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1   Introduction 
 
In seismology the problem of understanding and describing the seismic source consists in 
relating observed seismic waves (i.e., seismograms) generated by this source to suitably 
conceived geometric, kinematic and dynamic parameters of a mechanical source model that 
represents the physical phenomenon of a brittle fracture in the Earth's lithosphere. 
Representations of the source are defined by parameters whose number depends on the 
complexity of the source models (e.g., Aki and Richards, 1980; Ben-Menahem and Singh, 
1981; Das and Kostrov, 1988; Lay and Wallace, 1995; Udías, 1999). In the direct problem, 
theoretical seismic wave displacements are determined from source models and in the inverse 
problem parameters of source models are derived from observed wave displacements. In the 
following we will consider only source models related to earthquakes and explosions (see 
Chapter 3), volcanic tremors (see Chapter 13) and rock bursts. Here we will not discuss 
sources of seismic noise (see Chapter 4).  
 
Strong non-linear and non-elastic processes take place in a seismic source volume. Parts of it 
may crack, phase transitions may take place, the temperature may increase, and so on. These 
kinds of processes are not described by most seismic source theories; however,there are 
special theories to model such processes, e.g., the time-dependent pressure within an 
explosion cavity, the rupture propagation on an earthquake fault, and the material behavior on 
a crack tip (crack criteria). We limit ourselves to the phenomenological description of a 
seismic source. The aforementioned complicated processes need not to be considered when 
looking only for their integral effect on a surface surrounding the seismic source, i.e., by 
replacing a volume integral by a surface integral (see, e.g., Aki and Richards, 1980).  
 
 

2   Continuum mechanics 
 
The description of the source mechanism is based on the solution of the equation of motion. 
In a deformable solid medium this equation is derived from classical Newtonian mechanics. 
The linearized equation of motion (i.e., by neglecting density changes and other second order 
effects) is 
 

),(),(),( , txftxtxu s
b

isjijsi =−σρ &&  .        (1) 
 

In this equation ρ is the density of the solid body, ui are the components (i = 1, 2, 3) of the 
displacement field that describe the deformation of the body, σik is the stress tensor, fi

b is the 
body force density acting per unit volume, iu&&  is the second time derivative ∂ 2/∂ t2 of the 
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displacement and the comma between two subscripts, e.g., in σik,k indicates the spatial 
derivative of the considered quantity. We generally use the summation convention which 
requires that one has to sum when a subscript appears twice, e.g.,  

σik,k = 3
3

2
2

1
1

iii xxx
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The displacement is a function of the spatial co-ordinates xi and the infinitesimal deformation 
is defined as  
 

dui = ui,k dxk            (2) 
with 

ui,k = βik             (3) 
 
as the distortion tensor. We now consider the location of a particle before and after it is 
deformed, described by the vectors ai and xi, respectively. Accordingly, an infinitesimal 
vector dai at the point ai is moved (i.e., deformed) to the vector dxi, as shown in Figure 1. 
 

    
 

Figure 1  Coordinates and vectors describing the displacement field (see text). 
 
 
 Introducing ds2, which is the difference between the square of the length of the vectors dxi 
and dai, and, thus, a measure of the deformation of the body, i.e., ds2 = dxi dxi – (dxi –dui) (dxi 
–dui), we get with (2) and (3) 
 

ds2=  (βij +βji - βki βkj) dxi dxj = 2εij dxi dxj.           (4) 
  
Equation (4) is the definition of the strain tensor εij . It is a symmetric tensor. For small 

deformations it can be approximated by its linear terms 
 

       εij  = 
2

1
(βij +βji) = 

2

1
(ui,j + uj,i).         (5) 

 
Thus, the strain tensor εij  is the symmetric part of βij . Any symmetric tensor can be 
transformed into a co-ordinate system such that  
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εij = ε(i)δij           (6) 
 
where δij is the dimensionless Kronecker symbol, defined by  
 

    




≠
=

=
jiif

jiif
ij 0

1
δ                       (7) 

 
and ε(i) are the eigenvalues of the strain tensor. The co-ordinate system where εij is of the form 
(6) is called system of principle axes. The three eigenvalues describe the relative deformation 
in direction of the principle axes. 
 
In continuum mechanics one distinguishes between body forces and surface forces. The body 
forces are sometimes also termed volume forces because they act on volume elements dV of 
the body. In Equation (1) we consider infinitesimal masses ρ dV where dV is the infinitesimal 
volume of the mass element. Accordingly, an infinitesimal body force (Aki and Richards, 
1980) can be written as dFi =  fi

b (xs,t) dV. Typical examples of body forces are the gravity 
field and the centrifugal force. 
 
