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1 Introduction

In seismology the problem of understanding and rieag the seismic source consists in
relating observed seismic waves (i.e., seismogrageserated by this source to suitably
conceived geometric, kinematic and dynamic parammeita mechanical source model that
represents the physical phenomenon of a brittletdra in the Earth's lithosphere.
Representations of the source are defined by paeasn&hose number depends on the
complexity of the source models (e.g., Aki and Ricls, 1980; Ben-Menahem and Singh,
1981; Das and Kostrov, 1988; Lay and Wallace, 199%ias, 1999). In the direct problem,
theoretical seismic wave displacements are detedrirom source models and in the inverse
problem parameters of source models are derived Glserved wave displacements. In the
following we will consider only source models reldtto earthquakes and explosions (see
Chapter 3), volcanic tremors (see Chapter 13) ao#t bursts. Here we will not discuss
sources of seismic noise (see Chapter 4).

Strong non-linear and non-elastic processes takeeph a seismic source volume. Parts of it
may crack, phase transitions may take place, tinpaeature may increase, and so on. These
kinds of processes are not described by most seisource theories; however,there are
special theories to model such processes, e.g.tithe-dependent pressure within an
explosion cavity, the rupture propagation on athegiake fault, and the material behavior on
a crack tip (crack criteria). We limit ourselves ttte phenomenological description of a
seismic source. The aforementioned complicatedegs®s need not to be considered when
looking only for their integral effect on a surfasarrounding the seismic source, i.e., by
replacing a volume integral by a surface integsak( e.g., Aki and Richards, 1980).

2 Continuum mechanics

The description of the source mechanism is baseath@olution of the equation of motion.
In a deformable solid medium this equation is dsgifrom classical Newtonian mechanics.
The linearized equation of motion (i.e., by neglegidensity changes and other second order
effects) is

PU; (X5, t) =y ; (Xs,1) = £, (%) - 1)

In this equationp is the density of the solid body are the components € 1, 2, 3) of the
displacement field that describe the deformatiothefbody,di is the stress tensdf® is the
body force density acting per unit volumé, is the second time derivativ@?/d t° of the
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displacement and the comma between two subscmipis, in gk indicates the spatial
derivative of the considered quantity. We generake thesummation conventiowhich
requires that one has to sum when a subscript eppeiae, e.g.,

Oikk = aa.+aa+aa..

ax, ok, Poax, ¢
The displacement is a function of the spatial adir@tesx; and the infinitesimal deformation
is defined as

du = ujk dx (2)

Uk = Bk 3

as the distortion tensor. We now consider the loonabf a particle before and after it is
deformed, described by the vectasand x;, respectively. Accordingly, an infinitesimal
vectorda at the poing; is moved (i.e., deformed) to the vectby, as shown in Figure 1.

with
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Figure1l Coordinates and vectors describing the displacefreddt(see text).
Introducingds’, which is the difference between the square ofl¢hgth of the vectordx

andda;, and, thus, a measure of the deformation of thy bice.,ds’ = dx dx — (dx —du) (dx
—du), we get with (2) and (3)

ds’= (B +43 - BaBq) dx dx = 2z dx dx,. (4)

Equation (4) is the definition of thstrain tensorg; It is a symmetric tensor. For small
deformations it can be approximated by its lineamts

&= %(ﬁj ) = %(ui.,- ). 5)

Thus, the strain tensog is the symmetric part off;. Any symmetric tensor can be
transformed into a co-ordinate system such that
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g =64 (6)

whereg; is the dimensionledsronecker symboldefined by

Lo
5= "7 7)
o ifi#

and£” are the eigenvalues of the strain tensor. Therdimate system wherg is of the form
(6) is called system of principle axes. The thngemvalues describe the relative deformation
in direction of the principle axes.

In continuum mechanics one distinguishes betweely bmrces and surface forces. The body
forces are sometimes also termed volume forcesubedhey act on volume elemenig of
the body. In Equation (1) we consider infinitesimasseg dV wheredV is the infinitesimal
volume of the mass element. Accordingly, an infisitnal body force (Aki and Richards,
1980) can be written adF = f° (x,t) dV. Typical examples of body forces are the gravity
field and the centrifugal force.

