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1 Introduction 
 
The exact location of a source, radiating seismic energy, is one of most important tasks in 
practical seismology and from time to time most seismologists have been involved in this 
task. The intention here is to describe the most common location methods without going into 
the mathematical details, which have been described in numerous textbooks and scientific 
papers but to give some practical advice on earthquake location. 
 
The earthquake location is defined by the earthquake hypocenter (x0, y0, z0) and the origin time 
t0. The hypocenter is the physical location, usually given in longitude (x0), latitude (y0), and 
depth below the surface (z0 [km]). For simplicity, the hypocenter will be labeled x0, y0, z0 with 
the understanding that it can be either measured in geographical or Cartesian coordinates, i.e., 
in [deg] or [km], respectively. The origin time is the start time of the earthquake rupture. The 
epicenter is the projection of the earthquake location on the Earth’s surface (x0, y0). When the 
earthquake is large, the physical dimension can be several hundred kilometers and the 
hypocenter can in principle be located anywhere on the rupture surface. Since the hypocenter 
and origin time are determined by arrival times of seismic phases initiated by the first rupture, 
the computed location will correspond to the point where the rupture initiated and the origin 
time to the time of the initial rupture. This is also true using any P or S phases since the 
rupture velocity is smaller than the S-wave velocity so that P- or S-wave energy emitted from 
the end of a long rupture will always arrive later than energy radiated from the beginning of 
the rupture. Standard earthquake catalogs (such as from the International Seismological 
Center, ISC) report location based primarily on arrival times of high frequency P waves. This 
location can be quite different from the centroid time and location obtained by moment-tensor  
inversion of long-period waves. The centroid location represents the average time and 
location for the entire energy radiation of the event. 
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2 Single station location 
 
In general, epicenters are determined using many arrival times from different seismic stations 
and phases. However, it is also possible to locate an earthquake using a single 3-component 
station. Since the P waves are vertically and radially polarized, the vector of P-wave motion 
can be used to calculate the backazimuth to the epicenter (see Figure 1). The radial 
component of P will be recorded on the 2 horizontal seismometers N(orth) and S(outh) and 
the ratio of the amplitudes AE/AN on the horizontal components can be used to calculate the 
backazimuth of arrival AZI (elsewhere in the Manual abbreviated as BAZ): 
 
    AZI = arctan AE/AN             (1) 
 
There is then an ambiguity of 180° since the first polarity can be up or down so the polarity 
must also be used in order to get the correct backazimuth. If the first motion on vertical 
component of the P is upward, (which corresponds by definition to a compressional first 
motion (FM) arriving at the station related to an outward directed motion at the source then 
the radial component of P is directed away from the hypocenter. The opposite is true if the P 
polarity is negative (see also Figure 1 in Exercise EX 11.2).  
 
 

       
 
Figure 1  Example of P-wave first motions in 3-component records (left) from which the 
backazimuth AZI and incidence angle i can be derived according to Eqs. (1) and (2) (middle).  
 
 
The amplitude AZ of the Z component can, together with the amplitude AR = √ (AE

2 + AN
2) on 

the radial components, also be used to calculate the apparent angle of incidence iapp = arc tan 
AR / AZ of a P wave. However, according already to Wiechert (1907) the true incidence angle 
i true of a P wave is 
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i true = arcsin (
S

P

v

v
 × sin 0.5iapp),        (2) 

 
with the difference accounting for the amplitude distortion due to the reflection at the free 
surface. Knowing the incidence angle i and the local seismic velocity vc below the observing 
station, we can calculate the apparent velocity vapp of this seismic phase with 
 

sini

v
v c

app =       (3) 

 
With high frequency data it might be difficult to manually read the amplitudes of the first 
break or sometimes the first P swings are emergent. Since the amplitude ratio between the 
components should remain constant not only for the first swing of the P phase but also for the 
following oscillations of the same phase, we can, with digital data, use the predicted 
coherence method (Roberts et al., 1989) to automatically calculate backazimuth as well as the 
angle of incidence. Since this is much more reliable and faster than using the manually 
readings of the first amplitudes, calculation of backazimuth from 3-component records of 
single stations has again become a routine practice (e.g., Saari, 1991). In case of seismic 
arrays, apparent velocity and backazimuth can be directly measured by observing the 
propagation of the seismic wavefront with array methods (see Chapter 9). As we shall see 
later, backazimuth observations are useful in restricting epicenter locations and in associating 
observations to a seismic event. Knowing the incidence angle and implicitly the ray parameter 
of an onset helps to identify the seismic phase and to calculate the epicentral distance. 

 
With a single station we have now the direction to the seismic source. The distance can be 
obtained from the difference in arrival time of two phases, usually P and S. If we assume a 
constant velocity, and origin time t0, the P- and S-arrival times can then be written as  
 
   tp = t0 + D/vp                                  ts = t0 + D/vs        (4) 
 
where tp and ts are the P- and S-arrival times respectively, vp and vs are the P  and S velocities 
respectively and D is the epicentral distance for surface sources; or the hypocentral distance d 
for deeper sources. By eliminating t0 from Equation (4), the distance can be calculated as 
 

sp

sp
ps vv

vv
)t(tD

−
⋅

−=        (5) 

 
with D in km and ts – tp in seconds. But Equation (5) is applicable only for the travel-time 
difference between Sg and Pg, i.e., the direct crustal phases of S and P, respectively. They are 
first onsets of the P- and S-wave groups of local events only for distances up to about 100 – 
250 km, depending on crustal thickness and source depth within the crust. Beyond these 
distances the Pn and Sn, either head waves critically refracted at the Mohorovičić 
discontinuity or waves diving as body waves in the uppermost part of the upper mantle 
become the first onsets (see Fig. 2.32 and 11.40). The “cross-over” distance xco between Pn 
and Pg (or Pb) can be approximately calculated for a (near) surface focus from the 
relationship 
 

