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ABSTRACT
Design flood estimation is an essential part of flood risk assessment. Commonly applied are flood frequency
analyses and design storm approaches, while the derived flood frequency using continuous simulation has
been getting more attention recently. In this study, a continuous hydrological modelling approach on an
hourly time scale, driven by a multi-site weather generator in combination with a k-nearest neighbour
resampling procedure, based on the method of fragments, is applied. The derived 100-year flood estimates
in 16 catchments in Vorarlberg (Austria) are compared to (a) the flood frequency analysis based on observed
discharges, and (b) a design storm approach. Besides the peak flows, the corresponding runoff volumes are
analysed. The spatial dependence structure of the synthetically generated flood peaks is validated against
observations. It can be demonstrated that the continuousmodelling approach can achieve plausible results
and shows a large variability in runoff volume across the flood events.

ARTICLE HISTORY
Received 16 July 2018
Accepted 22 January 2019

EDITOR
A. Castellarin

ASSOICIATE EDITOR
E. Volpi

KEYWORDS
derived flood frequency;
continuous modelling;
temporal disaggregation;
flood hazard; synthetic flood
events

1 Introduction

Flooding is associated with severe negative consequences to
society, the economy and humanhealth. For flood risk assessment
andmanagement, information about possible extreme floods, e.g.
about an event with a return period of 100 years, is essential (e.g.
EU 2007). Therefore, event characteristics need to be derived to
serve as a basis for inundation mapping, risk zoning or the design
offlooddefence infrastructure.While estimates usually refer to the
discharge magnitude, the severity of a flood is also defined by the
duration and runoff volume of a flood event (Mediero et al. 2010,
Grimaldi et al. 2012b, Lamb et al. 2016, Brunner et al. 2017

There are different approaches for design flood estimation.
Following the classification of Rogger et al. (2012a), they can be
divided into statistical methods, deterministic methods and
a combination of the two, which is also referred to as
a “derived flood frequency” approach. Flood frequency analysis
(FFA), where the design flood is estimated by fitting a theoretical
extreme value distribution to observed gauging data, is
a commonly applied statistical approach and well established
(Robson and Reed 1999, Blöschl et al. 2013). Further, determi-
nistic design storm approaches (DSA) are applied, where pre-
defined design rainfall events are transformed to corresponding
discharge using a deterministic rainfall–runoffmodel. Typically,
the critical rainfall duration needs to be identified for the catch-
ment and different temporal rainfall patterns can be tested
(Grimaldi et al. 2013). As a combination of statistical and
deterministic methods, derived flood frequency analysis based
on the continuous simulation of flood flows is the subject of

recent research (Haberlandt et al. 2011, Hundecha and Merz
2012, Rogger et al. 2012a, Grimaldi et al. 2012b, Breinl 2016,
Arnaud et al. 2017). The continuous modelling approach
(CMA) is understood as the continuous hydrological simulation
driven by long meteorological time series generated for example
by a stochastic weather generator (Blazkova and Beven 1997,
2004, Rogger et al. 2012a, Grimaldi et al. 2013, Lamb et al. 2016).
The term “derived” refers to the indirect derivation of the design
flood from the resulting synthetic runoff series, typically by
means of extreme value statistics (Sivapalan et al. 2005). In this
study, the CMA does not include the continuous simulation on
observed meteorological data, which can be a valuable method
for flood estimation at ungauged locations (Viviroli et al. 2009).

Each of the three methods has its advantages and disadvan-
tages. Flood frequency analysis is easy to apply, but restricted to
gauged catchments with sufficiently long time series, though
regional flood frequency analysis can be deployed also for
ungauged locations (Hosking andWallis 1997).Usually univariate
frequency analysis on peak discharge is utilized (Maniak 2010). To
extend the concept to further flood characteristics such as flood
volume, multivariate models need to be applied, to account for
their dependence (e.g. Serinaldi and Grimaldi 2011, Brunner et al.
2017). In engineering practice, design storm approaches are often
used to consider flood volume, as event hydrographs are gener-
ated directly, by the transformation of design storm to discharge
(Viglione and Blöschl 2009, Rogger et al. 2012a). Design storm
approaches can be applied in ungauged basins, but this relies on
the assumption of the identity of the return period between
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rainfall and resulting peak discharge, which remains questionable
(Viglione et al. 2009). Further, the pre-event catchment state and
the critical storm duration are usually defined rather subjectively
(Boughton and Droop 2003). The latter limitations are overcome
with the continuous simulation approach (Grimaldi et al. 2013).
The downside, however, is that the CMA is complex and compu-
tationally intensive and therefore seldom applied in practical
applications (Rogger et al. 2012a). Furthermore, by the involve-
ment of multiple models, additional sources of uncertainties are
introduced (Arnaud et al. 2017). The CMA can, however, be
applied with limited observed streamflow data, or if knowledge
about flood frequencies is needed at multiple locations in
a catchment (Haberlandt et al. 2011). With the generation of
long time series, the sampling uncertainty may be reduced, as so
far unobserved meteorological conditions and catchment states
are included (Rogger et al. 2012b). Additionally, continuous simu-
lations are promising because of their potential to link physical
processes, to avoid rather subjective assumptions (e.g. the pre-
event catchment state and critical storm duration) and to provide
full hydrograph characteristics (Lamb et al. 2016). By the inclusion
of physical processes, the CMA can also be applied for impact and
attribution studies of climate and land-use change (Holzmann
et al. 2010, Hundecha and Merz 2012, Breinl 2016).

Recently, only a small number of studies have dealt with the
comparison of continuousmodelling approaches to FFA andDSA.
Grimaldi et al. (2012b) compared simulated peak discharge, event
durations and runoff volume between continuous simulations and
a design storm approach. While spatially uniform rainfall was
generated on a 5-min resolution in the study, the transformation
from precipitation pursues a unit hydrograph approach without
detailed process descriptions. By directly linking the methods to
hydraulic simulations, the effect on inundation modelling
was analysed, showing that event-basedmodelsmay underestimate
flood volumes (Grimaldi et al. 2013). A comprehensive comparison
between FFA, DSA and CMA was presented by Rogger et al.
(2012a). The meteorological input was generated by a stochastic
point rainfall generator on a sub-hourly scale and combined with
observed temperatures to estimate flood frequency. A recent study
byBreinl (2016), with the focus on exploring the effect of differently
complex weather generators, concluded that FFA and CMA can
achieve comparable results on a daily scale. The CMA studies were
limited to either single-site applications on sub-daily time scale
(Grimaldi et al. 2012b, 2013, Arnaud et al. 2017) or multi-site
applications on a daily time scale (Hundecha and Merz 2012,
Falter et al. 2015, Breinl 2016, Breinl et al. 2017).

