Title	Seismometer calibration by harmonic drive
Author	Jens Bribach (after a manuscript by Christian Teupser 국)
	Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences,
	Department 2: Physics of the Earth, Telegrafenberg, D-14473 Potsdam,
	Germany;Fax: +49 331 288 1266; E-mail: brib@gfz-potsdam.de
Version	October 2008

If the seismometer possesses an auxiliary magnet and coil assembly, the calibration can be carried out with the aid of an electric current. According to Eq. (5.25) in Chapter 5 and related discussion a current i_s acts in the same way as a ground acceleration

$$\frac{d^2 x_e}{dt^2} = \frac{G_{s2} l_0^2}{K_s} i_s .$$
 (1)

where G_{S2} is the electrodynamic constant of the auxiliary coil (given in [*Vs/m*]. For other constants see EX 5.2 *Estimating seismometer parameters by STEP function*. It corresponds to a harmonic drive of frequency *f* with an equivalent ground displacement

$$x_{e} = \frac{G_{s2} l_{0}^{2}}{4\pi^{2} f^{2} K_{s}} i_{s} .$$
⁽²⁾

For a translational seismometer, for example a geophone, with seismic mass m_s , the equivalent seismic displacement is

$$x_{e} = \frac{G_{s_{2}}}{4\pi^{2} f^{2} m_{s}} i_{s} .$$
(3)

Since the output voltage of a geophone with an electromagnetic transducer is

$$E_s = G_{s_1} \frac{dz}{dt} , \qquad (4)$$

where z is the displacement of the seismic mass, G_{S1} is the electrodynamic constant of the signal coil and f_s the natural frequency, one obtains for a harmonic excitation

$$E_{s} = \frac{G_{s1}G_{s2}f}{2\pi m_{s}\sqrt{(f^{2} - f_{s}^{2})^{2} + 4D_{s}^{2}f^{2}f_{s}^{2}}}.$$
(5)

Changing the frequency of the exciting current the output voltage attains a maximum at $f = f_s$. This can be used to determine the natural frequency and the damping using an oscilloscope.