In contrast, surface forces such as cohesion,litheg friction, or the internal stress during
the deformation of the body, act on surface elemd8tof the volumedV. The stress is a
tensor of second order, i.e., it has two subscripézause it is characterized both by the
orientation of the force and by the orientationtieé surface on which the force acts. A
second-order tensor has generally 9 independenp@oamts which can be written explicitly
as

0,10y, 05
Gij= | 0,105 O3 |

031 032 033

In general,g; depends on position and time. It acts only betwadjacent particles. Because
of the conservation law of angular momentum thisée has to be symmetric, i.e.,

0 = Gji. (8)
The relation between the incremental body forcesitiedf® which acts on an internal surface
elementdSand the stress is
df = gjn; dS (9)
wheren; is the normal vector of the surface elements (sger€ 2).g; n; is called thdraction
of the stress tensor. The pressure and the suréaston in fluids are special examples of
internal surface forces. Figure 3 shows the differeomponents otz which act on the

surfaces of an infinitesimal cube.

In the linear theory of elasticity, the strain atid stress tensor are linearly coupled. A
relatively simple stress-strain relation is thegyaftizedHook's law

G = Gk & (10)
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Figure 2 Schematic depiction of the considered source voldWe a surface elememtS
(with its normal vecton;) on which the forcedf J.S acts.
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Figure3 The nine components of the stress tengpare the components of the stress tensor

parallel tox; on planes having; as their normals.

The body that obeys the relation (10) is said tdiresarly elastic Thecj are calledelastic

constantsbecause they are independent of strain, howeavehe case of an inhomogeneous
medium, they depend on the position in the bodye fauhe symmetry of strain (see Equation
(5)) and stress tensor (see Equation (8)) and ecaluthe energy balance in the body, the

fourth-order tensocj has the following three symmetries:

Cijki = Giikt Giki = Cijik,

and

Ciji = Cuijj - (11)
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These symmetries reduce the independent compoimegiis from 81 to 21. In the case of an
isotropic mediumi.e., when the elastic properties are independénihe orientation in the
body, the elastic constants reduce to just twenth has the form

Gkl =A gj A+ U (A 1 + O ). (12)
The two parametet andy are known as theamé constants

If attenuation has to be included the relativelgeyalBoltzmann law

gij(t) = j-bijkl (t-7)&,(r)dr (13)
can be used. N

It is advantageous to introduce now #aurier transform fa) of a time dependent function

f(t). Here,wis the angular frequencyrf, where f is frequency in units of Hz.. We use the
definitions

f(w) = T f(t)e™dt and f(t) =%TT f(w)e“dw (14)

—00

wherei= +/—1 is the imaginary unit, ant{«) is a complex function, called the complex
spectrum of(t). It can be represented by

t =a(w) +ib(w) = A(e) €4

whereA(a) is the amplitude spectrum am®«) the phase spectrura(c) and b(w) are the
real and the imaginary parts f§tJ), respectively. When applying the Fourier transfation
to Equation (13) the integral is replaced by thedpod of b () and (). The imaginary
part ofbj describes a linear attenuation for a propagatisgladcement field.

With Egs. (5), (10), and (14) the equation of motibnbecomes (Udias, 1999)

P aF Ui (X &) + 0y(Xs, @ = -F(xs, @) (15)

and in a linear elastic but inhomogeneous medium

P F i (%, @) + (Cikj Ukl (X @)y = - F0(%, @). (16)

The second term on the left side is the stressaltigetdisplacemeni. In order to specify;

in a unique way, the initial conditions have toftxed for the displacement and the related
velocity u,as well as the boundary conditions for the disptem® or the traction. The
homogeneous initial condition, that both and u, are zero before the beginning of the

seismic event, is the precondition for the existeatthe related Fourier transfomur{Xs, ).
Boundary conditions can be specified for the disptaentu; or the tractiong; n; on internal
surfaces S (oexternal surfacesuch as the Earth’s free surface) (see Figuneafhely

(&, @) or gj(é& o) ny on the internal surface &f a7
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where S§) may consist of several unconnected surfaces. Qiteek letterés used as co-
ordinates should indicate that the quantitieand g; are lying on the surface & which is
generally curved. These boundary conditions aresjrahsable for modeling seismic sources
and computing the wave propagation through a lalyeredium.