In contrast, this study aims to apply a spatially coherent con-
tinuousmodelling approach at an hourly time scale for estimating
low-frequency flood events (e.g. 100-year floods) in small moun-
tainous catchments that react rather quickly. Another objective is
to compare the modelling results to the flood frequency analysis
of gauge data and a design storm approach. For the DSA and
CMA, corresponding event volumes are also compared
besides peak discharge. In this study, the CMA encompasses
a daily multi-site, multi-variate weather generator and
a disaggregation procedure at the hourly time scale, which pro-
vides the meteorological boundary conditions to a semi-
distributed hydrological model.

This paper is organized in six sections. Firstly, the study area
and data are described. Secondly, the approaches for design

flood estimation are explained with a comprehensive descrip-
tion of the model chain for continuous simulation. In Section
4, the results of the continuous model chain are presented. The
outcomes of the different approaches are compared and dis-
cussed, including their limitations, in Section 5 and, finally,
a summary is provided and conclusions are drawn.

2 Study area and data

The study was conducted in the Austrian Federal Province of
Vorarlberg. In total, 16 catchments with areas ranging from 25
to 1277 km2 were analysed (Table 1). The settlement areas,
covering about 5% of Vorarlberg, are mainly concentrated in
the valley floors, making them vulnerable to flooding. The pre-
dominant land-cover types are extensively managed grasslands
and deciduous and coniferous forests, which cover about 40% of
the study area. Themorphology varies from the flat Rhine valley,
with the lowest altitude of approx. 400 m a.s.l., to highmountain
reaches with an altitude above 3000 m a.s.l. in the headwater
catchments of the Bregenzerach (BA) and Ill (IL) rivers. The
average terrain slopes range from 6° in the northernmost pre-
alpine catchment of the Leiblach (LB) River up to 28.2° in the
alpine drainage area of the Lutz River at the gauge Garsella. On
average, the slope is above 20°, resulting in a fast hydrological
response with short runoff concentration times, especially for
the small headwater catchments of the Lech (LE) and Frutz
(FU). In particular, some headwater catchments and the south-
ern tributaries of the Ill River are influenced by hydropower
operations. Strongly influenced headwater catchments were not
selected for this study. At the gauges Gisingen and Kennelbach,
which are located at the outlets of the Ill and Bregenzerache
catchments, respectively, the entire discharge used for hydro-
power operations within the catchments is returned to the
rivers. The discharge series are at most 63 years long, starting
from 1951, with the shortest series of 24 years at the gauge Bürs.
Table 1 lists the study catchments together with the catchment
areas and the length of the discharge time series.

Vorarlberg is characterized by high precipitation amounts
due to its location in the northern reaches of the Alps, with
predominantly westerly flows and strong orographic effects.
Whereas the Ill catchment is partly located in the rain shadow

Table 1. List of study catchments together with catchment area and length of
the observed discharge time series.

Gauge River Basin Catchment
area (km2)

Length of discharge
series (years)

Au Bregenzerach BA 149.3 63
Hopfreben Bregenzerach BA 40.8 57
Kennelbach Bregenzerach BA 825.2 63
Mellau Bregenzerach BA 226.9 63
Thal Martinsbrück Rotach BA 85.3 53
Enz Dornbirnerach DA 53.7 58
Hoher Steg Dornbirnerach DA 113.6 58
Lauterach Dornbirnerach DA 201.4 31
Laterns Frutz FU 33.4 58
Bürs Alvier IL 74 24
Garsella Lutz IL 94 50
Gisingen Ill IL 1277 62
Schruns Litz IL 98.4 55
Unterhochsteg Leiblach LB 109.4 38
Lech Tannbrück Lech LE 85.2 63
Lech Zuersbach LE 25.1 43
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of high alpine ranges, the Bregenzerach and Dornbirnerach
(DA) catchments experience precipitation amounts of up to
3000 mm year−1 (BMLFUW 2007). Daily precipitation amounts
of more than 200 mmwere measured during flood events in the
last decades (e.g. station Innerlaterns: 228 mm, 22 August 2005;
station Schönenbach: 236 mm, 21 May 1999). In this study, 45
meteorological stations with daily time series from 1971 to 2013
were used. In contrast, data for only 23 sites starting from 2001
are available at hourly time steps. The lack of sub-daily meteor-
ological input data is a common limitation for modelling appli-
cations (Förster et al. 2016). Data for stations without hourly
data were interpolated by an inverse distance-weighting scheme
(see Section 3.3.3). Figure 1 provides an overview of the study
catchments, showing the locations of the river gauging stations
as well as the meteorological stations.

3 Methods

Three different approaches for design flood estimation were
applied in this study: (1) flood frequency analysis; (2) a design

storm approach; and (3) a continuous modelling approach.
Besides the description of the approaches, the methodology
for the spatial dependence analysis of observed and simulated
peak flows and for the event separation for volume calcula-
tion is given.

3.1 Flood frequency analysis

Statistical flood frequency analysis (FFA), where a theoretical
extreme value distribution is fitted to the observed gauging data,
is usually applied if long enough streamflow records are avail-
able (Rogger et al. 2012a). In this study, the three-parameter
generalized extreme value (GEV) distribution was used. The
estimation is based on the annual maximum series (AMS).
The GEV is widely used for AMS series (Coles 2001) and has
been found suitable for national flood discharge mapping in
Austria (Merz et al. 2008). Further, the χ2 goodness-of-fit test
was applied. The frequency distributions were fitted using the
method of L-moments (Hosking and Wallis 1997). Confidence
intervals for the 100-year flood were estimated by means of

Figure 1. The study area of Vorarlberg including catchment boundaries, gauging stations and meteorological stations.
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a percentile confidence interval bootstrapping procedure (e.g.
Burn 2003). In contrast to non-parametric bootstrapping
(resampling with replacement), the randomly generated sample
is derived from the parametric model distribution, which is
preferable for smaller sample sizes (Kyselý 2008).