In contrast, surface forces such as cohesion, the sliding friction, or the internal stress during 
the deformation of the body, act on surface elements dS of the volume dV. The stress is a 
tensor of second order, i.e., it has two subscripts, because it is characterized both by the 
orientation of the force and by the orientation of the surface on which the force acts. A 
second-order tensor has generally 9 independent components which can be written explicitly 
as  

    σij= .

333231
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In general, σij  depends on position and time. It acts only between adjacent particles. Because 
of the conservation law of angular momentum this tensor has to be symmetric, i.e., 
 

   σij = σji .             (8) 
 
 
The relation between the incremental body force density dfi

s which acts on an internal surface 
element dS and the stress is  
 

         dfi
s = σij nj dS          (9) 

 
where nj is the normal vector of the surface elements (see Figure 2). σij nj is called the traction 
of the stress tensor. The pressure and the surface tension in fluids are special examples of 
internal surface forces. Figure 3 shows the different components of σij which act on the 
surfaces of an infinitesimal cube. 
 
In the  linear theory of elasticity, the strain and the stress tensor are linearly coupled. A 
relatively simple stress-strain relation is the generalized Hook`s law  
 

          σij = cijkl εkl.       (10) 
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Figure 2  Schematic depiction of the considered source volume dV , a surface element dS 
(with its normal vector ni) on which the force S

jdf  acts. 

 

        
 
Figure 3  The nine components of the stress tensor. σij are the components of the stress tensor 
parallel to xj on planes having ni as their normals. 
 
 
The body that obeys the relation (10) is said to be linearly elastic. The cijkl are called elastic 
constants because they are independent of strain, however, in the case of an inhomogeneous 
medium, they depend on the position in the body. Due to the symmetry of strain (see Equation 
(5)) and stress tensor (see Equation (8)) and because of the energy balance in the body, the 
fourth-order tensor cijkl  has the following three symmetries: 
 

cijkl = cjikl,  cijkl = cijlk, and  cijkl = cklij.     (11) 
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These symmetries reduce the independent components in cijkl from 81 to 21. In the case of an 
isotropic medium, i.e., when the elastic properties are independent of the orientation in the 
body, the  elastic constants reduce to just two. Then cijkl has the form 
 

    cijkl = λ δij δkl + µ (δik δjl  + δ il δjk).       (12) 
 
The two parameter λ and µ are known as the Lamé constants. 
 
If attenuation has to be included the relatively general Boltzmann law 
 

         σij(t) = ∫
∞−

−
t

klijkl dtb ττετ )()(        (13) 

can be used. 
 
It is advantageous to introduce now the Fourier transform f(ω) of a time dependent function 
f(t). Here, ω is the angular frequency  2π f, where f is frequency in units of Hz.. We use the 
definitions 
 

dtetff ti
∫
∞

∞−

−= ωω )()(       and       ωω
π

ω deftf ti
∫
∞

∞−

= )(
2

1
)(      (14) 

where i= 1−  is the imaginary unit, and f(ω) is a complex function, called the complex 
spectrum of f(t). It can be represented by 
 

           f(ω) = a(ω) + i b(ω) = A(ω) eiΦ(ω) 
 
where A(ω) is the amplitude spectrum and Φ(ω) the phase spectrum. a(ω) and  b(ω) are the 
real and the imaginary parts of f(ω), respectively. When applying the Fourier transformation 
to Equation (13) the integral is replaced by the product of bijkl(ω) and εkl(ω). The imaginary 
part of bijkl describes a linear attenuation for a propagating displacement field.  
 
With Eqs. (5), (10), and (14) the equation of motion (1) becomes (Udías, 1999) 
 

ρ ω2 ui (xs, ω) + σij,j(xs, ω) = - fi
b(xs, ω)      (15) 

 
and in a linear elastic but inhomogeneous medium 
 

            ρ ω2 ui (xs, ω) + (cijklj uk,l (xs, ω)),j  = - fi
b(xs, ω).                                       (16) 

