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Abstract

Microbial decomposition of thawed permafrost carbon in thermokarst lakes leads to the release of
ancient carbon as the greenhouse gas methane (CH,), yet potential mitigating processes are not
understood. Here, we report §'>C—CH, signatures in the pore water of a thermokarst lake sediment
core that points towards in situ occurrence of anaerobic oxidation of methane (AOM). Analysis of the
microbial communities showed a natural enrichment in CH,-oxidizing archaeal communities that
occur in sediment horizons at temperatures near 0 °C. These archaea also showed high rates of AOM
in laboratory incubations. Calculation of the stable isotopes suggests that 41 to 83% of in situ dissolved
CH, is consumed anaerobically. Quantification of functional genes (1mcrA) for anaerobic methano-
trophic communities revealed up to 6.7 &= 0.7 x 10° copy numbers g~ wet weight and showed
similar abundances to bacterial 16S rRNA gene sequences in the sediment layers with the highest
AOM rates. We conclude that these AOM communities are fueled by CH, produced from permafrost
organic matter degradation in the underlying sediments that represent the radially expanding
permafrost thaw front beneath the lake. If these communities are widespread in thermokarst
environments, they could have a major mitigating effect on the global CH,4 emissions.

1. Introduction

Permafrost contains about 1307 Pg carbon (C), with a substantial amount (450 Pg C; >25% of thaw-susceptible
C) found in the Yedoma regions (Walter Anthony et al 2014, Strauss et al 2017). Most of the C s stored in deep
layers of undisturbed permafrost soils and organic-rich thermokarst (thaw) lake sediments (Strauss et al 2013,
Walter Anthony et al 2014). Thermokarst lakes are estimated to cover 1.3 x 10°km?and store 102 Pg carbon
(Olefeldt et al 2016). In the Northern Hemisphere, thermokarst lakes are hotspots of methane (CH,4) emission
(Walter et al 2006) through multiple gas transport modes (Sepulveda-Jauregui et al 2015), and are estimated to
emit4.1 + 2.2 Tg CH, per year (Wik et al 2016). Emissions from thermokarst lakes are expected to increase five-
fold by 2100 (Schneider von Deimling et al 2015, Walter Anthony et al 2018). For better projections of CH,
fluxes from high-arctic thermokarst lakes, we have to understand the molecular processes affecting CH, during
its migration from deeper sediment layers to the atmosphere.

Evidence suggests a portion of CH, produced in thermokarst lakes is oxidized to the less potent greenhouse
gas CO, prior to emission. A previous study of 30 Alaskan thermokarst lakes showed that aerobic CH, oxidation
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takes place in the water column oflakes in the Yedoma region, and is significantly higher in Yedoma lakes than in
non-Yedoma thermokarst lakes (Martinez-Cruz et al 2015). Aerobic methanotrophs have also been identified to
oxidize CH, in near surface sediments (He et al 2012, Martinez-Cruz et al 2017). Even though the process of
aerobic CH, oxidation seems to be wide spread in thermokarst lakes, little is known about the responsible
microorganisms that control the CH, mitigation in the oxygenated lake habitats.

Notably, mitigating processes in the form of anaerobic oxidation of methane (AOM) in the deeper anoxic
thermokarst lake talik (thaw bulb) sediments have not been previously studied. However, recent findings of
AOM-related microorganisms in deep submarine permafrost point towards a potential role in similar habitats
(Winkel et al 2018). Hitherto, there is only one study on AOM in permafrost (Winkel et al 2018) besides
detection of sequences from anaerobic methanotrophic (ANME) (Kao-Kniffin et al 2015, Shcherbakova et al
2016) in permafrost environments. It is important to understand both aerobic and anaerobic oxidation of
methane in this high methane emitting ecosystems to calculate fluxes and completely project C budgets that can
be integrate it into new climate models.

AOM in marine environments is commonly performed by (ANME) archaea of the clades ANME-1a/b,
—2a/b, —2¢,and —3 (Ruff et al 2015). AOM is often coupled to sulfate reduction, hence ANME are found in
consortia with deltaproteobacterial sulfate-reducing bacteria of the genera Desulfococcus, Desulfosarcina, or
Desulfobulbus (Knittel and Boetius 2009). Beyond marine sediments the occurrence and activity of AOM
performed through archaea has mainly been shown in anthropogenic influenced freshwater habitats
(Raghoebarsing et al 2006, Vaksmaa et al 2016), while reports for pristine environments are rare (Schubert et al
2011. Guptaetal 2013, Timmers et al 2015, Weber et al 2017). In pristine, terrestrial environments, ANME of the
GoM Arc1/AOM-associated archaea/ ANME-2d lineage likely perform AOM. Genomes of this cluster
originating from Methanoperedens spp. enrichments showed genes for denitrifying-driven (Haroon et al 2013)
and iron-driven AOM (Ettwig et al 2016). Marker gene sequences of Methanoperedenaceae were also detected in
permafrost environments (Kao-Kniffin et al 2015, Winkel et al 2018), but their activity remains to be proven.