3.2 Design storm approach

The design storm approach (DSA) is based on the transfor-
mation of a defined design storm into the corresponding river
runoff. This method is mostly applied in engineering hydrol-
ogy when limited streamflow data are available or large return
periods are of interest (Viglione and Blöschl 2009). The
design storm is derived from the intensity–duration–fre-
quency (IDF) curve for maximum rainfall intensities of the
selected return period (Blöschl et al. 2013). Depending on the
characteristics of the catchment, the critical intensity–dura-
tion rainfall needs to be defined. Commonly, rather simple
event-based rainfall–runoff models are used to transform the
design storms into streamflow (Rogger et al. 2012a, Blöschl
et al. 2013, Haberlandt and Radtke 2014).

The design storms, or more precisely the IDF curves for
the Austrian design storms, were provided by the Austrian
Hydrographic Service. They are derived by a combination of
(1) a dataset based on the maximum precipitation of an
atmospheric model, and (2) a dataset generated by spatially
interpolated, extreme value statistics of meteorological station
data (Weilguni 2009). In order to account for the assumption
of uniform rainfall intensity across the catchment, the design
rainfall based on the IDF curves needs to be reduced for
larger catchments (Blöschl 2009). For Austria, different
empirical formulas are recommended to define the catch-
ment-specific areal reduction factor (ARF) (BMLFUW
2011). The empirical ARF considers the catchment size (A)
and duration (D) of the design precipitation as follows
(BMLFUW 2011):

ARF ¼ e�hA0:5
(1)

where h is defined as:

h ¼ D�0:43 (2)

The possible temporal variability of the design events is taken into
account by four different temporal patterns (DVWK1984). These
include the equally distributed intensity, also called block rainfall,
and the temporal allocation of the maximum precipitation inten-
sity (a) at the beginning of an event (start-emphasized), (b) in the
middle of an event (middle-emphasized), and (c) at the end of an
event (end-emphasized).

The critical intensity–duration was defined by the approxi-
mated concentration time resulting in the highest discharge.
Four different formulas to calculate the concentration time
were considered for each catchment: (i) Department of Public
Works, (ii) Giandotti, (iii) Kirpich and (iv) Viparelli (Grimaldi
et al. 2012a).

The rainfall–runoff model HQsim was used for the design
storm estimation (detailed model description is given in
Section 3.3.4). The pre-event conditions are defined as fol-
lows: first, the month with the highest occurrence of annual

peaks is identified based on observed data. In the next step,
runoff is simulated (HQsim) driven by observed hourly input.
Then the dates of the 0.1, 0.5 and 0.9 quantiles of simulated
streamflow of the selected month are determined. Finally, the
model states (e.g. storages) of the identified dates are defined
as the pre-event conditions of lower (p = 0.1), median
(p = 0.5) and upper (p = 0.9) scenarios. The procedure
assumes that the simulated runoff of the catchment reflects
the “severity” of pre-event storage conditions. By analysing
only the month of highest flood occurrence, the strong sea-
sonality of the study area, with predominant summer floods,
will be taken into account.

3.3 Continuous modelling approach

In this study, the continuous simulation of streamflow for
design flood estimation includes the following steps: (1) simu-
lation of long series of daily meteorological data using
a stochastic weather generator; (2) temporal disaggregation
of daily meteorological data to hourly series; and (3) deter-
ministic modelling of streamflow by a semi-distributed rain-
fall–runoff model. Finally, the 100-year flood was estimated
by applying flood frequency statistics to the simulated stream-
flow data.

3.3.1 Weather generator
For the continuous simulation, a long-term series of meteor-
ological data is generated with a multi-site, multi-variate
weather generator on a daily time step (Hundecha et al. 2009,
Hundecha and Merz 2012). The two-step model is based on
climate station data and is fitted for each month of the year to
account for the seasonal characteristics, as well as the temporal
and spatial correlations between the different stations. In the
first step, the distribution of daily precipitation amounts is
modelled for each site by a mixture of two distributions
(gamma and generalized Pareto), with dynamically varying
weights, with the objective of characterizing the extremes of
daily rainfall (Vrac and Naveau 2007). The local occurrence
and amount of precipitation are modelled using a multi-variate
autoregressive model considering the inter-site dependencies
by the autocorrelation and spatial covariance between stations.
In a second step, the mean temperature is modelled condi-
tioned on precipitation. The weather generator was applied for
hydrological change attribution and flood risk studies in
Germany (Hundecha and Merz 2012, Falter et al. 2015). For
a more detailed technical description of the weather generator
see Hundecha et al. (2009) and Hundecha and Merz (2012).

3.3.2 Disaggregation procedure
In catchments with short concentration times, peak flows
can be considerably higher than the daily averages
(Dastorani et al. 2013). Due to the small scale of the
investigated catchments, their mostly alpine topography
and, therefore, short response times, a sub-daily time step
is necessary to estimate meaningful peak discharges. Since
the weather generator delivers daily data, a temporal disag-
gregation procedure needs to be applied. As it is difficult to
model hourly data directly by stochastic weather generators,
the application of subsequent disaggregation techniques is
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a common bypass (Haberlandt et al. 2011, Pui et al. 2012).
In recent years, different methods have been developed to
disaggregate daily rainfall to sub-daily time steps. They
include resampling techniques based upon the method of
fragments (Buishand and Brandsma 2001, Sharma and
Srikanthan 2006, Leander and Buishand 2009, Pui et al.
2012, Westra et al. 2013, Breinl et al. 2017), multiplicative
cascade models (Olsson 1998, Güntner et al. 2001,
Haberlandt and Radtke 2014, Förster et al. 2016, Müller
and Haberlandt 2018), and more complex stochastic disag-
gregation procedures, for example based on the Bartlett-
Lewis rectangular pulse model (Koutsoyiannis et al. 2003,
Kossieris et al. 2016).