 
The second term on the left side is the stress due to the displacement uk. In order to specify ui 
in a unique way, the initial conditions have to be fixed for the displacement ui and the related 
velocity iu& as well as the boundary conditions for the displacement or the traction. The 

homogeneous initial condition, that both ui and iu&  are zero before the beginning of the 

seismic event, is the precondition for the existence of the related Fourier transform ui(xs, ω). 
Boundary conditions can be specified for the displacement ui or the traction σij nj on internal 
surfaces S (or external surfaces such as the Earth’s free surface) (see Figure 4), namely 
 

ui(ξs, ω)     or   σij (ξs, ω) nj on the internal surface S(ξs)    (17) 
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where S(ξs) may consist of several unconnected surfaces. The Greek letter ξs used as co-
ordinates should indicate that the quantities ui and σij  are lying on the surface S(ξs) which is 
generally curved. These boundary conditions are indispensable for modeling seismic sources 
and computing the wave propagation through a layered medium. 
 

     
 
Figure 4  Illustrating the definition of boundary conditions for seismic faults representation.  
 
 
3   Kinematic source models 
 
The first mathematical formulation of the mechanism of earthquakes used the representation 
of the processes at the source by a distribution of the body force density fi

b(ξs, t) acting inside 
the source volume V0 . Since these forces  must  represent  the phenomenon of fracture, they 
are called equivalent forces. If it is assumed that no other body forces are present (gravity,  
etc.), and that on its surface S displacements and tractions are zero, we can use the 
representation theorem in terms of the Green’s function to write the elastic displacements in 
an infinite medium in the time domain as 
 

    dVtxGtfdtxu ssiks

V

b
ksi

o

),,,(),(),( τξξτ∫ ∫
∞

∞−

=                                  (18) 

 
or in the frequency domain by 
 

  dVxGfxu ssiks

V

b
ksi

o

),,(),(),( ωξωξω ∫= .                                 (19) 

 
The Green’s function  Gki  is the solution of the equation of motion (16) for special impulsive 
single point forces, termed Dirac or needle impulses, which act inside the body. The spectrum 
of the Dirac impulse is 1 for all frequencies and, thus, does not appear in Equation (20) below. 
According to Ben-Menahem and Singh (1981) and Udías (1999), the following equation 
holds for the Green’s function 
 

)()),,((),,( ,,
2

rrinjrrlknijklrrin xxGcxG ξδδωξωξωρ −−=+      (20) 
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where δ (xr - ξr) is the three-dimensional Dirac delta function which is the product of three 
one-dimensional Dirac delta functions, i.e., δ (xr - ξr) = δ (x1 - ξ1) δ (x2 - ξ2) δ (x3 - ξ3). Note 
that δ (xr - ξr) has the dimension of 1/(unit volume). The three one-dimensional Dirac 
functions define the point in space where the three perpendicular point forces, as described by 
the Kronecker symbol in Equation (7), act.  
 
The Green’s function acts as a "propagator" of the effects of forces  fi

b, from the points where 
they are acting (ξi inside V0) to points xi outside V0, where the elastic displacement ui 

produces the seismogram. A simplification, often used in the practice, is made by applying 
the point source approximation. It is valid if the source dimension is much smaller than the 
considered wavelength and the distance of the observation point from the source. For a point 
source at xs

o we develop the Green’s function in Equation(19) in a Taylor series at this point: 
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Vo

o
ssiko

j
s

o
s

b
kj

o
ssiks

o
s

b
ksi sdVxxG

x
sxfsxxGsxfxu ∫












+

∂
∂+++= ωωωωω  

 
     ...),,(),(),,(),( , ++= ωωωω o

ssjik
o
s

f
jk

o
ssik

o
sk xxGxMxxGxF       (21) 

 
If the source volume is small the Taylor series can be finished after the second term with the 
first derivative to the source co-ordinates o

lx . Then (21) defines the force Fk and a seismic 

moment tensor f
klM  for which the following relations hold: 

 

     )(),(),( ss

Vo

o
s

b
k

o
sk sdVsxfxF ωω += ∫       (22) 

and 
 

  )(),(),( ss
o
s

b
k

Vo

j
o
s

f
jk sdVsxfsxM ωω += ∫ .      (23) 

 
If b

kf is a single point force then f
klM  as a whole describes a force couple (see Figure 5).  