   xco = 2 zm {(vm –vp) (vm + vp)}-1/2,     (6) 
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with vp – average crustal P velocity, vm – sub-Moho P velocity, and zm – crustal thickness. 
Inserting the rough average values ofvc = 6 km/s and vm =  8 km/s we get, as a “rule of 
thumb”, xco ≈≈≈≈ 5 zm. At smaller distances we can be rather sure that the observed first arrival is 
Pg. Note, however, that this “rule of thumb” is valid for surface focus only. As demonstrated 
with Fig. 2.40, the crossover distance is only about half as large for near Moho earthquakes 
and also the dip of the Moho and the direction of observation (up- or downdip) does play a 
role. However, in continental (intraplate) environment, lower crustal earthquakes are rare. 
Mostly they occur in the upper crust. 
 
Examples for calculating the epicentral distance D and the origin time OT of near seismic 
events by means of a set of local travel-time curves for Pn, Pg, Sn, Sg and Lg are given in 
exercise EX 11.1. In the absence of local travel-time curves for the area under consideration 
one can use Equation (5) for deriving a “rule of thumb”  for approximate distance 

determinations from travel-time differences Sg-Pg. For an ideal Poisson solid vs = vp/ 3 . 
This is a good approximation for the average conditions in the crust. With this follows from 
Equation (5) : D = (tSg – tPg) × 8.0 for “normal, medium age” crustal conditions with vp = 5.9 
km/s, and D = (tSg – tPg) × 9.0 for old Precambrian continental shields with rather large vp = 
6.6 km/s. However, if known, the locally correct vp/vs ratio should be used to improve this 
“rule of thumb”. If the distance is calculated from the travel-time difference between Sn and 
Pn another good rule of thumb is D = (tSn – tPn) × 10. It may be applicable up to about 1000 
km distance.  
 
For distances between about 20o < ∆ < 100o the relationship ∆o = {(ts – tp )min - 2} × 10 still 
yields reasonably good results with errors < 3°, however, beyond D = 10° the use of readily 
available global travel-time tables such as IASP91 (Kennett and Engdahl, 1991; Kennett, 
1991), SP6 (Morelli and Dziewonski, 1993), or AK135 (Kennett et al., 1995) is strongly 
recommended  for calculating  the distance.  
 
With both backazimuth and distance, the epicenter can be obtained by measuring off the 
distance along the backazimuth of approach. Finally, knowing the distance, we can calculate 
the P-travel time and thereby get the origin time using the P-arrival time (see EX 11.2 for 
location of teleseismic events by means of 3-component records).  
 
 

3 Multiple station location 
 
3.1 Manual location 
 
When at least 3 stations are available, a simple manual location can be made from drawing 
circles (the circle method) with the center at the station locations and the radii equal to the 
epicentral distances calculated from the S-P times (see Figure 2). 
 
These circles will rarely cross in one point which indicates errors in the observations and/or 
that we have wrongly assumed a surface focus. In fact, ts – tp is the travel-time difference for 
the hypocentral distance d which is for earthquakes with z > 0 km generally larger than the 
epicentral distance ∆ (or D). Therefore, the circles drawn around the stations with radius d 
will normally not be crossing at a single point at the epicenter but rather “overshooting”. One 
should therefore fix the epicenter either in the “center of gravity” of the overlapping area 
(shaded area in Figure 2) or draw “chords”, i.e., straight lines passing through the crossing 
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point between two neighboring circles. These chord lines intersect in the epicenter (see Figure 
1 in EX 11.1). Still other methods exist (e.g., Båth, 1979) to deal with this depth problem 
(e.g., the hyperbola method which uses P-wave first arrivals only and assumes a constant P-
wave velocity), however since they are rarely used, they will not be discussed here. 
 

    
 
Figure 2  Location by the “circle and chord” method. The stations are located in S1, S2 and 
S3. The epicenter is found within the shaded area where the circles overlap. The best estimate 
is the crossing of the chords, which connect the crossing points of the different pairs of 
circles.  
 
 
With several stations available from a local earthquake, the origin time can be determined by 
a very simple technique called a Wadati diagram (Wadati, 1933). Using Equation (7) and 
eliminating ∆, the S-P travel-time difference can be calculated as  
 

ts – tp = (vp/vs – 1) × (tp - t0)             (7) 
 
The S-P times are plotted against the absolute P time. Since ts – tp goes to zero at the 
hypocenter, a straight line fit on the Wadati diagram (Figure 3) gives the origin time at the 
intercept with the P-arrival axis and from the slope of the curve, we get vp/vs. Note that it is 
thus possible to get a determination of both the origin time and a mean vp/vs ratio without any 
prior knowledge of the crustal structure, the only assumption being that vp/vs is constant and 
that the P and S phases are of the same type like Pg and Sg or Pn and Sn. Such an independent 
determination of these parameters can be very useful when using other methods of earthquake 
location. 
 
The Wadati diagram can also be very useful in making independent checks of the observed 
arrival times. Any points not fitting the linear relationship might be badly identified, either by 
not being of the same phase type or by misreading. 
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Figure 3  An arbitrary example of a Wadati diagram. The intercept of the best fitting line 
through the data with the x-axis gives the origin time OT. In the given case, the slope of the 
line is 0.72 so the vp/vs ratio is 1.72. This misfit of the data with a straight line indicates model 
and/or data reading errors.  
 
 
3.2 Computer location 
 
Manual location methods provide insight into the location problems, however in practice we 
use computer methods. In the following, the most common ways of calculating hypocenter 
and origin time by computer will be discussed. 
 