For the present study, a non-parametric resampling pro-
cedure was chosen to disaggregate the generated daily
values. Pui et al. (2012) showed that resampling techniques
can outperform more sophisticated models in terms of
observed rainfall statistics, such as wet spells, intensity–fre-
quency relationships and extreme values. Considering this,
a k-nearest neighbour algorithm (k-NN) based on the
method of fragments was applied to disaggregate daily data
to hourly data while keeping the inter-site correlations. The
applied disaggregation method follows, generally, the mod-
elling steps proposed by Lall and Sharma (Sharma and
Srikanthan 2006). In contrast to other resampling proce-
dures (Sharma and Srikanthan 2006, Nowak et al. 2010,
Pui et al. 2012, Breinl et al. 2017), the temperature is dis-
aggregated simultaneously to the precipitation. The course of
temperature during the day is thereby expressed as relative
difference to daily mean temperature. Aside from the need
for hourly temperature inputs, temperature can help to
distinguish between long-lasting advective wet spells and
intensive convective storms with short duration in the

summer months. The disaggregation procedure comprises
the following steps (Fig. 2):

(1) An observed daily database is prepared by aggrega-
tion of hourly data to daily precipitation sums (Psum)
and mean daily temperatures (Tmean).

(2) The corresponding relative diurnal patterns are pre-
pared for the precipitation (fragments) and tempera-
ture (difference relative to Tmean).

(3) For the day to disaggregate, the daily values (simu-
lated Psum and Tmean) of all stations are taken
simultaneously.

(4) All days in the observed database (Step 1) of the same
month and identical wet or dry state as the day to
disaggregate are selected as possible nearest neighbours.

(5) The Euclidean distance between the input day and all
selected comparison days is calculated for P and T.

(6) The calculated distances (ΔP and ΔT) are normalized
by their data range to make them comparable.

(7) The k-nearest neighbours are identified by the mini-
mal distance (ΔP + ΔT), while the number of neigh-
bours k is defined by the number n of comparison
days k ¼ ffiffiffi

n
p

, according to Lall and Sharma (1996).
(8) A rank-weighting scheme (w) : w ¼ 1

i =
Pk

i¼1
1
i , is

applied to the k-nearest neighbours, where i refers
to the neighbour’s index (Lall and Sharma 1996,
Nowak et al. 2010).

(9) The match day is randomly sampled by the weighting
probability defined in Step 8.

(10) The relative temporal patterns from the match day
are transferred to the input daily precipitation sums
and mean temperature.

(11) Steps 3–10 are repeated for all input days.

Figure 2. Flowchart of the disaggregation procedure for precipitation and temperature data.
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3.3.3 Spatial interpolation of meteorological variables
As the generation of meteorological data is carried out at the
locations of weather stations (point scale), a spatial interpola-
tion is needed for the subsequent application of the semi-
distributed rainfall–runoff model.

Many approaches of different complexity exist, such as sim-
ple Thiessen polygons, inverse distance weighting, spline inter-
polation or various krigingmethods (Goovaerts 2000, Bavay and
Egger 2014, Plouffe et al. 2015). The choice of an adequate
algorithm involves a trade-off between accuracy and efficiency.

For this study, the simple inverse distance-weighting
scheme including a stepwise lapse rate was chosen, since
a computationally efficient resource-conserving method is
needed for the long-term simulation. The spatial interpola-
tion of meteorological point data was carried out using the
MeteoIO C++ library (Bavay and Egger 2014). If the lapse
rate per time step is not acceptable (R ¼ 0:7, MeteoIO
default), fall-back default values derived from long-term
means of the meteorological stations are applied
(Tlapse = −0.575°C; Plapse = 1.95% per 100 m). The identical
method was applied consistently for the interpolation of
missing hourly variables for the disaggregation procedure.

3.3.4 Rainfall–runoff modelling
The rainfall–runoff model HQsim (Kleindienst 1996, Senfter
et al. 2009, Achleitner et al. 2012) was applied to obtain
streamflow series at the gauging stations. HQsim can be
classified as a semi-distributed conceptual model based on
hydrological response units (HRUs). The model is forced by
temperature and precipitation data. Snow and rain intercep-
tion are based on a leaf area index (LAI)-dependent approach.
Evapotranspiration is calculated according to the concept of
Hamon’s potential evaporation taking into account water
availability (Dobler and Pappenberger 2013). Snowmelt is
estimated by a degree-day factor, further modified by the
vegetation cover and a radiation factor. A contributing area
concept is applied to divide between infiltration and surface
flow in relation to soil saturation, while the movement of
water to the unsaturated soil zone is parameterized by the
Mulem-van Genuchten model. Groundwater reservoirs are
represented by linear storages. The subsurface runoff genera-
tion is approximated by a time–area diagram for each HRU
and combined with a river routing scheme using the
Rickenmann (1996) flow formula to model the channel
flows. A more detailed model description is given by
Achleitner et al. (2009) and Dobler and Pappenberger (2013).

In this study, the water intakes of hydropower plants with
installed capacity and the locations of the return structures
were included in the hydrological model by means of a simple
routing scheme. This did not include reservoir management
plans or pumped storage operations.

For the calibration of the hydrological model, a simulated
annealing algorithm was applied (Andrieu et al. 2003). For
the calibration procedure, the objective function was based on
two equally weighted criteria. The first criterion is the agree-
ment between the total simulated and observed time series in
terms of the Nash-Sutcliffe efficiency criterion (NSE; Nash

and Sutcliffe 1970). To place the emphasis on flood events,
the second criterion is the NSE of the two largest events
observed (3-day window) in the calibration period.

3.4 Spatial dependence measure

As the CMA is a multi-site approach, the spatial coherence of
observed and simulated discharges is of special interest. To
analyse the spatial patterns of peak runoff in the study area,
the spatial dependence measure proposed by Keef et al. (2009)
was employed. This measure, Nj pð Þ, where p refers to a quantile
value or the level of extremeness, can be interpreted as
a combination of the measures Pi;j pð Þ, which is defined as the
probability that a dependent site i exceeds the threshold qpðQiÞ,
given that the conditioning site j also exceeds the threshold
qpðQjÞ: Pi;j pð Þ ¼ PrðQi > qp Qið ÞjQjiqp Qið ÞÞ. According to
Schneeberger and Steinberger (2018), the two thresholds are
based on block maxima of a 3-day time window of the condi-
tioned Qj and dependent Qi runoff series. The spatial depen-
dence measure Nj pð Þ describes the average probability of all
dependent sites i that are high given that the conditioning site j
is also extreme:

Nj pð Þ ¼
P

i�jPr Qi > qpðQiÞjQj > qpðQjÞ
� �

n� 1
(3)

where n is the total number of analysed sites. Nj pð Þ can be
interpreted as a summary metric indicating whether a certain
gauging site experiences similar peak flow occurrence or is
independent of other gauging sites (Schneeberger et al. 2018).