 

     
 
         Figure 5  Schematic presentation of a general force couple fi sj  
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Equation (21) contains the partial spatial derivatives of the Green’s function. In a 
homogeneous infinite body they can be written as  

∑∑
==

+=
3

0
24

3

0
24,

)(1
)()(1

n

S

n
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jki
n

ijkrv

rn
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ω

ω
n

Sv

r
)(

ω
     (24) 

 
where the )(n

ijkA  are complex coefficients proportional to the amplitudes and phases of the P 

and S waves (see 2.2). The term of Gij ,k with  n = 3 is called the far-field term because it can 
still be observed at rather large distances r between the point source and the point of 
observation (seismic recording). In contrast, the terms with n = 0, 1 and 2 are called the near 
field terms because they decay with distance more rapidly than the far-field term, namely 
proportional to r-2, r-3, and r-4, respectively.  
 
Elastic displacements are given now by the time convolution of the forces acting at the focus 
with the Green’s function for the medium. The simplest Green’s function is that 
corresponding to an homogeneous infinite medium (full space). Internal sources must be in 
equilibrium, thus satisfying the condition that their resulting total force and moment are zero. 
Therefore, we consider as a seismic source only the symmetric part of f

klM  as a seismic 

moment tensor, i.e.,  
 

Mjk = f
kj

f
jk MM + .       (25) 

 

Fig. 3.34 shows all possible 6 couples and three dipoles of the seismic moment tensor Mjk.  
 
If we want to represent the shear motion on a fault, the equivalent system of forces is that of 
two couples with no resulting moment, called a double-couple model (DC) (see Figure 8). If 
the couples are oriented in the direction of the two perpendicular unit vectors ei and l i, 
respectively, with ei li =  0, and if their scalar seismic moment is M0(ω) = ki

s
Fs

i 0
lim

→
, where  

si  is the length of the arm of the couple and Fk the amount of the force, the displacement 
caused by the double-couple source is given by 
 

),,())((),( ,0 ωωω o
ssjikkjjks

DC
i xxGleleMxu += .     (26) 

 
Note that in the given case the comma in the subscripts of G represents the partial derivative 
with respect to the source co-ordinates. 
 
If an earthquake is produced by a fault in the Earth’s crust, a mechanical representation of its 
source can be given in terms of fractures or dislocations in an elastic medium. A displacement 
dislocation consists of an internal surface S with two sides ( +S  and −S ) inside of the elastic 
medium (see Figure 5) across which there exists a discontinuity of displacement; however, 
stress is continuous. Thus, S is a model of a seismic fault. Coordinates on this surface are ξk 
and the normal at each point is ni. From one side to the other of this surface there is a 
discontinuity in displacement Di, which is termed the slip or dislocation on the fault:  
 

),(),(),( ωξωξωξ kikiki uuD −+ −= .                                         (27) 
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The plus and minus signs refer to the displacement at each side of the surface S. If there are 
no body forces (Fi = 0), and the stresses are continuous through S, then, for an infinite 
medium, the equation relating the displacement to the dislocation Di, results in  
 

)(),,()(),(),( , ssslnksjijkls

S

isn dSxGncDxu ξωξξωξω ∫= .                  (28) 

 
Equation (27) corresponds to a kinematic model of the source, that is a model in which elastic 
displacements ui are derived from slip vector Di. The latter represents a non-elastic 
displacement of the two sides of a fault (i.e., of the model surface S). In a kinematic model 
slip is assumed to be known. It is not derived from stress conditions in the focal region as it is 
in dynamic models. Equation (28) contains the Green’s function discussed in conjunction 
with Equation (24). When seismic waves, generated by the source, are observed in the far-
field, i.e., at distances r much larger than the wavelength and the linear source dimension, 
than the Green’s function is proportional to ω. Accordingly, the dominant term of the 
integrant in Equation (28) is iDω which is, in the time domain, proportional to the slip 

velocity. Thus, the elastic displacement observed in the far-field does not depend on the slip 
in the source but on the slip velocity and, similarly, on the seismic moment rate ∂Mik(t)/∂t 

=
.

ikM (see Fig. 2.4). Or, in the frequency domain, the displacement is proportional to iω 

Mkl(ω). This means that the source radiates elastic energy  only while it is moving; when 
motion at the source stops it ceases  to radiate energy.  
 
The most common model for the source of an earthquake is a shear fracture, that is, a fracture 
in which the slip Di is perpendicular to the normal of the fault. For a fault plane S of area A 
and normal ni, the slip Di(ξs,,t) is in the direction of the unit vector l i contained in the plane. 
Accordingly. l i and ni are perpendicular and the scalar product ni·li = 0. For an infinite, 
homogeneous isotropic medium, displacement according  to Equation (28) is given by 
 

)(),,()(),(),( , sssjikkjjk

S

slsi dSxGnlnlDxu ξωξωξµω += ∫         (29) 

For modeling a shear dislocation source, the parameters on the right-hand side of Equation 
(29) have to be known. Implicitly these parameters include information about the rupture 
propagation, i.e., on the shape of the crack front, its propagation direction and propagation 
velocity (crack velocity), and shape of the final ruptured surface S.  
 