X1

Figure4 lllustrating the definition of boundary condit®ior seismic faults representation.

3 Kinematic source models

The first mathematical formulation of the mechanisirearthquakes used the representation
of the processes at the source by a distributichebody force densitiP(&, t) acting inside
the source volume /. Since these forces must represent the phemomef fracture, they
are called equivalent forces. If it is assumed ti@abther body forces are present (gravity,
etc.), and that on its surface S displacements temctions are zero, we can use the
representation theorem in terms of tAeeen’s functiorto write the elastic displacements in
an infinite medium in the time domain as

0D = [A7] 42(6,.0G, (X LEL DAV (18)

or in the frequency domain by

U (%) = [ £2(&,0) Gy (., &,,0) dV . (19)

The Green’s functionGy; is the solution of the equation of motion (16) $pecial impulsive
single point forces, termddirac or needle impulsesvhich act inside the body. The spectrum
of the Dirac impulse is 1 for all frequencies atidys, does not appear in Equation (20) below.
According to Ben-Menahem and Singh (1981) and Udi®&®99), the following equation
holds for the Green’s function

pr Gin (Xr ’fr ,C!)) + (Cijkl Gkn,l (Xr 15, ’w)),j = _5in 5(Xr - gr) (20)
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whered (X, - &) is the three-dimensional Dirac delta functwhich is the product of three
one-dimensional Dirac delta functions, i.8(x - &) = 0 (X1 - 1) (%2 - &) 0 (X3 - &). Note
that o (X - &) has the dimension of 1/(unit volume). The three-dimensional Dirac
functions define the point in space where the tipe@endicular point forces, as described by
the Kronecker symbol in Equation (7), act.

The Green’s function acts as a "propagator” ofetifiects of forcesf®, from the points where
they are acting& inside \p) to points x outside \§ where the elastic displacement u
produces the seismogram. A simplification, ofteecusg the practice, is made by applying
the point source approximation. It is valid if teeurce dimension is much smaller than the
considered wavelength and the distance of the vasen point from the source. For a point
source aks’ we develop the Green’s function in Equation(19 ifiaylor series at this point:

0000 ) = [| 206 45,0 Gy (6,0,0) + 8, 206 +5,,6) =2 Gy (1,0, +...| V()
Vo X]

= F (X3, W) Gy (X5, X, ) + M ij< (X5, W) Gy ; (X, XS, @) +... (21)

If the source volume is small the Taylor series lbarfinished after the second term with the
first derivative to the source co-ordinatgs. Then (21) defines the fordg and a seismic

moment tensoM,; for which the following relations hold:

FOC,w) = [ 120 +5,,0) dV(s,) (22)

and

M | (X2, @) = j s, (xS +s,,0)dV(s,). (23)

Vo

If f?is a single point force thekl,, as a whole describes a force couple (see Figure 5)

X3
A

X1

Figure5 Schematic presentation of a general force cofugle
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Equation (21) contains the partial spatial deredi of the Green’s function. In a
homogeneous infinite body they can be written as

= (n) ory (n)
k| i A Vp A (24)

where theA].‘Q) are complex coefficients proportional to the amopoles and phases of the P

and S waves (see 2.2). The ternGgf with n = 3 is called thdar-field termbecause it can
still be observed at rather large distancebetween the point source and the point of
observation (seismic recording). In contrast, #rens withn = 0, 1 and 2 are called tmear
field termsbecause they decay with distance more rapidly thanfar-field term, namely
proportional to %, r3, and , respectively.