3.5 Event separation for volume calculations

For the calculation of corresponding runoff volume to esti-
mated peak discharge, flood events need to be separated from
the continuous runoff series simulated by the CMA. Therefore,
the hydrographs for all events reaching the peak flow of a
T-year flood (±5% of the median ensemble estimate) are iden-
tified in the runoff series. The start and end of independent
flood events are defined as the minimum between two inde-
pendent peaks. Two peaks are considered independent if the
lowest discharge reaches half of the smaller peak flow (Maniak
2010, DWA 2012). The mean annual maximum discharge
serves additionally as the lower relevant runoff boundary.

4 Results of the continuous modelling approach

4.1 Generation of meteorological fields

The weather generator was calibrated by the observed time
series at 45 weather stations. For this study, daily precipitation
andmean temperatures weremodelled by the weather generator
and subsequently disaggregated to hourly values. For validation
purposes, 43 years were simulated by the weather generator and
compared to the station data (1971–2013). One hundred (100)
realizations of 43-year periods were generated to derive an
uncertainty range represented by the 5% and 95% quantiles of
the precipitation and temperature estimates.
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Figure 3(a) shows the validation results for extreme pre-
cipitation in terms of the 99% quantile of wet days for all 45
stations and months. In general, the modelled daily precipita-
tion is in good agreement with the observed data. However,
a few stations show underestimation in June and August,
which is likely related to the challenge of capturing extreme
precipitation of convective storms. A further check of the
probabilities of wet days (not shown here) indicates a slight
underestimation (1–3%). However, the higher observed prob-
abilities are completely within the 90% range of the simula-
tion results for all stations.

The characteristics of the observed daily mean temperature
were well reproduced by the weather generator. Figure 3(b)
presents the validation results for the simulated minimum and
maximum temperatures for each station andmonth. Besides the
good agreement of median values, the temperature modelling is
also quite robust. The difference between the 5% and 95%
quantiles of the 100 realizations is on average less than 2°C.

Similarly to the weather generator results, the disaggregation
procedure was validated by the comparison of disaggregated and
observed data. The hourly data were first aggregated to daily
data and then disaggregated back to hourly time steps.While the
daily precipitation amount was preserved by the disaggregation
method, the hourly intensities differed from the observations.
Figure 4 shows the behaviour for extreme precipitation regard-
ing the 99%, 99.9% and 99.95% quantiles of the precipitation
series. The quantiles are approximately the 230th, 23th and 12th
highest values of the hourly series. The results show a good
agreement between the observed and modelled precipitation
intensities for durations of 1, 3 and 6 h. As expected, the

uncertainty increases for higher quantiles. The slight overesti-
mation for the 99.95% quantile occurs if sampled days for
disaggregation have shorter wet spells than the events of the
original data. This may also be a result of the limited available
hourly data. Like the precipitation amount, the daily mean
temperature was preserved by the disaggregation to hourly
values. Comparing the simulated and observed minimum and
maximum temperatures (hourly time steps), the root mean
square error (RMSE) ranges between 0.6–1.7°C (minimum)
and 0.5–2.2°C (maximum) for all stations. This is an acceptable
range for the application, but can be relevant if the temperature
is close to freezing point and triggers the separation of snow and
rain events.

4.2 Runoff modelling and design flood estimation

In the last step of the modelling chain, the generated hourly data
were transformed into continuous runoff series by the rainfall–
runoff model HQsim. The rainfall–runoff model was calibrated
(2001–2007) and validated (2007–2013) against the river gauging
data in a classical split-sample approach for all catchments (see
Fig. 1). The calibration results of the rainfall–runoff model are
shown in Table 2. Besides the NSE, the slightly modified Kling-
Gupta efficiency (KGE0) according to Kling et al. (2012) was also
calculated. The KGE0 is a combined index of the correlation
coefficient, bias ratio and variability ratio (Kling et al. 2012).
Note, the KGE0 was not used in the calibration procedure. In
general, the hydrological model fitted well, with an average NSE
of 0.68 and 0.67 (KGE0: 0.75 and 0.74) for the calibration and
validation periods, respectively.

Figure 3. Validation results of the weather generator for each month and station. (a) Daily precipitation: the 99% quantile of 43 years of generated precipitation is
compared with observed data (43 years). The error bars show the median of 100 realizations with the lower and upper boundaries at the 5% and 95% quantiles. (b)
Mean temperature: the maximum and minimum simulated mean temperatures are compared to the corresponding observed data.
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The 100-year flood was estimated by fitting the GEV distri-
bution to the 100 realizations of time series of 63 years’ length.
This length is comparable to the longest gauging observations,
while in total 6300 years of simulation are enough to compute
a robust median value. The 90% uncertainty range based on the
sample uncertainty of 63 years was derived from the simulation
ensemble. Additionally, the 100-year flood was estimated by
fitting the GEV distribution to the entire synthetic series of
10 000 years of generated data. Figure 5 shows the exemplary
results of the gauge Schruns, with the individual results of the
100 realizations, the median value, and the 5% and 95% quan-
tiles. The estimates for all catchments are listed in Table 2.

4.3 Comparison of observed and simulated spatial
patterns of peak runoff

To ensure the validity of the continuous model chain, several
aspects have to be checked. In a first step, the observed and

simulated results of the weather generator, the disaggregation
procedure and hydrological model were compared at indivi-
dual sites. The spatial coherence of observed and simulated
data of the multi-site CMA approach is assessed by the spatial
dependence measure Nj pð Þ. The comparison of the spatial
patterns comprised 14 of the 16 gauging stations, with
42 years of data. Due to the shorter observation length, the
gauges Lauterach and Bürs were excluded from the compar-
ison. The value of Nj pð Þ was calculated for the observed
runoff and 42 years of CMA simulations with 100 realiza-
tions. The spatial dependence measure Nj pð Þ was analysed for
quantile values between 0.9 and 0.998; p ¼ 0:9 roughly cor-
responds to 12 events per year and p ¼ 0:998 refers to a total
of 10 events in the 42-year series.