To understand if CH, mitigation by AOM occurs in proximity of the permafrost thaw front at cold, near-
zero temperatures, we sought AOM and the associated organisms by analyzing sediment samples from a depth
profile in a well-characterized thermokarst lake, Vault Lake (Heslop et al 2015, Sepulveda-Jauregui et al 2015,
Martinez-Cruz et al 2017). Sediment pore water CH, concentrations and 13C—CH, ratios were determined along
a~6 m sediment core, which extended through the talik into the underlying thawing permafrost. Further, we
conducted potential AOM rate measurements of sediments using '>C~CH, isotopic tracer experiments and
analyzed the in situ microbial community using 16S rRNA gene sequencing. We quantified anaerobic
methanotrophic communities via quantitative PCR of the functional marker gene methyl-coenzyme M
reductase, subunit alpha (mcrA) with specific primer for the Methanoperedenaceae cluster (Vaksmaa et al 2017).
Additionally, ebullition bubbles emitted from the drilling boreholes and natural ebullition events were collected
at Vault Lake and analyzed for CH, concentrations, isotopes (6 13C—CH, and D), and radiocarbon age
(**C-CH,).

2. Materials and methods

2.1. Sampling and physicochemical analysis

We collected ca. 6 m core from the center of Vault Lake (65.029 N°, 147.699 W°) during Spring 2013; a detailed
description of the sampling procedure can be found in Heslop et al (2015). Studies of potential CH,4 production,
biogeochemistry and soil organic carbon (SOC) quality from the same core were performed by Heslop and
colleagues (2015). Briefly, Vault Lake is a thermokarst lake thought to have formed within the last 400 yrin a
Yedoma-dominated region (Heslop et al 2015). Vault Lake is situated in an ecological area of northern boreal
forest near Fairbanks, Alaska, USA, characterized by discontinuous permafrost. Limnologically, Vault Lake is
considered a small shallow mixotrophic thermokarst lake with an area of 3,200 m?, 3.7 m average depth, slightly
alkaline, and black water (Heslop et al 2015, Sepulveda-Jauregui et al 2015). We collected sediment subsamples
along the length of the core through the full talik profile, covering five major facies described by Heslop et al
(2015): (i) organic-rich mud (0-152 cm), (ii) lacustrine silt (155-330 cm), (iii) taberite (331-508 cm), (iv) most
recently-thawed taberite (509-555 cm), and (v) the transitional (thawing) permafrost (556-590 cm). We
measured CH, concentration and §'>°C—CH, in 38 core sediment subsamples. Several sections (20 samples) were
used to explore potential AOM. Additionally, a few samples (5 samples) from representative horizons were used
to analyze the microbial community via 16S rRNA gene sequencing (table S1 is available online at stacks.iop.
org/ERC/1/021002/mmedia). Representative subsamples for each of the 5 different facies were analyzed for
possible electron acceptors such as nitrate (detection limit ‘dt” 0.3 gM), nitrite (dt 0.03 M), and sulfate (dt 1
1#M) in pore water. Nitrate and nitrite were measured using a colorimetric technique (Clescerl et al 1999) while
sulfate was measured with ion chromatography (ED40, Dionex, USA). We also analyzed sediment samples of a
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CH, seep (Doughnut Lake) and a mud volcano (Obrien Pond) to explore how widespread CH, oxidation
communities may be.

2.2. Concentration and stable isotope signatures of CH, measurements

CH, concentration and §'>C~CH, ratios of pore water were measured from duplicate sediment plugs (n = 76)
using a 5 ml polyethylene syringes with the end cut off, similar to Hoehler et al (2000). The 5 ml subsamples of
sediment were immediately transferred into 20 ml serum vials containing 10 ml of CH, and CO,-free water,
closed with butyl rubber stoppers (Bellco) and aluminum crimp caps, and stored at —8 °C until their gas analysis
to prevent oxygen interference.

In the laboratory, we thawed the subsamples at room temperature (21 °C) then vigorously shook each serum
vial for 60 s to reach equilibration between the slurry and the gas headspace. Total CH, concentration in the
headspace was promptly measured by gas chromatography with a flame ionization detector (FID, Shimadzu
GC-2014). Simultaneously, measurements of §'*C—CH, ratios were determined by Cavity Ring-Down
Spectroscopy (CRDS) using referenced standard of Vienna Pee Dee Belemnite-VPDB (G2201-i, Picarro,
precision £0.55%o0 5§*VPDB for CH,) coupled to a Small Sample Isotope Module (SSIM2, Picarro). SSIM2 was
used to dilute the headspace samples with Zero Air. We determined CH, concentrations in the slurry using
Henry’s law following Sepulveda-Jauregui et al (2012). Henry’s law constants for CH, at 298.15K (1.4 10> mol
L~'Bar~ ') and its temperature dependence coefficient (2400 K) were determined according to Sepulveda-
Jauregui et al (2012) using NIST database (2014). All CH, concentrations are expressed in micromolar
concentrations.