The circular fault and the rectangular fault are the most important approximations. In the first 
case the rupture begins at the center and the crack front is described by an outward 
propagating circle. However, the direction of the dislocation is not necessarily 
radiallysymmetric. This circular model, described by Brune (1970) and Madariaga (1976), 
should be valid for small earthquakes with magnitudes smaller than about 4 to 5. Another 
approximation, for large earthquakes in the Earth’s crust in particular, is a rectangular fault 
model, also called Haskell-model (Haskell, 1964). The length of the fault, generally assumed 
to be horizontal, is larger than its width (depth) by a factor of 2 to 10 or even more for very 
large earthquakes. This is due to the limited thickness of the seismogenic zone of the upper 
lithosphere, usually ranging between about 10 and 25 km, where brittle fracturing is possible. 
On the other hand, large crustal earthquakes may have a rupture length of 200 km or even 
more, e.g., about 450 km for the Alaska earthquake of 1964 and about 1000 km for the Chile 
earthquake of 1960. This rectangular model is also useful for describing deeper earthquakes in 
subduction zones.  



Information Sheet                                                                                                IS 3.1 
 

10 

 
When the Haskell-model is used the behavior of the rupture front must be known. The first 
approximation is that the rupture starts along a line and propagates unilaterally or bilaterally 
over the rectangular fault plane (see Figure 6). This approximation is useful for long ruptures 
with small width (the line-source approximation). It is also suitable for distinguishing 
between an in-plane and an anti-plane fault geometry. In the case of an in-plane fault the 
rupture moves into the direction of the slip whereas in the anti-plane case the direction of slip 
is parallel to the rupture front (see Figure 6). 
 

        
 

    Figure 6  Several models of rupture propagation 
 
 
For describing the rupture propagation in the case of a rectangular fault the following four 
terms and definitions, shown in Figure 6, are important: 
 

• unilateral rupture propagation – one rupture front propagates over the entire fault 
plane; 

• bilateral rupture propagation – two rupture fronts with different directions propagate 
over the rupture plane; 

• unidirectional rupture propagation – the direction of rupture propagation is parallel to 
the length of the fault plane; and 

• bidirectional rupture propagation – the rupture starts at a point and propagates across 
the fault plane. 

 
Other models for describing the shape of the fault plane, the shape of the rupture front, and 
the mode of the rupture propagation are possible. 
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With respect to the velocity of rupture propagation the most common models assume values 
between about 0.6 to 0.9 of the shear-wave velocity vs (see 2.2) in the source region; however, 
detailed field and laboratory investigations have shown that both slower (so-called “silent 
earthquakes”) and supersonic (> vs) rupture propagation velocities are possible (e.g., Tibi et 
al., 2001). Rupture velocity depends on the material properties, the internal friction of the 
unbroken material, the frictional conditions along the fractured surface and the stress 
conditions (ambient and on the crack tip) in the given case. 
 
For the point source  approximation Equation (29) takes the simpler form  
 

   Aui µω =)( |Dl (ω)| (lk nj + l j nk) Gik,j(ω)      (30) 

 
or, in the time domain, 

        ∫
∞

∞−
−+= τττµ dtGDnlnlAtu jiklkjjki )()()()( , .                        (31) 

 
Displacements are given by temporal convolution of slip with the derivatives of the Green’s 
function. The geometry of the source is now defined by the orientation of the two unit vectors 
ni  and l i. These two vectors, which refer to the geophysical co-ordinate system of axes 
(North, East, Nadir), define the orientation of the source, namely ni the orientation of the fault 
plane and l i the direction of slip. These two vectors can be written in terms of the three angles 
that define the motion on a fault, namely, azimuth φ, dip δ  and rake λ. The shear fracture 
itself is equivalent to a DC source in terms of forces (see Figure 7).  
  

        
 
Figure 7  Depiction of the equivalence of a shear dislocation with the force double couple and 
the vector dipole models. 
 
 
In the case that  l i and ni are not perpendicular, Equation (29) has to be replaced by 
 

)(),()],,()([),( , ssn

S

ssjikkjjklljksk dSDxGnlnllnxu ξωξωξµδλω ∫ ++= .   (32) 

The special case when l i and ni are parallel is often used to model tensional volcanic 
earthquakes (Figure 8). 
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Figure 8  Illustration of a tension crack which is often used in modeling volcanic earthquakes. 
 
