Title	Plotting seismograph response (BODE-diagram)
Author	Jens Bribach, GeoForschungsZentrum Potsdam, Deptment 2: Physics of the Earth, Telegrafenberg, D-14473 Potsdam, Germany; Fax: +49 331 288 1266; E-mail: brib@gfz-potsdam.de
Version	May 2001

1 Aim

The exercise aims at making you familiar with the easy way of construction of a BODEdiagram which displays the transfer function of a given device as a plot of logarithmic amplitude A and of linear phase shift ϕ versus logarithmic frequency f (or period $1 / f$). Its advantage is that response curves are approximated by straight lines (see IS 5.2). The main features are:

- any Pole in the transfer function generates an amplitude decay proportional to frequency f (20 dB per decade or 6 dB per octave) and a phase shift ϕ of -90°;
- any Zero causes a slope of $1: 1$ too and a phase shift of $+90^{\circ}$;
- corner frequencies (e.g., of filters) correspond to the point of intersection of two straight lines.
All stages of a signal-transfer chain can thus be constructed component-wise, one after the other. It is recommended to decompose all functions into parts of $1^{\text {st }}$ or $2^{\text {nd }}$ order. One gets the complete transfer function by multiplying these individual functions. In both the logarithmic amplitude scale and the linear phase scale this means adding the related individual curves.

2 Tasks

Task 1: Plot the BODE-diagrams (amplitude only) of the following seismograph components:

Seismometer

Transducer Constant
Natural Period
Attenuation
HIGH Pass HP1 ($1^{\text {st }}$ order)
Magnification
Corner Frequency
LOW Pass LP1 (1 ${ }^{\text {st }}$ order)
Magnification
Corner Frequency
LOW Pass LP2 (2 ${ }^{\text {nd }}$ order)
Magnification
Corner Frequency
Attenuation

$$
\begin{aligned}
\mathrm{G}_{\mathrm{S}} & =15.915 \mathrm{Vs} / \mathrm{m} \\
\mathrm{~T}_{\mathrm{S}} & =5 \mathrm{~s} \\
\mathrm{D}_{\mathrm{S}} & =0.707 \\
\mathrm{~A}_{\mathrm{H} 1} & =3 \\
\mathrm{f}_{\mathrm{H} 1} & =0.01 \mathrm{~Hz} \\
\mathrm{~A}_{\mathrm{L} 1} & =5 \\
\mathrm{f}_{\mathrm{L} 1} & =0.2 \mathrm{~Hz} \\
& \\
\mathrm{~A}_{\mathrm{L} 2} & =2 \\
\mathrm{f}_{\mathrm{L} 2} & =10 \mathrm{~Hz} \\
\mathrm{D}_{\mathrm{L} 2} & =0.707
\end{aligned}
$$

Task 2: Plot the overall amplitude response of the system approximated by straight lines on double logarithmic paper (see Figure 1).

Figure 1

3 Solution

The solution to this exercise is given in Figure 2 below.

Figure 2 Overall BODE-diagram (solid curve) for the seismograph amplitude response. It results from the logarithmic addition of the BODE-diagrams of all individual components given in Task 1.