2.3. Gas composition and isotopes from natural ebullition events and borehole bubbling

We directly collected natural ebullition event gas from both pockets of gas trapped in lake ice and from fresh
ebullition events using submerged bubble traps placed near the surface of the water column above ebullition
seeps. In addition to collecting gas from natural ebullition events, we collected four samples of free-phase
ebullition bubbles emitted from the base of three boreholes drilled through the unfrozen sediments overlying
permafrost at three separate locations (from the drilled sediment core, from a borehole directly next to the
sediment core and one borehole from the margin of the lake) in Vault lake. These bubble samples rising from the
base of the thaw bulb at 5.5, 7.0 and 8.8 m sediment depths in the three boreholes were collected using
submerged umbrella-style traps deployed directly below the lake water surface above the boreholes. All bubble
gas was collected into 20-ml or 60-ml glass serum vials. CH, and CO, concentrations were measured as
described previously (Walter Anthony et al 2016). Radiocarbon age of CH, was determined in a subset of the lake
bubble samples by the "*C/'*C isotopic ratio of CH, following methods described previously (Walter Anthony
etal2016).

2.4. Anaerobic oxidation of methane (AOM) stable isotope incubation

We estimated the potential AOM using incubations of core subsamples from 20 depths. Subsamples were
diluted (1:1 v/v) in triplicate with sterile, CH, and CO,-free anaerobic distilled water. Briefly, we transferred 50
ml of the slurry to 100 ml serological bottles under continuous flushing with ultra-high purity (UHP) N, (Air
Liquide, Houston, TX, USA). After 5 minutes of additional flushing, the serological vials were sealed with blue
butyl rubber stoppers (Bellco) and crimped with aluminum caps. We injected L-cysteine in each vial to a
concentration of 0.025% to reduce anoxic media. Each vial was pre-incubated for five days to ensure the absence
of oxygen, which we also confirmed by headspace measurement using a gas chromatograph equipped with a
thermal conductivity detector (Shimadzu GC-2014). After pre-incubations, we added 2 ml of '>CH, (99 atom %
>C, Sigma Aldrich) to the headspace of each incubation vial. We determined potential AOM rates as previously
described by (Beal et al 2009, Blazewicz et al 2012). The concentrations of '?*C—CH, were determined from the
isotopic fractions and the total CH, concentration determined by gas chromatography (described in above
section). For our calculations, AOM was conservatively determined from 13C—CH, oxidation. We calculated
AOM rates from the linear decrease against time (ca. 200 days) in '>C—-CH,.

2.5. DNA extraction, 16S rRNA gene Illumina HiSeq sequencing and analysis

We extracted genomic DNA of 4.7-13 g sediment using procedures described in Zhou et al (1996). Afterwards,
we quantified DNA concentrations with Nanophotometer” P360 (Implen GmbH) and Qubit” 2.0 Flurometer
(Thermo Fisher Scientific).

Amplification of bacterial and archaeal 16S rRNA genes, were performed separately for a better depth
resolution of archaea and have been described previously (Winkel et al 2018). Briefly, we amplified bacteria with
the primer combination S-D-Bact-0341-a-S-17 and S-D-Bact-0785-a-A-21. Archaea were amplified with a
nested PCR using the primer S-D-Arch-0020-a-S-19 and S-D-Arch-0958-a-A-19 for the first PCR with 40 cycles
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and S-D-Arch-0349-a-5-17 and S-D-Arch-0786-a-A-20 for the second PCR with 35 cycles, respectively. All PCR
conditions can be found in Winkel ez al (2018). We pooled 3 individual PCR products per sample to reduce the
bias. We pooled equimolar concentrations of PCR products from each sample for the sequencing run. Archaeal
and bacterial runs included positive controls (Escherichia coli and Methanobacterium lacus) and negative PCR
controls to estimate a sequencing run error.

Sequencing was performed on an Illumina HiSeq 2500 sequencer using the HiSeq Rapid Run 300 bp PE
sequencing mode (GATC Biotech, Germany). The library was prepared with the MiSeq Reagent Kit V3 for
2 x 300 bp paired-end reads. To introduce sequence diversity in this low-complexity library, 20% PhiX control
v3 library was used.