The calculated arrival time ti

c
 at station i can be written as 

 
ti

c = T(xi, yi,, zi, x0, y0, z0) + t0     (8) 
 

where T is the travel time as a function of the location of the station (xi, yi, zi) and the 
hypocenter. This equation has 4 unknowns, so in principle 4 arrival-time observations from at 
least 3 stations are needed in order to determine the hypocenter and origin time. If we have n 
observations, there will be n equations of the above type and the system is over determined 
and has to be solved in such a way that the misfit or residual ri at each station is minimized. ri 
is defined as the difference between the observed and calculated travel times which is the 
same as the difference between the observed and calculated arrival times 
 

ri = ti
o- tci        (9) 

 
where ti

o is the observed arrival time. In principle, the problem seems quite simple. However, 
since the travel-time function T is a nonlinear function of the model parameters, it is not 
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possible to solve Equation (8) with any analytical methods. So even though T can be quite 
simply calculated, particularly when using a 1-D Earth model or pre-calculated travel-time 
tables, the non-linearity of T greatly complicates the task of inverting for the best hypocentral 
parameters. The non-linearity is evident even in a simple 2-D epicenter determination where 
the travel time ti from the point (x, y) to a station (xi, yi) can be calculated as 
 

v

)y(y)x(x
t

2
i

2
i

i

−+−
= ,     (10) 

 
where v is the velocity. It is obvious that ti does not scale linearly with either x or y so it is not 
possible to use any set of linear equations to solve the problem and standard linear methods 
cannot be used. This means that given a set of arrival times, there is no simple way of finding 
the best solution. In the following, some of the methods of solving this problem will be 
discussed. 
 
 
3.2.1 Grid search 
 
Since it is so simple to calculate the travel times of all seismic phases to any point in the 
model, given enough computer power, a very simple method is to perform a grid search over 
all possible locations and origin times and compute the arrival time at each station (e.g., 
Sambridge and Kennett, 1986). The hypocentral location and origin time would then be the 
point with the best agreement between the observed and calculated times. This means that 
some measure of best agreement is needed, particularly if many observations are used. The 
most common approach is to use the least squares solution, which is to find the minimum of 
the sum of the squared residuals e from the n observations: 
 

∑
=

=
n

1i

2
i )(re        (11) 

 

The root mean squared residual RMS, is defined as e/n . RMS is given in almost all location 
programs and commonly used as a guide to location precision. If the residuals are of similar 
size, the RMS gives the approximate average residual. As will be seen later, RMS only gives 
an indication of the fit of the data, and a low RMS does not automatically mean an accurate 
hypocenter determination. Generally, the precision of the computational solution, which is 
based on various model assumptions, should not be mistaken as real accuracy of the location 
and origin time. This point will be discussed later under section 7. 

 
The average squared residual e/n is called the variance of the data. Formally, n should here be 
the number of degrees of freedom ndf, which is the number of observations minus the number 
of parameters in fit (here 4). Since n usually is large, it can be considered equal to the number 
of degrees of freedom. This also means that RMS2 is approximately the same as the variance. 
The least squares approach is the most common measure of misfit since it leads to simple 
forms of the equations in the minimization problems (see later). It also works quite well if the 
residuals are caused by uncorrelated Gaussian noise. However in real problems this is often 
not the case. A particularly nasty problem is the existence of outliers, i.e., individual large 
residuals. A residual of 4 will contribute 16 times more to the misfit e, than a residual of 1. 
Using the sum of the absolute residuals as a norm for the misfit can partly solve this problem:  
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∑
=

=
n

1i
ire1 .       (12) 

 
This is called the L1 norm and is considered more robust when there are large outliers in the 
data. It is not much used in standard location programs since the absolute sign creates 
complications in the equations. This is of course not the case for grid search. Therefore, most 
location programs will have some scheme for weighting out or truncating large residuals (see 
later), which can partly solve the problem. 
 
Once the misfits (e.g., RMS) have been calculated at all grid points, one could assign the 
point with the lowest RMS as the ‘solution’. For well-behaved data, this would obviously be 
the case, but with real data, there might be several points, even far apart, with similar RMS 
and the next step is therefore to estimate the probable uncertainties of the solution. The 
simplest way to get an indication of the uncertainty, is to contour the RMS as a function of x 
and y (2-D case) in the vicinity of the point with the lowest RMS (see Figure 4). 
 

 
 
Figure 4 Left: RMS contours (in seconds) from a grid search location of an earthquake off 
western Norway (left). The grid size is 2 km. The circle in the middle indicates the point with 
the lowest RMS (1.4 s). Right: The location of the earthquake and the stations used. Note the 
elongated geometry of the station distribution. Its effect on the error distribution will be 
discussed in section 4.1 below. The RMS ellipse from the figure on the left is shown as a 
small ellipse in the figure at right. Latitudes are degrees North and longitudes degrees East. 
 
 
Clearly, if RMS is growing rapidly when moving away from the minimum, a better solution 
has been obtained than if RMS grows slowly. If RMS is contoured in the whole search area, 
other minima of similar size might be found indicating not only large errors but also a serious 
ambiguity in the solution. Also note in Figure 4 that networks with irregular aperture have 
reduced distance control in the direction of their smallest aperture but good azimuth control in 
the direction of their largest aperture. 
 
An important point in all grid-search routines is the method of how to search through the 
possible model space. In particular for events observed at teleseismic distances the model 
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space can be very large. Sambridge and Kennett (2001) published a fast neighborhood 
algorithm to use for global grid search. 
 