Figure 6 shows the comparison of observed and simulated
patterns for three levels of extremeness (p ¼ 0:9; 0:99; 0:995).
Overall, the spatial dependence measure of observed and simu-
lated data declines for higher levels of extremeness (see Fig. 6

Figure 4. Validation results of the disaggregation procedure. The upper tail of the precipitation distribution of 13 years of disaggregated data is compared to
observed data. The error bars represent the median and the 5% to 95% uncertainty range from 100 model realizations for each station n ¼ 45ð Þ. The columns show
the 99%, 99.9% and 99.95% quantiles of the wet hours, while the rows show the precipitation sums of 1, 3 and 6 h duration, respectively.
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(a)–(c)). The mean absolute error between observed and simu-
lated data ranges between 0.05 and 0.08 for all analysed p values
(percentage error: 14–26%). The northern catchments
(Unterhochsteg and Thal) as well as the gauges in the east
(Lech) and south (Schruns) are more independent in compar-
ison to the Bregenzerach, Dornbirnerach and Frutz
(Kennelbach, Au, Mellau, Hoher Steg, Enz and Laterns). The
stronger dependence can be explained by orographic effects,
which occur along the mountain ridges, and predominant
weather patterns (see Section 2).

In general, the spatial dependence was reproduced well
by the CMA (median of 100 realizations), although the
simulations are characterized by slightly higher dependence
than the observed values. One reason could be a reduction
of the spatial variability by the fitting of the weather gen-
erator. Furthermore, the short time series of hourly
observed data, as well as the necessary interpolation for
stations without sub-daily information for the disaggrega-
tion, could have reduced the spatial variability. The possi-
bility to reproduce the spatial dependencies between the

Table 2. Rainfall–runoff model performance and the estimated discharge of the 100-year flood event by the continuous modelling approach for all catchments. Cal.:
calibration; Val.: validation.

Gauge Model performance Discharge estimate, Q(m3 s−1)*

NSE (-) KGE (-) Ensemble estimate (100 × 63 years)

Cal. Val. Cal. Val. Median 5% quantile 95% quantile 10 000-year estimate

Au 0.75 0.59 0.80 0.71 261 208 334 264
Hopfreben 0.65 0.53 0.71 0.67 101 80 134 102
Kennelbach 0.73 0.69 0.75 0.71 1900 1481 2439 1945
Mellau 0.76 0.66 0.78 0.75 517 408 679 525
Thal Martinsbrück 0.44 0.58 0.54 0.68 163 129 203 168
Enz 0.75 0.74 0.77 0.72 197 151 248 198
Hoher Steg 0.85 0.80 0.84 0.78 250 199 323 255
Lauterach 0.89 0.86 0.86 0.80 337 265 426 339
Laterns 0.73 0.79 0.73 0.79 134 99 179 135
Bürs 0.64 0.70 0.82 0.83 55 45 72 57
Garsella 0.60 0.60 0.73 0.78 111 87 145 116
Gisingen 0.49 0.46 0.64 0.68 1007 796 1390 1049
Schruns 0.66 0.77 0.77 0.87 92 69 129 94
Unterhochsteg 0.67 0.72 0.75 0.76 156 121 204 159
Lech Tannbrück 0.60 0.59 0.66 0.68 120 85 165 123
Lech 0.72 0.66 0.74 0.75 30 20 41 30

*100-year return period.

Figure 5. Flood frequency curves for the gauge Schruns derived by the continuous modelling approach. The grey lines indicate the 100 realizations of the modelling
procedure with its median value as well as the lower and upper bounds (5% and 95% percentiles). Further, the estimate based on 10 000 years of simulated data is shown.
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gauging stations is a significant advantage of the presented
continuous modelling approach compared to the other
discussed methods, particularly when it comes to the
assessment of flood risk.

5 Comparison and discussion of methods

In the following, the results of the CMA are discussed in
comparison to the FFA and DSA approaches. The first part
of the comparison covers the peak discharge estimation of
a 100-year flood, while the second part presents the variability
of runoff volumes within the identified flood events.

5.1 Peak discharge

The estimations of 100-year flood peaks are displayed in
Figure 7, which includes, besides the continuous modelling
approach, the results of the flood frequency analysis of the
observed gauging data and of the design storm approach with
four different storm types. The confidence intervals are dis-
played for the FFA and CMA, while the range for each DSA
storm type covers the lower to upper pre-event condition
scenarios.

The FFA is based on long time series with roughly 60 years
of measurements for most gauges (see Table 1). Despite the
relatively long observational records, the FFA estimates show

Figure 6. Spatial patterns) Nj pð Þ of the observed and simulated peak flows for (a) p ¼ 0:9, (b) p ¼ 0:99 and (c) p ¼ 0:995.

Figure 7. Peak discharge of the 100-year flood event, derived by the continuous simulation (CMA), by the flood frequency analysis of observed data (FFA), and by
the design storm approach with four types of temporal rainfall pattern (DSA). The χ2 goodness-of-fit test suggests that the GEV distribution (FFA) is not fitted
adequately for the marked gauges (*).
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a considerable uncertainty range in terms of the sampling
uncertainty estimated by the bootstrapping procedure. Due
to relatively high precipitation amounts compared to other
regions in Austria, the estimated specific discharges of the
100-year flood events are rather high. This outcome is in
accordance with findings of the national flood discharge
mapping in Austria by Merz et al. (2008).

Most estimates of the continuous simulation are in good
agreement with the FFA results; however, in some cases large
differences occur. The median values of 13 of the 16 estimates of
the 100-year flood event (CMA) are within the FFA confidence
interval, whereby the medians of 11 estimates have a relative
difference ð100� CMA� FFAð Þ=FFA) of ≤20% and five esti-
mates are as close as 10% in regard to the FFA median. The
absolute discharge values, as well as the percentage errors com-
paring the CMA results to the FFA, are given in Table 3.

The CMA estimates for the gauge Lech are lower than the
FFA results. In contrast, the two largest catchments (the
Bregenzerache River at Kennelbach and the Ill River at
Gisingen) show an approximately 40% higher estimate in com-
parison to the FFA. Rogger et al. (2012b) identified step changes
in the frequency curve due to the exceedence of storage thresh-
olds of the hydrological system. This could be a possible reason
for larger CMA estimates in comparison to the traditional FFA.
However, this effect could not be identified for the two catch-
ments. Furthermore, the slight overestimation in the disaggre-
gation procedure may influence the results towards higher
estimates. Another reason could be the influence of hydropower
reservoirs cutting peak discharges, especially for the upper Ill
catchment. This effect is not considered in the hydrological
model set-up, but is contained in the discharge records.