We used a customized QIIME pipeline to analyze the quality and taxonomic classification of the sequences as
described previously (Winkel et al 2018). Briefly, the quality of the sequences was analyzed with the fastqc tool
(http://bioinformatics.babraham.ac.uk/projects/fastqc/ by S Andrews). Raw reads of sequences were de-
multiplexed and barcodes were removed with the CutAdapt tool (Martin 2011). The subsequent steps included
merging of reads using overlapping sequence regions using PEAR (Zhang et al 2014), standardizing the
orientation of the nucleotide sequence, and trimming and filtering sequences with low quality by Trimmomatic
(Bolger etal 2014). All parameters are the same as described previously (Winkel ez al 2018). Subsequently, we
clustered sequences into operational taxonomic units (OTUs) at a nucleotide cutofflevel of 97% similarity and
taxonomically assigned employing the Silva database release 128 (Quast et al 2012) using the
pick_open_reference approach of the QIIME pipeline (Caporaso et al 2010). Singletons, chloroplasts and
mitochondrial sequences were excluded from the OTU table. Older taxonomic assignments for archaea and
bacteria were corrected manually after (Rinke et al 2013, Castelle et al 2015, Adam et al 2017) e.g. Miscellaneous
Crenarchaeal Group (MCG) was renamed to Bathyarchaeota. OTUs with relative abundance lower than 0.1%
for the individual libraries were not analyzed.

2.6. Quantification of bacterial 16S rRNA genes, ANME-2d mcrA and methanogens mcrA

Diluted DNA (1:1000) was used to eliminate inhibition effects in the quantitative PCR. Quantitative PCR has
been described previously (Winkel et al 2018). Briefly, we amplified bacterial 16S rRNA genes, methanogenic
mcrA and specific ANME-2d mcrA by primer combinations found in table S2. The PCR reagents and conditions
are described in (Winkel et al 2018). For standards we used cloned products of know size and concentrations.
Specificity of the PCR products were checked by a melt analysis against products of the standard. The efficiency
of the qPCR varied between 90 and 100% and the R? values of the standard dilutions (5 serial dilutions in
triplicates) was 0.996.

2.7. Calculating of CH, fraction that got oxidized based on '>’C—~CH, changes
We used highest changes in stable isotope signatures of dissolved CH, in the cores to calculate the fraction of
produced CH, that got oxidized ( f,,.;). Therefore we used equation after Liptay et al (1998):

8o — 8,

1000 * (O(wc - Octmns)

fnx,i

where é,and 0, are the & 3C values (in %o) of CH, in different horizons of the taberite layers. ooy and ctyrans are
fractionation factors for AOM and CH, transport, respectively. Percentage of oxidized CH, is than calculated.
(f,, x 100).

We assumed CH, to be transported mainly by diffusion and therefore used a soil fractionation factor of
Qrans = 1.001 after Preuss et al (2013). Different fractionation factors (cv,,) for AOM in freshwater system were
used mainly for sulfate-dependent AOM («,, = 1.031) (Schubert etal 2011), iron-dependent AOM
(aox = 1.030) (Nordi et al 2013), and nitrate-dependent AOM (a,p = 1.032) (Nordi and Thamdrup 2014).

3. Results

3.1. Pore water and bubble methane analysis
Radiocarbon dating of CH,-rich bubbles from the borehole that reflects the transitional permafrost (mean CH,:
79.82 + 24.8%, C0O,:0.81 + 1.1%) revealed a Cage of 21.1 £ 0.08 kyr, in comparison to CH, of bubbles from
natural ebullition events (mean CH,: 73.6 £ 23.1%, CO,: 0.53 + 0.4%) that showed a mixture of old and
young carbon (mean: 9.7 kyr, range 2.2-28.5 kyr table 1).

6> C—CH, and 6D-CH, values of gas bubbles (n = 4) emitted from the base of the drilling boreholes (e.g.
transitional permafrost facie) were highly depleted (—72.7 & 4.4%o and —390.4 %+ 16.0%o, respectively,
table 1). Bubbles collected from natural ebullition events showed slightly enriched §'*C—-CH, values
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Figure 1. Pore water CH, chemistry, AOM rates and archaeal diversity in sediments of the Vault Lake, Alaska, USA. The different
colors in panel A and B show the five defined facies by Heslop et al (2015) with blue being organic-rich mud (0-152 cm), red being
lacustrine silt (153—330 cm), green being taberite (331-507 cm), yellow being most recently-thawed taberite (508—555 cm) and purple
being transitional permafrost (556-590 cm). (A) Methane concentration (white circles) and corresponding 6 13C- CH, values (black
circles) are plotted along the depth. Standard deviations of §'*C- CH, values of methane are based on 6 measurements. (B) AOM rates
for *C—CH, tracer incubations. Rates are mean rates of triplicates run for approximately 200 days. (C) Relative abundances of
archaeal sequences based on 16S rRNA gene from two technical replicates of Illumina HiSeq sequencing. Taxonomic levels are shown
from phylum to genus if possible. Abbreviations are as follow: ANME—ANaerobic MEthanotroph, DHVEG—Deep-Sea
Hydrothermal Vent Euryarchaeotal Group, MBG-D—Marine Benthic Group D, and MCG—M iscellaneous Crenarchaeotal Group.