 
3.2.2 Location by iterative methods 
 
Despite increasing computer power, earthquake locations are done mainly by other methods 
than grid search. These methods are based on linearizing the problem. The first step is to 
make a guess of hypocenter and origin time (x0, y0, z0, t0). In its simplest form, e.g., in case of 
events near or within a station network, this can be done by using a location near the station 
with the first arrival time and using that arrival time as t0. Other methods also exist (see 
below). In order to linearize the problem, it is now assumed that the true hypocenter is close 
enough to the guessed value so that travel-time residuals at the trial hypocenter are a linear 
function of the correction we have to make in hypocentral distance. 
 
The calculated arrival times at station i, ti

c from the trial location are, as given in Equation (8), 
ti

c = T(x0, y0, z0, xi, yi, zi) + t0 and the travel-time residuals ri are ri = ti
o – ti

c . We now assume that 
these residuals are due to the error in the trial solution and the corrections needed to make 
them zero are ∆x, ∆y, ∆z, and ∆t. If the corrections are small, we can calculate the 
corresponding corrections in travel times by approximating the travel time function by a 
Taylor series and using only the first term. The residual can now be written: 
 

ri = (∂T/∂xi) * ∆x + (∂T/∂yi) * ∆y + (∂T/∂zi) * ∆z + ∆t   (13) 
 
In matrix form we can write this as 
 

r = G * X,         (14) 
 
where r  is the residual vector, G the matrix of partial derivatives (with 1 in the last column 
corresponding to the source time correction term) and X is the unknown correction vector in 
location and origin time. 
 
This is a set of linear equations with 4 unknowns (corrections to hypocenter and origin time), 
and there is one equation for each observed phase time. Normally there would be many more 
equations than unknowns (e.g., 4 stations with 3 phases each would give 12 equations). The 
best solution to Equation (13) or Equation (14) is usually obtained with standard least squares 
techniques. The original trial solution is then corrected with the results of Equation (13) or 
Equation (14) and this new solution can then be used as trial solution for a next iteration. This 
iteration process can be continued until a predefined breakpoint is reached. Breakpoint 
conditions can be either a minimum residuum r, or a last iteration giving smaller hypocentral 
parameter changes than a predefined limit, or just the total number of iterations. This 
inversion method was first invented and applied by Geiger (1910) and is called the ‘Geiger 
method’ of earthquake location. The iterative process usually converges rapidly unless the 
data are badly configured or the initial guess is very far away from the mathematically best 
solution (see later). However, it also happens that the solution converges to a local minimum 
and this would be hard to detect in the output unless the residuals are very bad. A test with a 
grid search program could tell if the minimum is local, or tests could be made with several 
start locations. 
So far we have only dealt with observations in terms of arrival times. Many 3-component 
stations and arrays now routinely report backazimuth of arrival φ. It is then possible to locate 
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events with only one station and P and S times (see Figure 1). However, the depth must be 
fixed. If one or several backazimuth observations are available, they can be used together with 
the arrival time observations in the inversion and the additional equations for the backazimuth 
residual are 

ri
φ = (∂φ/∂xi) * ∆x  + (∂φ/∂yi) * ∆y     (15) 

 
Equations of this type are then added to the Equations (13) or (14). The ∆x and ∆y in 
Equation (15) are the same as for Equation (13), however the residuals are now in degrees. In 
order to make an overall RMS, the degrees must be ‘converted to seconds’ in terms of scaling. 
For example, in the location program Hypocenter (Lienert and Havskov, 1995), a 10 deg 
backazimuth residual was optionally made equivalent to 1 s travel time residual. Using e.g., 
20 deg as equivalent to 1 s would lower the weight of the backazimuth observations. 
Schweitzer (2001a) used in the location program HYPOSAT a different approach. In this 
program the measured (or assumed) observation errors of the input parameters are used to 
weight individually the different lines of the equation system (13) or (14) before inverting it. 
Thereby, more uncertain observations will contribute much less to the solution than well-
constrained ones and all equations become non-dimensional. 
 
Arrays (see Chapter 9) or single stations (see Equation (3)) cannot only measure the 
backazimuth of a seismic phase but also its ray parameter (or apparent velocity). 
Consequently, the equation system (13) or (14) to be solved for locating an event, can also be 
extended by utilizing such observed ray parameters p (or apparent velocities) as defining data. 
In this case we can write 
 

ri
p = (∂p/∂xi) * ∆x + (∂p/∂yi) * ∆y + (∂p/∂zi) * ∆z    (16) 

 
Equation (16) is independent of the source time and the partial derivatives are often very 
small. However, in some cases, in particular if an event is observed with only one seismic 
array, the observed ray parameter will give additional constraint for the event location. 
 
Equations (13) and (14) are written without discussing whether working with a flat Earth or a 
spherical Earth. However, the principle is exactly the same, and using a flat-Earth 
transformation (e.g., Müller, 1977) any radially symmetric Earth model can be transformed 
into a flat model. The travel times and partial derivatives are often calculated by interpolating 
in tables and in principle it is possible to use any Earth model including 2-D and 3-D models 
to calculate theoretical travel times. In practice, 1-D models are mostly used, since 2-D and 3-
D models are normally not well enough known and the travel-time computations are much 
more time consuming. For local seismology, it is a common practice to specify a 1-D crustal 
model and calculate arrival times for each ray while for global models, an interpolation in 
travel-time tables such as IASP91 is the most common. However, as Kennett and Engdahl 
(1991) pointed out, the preferred and much more precise method for obtaining travel times 
from the IASP91 model or other 1-D global Earth models (see DS 2.1) is to apply the tau-p 
method developed by Buland and Chapman (1983). To calculate your own travel-time tables 
for local or global Earth models, the computer program LAUFZE (see PD 11.2) can be 
downloaded from ftp://ftp.norsar.no/pub/outgoing/johannes/lauf/, a description of the program 
is annexed in PD 11.2. It allows calculating travel times for many different seismic phases 
and an arbitrary horizontally layered model with any combination of layers with constant 
velocities, gradients, or first-order discontinuities. 
 