 
Another more general representation of seismic source is given by the seismic moment tensor 
density mij. The moment tensor density represents that part of the internal strain drop which is 
dissipated in non-elastic deformations at the source. So far we have modeled the seismic 
source by means of the forces in the equation of motion (see Equation (1)) or by boundary 
conditions for the displacement (see Eqs. (17) and (28)). Now we take another approach and 
divide the true strain tensor true

ijε  into an elastic and inelastic part, i.e., 

 
inel
ij

ek
ij

true
ij εεε −= .       (33) 

 
With this we define the true stress 
 

V
ijij

true
ij m−= σσ        (34) 

where σij is the elastic stress related to the strain by Equation (10) or (13) and V
ijm is given by 

  inel
klijkl

V
ij cm ε= .       (35) 

 
Equation (35) defines the seismic moment tensor density V

ijm . The superscript V indicates that 

it is a volumetric density. Rice (1980) and Madariaga (1983) denote inel
ijε  as the stress-free 

strain or transformation strain, and Vijm  as the stress glut. The seismic moment tensor Mij is, 

thus, defined by 
 

   Mij(ω) = )(),( kk

V

V
ij xdVxm

o

ω∫ .    

     (36) 
 
The quantities V

ijm and Mij  play a fundamental role in the theory of seismic sources. The 

relations between the different kinds of stress are shown in Figure 9. When σij in (15) is 
substituted by true

ijσ  an additional force term appears on the right side. It can be interpreted as 

an equivalent force density eq
if  or as an equivalent force eq

iF  

 
eq

if (xk,ω) = ),(, ωk
V

jij xm−  and  eq
iF = )(),(, k

V

k
V

jij xdVxm
o

∫− ω .   (37) 
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Figure 9  Relationship between the elastic stress σij, related to the strain ε, the true stress 
σij

true and the seismic moment density tensor mij
V. 

 
 
In replacing the body force in Equation (19) by the equivalent force density in Equation (37) 

an additional volume integral dVmG V
kjkV ij

o
,∫−  appear. After an integration by parts and 

assuming that V
jkm  vanishes on S, i.e., the inelastic volume is bordered by S, the displacement 

produced by V
ijm is 

 

)(),(),,(),( , ss
V
jks

V

sjikii dVmxGxu
o

ξωξωξω ∫= .     (38) 

When comparing Eqs. (38) and (28) one realizes that the integrants have the same form but 
the integration in (38) is over a volume while it is over a surface in Equation (28). 
Accordingly, the stress glut Vijm is equivalent to a dislocation when the inelastic volume can be 

approximated by an inelastic internal surface. Naming this stress glut by S
ijm  from Equation 

(28) we see that 
 

jiijkl
S
kl nDcm =                    (39) 

 
for the general linear elastic case and for the shear crack in an isotropic medium holds 
 

)( ijji
S
ij nDnDm += µ .        (40) 

 

For the spatially averaged dislocation )(ωiD , the seismic moment tensors Mij in these two 

cases become 
 

  AnDcM lkijklij )()( ωω =      and      AnDnDM ijjiij ])()([)( ωωµω +=  ,    (41) 

 

respectively. In the latter case, when iD  and jn  are perpendicular, the scalar seismic moment 

is 
 

ADM i )()(0 ωµω = .       (42) 
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In the general case of an arbitrary moment tensor the  scalar seismic moment is defined by  
 

ikik MMM
2

1
0 = .        (43) 

 
 
4   Dynamic Source Models 
 
Dynamic source models, or crack models, use a given stress on an internal surface (fault) to 
describe a seismic source. In this case Equation (19) is not valid. In general, two terms must 
be added to the right side of Equation (19). These terms include boundary conditions for the 
displacement and the stress. Note that only one of these conditions can be freely chosen while 
the other one has to be calculated. The computation of the Green’s function requires boundary 
conditions as well, either for the Green’s function itself or for the stress produced by it. These 
boundary conditions do not influence the result of the computation of the displacement 
ui(xs,ω). Therefore, we can freely select any suitable boundary conditions. When selecting a 
Green’s function which produces a vanishing stress on the internal surface S this Green’s 
function is called free

ijG because the related internal surface behaves like a free surface. The 

advantage is, that this kind of source representation does not require a knowledge of the 
displacement produced by the given stress on the internal surface. When no body force acts it 
holds that  
 

)(),(),,(),( sskjjss

S

free
ikii dSnxGxu ξωξσωξω ∫= .     (44) 

Equation (44) simplifies the computation of the displacement or the dislocation on the fault 
when the stress on the fault is given. When using other kinds of representations an 
inhomogeneous integral equation for ui(ξs,ω) on the fault has to be solved. 
 