Table 1. Composition of CO,, CH, and N, in gas bubbles and isotopic signatures of CH,.

Bubbles released from deep

Natural ebullition events boreholes following drilling

mean stdev n mean stdev n

CO, (%) 0.53 0.38 35 0.81 1.12 9
CH, (%) 73.61 23.11 35 79.82 24.79 9
N, (%) 25.40 22.43 23 12.72 8.26 5
§"°C CH, (%o) —67.67 3.42 20 —72.67 4.35 4
6D CH, (%o0) —382.90 12.43 20 —390.41 15.96 4
“C-CH, (fM) 0.30 0.26 9 0.07 1
14C—CH4 (yrs BP) 9,715 2,190-28,500" 9 21,068 80 1

@ The range of '*C-CH, measurements for natural ebullition events was given to account for the
large variability.

(—67.7 £ 3.4%o0) but were still highly depleted in 6D-CH,4 (—382.9 + 12.4%o, table 1). Mean values are plotting
in the mixed zone of microbial methane production (figure S1).

The transitional permafrost, located at the base of the radially expanding talik directly above the thaw
boundary, showed the highest in situ sediment pore water CH, concentrations (mean 134 + 8 uM) with
depleted 6 13C_CH, between —75%o and —73%o (figure 1(a)), similar to borehole methane values. The recently-
thawed taberite showed a slight enrichment in 6> C-CH, (—69 to —50%o) and a decrease in CH, concentration
(figure 1(a)). In striking contrast, the taberite layers, located above the recently-thawed taberite, were
characterized by large §'>C—CH, fractionation (—63 to —40%o) and low CH, concentrations (down to 28 1M,
figure 1(a)). Based on the range of AOM fractionation factors (1.030-1.032, Schubert etal 2011, Nordi et al 2013,
Nordiand Thamdrup 2014) reported for freshwater systems, our calculations (Liptay et al 1998) of large isotopic
changes (becoming more enriched in §'?C—CH,) - expecting CH, to diffuse upwards - suggested that 41% to




10P Publishing Environ. Res. Commun. 1(2019) 021002 W Letters

Relative sequence abundance [%]
100
o &4ii1-15

0 10 20 30 40 50 60 70 80 90
- .
010- : .
012 Actinobacteria/Actinobactoris WCHB1-81/A1425_EubF 1
cm Actinobacteria™MB-A2-108/0319.TL14
ActinobacteriaOPBA1

386- s
387 ® ChioroflexiiAnaerolineas/envOPS12

Chioroflexi/AnaerolineasOPB11
cm I Chiorofieri/Anaeroliness’SHA-20

" ChioroflexiENin€s29
.

Chiorofleri’S085
480- Chioroflexi/Thermomicrobla/AKYG1722
481 ® Firmicutes BacilliBacilialos
cm ™ Bacillil

Firmicutes/Clostridia/Clostridisies

8 Gemmatimonadetes Gemm-1
& Gemmatimonadetes Gemm.3

- “
653-
554 Parcubacteria (OD1)
Parcubsteria (OD1)ZB2
cm Aminicenantes (OPSYOPS_1
.

® ProtecbacteriaBetaproteobacteria

§91- <

593

cm -
.

Figure 2. Relative abundance of bacterial sequences based on 16S rRNA gene in the sediments of the Vault Lake, Alaska, USA. Number
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83% of the in situ CH, fraction in the taberite and upper recently-thawed taberite layers (311 to 532 cm,
figure 1(a)) got oxidized. With a few exception (right above the taberite), CH, concentration in the lacustrine
and organic-rich facie scattered around 43 + 19 uM with § 13C_CH, of —65.5 =+ 1.8%o (figure 1(a)).

3.2. Potential AOM rates and possible electron acceptors

Our *C—CH, tracer incubations showed low AOM rates in the transitional permafrost (~ 0.9 pmol cm>d™h
that doubled in the recently-thawed taberite. Even though potential AOM rates were scattered, we observed the
highest rates for the whole core in the taberite layer (up to 2.88 pmol cm > d~'; mean 1.7 & 0.7 pmolcm > d ™/,
figure 1(b)). Potential AOM rates decreased towards the surface of the core but started to increase again above
100 cm, and showed 2.3 pmol cm > d ™" in the upper most surface sample (figure 1(b)).

Nitrate concentrations in all taberite layers were below the detection limit (<0.3 M), and only measurable
in the lacustrine and organic-rich facies (39.8 + 30.5 uM and 58.2 + 3.7 uM, respectively). Interestingly, the
concentration of nitrite increased just above the transitional permafrost (554.4 cm) showing extremely high
in situ concentration (~660 M) in the transitional permafrost. Sulfate showed extremely high concentration
(upto 35 + 2 mM)in the taberite layers and also showed high concentrations (3 £ 0.2 mM) in the surface facie
(table S4).