3.2.3 Example of location in a homogeneous model 
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The simplest case for earthquake location is a homogeneous medium. The arrival times can be 
calculated as 

0
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where v is the velocity. The partial derivatives can be estimated from Equation (17) and e.g., 
for x, the derivative is  
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Similar expressions can be made for y and z. Table 1 gives an example of locating an 
earthquake with 10 stations in a model with constant velocity (from Stein, 1991). The stations 
are from 11 to 50 km from the hypocenter. The earthquake has an origin time of 0 s at the 
point (0, 0, 10) km. The starting location is at (3, 4, 20) km at 2 s. The exact travel times were 
calculated using a velocity of 5 km/s and the iterations were done as indicated above. At the 
initial guess, the sum of the squared residuals was 92.4 s2, after the first iteration it was 
reduced to 0.6 s2 and already at the second iteration, the ‘correct’ solution was obtained. This 
is hardly surprising, since the data had no errors. We shall later see how this works in the 
presence of errors. 
 
 
Table 1 Inversion of error free data. Hypocenter is the correct location, Start is the start 
location, and the location is shown for the two following iterations. Units for x, y and z are 
[km], for t0 [s] and for the misfit e according to Equation (11) [in s2]. 
 

 Hypocenter Start 1. Iteration 2. Iteration 
X 0.0 3.0 -0.5 0.0 
Y 0.0 4.0 -0.6 0.0 
Z 10.0 20.0 10.1 10.0 
t0 0.0 2.0 0.2 0.0 
e  94.2 0.6 0.0 
RMS  3.1 0.25 0.0 

 
 
3.2.4 Advanced methods 
 
The problem of locating seismic events has recently experienced a lot of attention and new 
procedures have been developed such as the double-difference earthquake location algorithm 
(Waldhauser and Ellsworth, 2000), a novel global differential evolution algorithm (Ružek and 
Kvasnička (2001), a probabilistic approach to earthquake location in 3-D and layered models 
by Lomax et al. (2000) as well as advanced grid search procedures to be applied in highly 
heterogeneous media (Lomax et al., 2001). Recent advances in travel-time calculations for 
three-dimensional structures complements this method (e.g., Thurber and Kissling, 2000). 
Several of these and other more recent developments are summarized in a monograph edited 
by Thurber and Rabinowitz (2000), which includes also advances in global seismic event 
location (Thurber and Engdahl, 2000); and in a special volume about event location in context 
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with the special requirements for monitoring the CTBT (Ringdal and Kennett, 2001). Figure 5 
shows how much the accuracy of location within earthquake clusters can be improved by 
applying the above mentioned double-difference earthquake location algorithm.  
 

  
 
Figure 5  Examples of improving the ABCE locations for earthquake clusters (red dots) from 
regional networks of seismic stations (triangles) in China by relocating the events with the 
double-difference location algorithm (courtesy of Paul G. Richards). 
 
 

4 Location errors 
 
4.1 Error quantification and statistics 
 
Since earthquakes are located with arrival times that contain observational errors and the 
travel times are calculated assuming we know the model, all hypocenters will have errors. 
Contouring the grid search RMS (Figure 4) gives an indication of the uncertainty of the 
epicenter. Likewise it would be possible to make 3-D contours to get an indication of the 3-D 
uncertainty. The question is now how to quantify this measure. The RMS of the final solution 
is very often used as a criterion for ‘goodness of fit’. Although it can be an indication, RMS 
depends on the number of stations and does not in itself give any indication of errors and 
RMS is not reported by e.g., PDE and ISC. 
 
From Figure 4 it is seen that the contours of equal RMS are not circles. We can calculate 
contours within which there is a 67 % probability (or any other desired probability) of finding 
the epicenter (see below). We call this the error ellipse. This is the way hypocenter errors 
normally are represented. It is therefore not sufficient to give one number for the hypocenter 
error since it varies spatially. Standard catalogs from PDE and ISC give the errors in latitude, 
longitude and depth, however, that can also be very misleading unless the error ellipse has the 
minor and major axis NS or EW. In the example in Figure 4, this is not the case. Thus the 
only proper way to report error is to give the full specification of the error ellipsoid. 
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Before going into a slightly more formal discussion of errors, let us try to get a feeling for 
which elements affect the shape and size of the epicentral error ellipse. If we have no arrival 
time errors, there are no epicenter errors so the magnitude of the error (size of error ellipse) 
must be related to the arrival time uncertainties. If we assume that all arrival time reading 
errors are equal, only the size and not the shape of the error ellipse can be affected. So what 
would we expect to give the shape of the error ellipse? Figure 4 is an example of an elongated 
network with the epicenter off to one side. It is clear that in the NE direction, there is a good 
control of the epicenter since S-P times control the distances in this direction due to the 
elongation of the network. In the NW direction, the control is poor because of the small 
aperture of the network in this direction. We would therefore expect an error ellipse with the 
major axis NW as observed. Another way of understanding why the error is larger in NW 
than in NE direction is to look at Equation (12). The partial derivatives ∂T/∂x will be much 
smaller than ∂T/∂y so the ∆y-terms will have a larger weight then the ∆x-terms in the 
equations (strictly speaking the partial derivatives with respect to NW and NE). 
Consequently, errors in arrival times will affect ∆x more than ∆y. Note that if backazimuth 
observations were available for any of the stations far North or South of the event, this would 
drastically reduce the error estimate in the EW direction since ∂φ/∂x is large while ∂φ/∂y is 
nearly zero. 
 