In comparison to the CMA results, the DSA results are
systematically lower compared to the flood frequency approach.
This may be a result of the chosen critical rainfall duration and
areal reduction factor. In particular, the results of the block
rainfall show low discharge estimates, with only six of the 16
estimates inside the FFA confidence interval. In contrast, the
end-emphasized storms frequently result in the highest DSA
estimates. This indicates that the flood events of the catchments

are triggered mostly by the peak rainfall intensity, which is
lowest for block rainfall. Additionally, the saturation of the
hydrological storages is highest for an end-emphasized storm
when the peak intensity is reached. The DSA method seems to
be inappropriate for the gauge Laterns, which may be the result
of an inappropriate IDF curve or inappropriate critical duration
for the small catchment. For most DSA estimates, the choice of
catchment state and storm type alters the peak discharge con-
siderably (see Fig. 7). In contrast to the CMA method, where
event pre-conditions and both temporal and spatial patterns of
precipitation are modelled implicitly, each of the DSA realiza-
tions is based on a rather subjective a priori decision.

5.2 Flood event runoff volume

Besides the peak discharge, the hydrographs of simulated flood
events and their runoff volumes are analysed. Without the
application of multi-variate models, the FFA gives no direct
insights into runoff volume corresponding to the estimated
peak discharge. In contrast, the result of the CMA is
a continuous runoff series, from which all related event char-
acteristics can be directly derived. The hydrographs for all events
reaching the peak flow of a T-year flood (±5% of the ensemble
median estimate) are extracted from the runoff series.

Figure 8 summarizes the results for the event volume for two
example catchments. As expected, the runoff volume generally
rises alongside the discharge peaks with higher return periods.
Nonetheless, the highest event volumes do not necessarily cor-
respond to the largest peak flows. This can be explained by
longer event durations, as depicted, for example, in Figure 8(d)
and (f). As shown by Gaál et al. (2015) and Szolgay et al. (2016),
mountain catchments in particular are characterized by a weak
dependence between flood peaks and volumes because of their
diversity of flood types (synoptic, snowmelt and flash floods).

Analysis of the CMA hydrographs identifies a large variabil-
ity of event volumes for roughly the same peak discharges
(±5%). This variability results from different spatio-temporal
precipitation and soil moisture patterns inherent in the CMA
approach. In contrast, the individual hydrographs of the DSA

Table 3. Comparison of the modelling results (RP100 discharge) and relative difference in comparison to the flood frequency analysis of the gauging data. The χ2

goodness-of-fit test suggests that the GEV distribution is not fitted adequately for the marked sites (*).

Gauge RP100 discharge (m3 s−1) relative difference (%)

FFA
CMA

Median
DSA
Block

DSA
Start

DSA
Middle

DSA
End CMAMedian

DSA
Block

DSA
Start

DSA
Middle

DSA
End

Au 256* 261 318 356 465 513 2 24 39 82 100
Hopfreben 112 101 81 82 93 92 −10 −28 −27 −17 −18
Kennelbach 1335 1900 1336 1337 1795 1962 42 0 0 34 47
Mellau 443 517 393 424 548 592 17 11 −4 24 34
Thal-Martinsbrück 226 163 112 112 118 113 −28 −50 −50 −48 −50
Enz 223 197 193 189 214 215 −12 −14 −15 −4 −4
Hoher Steg 233 250 201 195 222 228 7 −14 −16 −5 −2
Lauterach 296* 337 270 268 306 312 14 −9 −9 3 5
Laterns 180 134 23 23 25 25 −26 −87 −87 −86 −86
Bürs 69* 55 39 39 42 43 −20 −43 −43 −39 −38
Garsella 106 111 81 82 94 96 5 −23 −23 −11 −10
Gisingen 708 1007 445 586 701 696 42 −37 −17 −1 −2
Schruns 100 92 58 60 68 68 −8 −42 −40 −32 −32
Unterhochsteg 189 156 204 206 223 233 −17 8 9 18 24
Lech Tannbrück 145 120 82 76 91 96 −17 −44 −48 −37 −34
Lech 55 30 24 23 26 28 −45 −55 −58 −53 −49
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events result in a single estimate of runoff volume, with no
further information about possible variability. Generally, the
DSA leads to lower event volumes. As the different storm
types are based on an identical precipitation amount, only the
precipitation distribution during the events differs, with mar-
ginal effects on the total runoff volume. Figure 9 shows the
variability of runoff volume for the identified 100-year CMA
events and the DSA block rainfall type (standardized by the
catchment size). The DSA results do not fully account for the
variability of possible flood events, which can lead to consider-
ably lower possible runoff volumes, as shown by the comparison
to the CMA approach. The findings are in accordance with
Grimaldi et al. (2013), who showed that the use of the design
storm approach may lead to an underestimation of flood
volumes in comparison to a fully continuous model simulation.
This is an important outcome, as the potential damage due to
flooding is influenced by both the flood peak and the runoff
volume during an event (Dung et al. 2015, Lamb et al. 2016).

5.3 Uncertainties and limitations

The ensemble of the CMA members with time series length
comparable to observations represents the sampling uncer-
tainty in this approach. By the generation of long time series

(e.g. 10 000 years) and fitting the flood frequency distribution
to the entire sample, the sampling uncertainty can be reduced
in comparison to the FFA on observed data (Rogger et al.
2012b). In the CMA, a plethora of unobserved but plausible
weather situations can be generated and consistently combined
with various catchment conditions. This combination can
result in estimating potential but so far unobserved flood
situations. However, the true variability range remains
unknown. In the continuous modelling approach, further
assumptions about critical storm durations or pre-event catch-
ment states can be avoided (Grimaldi and Petroselli 2015). An
obvious disadvantage of the CMA method is its complexity,
which accounts especially for spatially distributed approaches
(Breinl 2016). As a consequence of the application of multiple
models, the degrees of freedom increase, with additional
sources of structural and parameter uncertainties (Arnaud
et al. 2017). In this study, these include for example uncertain-
ties of the hydrological model (Montanari 2011), the choice of
the objective function (Moussa and Chahinian 2009), the
uncertainty within the meteorological input data (Arnaud
et al. 2011) and the uncertainty introduced by the spatial
interpolation of meteorological variables (Wagner et al. 2012).

