motion at X.

5.8.3 Calibration with tilt

Accelerometers can be statically calibrated orit éafble. Starting from a horizontal position,
the fraction of gravity coupled into the sensitads equals the sine of the tilt angle. (A tilt
table is not required for accelerometers with aarafing range exceeding lg ; these are

simply turned over.). Force-balance seismometermsnally have a mass-position output
which is a slowly responding acceleration outputtiVéome patience, this output can like-
wise be calibrated on a tilt table; the small stétt range of sensitive broadband seismome-
ters, however, may be inconvenient. The transdooastant of the calibration coil is then
obtained by sending a direct current through it eohparing its effect with the tilt calibra-
tion.

Finally, by exciting the coil with a sine-wave wieoacceleration equivalent is now known,

the absolute calibration of the broadband outpubisined. The method is not explained in
more detail here because we propose a simpler cheftiyway, seismometers of the homo-

geneous-triaxial type can not be calibrated in Way because they do not have X,Y,Z mass-
position signals.

The method which we propose (for horizontal compdsmenly; program TILTCAL) is simi-
lar to what was described under 5.8.2, but thi® tme excite the seismometer with a known
step of tilt, and evaluate the recorded outputaifor acceleration rather than displacement.
This is simple: the difference between the drifeseof the de-convolved velocity trace before
and after the step equals the tilt-induced acciderano baseline interpolation is involved. In
order to produce repeatable steps of tilt, it isfuisto prepare a small lever by which the tilt
table or the seismometer can quickly be tilted ket forth by a known amount. The tilt may
exceed the static operating range of the seismantan one has to watch the output signal
and reverse the tilt before the seismometer comasstop.
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59 Freesoftware

Source codes of several computer programs mentiondte text can be downloaded from
the FTP sites given here (last update: August 208dne of these programs are used in IS
5.2 and EX 5.1 through EX 5.5. They are stand-almoggrams for calibrating and testing
seismometers and do not form a package for gersgiahmic processing such as SAC,
SEISMIC UNIX, PITSA, or PREPROC (see below). Whereappropriate, test data, auxil-
iary files, and read.me files with detailed instroigs are included. The Fortran programs do
not produce graphic output but some of them geeetata files in ASCII format from which
the signals can be plotted.

5.9.1 Programshby J. Bribach in Turbo Pascal:
The CALIBRAT package consists of three programs:

e RESPONSE calculates the response function of a ledengignal chain from seis-
mometer/geophone via preamplifier and filter stageanalog or digital recorder. This
response is represented as Amplitude/Phase Pleas/érequency (Bode Diagram) or
as Poles and Zeros.

e CALISEIS calculates missing seismometer paramétgistep response, and it designs
the electronic scheme of the preamplifier stageeltas the calibration inputs to seis-
mometer and preamplifier.

» SEISFILT designs single and complex electroniefiftages.

A short program description can be found in Voluzngsee PD 5.1). The complete software
can be downloaded from ftp.gfz-potsdam.de/pub/hdasébrib/calibrat under the file names
calibrat.zip (containing the programmes and soyraed Calibrat.doc (containing the com-
plete program description).

5.9.2 Programsby E. Wielandt in Fortran:

* CALEX: Determines parameters of the transfer fuorcof a seismometer from the re-
sponse to an arbitrary input signal (both of wiiehst have been digitally recorded).
The transfer function is implemented in the timenden as an impulse-invariant re-
cursive filter. Parameters represent the cornao@erand damping constants of sub-
systems of first and second order.

* DISPCAL: Determines the generator constant of azbatal or vertical seismometer
from an experiment where the seismometer is moteuivgse on the table of a ma-
chine tool or a mechanical balance. Another, moteraated version of the program
is available as DISPCALL.

 TILTCAL: Determines the generator constant of aizwntal seismometer from an
experiment where the seismometer is stepwise tilted
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»  SINFIT: fits sine-waves to a pair of sinusoidalrsts and determines
their frequency and the relative amplitude and phas

*  UNICROSP: Estimates seismic and instrumental negeparately from
the coherency of the output signals of two seisnterse

* NOISECON: converts noise specifications into afickiof standard and non standard
units and compares them to the USGS New Low Noigdein(see Peterson, 1993).
Interactive program available in BASIC, FORTRAN,a@d as a Windows 95 - Ex-
ecutable .

Program descriptions of the above are enclosedoinrie 2 as PD 5.2 through PD 5.7 and
PD 4.1, respectively. (see the table of conteni$le programs can be obtained from
ftp://ftp.geophys.uni-stuttgart.de/pub/ew (141.88149). Two auxiliary programs used in the
exercises — WINPLOT and POL_ZERO - are also availitbm this site.

5.9.3 Free seismic softwar e packages from other sources

e SAC:http://www.lInl.gov/sac/SAC _Info_Install/Availabil.html

e SEISMIC UNIX: http://www.cwp.mines.edu/cwpcodes/index.html

e PITSA:http://www.uni-potsdam.de/u/Geowissenschaft/Sofedlzaupt software.html
« PREPROCHtp://lorfeus.knmi.nl/pub/software/mirror/preproaex.html

If you can not find these websites, try
http://www.seismolinks.com/Software/Seismologichh
http://orfeus.knmi.nl/other.services/software.lirgkgml
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