Another geometry of the stations would give another shape of the error ellipse. It is thus 
possible for any network to predict the shape and orientation of the error ellipses, and given 
an arrival error, also the size of the ellipse for any desired epicenter location. This could e.g., 
be used to predict how a change in network configuration would affect earthquake locations at 
a given site. 
 
In all these discussions, it has been assumed that the errors have Gaussian distribution and 
that there are no systematic errors like clock error. It is also assumed that there are no errors in 
the theoretical travel times, backazimuths, or ray parameter calculations due to unknown 
structures. This is of course not true in real life, however error calculations become too 
difficult if we do not assume a simple error distribution and that all stations have the same 
arrival time error. 
 
The previous discussion gave a qualitative description of the errors. We will now show how 
to calculate the actual hypocentral errors from the errors in the arrival times and the network 
configuration. The most common approach to earthquake location is based on the least 
squares inversion and a Gaussian distribution of the arrival time errors, in which case the 
statistics is well understood and we can use the Chi-Square probability density distribution to 
calculate errors. For a particular earthquake location, χ2 can be calculated as: 
 

∑
=

=
n

i
ir

1

2
2

2 1

σ
χ ,      (19) 

 
where σ is the assumed same standard deviation of any one of the residuals and n is the 
number of observations. We can now look at the standard statistical tables (extract in Table 2) 
to find the expected value of χ2 within a given probability. As can be seen from the table, 
within 5% probability, χ2 is approximately the number of degrees of freedom (ndf), which in 
our case is n-4. 
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Table 2  The percentage points of the χ2 distribution for different numbers of degrees of 
freedom (ndf)  

 
     

   ndf χ2 (95%) χ2 (50%) χ2 (5%) 
    5     1.1     4.4    11.1 
  10     3.9     9.3    18.3 
  20   10.9   19.3    31.4 
  50   34.8   49.3    67.5 
100   77.9   99.3  124.3 

 
If e.g., an event is located with 24 stations (ndf=20), there is only a 5% chance that χ2 will 
exceed 31.4. The value of χ2 will grow as we move away from the best fitting epicenter and in 
the example above, the contour within which χ2 is less than 31.4 will show the error ellipse 
within which there is a 95 % chance of finding the epicenter. In practice, errors are mostly 
reported within 67 % probability. 
 
The errors in the hypocenter and origin time can also formally be defined with the variance – 
covariance matrix σσσσX

2 of the hypocentral parameters. This matrix is defined as 
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The diagonal elements are variances of the location parameters x, y, z and t0 while the off 
diagonal elements give the coupling between the errors in the different hypocentral 
parameters. For more details, see e.g., Stein (1991). The nice property about σσσσX

2 is that it is 
simple to calculate: 
 

σσσσX
2 = σσσσ2 * (GTG)-1,        (21) 

 

where σσσσ2 is the variance of the arrival times multiplied by the identity matrix and GT is G 
transposed. The standard deviations of the hypocentral parameters are thus given by the 
square root of the diagonal elements and these are the usual errors reported. So how can we 
use the off diagonal elements? Since σσσσX

2 is a symmetric matrix, a diagonal matrix in a 
coordinate system, which is rotated relatively to the reference system, can represent it. We 
now only have the errors in the hypocentral parameters, and the error ellipse simply have semi 
axes σxx, σyy,

 and σzz . The main interpretation of the off diagonal elements is thus that they 
define the orientation and shape of the error ellipse. A complete definition therefore requires 6 
elements. Eqs. (20) and (21) also show, as stated intuitively earlier, that the shape and 
orientation of the error ellipse depends only on the geometry of the network and the crustal 
structure whereas the standard deviation of the observations is a scaling factor. 
 
The critical variable in the error analysis is therefore the arrival-time variance σ2. This value 
is usually larger than would be expected from timing and picking errors alone, however it 
might vary from case to case. Setting a fixed value for a given data set could result in 
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unrealistic error calculations. Most location programs will therefore estimate σ from the 
residuals of the best fitting hypocenter: 
 

∑
=

=
n

i
irndf 1

22 1σ .      (22) 

 
Division by ndf rather than by n compensates for the improvement in fit resulting from the use 
of the arrival times from the data. However, this only partly works and some programs allow 
setting an a priori value which is used only if the number of observations is small. For small 
networks this can be a critical parameter. 
 
Recently, some studies (e.g., Di Giovambattista and Barba, 1997; Parolai et al., 2001) 
showed, both for regional and local seismic networks, that the error estimates ERH (in 
horizontal) and ERZ (in vertical direction), as given by routine location programs (e.g., in 
Hypoellipse) can not be considered as a conservative estimate of the true location error and 
might lead investigators to unjustified tectonic conclusions (see also Figures 11 and 12).  
 
 
4.2 Example of error calculation 
 
We can use the previous error free example (see Table 1) and add some errors (from Stein, 
1991). We add Gaussian errors with a mean of zero and a standard deviation of 0.1 s to the 
arrival times. Now the data are inconsistent and cannot fit exactly. As it can be seen from the 
results in Table 3, the inversion now requires 3 iterations (2 before) before the locations stop 
changing. The final location is not exactly the location used to generate the arrival times and 
the deviation from the correct solution is 0.2, 0.4, and 2.2 km for x, y, and z respectively, and 
0.2 s for the origin time. This gives an indication of the location errors. 
 
 
Table 3  Inversion of arrival times with a 0.1 s standard error. Hypocenter is the correct 
location, Start is the start location, and the locations are shown after the three following 
iterations. e is the misfit according to Equation (11). 
 