Elastic displacements are given now by the timevolution of the forces acting at the focus
with the Green’s function for the medium. The siaegdl Green’s function is that

corresponding to an homogeneous infinite mediurtt $fpace). Internal sources must be in
equilibrium, thus satisfying the condition thatithesulting total force and moment are zero.

Therefore, we consider as a seismic source onlysyiemetric part ofM,, as a seismic
moment tensor, i.e.,

M= M + M. (25)
Fig. 3.34 shows all possible 6 couples and thrpelés of the seismic moment tensdy.

If we want to represent the shear motion on a faloét equivalent system of forces is that of
two couples with no resulting moment, called a dewwouple model (DC) (see Figure 8). If
the couples are oriented in the direction of the erpendicular unit vectorg and I;,

respectively, with ; = 0, and if their scalar seismic momenMs(«) = I|m |s;||Fk| where

| s| is the length of the arm of the couple &fd| the amount of the force, the displacement
caused by the double-couple source is given by

uiDC (Xs'w) = (w)(ekl +ejlk)G|k i (Xs’ S ,C()) (26)

Note that in the given case the comma in the sudisanf G represents the partial derivative
with respect to the source co-ordinates.

If an earthquake is produced by a fault in the lEartrust, a mechanical representation of its
source can be given in terms of fractures or datloos in an elastic medium. A displacement
dislocation consists of an internal surf&with two sides 8" and S™) inside of the elastic
medium (see Figure 5) across which there exists@outinuity of displacement; however,
stress is continuous. ThuSjs a model of a seismic fault. Coordinates on shidace aref
and the normal at each pointns From one side to the other of this surface thsra
discontinuity in displacemem;, which is termed the slip or dislocation on theltfa

D, (6, @) = U] (&, ) — U7 (&, ). (27)
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The plus and minus signs refer to the displaceraeetich side of the surfaelf there are
no body forcesK; = 0), and the stresses are continuous thrdggthen, for an infinite
medium, the equation relating the displacemenéadisliocatiorD;, results in

U, (%, @) = [ D, (6, @) o N, (£,) G (%, ,,0) AS(E,) (28)

Equation (27) corresponds to a kinematic modehefdource, that is a model in which elastic
displacementsuy; are derived from slip vectob;. The latter represents a non-elastic
displacement of the two sides of a fault (i.e.tre model surfac®). In a kinematic model
slip is assumed to be known. It is not derived fistness conditions in the focal region as it is
in dynamic models. Equation (28) contains the Geeémction discussed in conjunction
with Equation (24). When seismic waves, generatethb source, are observed in the far-
field, i.e., at distances much larger than the wavelength and the linearcgodimension,
than the Green’s function is proportional to Accordingly, the dominant term of the
integrant in Equation (28) iswD, which is, in the time domain, proportional to thig s
velocity. Thus, the elastic displacement observethe far-field does not depend on the slip
in the source but on the slip velocity and, sinljlaon the seismic moment ratd(t)/ot

:M'ik (see Fig. 2.4). Or, in the frequency domain, thepldicement is proportional f@v

Mu(a). This means that the source radiates elasticggneanly while it is moving; when
motion at the source stops it ceases to radiaeggn

The most common model for the source of an earttejisaa shear fracture, that is, a fracture
in which the slipD; is perpendicular to the normal of the fault. Fdaalt planeS of areaA
and normalhy, the slipDi(&,t) is in the direction of the unit vectgrcontained in the plane.
Accordingly. I and n; are perpendicular and the scalar prodydt = 0. For an infinite,
homogeneous isotropic medium, displacement acagrtbnEquation (28) is given by

U (%) = [ 1|y (&, @) (e ny +1,n) Gy (%, €4, @) AS(E,) (29)

For modeling a shear dislocation source, the paesen the right-hand side of Equation
(29) have to be known. Implicitly these parametedude information about the rupture
propagation, i.e., on the shape of the crack friimtpropagation direction and propagation
velocity (crack velocity), and shape of the fingbtured surfac&