3.3. Microbial community structure
Microbial community analyses revealed high archaeal diversity (highest invers Simpson 6.33 to 7.90, table S3) at
the permafrost thaw front (i.e. transitional permafrost and base of recently-thawed taberite) that cluster together
with archaeal community of the surface sediment (figure S2(a)) and included many representative OTUs related
to methanogens (Methanosaeta 12%—68%, Methanosarcina 9%—16%, and Methanoregulaceae 3%—18%). The
transitional permafrost showed the highest occurrence of Planctomycetes sequences of all bacterial communities
(figure 2). Other bacterial sequences fell into dominant taxa of Alphaproteobacteria (Caulobacteraceae,
Rhizobiales, Rhodospirillaceae, Sphingomonadace), Betaproteobacteria (Burkholderiales), Saccharibacteria (TM7),
Firmicutes (Bacillales), Actinobacteria (Actinomycetales, Acidimicrobiales), and Chloroflexi (Ellin6529). The
bacterial communities of the transitional permafrost cluster together with most surface sample (10-20 cm)
(figure S2(b)). In contrast to the archaea, the bacterial communities of all taberite layers cluster together (figure
S2(b)) and show an increase in taxa of Betaproteobacteria (Rhodocyclaceae/Dechloromonas) and different
Firmicutes. For detailed microbial descriptions, please see the supplementary information.

The archaeal communities of the taberite layer cluster together were almost exclusively represented by
ANME-2d sequence of the Methanoperedenaceae (figure 1(c)). Phylogenetic analysis of the
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Figure 3. Phylogenetic affiliation of Methanoperedenaceae-related sequences based on 16S rRNA gene. OTUs from the Vault Lake are
shown in bold black. Reference sequences are colored coded relating to their detected habitat. Methanopyrus kandleri was used as
outgroup. Boot-strap values at inner nodes are given by >90% (black circle), >70% (gray circle), and >50% (white circle). The scale
bar represents 10 percent sequence divergence.

Methanoperedenaceae-related OTUs showed an affiliation with two different freshwater clusters (figure 3)
mainly comprised of sequences from lake, river, permafrost, iron-rich mat habitats and a Methanoperedens sp.
that uses nitrate and iron as electron acceptor (Ettwig et al 2016). Quantification of Methanoperedenaceae
(ANME-24) using specific primers for their functional mcrA, revealed 5.7-6.7 x 10° + 0.7-1 x 10> copy
numbers g~ ' wet weight. While bacterial 16S rRNA gene copy numbers in the taberite layer showed similar
values (table S2), methanogenic mcrA copy numbers were below the detection limit (< 10* copy numbers g~
wet weight, table S5) and methanogenic 16S rRNA sequencing revealed only poor contribution to the overall
archaeal abundance (<0.02%). Additional analysis of a methane seep and a mud volcano from two other lakes
revealed alow abundance (~1%) of Methanoperedenaceae sequences (figure S3).

4, Discussion

Vault Lake is a thermokarst lake in the discontinuous permafrost region near Fairbanks Alaska, USA. Itisa
typical first generation thermokarst lake formed by melting of permafrost ground ice. It has massive ice wedges
(figure 4), and steep eroding bluffs and several CH, seeps that indicate actively deepening. Radiocarbon dating
from borehole ebullition clearly reveals a Pleistocene age (~ 21 kyr) of C-CH, falling into the typical range of
point sources from thermokarst lakes (Walter et al 2007). In contrast, the age of natural ebullition seeps showed a
mixture (2 to 28 kyr) of different ages most likely reflecting the production from different aged C sources and,
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Figure 4. Schematic of permafrost organic matter degradation and AOM in sediments of the thermokarst lake ‘Vault Lake’. The
different colors represent the five facies by Heslop et al 2015 : blue = organic-rich mud (0-152 cm), red = lacustrine silt (153-330
cm), green = taberite (331-507 cm), yellow = most recently-thawed taberite (508—-555 cm) and purple = transitional permafrost
(555-590 cm). Ellipses (brown) show substrates for microbial groups. Rectangles (orange) show microbial processes involved in
organic matter degradation and AOM: Ac. Methanogenesis—acetoclastic methanogenesis, AOM—anaerobic oxidation of methane,
H. Methanogenesis—hydrogenotrophic methanogenesis, Synt. Fermentation—syntrophic fermentation; Superscript numbers
correspond to the following taxa: (1) Saccharibacteria, Actinomycetales, Burkholderiales, and Chloroflexi; (2) Betaproteobacteria
(Rhodocyclales), Firmicutes (Clostridiales), Actinobacteria (MB-A2-108, Gaiellales), Bathyarchaeota; (3) Syntrophobacterales, Clostri-
diales (Ruminococcaceae, Clostridiaceae); (4) Bathyarchaeota (MCG-6); (5) Methanomicrobiales (Methanoregulaceae), Methanocellales
(Methanocellaceae); (6) Methanosarcinales (Methanosarcinaceae, Methanosaetaceae); (7) Methanosarcinales (Methanoperedenaceae) and
are discussed in the text. The dashed line shows the generalized and simplified trend of AOM rates with depth neglecting really low
rates in the taberite. The white circles represent free phase gas bubbles. The light blue/white ellipses in the purple layers represent ice
lenses. The transitional permafrost facie is stretched for projecting of degradation processes.

therefore, ebullition from different sediment depths (figure 4) falling into the range of background and point
sources (Walter et al 2007).