 Hypocenter Start 1. Iteration 2. Iteration 3. Iteration 
x [km] 0.0 3.0 -0.2 0.2 0.2 
y [km] 0.0 4.0 -0.9 -0.4 -0.4 
z [km] 10.0 20.0 12.2 12.2 12.2 
t0 [s] 0.0 2.0 0.0 -0.2 -0.2 
e [s2]  93.7 0.33 0.04 0.04 
RMS [s]  3.1 0.25 0.06 0.06 

 
 
It is now interesting to compare what is obtained with the formal error calculation. Table 4 
gives the variance – covariance matrix. Taking the square root of the diagonal elements we 
get the standard deviations of x, y, z and t0  as 0.3, 0.3 and 1.1 km and 0.1 s, respectively. This 
is close to the ‘true’ error so the solution is quite acceptable. Also note that the RMS is close 
to the standard error. 
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Table 4  Variance – covariance matrix for the example in Table 3. 
   

    x     Y    Z    t 
x  0.06  0.01  0.01  0.00 
y  0.01  0.08 -0.13  0.01 
z  0.01 -0.13  1.16 -0.08 
t  0.00  0.01 -0.08  0.0 

 
The variance – covariance matrix shows some interesting features. As seen from the dialog 
elements of the variance – covariance matrix, the error is much larger in the depth estimate 
than in x and y. This clearly reflects that the depth is less well constrained than the epicenter 
which is quite common unless there are stations very close to the epicenter and thus |(d-∆)| / ∆ 
>> 1. For simplicity, we have calculated the standard deviations from the diagonal terms, 
however since the off diagonal terms are not zero, the true errors are larger. In this example it 
can be shown that the semi-major and semi-minor axis of the error ellipse have lengths of 
0.29 and 0.24 km respectively, and the semi-major axis trends N22°E, so the difference from 
the original diagonal terms is small. 
 
The zt term, the covariance between depth and origin time, is negative, indicating a negative 
trade-off between the focal depth and the origin time; an earlier source time can be 
compensated by a larger source depth and vice versa. This is commonly observed in practice 
and is more prone to happen if only first P-phase arrivals are used such that there is no strong 
limitation of the source depth by P times in different distances. 
 
Error calculation is a fine art, there are endless variations on how it is done and different 
location programs will usually give different results. 
 
 

5 Relative location methods 
 
5.1 Master event technique 
 
The relative location between events within a certain region can often be made with a much 
greater accuracy than the absolute location of any of the events. This is the case when velocity 
variations outside the local region are the major cause of the travel-time residuals such that 
residuals measured at distant stations will be very similar for all of the local events. Usually, 
the events in the local area are relocated relative to one particularly well-located event, which 
is then called the master event. It should be clear that the Master Event Technique can only 
be used when the distance to the stations is much larger than the distance between the events. 
 
Most location programs can be used for a master event location. For this travel-time 
anomalies outside the source region are assumed to cause all individual station residuals after 
the location of the master event. By using these station residuals as station corrections, the 
location of the remaining events will be made relative to the master event since all relative 
changes in arrival times are now entirely due to changes in location within the source region. 
It is obvious that only stations and phases for which observations are available for the master 
event can be used for the remaining events. Ideally, the same stations and phases should be 
used for all events. 
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5.2 Joint hypocenter location 
 
In the Master Event Technique, it was assumed that true structure dependent residuals could 
be obtained absolutely correct from the master event, however other errors could be present in 
the readings for the master event itself. A better way is to determine the most precise station 
residuals using the whole data set. This is what Joint Hypocenter Determination (JHD) is 
about. Instead of determining one hypocenter and origin time, we will jointly determine m 
hypocenters and origin times, and n station corrections. This is done by adding the station 
residuals ∆ti

s to Equation (13) and writing the equations for all m earthquakes (index j): 
 

rij = (∂T/∂xij) * ∆x + (∂T/∂yij) * ∆y + (∂T/∂zij) * ∆x + ∆ti
s + ∆tj.      (23) 

 
The first to propose the JHD method was Douglas (1967). Since the matrix G of Equation 
(14) is now much larger than the 4 x 4 matrix for a single event location, efficient inversion 
schemes must be used. If we use e.g., 20 stations with 2 phases each for 10 events, there will 
be 20 *10 *2 = 400 equations and 80 unknowns (10 hypocenters and origin times, and 20 
station residuals). 
 
The relative locations obtained by the Master Event Technique or the JHD are usually more 
reliable than individually estimated relative locations. However, only if we have the absolute 
location of one of the events (e.g., a known explosion), will we be able to convert the relative 
locations of a Master Event algorithm into absolute locations, whereas for the JHD “absolute” 
locations are obtained for all events if the assumed velocity model is correct. Accurate relative 
locations are useful to study, e.g., the structure of a subduction zone or the geometry of an 
aftershocks area, which might indicate the orientation and geometry of the fault. Recently, 
Pujol (2000) has given a very detailed outline of the method and its application to data from 
local seismic networks. Figure 6 shows an example for increased location accuracy after 
applying JHD.  
 

   
 
Figure 6  Comparison of earthquake locations using the normal procedure at ISC (left) and 
JHD relocations (right). The events are located in the Kurile subduction zone along the 
rupture zones of large thrust events in 1963 and 1958. The vertical cross sections shown 
traverse the thrust zone from left to right. Note that the JHD solutions reduce the scatter and 
make it possible to define a dipping plane (from Schwartz et al., 1989). 
 



Information Sheet                                                                                              IS 11.1 
 

 18 

6 Practical consideration in earthquake locations 
 
This section is intended to give some practical hints on earthquake location. The section does 
not refer to any particular location program, but most of the parameters discussed can be used 
with the Hypocenter program (Lienert and Havskov, 1995) or with HYPOSAT (Schweitzer, 
2001a). 
 