The circular fault and the rectangular fault are tiost important approximations. In the first
case the rupture begins at the center and the drack is described by an outward
propagating circle. However, the direction of thaslatation is not necessarily
radiallysymmetric. This circular model, describeg Brune (1970) and Madariaga (1976),
should be valid for small earthquakes with magresudmaller than about 4 to 5. Another
approximation, for large earthquakes in the Earthisst in particular, is a rectangular fault
model, also called Haskell-model (Haskell, 1964)e Tength of the fault, generally assumed
to be horizontal, is larger than its width (deptly)a factor of 2 to 10 or even more for very
large earthquakes. This is due to the limited théds of the seismogenic zone of the upper
lithosphere, usually ranging between about 10 &k, where brittle fracturing is possible.
On the other hand, large crustal earthquakes mag harupture length of 200 km or even
more, e.g., about 450 km for the Alaska earthqudkie©964 and about 1000 km for the Chile
earthquake of 1960. This rectangular model is as&ful for describing deeper earthquakes in
subduction zones.
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When the Haskell-model is used the behavior ofrtipgure front must be known. The first
approximation is that the rupture starts alongha knd propagates unilaterally or bilaterally
over the rectangular fault plane (see Figure 6js @pproximation is useful for long ruptures
with small width (the line-source approximationj. i¢ also suitable for distinguishing
between an in-plane and an anti-plane fault gegmétrthe case of an in-plane fault the
rupture moves into the direction of the slip whergathe anti-plane case the direction of slip
is parallel to the rupture front (see Figure 6).
a) z

A

In-plane
\

// rupture front
]l l Anti-plane

¥

X
b) c)
unilateral - unidirectional unilateral - bidirectional
d) e)
bilateral - unidirectional bilateral - bidirectional

Figure6 Several models of rupture propagation

For describing the rupture propagation in the azfsa rectangular fault the following four
terms and definitions, shown in Figure 6, are intgoatr

e unilateral rupture propagation — one rupture frpripagates over the entire fault
plane;

» bilateral rupture propagation — two rupture fronigh different directions propagate
over the rupture plane;

* unidirectional rupture propagation — the directarrupture propagation is parallel to
the length of the fault plane; and

« bidirectional rupture propagation — the rupturetstat a point and propagates across
the fault plane.

Other models for describing the shape of the fplabe, the shape of the rupture front, and
the mode of the rupture propagation are possible.

10
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With respect to the velocity of rupture propagatiba most common models assume values
between about 0.6 to 0.9 of the shear-wave velaegifgee 2.2) in the source region; however,
detailed field and laboratory investigations haheven that both slower (so-called “silent
earthquakes”) and supersonic (& mpture propagation velocities are possible (€ltpi et

al., 2001). Rupture velocity depends on the mdt@raperties, the internal friction of the
unbroken material, the frictional conditions alotiye fractured surface and the stress
conditions (ambient and on the crack tip) in theegicase.

For the point source approximation Equation (28gs the simpler form
U (@) = 1 AIDi (@)] (k ny + 1 ni) Gikj() (30)

or, in the time domain,
u (1) = £ A0, )] D (D) G, (t-1)dr . (31)

Displacements are given by temporal convolutioslgf with the derivatives of the Green’s
function. The geometry of the source is now defibgdhe orientation of the two unit vectors
n, andl;. These two vectors, which refer to the geophystmabrdinate system of axes
(North, East, Nadir), define the orientation of #wirce, namely; the orientation of the fault
plane and; the direction of slip. These two vectors can biten in terms of the three angles
that define the motion on a fault, namely, azimgtidip & and rake\. The shear fracture
itself is equivalent to a DC source in terms ot&s (see Figure 7).

dextral sinistral
(right lateral) (left lateral)
X, X, X, X,
A
== el e
—— 1 T
dislocations direction of direction of
double couple vector dipoles

Figure7 Depiction of the equivalence of a shear dislocatuth the force double couple and
the vector dipole models.