In the dynamic models the static stress drop ∆σij  plays an important role. It is defined as the 
difference between the stress distribution o

ijσ  on the fault plane before the occurrence of the 

earthquake and the stress 1
ijσ  after the earthquake. This static stress drop is 

 
=∆ )( sij ξσ o

ijσ (ξs) - 
1
ijσ (ξs)       (45) 

 
with 1

ijσ (ξs) = lim t→∞ σij(ξs,t) = lim ω→0 iω σij(ξs,ω). A more general time dependent stress on 

the fault is shown in Figure 10 (Yamashita, 1976). 
  
A case of practical importance is that of a circular shear fault. It is probably a good 
approximation for small earthquakes in the Earth´s crust with magnitudes smaller than 4 as 
long as only frequencies < 5-10 Hz are considered. If a homogeneous shear stress drop ∆σ12 
in the x1-x2 plane is assumed, the static dislocation on the fault is 
 

2122
0121 )(

43

28
rRD −∆

+
+= σ

µλ
µλ

µπ
      (46) 
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where R0 is the final radius of the broken fault and r the radial co-ordinate. If r > R0 the 
dislocation in Equation (46) is zero. By inserting Equation (46) in (41) we get for the static 
seismic moment  
 

3
0120 43

2

3

16
RM σ

µλ
µλ ∆

+
+=        (47) 

 
and for λ = µ the well known result derived by Keilis-Borok (1959) is given by 
 

   3
0120 7

16
RM σ∆= .        (48) 

 
Similar relations hold for rectangular shear cracks of the length L and a width W: 
 

  12
2

0 σ∆= WLCM         (49) 

 
where C is a model-dependent constant in the order of 1 and ∆σ12 is uniform over the fault. In 
the case of a buried in-plane shear crack holds 
 

    
µλ
µλπ

+
+= 2

8
C         (50) 

 
and for a buried anti-plane case 
 

    
4

π=C .         (51) 

When the fault is perpendicular to the Earth’s surface and outcropping then C in the Eqs. (50) 
and (51) is twice as large. 
 

   
 
Figure 10  Time dependence of  stress at a point on the fault surface during an earthquake.  

σ o and σ 1 – stress before and after the earthquake, σfr – fracture strength, σ - mean stress,  



Information Sheet                                                                                                IS 3.1 
 

16 

σ g – friction stress, σeff – effective stress = dynamical stress drop δσ and ∆σ - static stress 
drop. 
 
The dynamic relation between the shear stress drop σ∆ and the dislocation can be calculated 
numerically. An example is shown in Figure 11. The rupture starts at t=0 and r=0 and expands 
with constant velocity. The time t and the dislocation |D1(r,t)| are normalized to PVR /0  and 

µσ /0R∆  where Vp is the velocity of the P wave (Vp
2 = (λ +2µ)/ρ  with ρ as the density of 

the medium). 
 

      
 
Figure 11  Dislocation function D(r, t) at several distances from the center on the circular 
crack plotted against the normalized time t. For explanation of symbols see text (according to 
Madariaga, 1976; modified from Aki and Richards, 1980). 
 
 
5   Energy, Moment, Dislocation and Stress drop 
 
The radiated energy of an earthquake can be computed assuming a specific source model and 
its source parameters. We describe the earthquake as a shear rupture on a surface. In a 
relatively general form Kostrov (1975) writes for the radiated seismic energy ES 

 
 

(52) 
 

 
where tmax is the maximum duration of the motion on the fault plane, S(t) the rupture 
plane developing during the rupture,  A the final  rupture plane  with    A = limt→∞ S(t),  

)(0
sij ξσ  the stress before the earthquake occurred, σij(ξ,t)  the stress on the broken fault 

surface, ),(),(
.

tDttD sisi ξξ ∂∂=  the dislocation velocity, ∆σij(ξ)  the static stress drop (see 

Figure 10), nj the normal vector of the fault surface,  )( s
O
iD ξ the static dislocation, and g  the 

specific energy required to generate a new surface. Equivalent to Equation (52) is the often 
used form 