Not only the complex model chain of the CMA, but also
the FFA and DSA are subject to uncertainties. Besides the

Figure 8. Comparison of peak discharge, corresponding event volume and duration of T-year flood events for (a, c, e) Mellau at Bregenzerach and (b, d, f) Lauterach
at Dornbirner Ache. The range (shaded in red) shows the variability of the CMA results in terms of 5% and 95% quantiles of all identified events. The FFA is
performed on peak discharge only.
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debatable assumption of identity of rainfall and runoff return
period (Viglione et al. 2009), the IDF curves themselves are
uncertain, for example due to the length of meteorological
time series, subsequent spatial interpolation procedures, or
more generally the applied estimation methods (Mélèse et al.
2018). The choice of pre-event catchment state is another
major source of uncertainty, which needs to be managed by
the analyst (Boughton and Droop 2003, Grimaldi and
Petroselli 2015). Additionally, independent of the method to
transform event precipitation into discharge, some sort of
calibration and validation based on streamflow samples is
also needed for DSA (Rogger et al. 2012a). In this study, the
identical hydrological model was applied for the CMA and
DSA, including all related sources of uncertainty. On the one
hand, the use of the same model ensures an identical hydro-
logical response to the input data, while on the other hand the
results are not completely independent, which weakens the
significance of identical results.

Besides the length of available observation data, the FFA on
runoff observations is also subject to additional uncertainties,
such as the choice of the distribution function and the fitting
procedure. This is also true when the FFA is applied to simu-
lated data. However, much longer time series can be generated.
The measurement uncertainty for meteorological and hydro-
logical data is inherent in all three methods. In particular,
discharge observations are usually obtained by transformation
of measured water levels using rating curves, which change
over time (Di Baldassarre and Montanari 2009). Nevertheless,
if only peak flow is of interest and sufficiently long time series
of appropriate quality are available at the site, the FFA has its

advantages, as it is easy to apply in a widely standardized
procedure (e.g. Robson and Reed 1999).

In this study, different sources of uncertainties were
accounted for in the applied approaches. This did not allow
for straightforward comparison of their uncertainty ranges.
A more comprehensive uncertainty assessment, e.g. sampling
uncertainty of the weather generator due to short meteorological
observation series, was difficult due to computational con-
straints and complexity of the approaches (Rogger et al. 2012a,
Grimaldi et al. 2012b). However, the comparison of the results
itself can help to identify uncertainties in model inputs and
assumptions and will, in the case of good agreement, increase
the trustworthiness of the results (Gutknecht et al. 2006).

The traditional univariate FFA needs to be extended to
a multi-variate analysis in order to estimate further flood
characteristics such as flood event volume (Mediero et al.
2010). Serinaldi and Grimaldi (2011) overcame the limitation
by linking the flood volume and duration to a fixed return
period, based on different distribution functions. The concept
was further extended to a fully joint description of discharge
and volume by means of a copula approach by Brunner et al.
(2017). In any case, multi-variate models need to be applied
to the FFA, whereas event hydrographs are directly derived by
the DSA and CMA approaches. In the case of DSA, the same
limitations do apply for the estimate of volume as for peak
discharges (e.g. assumption of identity of return periods,
choice of pre-event conditions). Furthermore, the large varia-
bility of runoff volume for a given return period is difficult to
capture, while different underlying flood generation processes
are taken into account implicitly for the CMA approach. In

Figure 9. Box plots of runoff volume (m3 km−2) corresponding to the peak discharge (±5%) of a 100-year flood event for the CMA and the DSA block rain type. The
volume is standardized by the catchment area.
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the case of DSA, this may also result in a possible under-
estimation of runoff volume for flood events (Grimaldi et al.
2012b, 2013).

All three applied methods rely on the assumption of
stationarity. The assumption is undermined not only by
water management interventions, but also by land-cover
dynamics and climate change (Milly et al. 2008). The tradi-
tional FFA can be extended to non-stationary flood fre-
quency analysis, but it remains highly uncertain in the case
of limited observational data (Serinaldi and Kilsby 2017).
Inclusion of physically-based processes in the continuous
modelling approach allows one to incorporate non-
stationarity in design flood estimations (Breinl 2016, Lamb
et al. 2016). This may include trends in meteorological input
variables to address climate change (Raff et al. 2009,
Hundecha and Merz 2012, Madsen et al. 2014), land-use
development scenarios (Holzmann et al. 2010, Gupta et al.
2015, Rogger et al. 2017), or the co-evolution of multiple
relevant drivers (Elshafei et al. 2014).

6 Conclusion

In this study, a fully continuous modelling approach to estimate
low-frequency flood events (e.g. 100-year flood) was implemen-
ted in combination with a disaggregation procedure to hourly
time scale and applied in 16 mountainous catchments in
Austria. It was demonstrated that the CMA leads to plausible
results, which are often comparable to the flood frequency
analysis. The median values of 13 of the 16 peak flow estimates
are inside the 5–95% confidence interval of the FFA. In compar-
ison, the design storm approach more often resulted in an
underestimation of the FFA peak flows, depending on the
assumed storm type. At some stations, there were larger differ-
ences between the applied methods. However, it is hardly pos-
sible to identify the “correct” estimation, as all methods are
based on the extrapolation of observed patterns in one way or
another.

The results indicate that single-event hydrographs of the
DSA method can lead to a considerable underestimation of
event volumes. In contrast, the CMA gives insights into the
variability of runoff volumes, since it includes the variability
in the pre-event catchment states, as well as the temporal and
spatial rainfall patterns. By forcing the hydrological model
with spatially coherent, generated and disaggregated meteor-
ological input data, the spatial dependence patterns within the
study area can be well reproduced by the CMA. Therefore,
not only peak estimates at single gauges, but trans-basin flood
events across the study area can be derived by the CMA on an
hourly time scale. The spatially coherent modelling of flood
events across multiple catchments is of special importance for
large-scale flood risk estimation (Falter et al. 2015,
Schneeberger et al. 2017).
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