In the case thal; andn; are not perpendicular, Equation (29) has to biacep by

uk (Xs'w) = I[A 5jknl II +:u(|knj +|jnk)Gik,j (Xs’fs'w)] | Dn(fs’w)| dS(qu) ' (32)

The special case whelp and n; are parallel is often used to model tensional amic
earthquakes (Figure 8).

11
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_teetlteet
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tension crack

Figure 8 lllustration of a tension crack which is often usednodeling volcanic earthquakes.

Another more general representation of seismiccsgoigrgiven by the seismic moment tensor
densitym;. The moment tensor density represents that pahteoihternal strain drop which is

dissipated in non-elastic deformations at the smuBo far we have modeled the seismic
source by means of the forces in the equation dfomdsee Equation (1)) or by boundary
conditions for the displacement (see Egs. (17)(@8d). Now we take another approach and

divide the true strain tensa{™** into an elastic and inelastic part, i.e.,
gfrue — gnek _ g'i‘nel (33)

With this we define the true stress

Uiﬁme =0 ~ mY (34)
whereg is the elastic stress related to the strain by &ou&l0) or (13) andnjy is given by
my = Cy Eq - (35)

Equation (35) defines the seismic moment tensosidem}’ . The superscrip¥ indicates that

it is a volumetric density. Rice (1980) and Madgaig1983) denotesiij"e' as the stress-free
strain or transformation strain, arntjj“ as the stress glut. The seismic moment tekkois,

thus, defined by

Mi(@) = [my (% @) dV(x,).

(36)

The quantitiesm\j’ and M; play a fundamental role in the theory of seismiarses. The

relations between the different kinds of stress slvewn in Figure 9. Whew; in (15) is

substituted byo*® an additional force term appears on the right.didean be interpreted as

an equivalent force densitf;*® or as an equivalent forde*

f* (X 0) = - m\j/,j (%,w) and F%=- J- m\j/,j (X, @) AV (X% ) - (37)
v

o

12
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Figure 9 Relationship between the elastic stregsrelated to the straig, the true stress
;"™ and the seismic moment density tensgy.

In replacing the body force in Equation (19) by #wpiivalent force density in Equation (37)
an additional volume integrai—J-V G; m\j/k,k dV appear. After an integration by parts and

assuming thatn‘j/k vanishes on S, i.e., the inelastic volume is badl®dyS, the displacement
V .
produced bym; is

U (%, @) = [Gy ; (%, &, @) My (&,,0) dV(&,). (38)

When comparing Egs. (38) and (28) one realizesttimintegrants have the same form but
the integration in (38) is over a volume while & over a surface in Equation (28).

Accordingly, the stress glu'q‘j’ is equivalent to a dislocation when the inelastitumne can be

approximated by an inelastic internal surface. Neyrthis stress glut bmjS from Equation
(28) we see that

mli =C Din, (39)
for the general linear elastic case and for thaisbeack in an isotropic medium holds

nmy = u(D;n, +D;n). (40)

For the spatially averaged dislocati(ﬁT](a)), the seismic moment tensors; i these two
cases become

M, (@) =Cyy D ()N A and M (&)= u[D,(@)n; + D (@)n]A, (41)

respectively. In the latter case, whBn andn; are perpendicular, the scalar seismic moment
IS

Mo(@) = 4| D; () A. (42)

13
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In the general case of an arbitrary moment terisordcalar seismic moment is defined by

My =My My . (43)

4 Dynamic Source Models

Dynamic source models, or crack models, use a gu&ss on an internal surface (fault) to
describe a seismic source. In this case Equati®niglnot valid. In general, two terms must
be added to the right side of Equation (19). Thesms include boundary conditions for the
displacement and the stress. Note that only orleesfe conditions can be freely chosen while
the other one has to be calculated. The computafitice Green’s function requires boundary
conditions as well, either for the Green’s functitself or for the stress produced by it. These
boundary conditions do not influence the resulttid computation of the displacement
ui(Xs,a). Therefore, we can freely select any suitablenidany conditions. When selecting a
Green’s function which produces a vanishing st@sghe internal surfac8 this Green’s

function is caIIedGij“eebecause the related internal surface behaves likeeasurface. The

advantage is, that this kind of source represamtatioes not require a knowledge of the
displacement produced by the given stress on teenia surface. When no body force acts it
holds that