Bubbles from the borehole showed highly depleted §'>C—CH, and D that point towards biological CH,
production (Whiticar 1999). Even though §'>C—CH, values indicate hydrogenotrophic methanogenesis, the
highly depleted 6D values are atypical and might indicate an unusual substrate (e.g. short chain alkanes, Borrel
etal2019), be an effect of higher partial pressure (Bilek et al 2001), or reflect a different methanogenic pathway
(e.g. methylotrophic methanogenesis, Sorokin et al 2017). Pore water CH, from the transitional permafrost,
which reflects ice-bearing sediments with a large quantity of unfrozen water in the inter-pore space, had similar
§'>C—CH, values to the borehole ebullition gas. Since the transitional permafrost also showed the highest CH,
concentration, it indicates that this might be a horizon of high in situ CH, production due to degrading
permafrost providing methanogens with substrates. Another possible explanation might be that previously
produced CH, was entrapped during permafrost formation in the Pleistocene and released through thawing.
However, based on the cold, dry steppe conditions during Yedoma formation at this site (Heslop et al 2015) and
low abundance of methanogens in undisturbed Yedoma sediments (Bischoff et al 2013, Rivkina et al 2016), we
interpret the high concentrations of pore water dissolved CH, to be the result of present-day methanogenesis at
the thaw front. The depleted 6'?C—~CH, showed similar §">*C—CH, values (—70.9 to —73%so) to
hydrogenotrophic methanogenesis of peatlands (Avery et al 1999, Galand et al 2010, McCalley et al 2014),
however, missing 6D values from the pore water analysis prevents further interpretation in comparison to
methane from the borehole bubbles.

Moving from the transitional permafrost towards recently-thawed taberite, the archaeal community had
increasing proportions of methanogens supporting recently found CH, production in the same sediment layers
(Heslop etal 2015). CH, production occurred most likely from precursors such as acetate and formate as well as
H,/CO,. Acetate and formate are known to occur in high concentration in Pleistocene sediments (Strauss et al
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2015, Mitzscherling et al 2017), especially in Yedoma regions (Ewing et al 2016). CO, concentrations measured
at the same depth showed values between 120 to 1000 mM (A. Sepulveda-Jauregui, unpublished data). Some
bacterial taxa (Planctomycetes and Alphaproteobacteria) in the transitional permafrost, which are often found in
peatlands, can be related to aerobic lifestyles and could point to relicts from conditions during the Pleistocene,
while many taxa such as Burkholderiales, Saccharibacteria, Myxococcales, Actinomycetales, and Chloroflexi are
related to species that are known to anaerobically hydrolyze plant polymers as the first step of organic matter
degradation (figure 4). Interestingly, the bacterial communities of the transitional permafrost cluster together
with the sample nearest to the surface (10-20 cm, figure S2(b)) that are influenced by fresh organic matter input
from lake primary production during summer (Martinez-Cruz et al 2015).

The slight increase in §'>C—~CH, values in the pore water CH, in the recently-thawed taberite might be due to
availability of other substrates such as acetate and could also explain the increase in Methanosaeta (figure 1(c)),
which solely uses acetate as substrate (Michat et al 2018). In all taberite layers, we also detected an increase in
bacterial groups that are known fermenters (Betaproteobacteria/Rhodocyclaceae/Dechloromonas, Firmicutes/
Clostridiales) and syntrophs (Ruminococcaceae, Syntrophobacterales, Clostridiaceae) known to degrade
monomers into acetate, hydrogen, carbon dioxide, and formate as precursors for CH, production (figure 4).
Compared to organic decomposition processes in typical active layers (Tveit e al 2012), where fresh material is
broken into polymers and monomers and then hydrolyzed and fermented into methanogenic precursors with
depth, permafrost organic matter in thermokarst lake talik is decomposed by metabolic processes that occur in
the inverse depth order (figure 4). For detailed microbial descriptions, please see the supplementary
information.