 
(53) 

∫∫∫∫ −∆−−=
AA

jiijjiij

tS

ijk

t

S dSgnDdSnDdSdtE 0

)(

0

0 2

1
)()(

max

σσσξ &

∫∫∫ −−=
A

ijij

tS

jj

t

S dSgnDdSdtE )(
)(0

max

σσ&
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where 2/)( 10
ijijij σσσ +=  denotes the mean stress, 0

ijσ  is the stress before the earthquake, 

and 1
ijσ  is the final stress, which may be equal to the frictional stress. When taking into 

account the grow of the rupture area during the earthquake in the formulation of the 
dislocation (source time) function Di(t),  Equation (53) becomes 
 

∫∫∫ −−=
A

kijij

D

ji

A

s dSgDndDdSE

f
i

)]([
0

σσ       (54) 

 
where σij(Dk) is the stress-dislocation relation on the fault plane and f

iD  the final dislocation.. 

In the Eqs. (52) to (54) the seismic energy ES is composed of released deformation energy 
Etot, frictional energy Ef, and rupture (crack) energy Er 
 
              Es = Etot – Ef - Er       (55) 
 
with 

 
 
 

(56) 
 
 

 
With this we define the seismic efficiency η 
 

 
(57) 

 
and the apparent stress σapp 

 

 ∫= dSe
DA i

app

1σ            (58) 

 

where iD  is the spatial averaged absolute value of the dislocation. The energy density e is 

identical with the integrant of the surface integral. Therefore the following relation between 
the seismic energy and the scalar seismic moment holds: 

 
        (59) 

 
Further special cases are:  
a) 

σij
0, σij, σij

1 are homogeneous and σij  equal to the time-independent friction stress 
σij

g Eqs. (3), (6) and (7) yield 
 
             (60) 

∫

∫∫

∫

=

=

=

dSgE

ndDdSE

nDdSE

r

jif

jiijtot σ

tot

S

E

E=η

µσ /0ME appS =

rj
f

i
g
ijijS ESnDE −−= 0)( σσ
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          (61) 
 

 
 
    (62) 
 

 

where 
_

g  is the averaged specific rupture energy and ei a unit vector in the direction 
of the dislocation. With this we get 

 
σapp = η σij  ei  nj.       (63) 

 
b) 

For a shear fracture, and σij
g = σij

1 with g ≈ 0 as an approximation or g = 0 in the 
case of an anti-plane brittle rupture propagating with shear-wave velocity or of an 
in-plane brittle rupture propagating with Rayleigh-wave velocity, respectively, we 
get 

ijijoijj
f

is MSnDE σ
µ

σ ∆=∆=
2

1

2

1
      (64) 

 
with     ∆σij  = σîj

0 - σîj
1.       (65) 

 
Ohnaka (1978) gives the following relationship for the seismic energy of a circular shear 
fracture propagating with the crack velocity vc = 0.8 vs : 
 

R

DM
Es 2

00=         (66) 

with Mo – scalar seismic moment, 0D - static averaged dislocation and R – source radius. For 

rectangular shear fractures of length L and with unilateral fracture propagation a similar 
approximate relationship holds: 
 

Es ≈ 
L

DM o

3
0         (67) 

 
and in case of partial incoherence 
 

Es ≈ 
L

DM o

_

.        (68) 

 
Further, Es can be determined directly by integrating over the displacement field. It holds 
 

jiiji

ji
g
ijijij
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Es = )()()( k
i

k
i

k

k S

uuvdSdt &&ρ∑ ∫ ∫
∞

∞−

      (69) 

 
with S – a surface surrounding the source, ρ – density distribution on this surface, )(k

iu& – 

velocity of ground motion. The sum is over all kinds of waves which leave the volume 
enclosed by the surface S with the velocity v(k). However, one has to take into account that on 
the way from the source to S part of the energy has already been transformed into heat by 
inelastic effects of wave propagation.  
 
Equation (69) forms the theoretical background for the simple relationship between seismic 
energy and magnitude M 
 

log Es = a M + b        (70) 
 
which is based on rather simple assumptions. Nevertheless, the corresponding relationship 
given by Gutenberg and Richter (1956) is 
 

log Es[J] = 1.5 Ms + 4.8      (71) 
 
with Ms – surface wave magnitude (see 3.2.5.1).  Equation (71) has proven to yield rather 
good estimates of Es. More details on direct energy determination based on digital broadband 
recordings is outlined in 3.3.  
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