U, (%) = [ G**(x,,&.0)N, 0, (&, @) IS(E,). (44)

Equation (44) simplifies the computation of theptiksement or the dislocation on the fault
when the stress on the fault is given. When usitigerokinds of representations an
inhomogeneous integral equation (&, «) on the fault has to be solved.

In the dynamic models the static stress diap plays an important role. It is defined as the
difference between the stress distributigfi on the fault plane before the occurrence of the

earthquake and the stras$ after the earthquake. This static stress drop is
Ao ($,) = Ji? (&) - Ui} (&) (45)

with aijl(fs) = im0 Gj(&st) = lim 4.0 iw gj(&w). A more general time dependent stress on
the fault is shown in Figure 10 (Yamashita, 1976).

A case of practical importance is that of a circushear fault. It is probably a good
approximation for small earthquakes in the Earthist with magnitudes smaller than 4 as
long as only frequencies < 5-10 Hz are considdfeal homogeneous shear stress ddap,

in the x-X, plane is assumed, the static dislocation on thi &

_ 8 A+2u
MUIT3A +4u

AO—lZ(Rg _rz)]/ ? (46)

1

14
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where Ry is the final radius of the broken fault and r tiaglial co-ordinate. If r > Rthe
dislocation in Equation (46) is zero. By insertiBguation (46) in (41) we get for the static
seismic moment

_16 A+2u

Ao, R 47
e 47)

and forA = pthe well known result derived by Keilis-Borok (95s given by

16
M, :7A012 Rg (48)

Similar relations hold for rectangular shear craokihe lengthL. and a width\:
M, =CL*WAJg,, (49)

whereC is a model-dependent constant in the orddrafidAoi, is uniform over the fault. In
the case of a buried in-plane shear crack holds

c=nA*2H (50)
8 A+u
and for a buried anti-plane case
c=2. (51)

4
When the fault is perpendicular to the Earth’s atefand outcropping th&hin the Eqgs. (50)
and (51) is twice as large.

A

stress o (1)

>
fime (1)

Figure 10 Time dependence of stress at a point on the $adlace during an earthquake.
o®ando’ —stress before and after the earthquake; fracture strengthy - mean stress,
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o9 — friction stress gy — effective stress = dynamical stress déspandAo - static stress
drop.

The dynamic relation between the shear stress dmpnd the dislocation can be calculated
numerically. An example is shown in Figure 11. Tiyeture starts &t=0 andr=0 and expands
with constant velocity. The timeand the dislocatiorD}(r,t)| are normalized tdR,/V, and
Ao R,/ u whereV, is the velocity of the P Wavés/,[(2 = (A +2u)/p with p as the density of
the medium).

A AU(rY)
r=0
r=0.2R,
r=0.4R,
1.0 r=0.6R,
r=0.8R,
05 —
| | | >
1 2 3 4 t

Figure 11 Dislocation function D(r, t) at several distancesnf the center on the circular
crack plotted against the normalized tim&or explanation of symbols see text (according to
Madariaga, 1976; modified from Aki and Richards3Qp

5 Energy, Moment, Dislocation and Stress drop

The radiated energy of an earthquake can be conhassiming a specific source model and
its source parameters. We describe the earthquake shear rupture on a surface. In a
relatively general form Kostrov (1975) writes foetradiated seismic energy

t
_ max o _ . B 1 0 B
E. = { dt [dS(&,) (a7 - ;) Dy n, > /{ dSAc, Dn, { gds (52)