The taberite facies also showed the most fractionated §'*C~CH,, with enriched CH, up to 40%o pointing
towards oxidation (Whiticar 1999) and reaching similar values as reported for AOM in other freshwater
sediments (Schubert eral 2011, Nordi et al 2013, Nordi and Thamdrup 2014). Our calculated fraction of CH,
that was oxidized in the taberite facie is consistent with previously reported CH, measurements and isotopic
values from other Alaskan lakes that also assumed CH, oxidation, but were mainly attributed to aerobic
oxidation (Elder et al 2018). Our highest measured potential AOM rates in the taberite suggests this layer is a
hotspot for AOM. The archaeal sequence analysis supports this findings as we almost exclusively found
Methanoperedenaceae known for nitrate-driven (Haroon et al 2013) or iron-driven AOM (Ettwig et al 2016, Cai
etal2018). To rule out any sequencing artifact, we analyzed the quantity of the functional mcrA, which revealed
similar copy numbers to the entire bacterial community and were in the range of river sediments (Vaksmaa et al
2016). Methanogens in this horizon were below the detection limit (< 10* copy numbers), even though long-
term incubations (>115 days) indicated a reactivation of methanogens (Heslop et al 2015). Measurements for
potential electron acceptors revealed no detectable nitrate, in the taberite layers, which might indicate low
concentrations in the pore water that could not support AOM or high turnover of nitrate. Interestingly, high
nitrite concentrations in the interface of transitional and recently-thawed permafrost could point towards
incomplete denitrification of AOM, since Methanoperedenaceae sequences were also found in lower abundances
in these layers (figure 1(c)). We also detected unusually high sulfate concentrations in the taberite, while
potential sulfate-reducing microorganisms were low in abundance (up to 0.7% relative abundance, data not
shown). It is therefore not clear if sulfate is used as electron acceptor coupled to AOM. Other electron acceptors
for AOM in freshwater sediments are metal oxides of iron (Weber et al 2017) and manganese that could support
Fe(1IT)-dependent AOM (Ettwig et al 2016, Cai et al 2018). No pore water iron concentration or reactive iron
solid phases have been measured for the Vault Lake sediment. However, pore water measurements in other
thermokarst lakes showed high Fe(III) concentrations at the thaw boundary (Winkel, unpublished data).
Therefore, iron could be involved in AOM by Methanoperedenaceae, as recently been shown (Ettwig et al 2016,
Caietal 2018), and might play a role in deeper sediments (Egger et al 2015).

Potential AOM rates decreased moving towards the surface of the core but started to increase again at 100 cm
depth (figure 1(b)), pointing towards a second zone of AOM in near-surface sediments (generalized dashed line,
figure 4). AOM activity in surface sediment layers of the Vault Lake was recently ascribed by Martinez-Cruz and
colleagues (Martinez-Cruz et al 2017) to an entirely different microbial community, namely aerobic
methanotrophs consuming CH, under anaerobic conditions. Our data support this hypothesis, since we did not
find any ANME or NC10 phylum microorganisms (Ettwig et al 2010) that would support a typical AOM
community but found low abundances of aerobic methanotrophs (Crenotrichaceae, Methylophilaceae and
Methylocystaceae) similar to Martinez-Cruz and colleagues (Martinez-Cruz et al 2017). However, presently
undiscovered anaerobic methanotrophs could also be responsible for the second AOM peak. The 6'?C—CH,
(mean —65.5 £ 1.8%o) in the lacustrine silt and organic-rich mud facies were similar to the natural ebullition
event bubbles, despite a few layers with low (lacustrine silt) or high concentrations (organic-rich mud).
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5. Conclusions

We found that AOM occurs in thermokarst lake sediments and mitigates diffusive CH, emission from these
lakes. Previous work suggests that CH,, primarily escapes from talik sediments as bubbles through secondary
pore channels (i.e. bubble tubes) (Sepulveda-Jauregui et al 2015). This is largely due to low hydraulic
conductivity of the silt-dominated Yedoma sediments, which inhibits diffusion of dissolved CH, and therefore
traps dissolved CH, in the sediment pore water where it is subject to anaerobic microbial oxidation. As a result,
Methanoperedenaceae anaerobically oxidize CH, at rates similar to other lake sediments (Knittel and

Boetius 2009) effectively filtering for dissolved CH, concentrations despite the near 0 °C temperature
conditions. Recent findings on AOM in degrading submarine permafrost that also showed natural enrichments
in Methanoperedenaceae-related communities (Winkel er al 2018) support the findings of cold-adapted
anaerobic methanotrophic communities. Methanoperedenaceae in thermokarst lakes were mainly found in deep
sediment layers and mud volcanos that represents windows to the subsurface (Ruff et al 2018). AOM in
thermokarst lake sediments may play an important role in mitigating the release of ancient CH, as permafrost
warms and thaws beneath lakes (Walter Anthony et al 2018). Since our analyses were done on one sediment core
and the study lacks certain chemical and physical background data, additional thermokarst lakes need to be
investigated in the future to understand if such a mitigation process along the deep permafrost thaw front is
widespread. In particular, what kind of electron acceptor is used in the process of AOM should be studied to
understand the molecular process in freshwater thermokarst lake environments with many possible electron
acceptors such as metal oxides, nitrate and humic acids.
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