S(t)

wheretmax Is the maximum duration of the motion on the faléne,S(t) the rupture
plane developing during the rupturé,the final rupture plane with A = liMmi_ S(t)

ai?(fs) the stress before the earthquake occurog(k,t) the stress on the broken fault

surface, D (&,,t) =0/0t D, (&,,t) the dislocation velocityAc;(€) the static stress drop (see

Figure 10),n; the normal vector of the fault surfac®_ (£,) the static dislocation, argl the

specific energy required to generate a new surfaqaivalent to Equation (52) is the often
used form

E, :Tdt [dsD, n,(@, -a,)-[gds (53)
0

S(t) A

16
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where o, = (07 +0;)/2 denotes the mean stress, is the stress before the earthquake,

and O'ijl is the final stress, which may be equal to thetibmal stress. When taking into

account the grow of the rupture area during theéhgaeke in the formulation of the
dislocation (source time) functidx(t), Equation (53) becomes

Es=jd§?dDﬂy[Eu—cq(DQ]—jgdS (54)

whereg;(Dy) is the stress-dislocation relation on the faudingl andDif the final dislocation..

In the Eqgs. (52) to (54) the seismic enekyyis composed of released deformation energy
Eior, frictional energyEs, and rupture (crack) enerdy

Es=Ewot—Ef- E (55)
with
Eot I dSa; D; n,
E; = J‘dSJ‘dDi n, (56)
E =[gds

With this we define the seismic efficiengy

ES
Ex ®7)

/7:

and the apparent stress,,

‘ jedS (58)

where ‘E‘ Is the spatial averaged absolute value of thechsion. The energy densigyis

identical with the integrant of the surface intégfidnerefore the following relation between
the seismic energy and the scalar seismic moméds:ho

ES = Uapp M 0 /,U (59)
Further special cases are:
a)
ai®, g;, g;* are homogeneous ang equal to the time-independent friction stress
gi® Egs. (3), (6) and (7) yield

Es:(a-ij _Uijg)Dif anO_Er (60)

17
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— (Ui? +0—i:1!- _zai?)q n, -29
(Jio+0-i})qnj (61)

n

=

1
T app 25(07? +0; —207)en; -

O

‘ . ‘ (62)

where g is the averaged specific rupture energy aralunit vector in the direction
of the dislocation. With this we get

Capp=11 Oj @ n;. (63)

b)
For a shear fracture, arg® = aijl with g = 0 as an approximation gr= 0 in the
case of aranti-planebrittle rupture propagating with shear-wave vdlpar of an
in-plane brittle rupture propagating with Rayleigh-wave o@ty, respectively, we
get
1 _; 1
ESZEDi njAaijSOZZ_/jAUijMij (64)

with A4g; = g - gy (65)

Ohnaka (1978) gives the following relationship fbe seismic energy of a circular shear
fracture propagating with the crack velocity=v0.8 \:

E - M 0 DO
® 2R
with M, — scalar seismic momenD,, - static averaged dislocation aRd- source radius. For

rectangular shear fractures of lendthand with unilateral fracture propagation a similar
approximate relationship holds:

(66)

M_ D,
Es=—2=0 67
S (67)
and in case of partial incoherence
M,D
Es= |_ : (68)

Further,Es can be determined directly by integrating overdisplacement field. It holds

18
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0

Es= Y [dt[dspv®utu® (69)
S

K -o

with S — a surface surrounding the sourge; density distribution on this surface’ —

velocity of ground motion. The sum is over all kindf waves which leave the volume
enclosed by the surfa®with the velocityv. However, one has to take into account that on
the way from the source t8 part of the energy has already been transformidheat by
inelastic effects of wave propagation.

Equation (69) forms the theoretical backgroundtf@ simple relationship between seismic
energy and magnitude M

logEs=aM+Db (70)

which is based on rather simple assumptions. Neeleds, the corresponding relationship
given by Gutenberg and Richter (1956) is

log E{J = 1.5 M+ 4.8 (71)

with Mg — surface wave magnitude (see 3.2.5.1). Equdiah has proven to yield rather
good estimates dEs. More details on direct energy determination basedigital broadband
recordings is outlined in 3.3.
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