6.1 Phases 
 
The most unambiguous phase to pick is usually P and P is the main phase used in most 
teleseismic locations. For local earthquakes, usually S phases are also used. Using phases with 
different velocities and slowness has the effect of better constraining the distances and there is 
then less trade-off between depth and origin time or epicenter location and origin time if the 
epicenter is outside the network. The focal depth is best controlled (with no trade-off between 
depth and origin time) when phases are included in the location procedure which have a 
different sign of the partial derivative ∂T/∂z in Equation (13) such as for very locally observed 
direct up-going Pg (positive) and Pn (negative) (see section 6.3 Hypocentral depth and Figure 
9). In general, it is thus an advantage to use as many different phases as possible under the 
assumption that they are correctly identified. Recently Schöffel and Das (1999) gave a 
striking example (see Figure 7). But one very wrong phase can throw off an otherwise well 
constrained solution. This highlights the crucial importance of the capability of the 
observatory personnel to recognize and report such phases during their routine seismogram 
analysis. 
 

 
 
Figure 7  Examples of significant improvement of hypocenter location for teleseismic events 
by including secondary phases. Left: hypocenter locations using only P phases; middle: by 
including S phases; right: by including also depth phases and core reflections with a different 
sign of ∂T/∂z (modified from Schöffel and Das, J. Geophys. Res., Vol. 104, No. B6, page 
13,104, Figure 2;  1999, by permission of American Geophysical Union). 
 
 
Engdahl et al. (1998) used the entire ISC database to relocate more than 100,000 seismic 
events. They used not only a new scheme to associate correctly secondary phases, they also 
systematically searched for pwP onsets in the case of subduction-zone events to get better 
depth estimates, and they used a modern global Earth model (AK135) to avoid the known 
problems with the Jeffreys-Bullen tables. With all these changes the authors reached a far 
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more consistent distribution (in particular for subduction zones) and sharper picture of global 
seismicity. 
 
The majority of location programs for local earthquakes use only first arrivals (e.g., HYPO71, 
Lee and Lahr, 1975). This is good enough for many cases. In some distance ranges, Pn is the 
first arrival, and it usually has small amplitudes. This means that the corresponding Sn phase, 
which is then automatically used by the program, might have also very small amplitudes and 
is not recognized, while actually the phase read is Sg or Lg instead. Since the program 
automatically assumes a first arrival, a wrong travel-time curve is used for the observed 
phase, resulting in a systematic location error. This error is amplified by the fact that the S 
phase, due to its low velocity, has a larger influence on the location than the P phase. It is 
therefore important to use location programs where all crustal phases can be specified. 
 
Schweitzer (2001a) developed an enhanced routine to locate both local/regional and 
teleseismic events, called HYPOSAT. The program runs with global Earth models and user 
defined horizontally layered local or regional models. It provides the best possible hypocenter 
estimates of seismic sources by using travel-time differences between the various observed 
phases besides the usual input parameters such as arrival times of first and later onsets 
(complemented by backazimuth and ray parameters in the case of array data or polarization 
analyses). If S observations are also available, preliminary origin times are estimated by using 
the Wadati approach (see Figure 3) and a starting epicenter with a priori uncertainties by 
calculating the intersection of all backazimuth observations. By relocating events with real 
data Schweitzer could show that HYPOSAT solutions have the smallest errors when, besides 
the absolute onset times the travel-time differences of all available primary and secondary 
phase readings are also taken into account. The most advanced version of HYPOSAT can be 
found at ftp://ftp.norsar.no/pub/outgoing/johannes/hyposat/ and a program description is 
given in PD 11.1.  
 
 
6.2 Starting location 
 
Iterative location programs commonly start at a point near the station recording the first 
arrival. This is good enough for most cases, particularly when the station coverage is good 
and the epicenter is near or within the network. However, this can also lead to problems when 
using least squares techniques, which converge slowly or sometimes not at all for events 
outside the limits of a regional network (Buland, 1976). Another possibility is that the 
solution converges to a local minimum, which might be far from the correct solution. For 
small-elongated networks, two potential solutions may exist at equal distances from the long 
axis. A starting location close to the first arrival station can then bias the final solution to the 
corresponding side of such a network. Although this bias usually is on the correct side, any 
systematic error in the first-arrival station’s time can have a disproportionately strong effect 
on the final location. Thus in many cases, it is desirable to use a better start location than the 
nearest station. There are several possibilities: 
 

a) in many cases the analyst knows by experience the approximate location and can then 
manually give a start location; most programs have this option; 

b) similar phases at different stations can be used to determine the apparent velocity and 
backazimuth of a plane wave using linear regression on the arrival times with respect 
to the horizontal station coordinates. With the apparent velocity and/or S-P times, an 
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estimate of the start location can be made. This method is particularly useful when 
locating events far away from the network (regionally or globally); 

c) Backazimuth information is frequently available from 3-component stations or seismic 
arrays and can be used as under b; 

d) if backazimuth observations are available from different stations, a starting epicenter 
can be determined by calculating the intersection of all backazimuth observations; 

e) S-P and the circle method can be used with pairs of stations to get an initial location; 
f) the Wadati approach can be used to determine a starting source time. 

 
The starting depth is usually a fixed parameter and set to the most likely depth for the region. 
For local earthquakes usually the depth range 10-20 km is used, while for distant events, the 
starting depth is often set to 33 km. If depth phases, e.g., pP are available for distant events, 
these phases can be used to set or fix the depth (see next section). 
 
 
6.3 Hypocentral depth 
 
The hypocentral depth is the most difficult parameter to determine due to the fact that the 
travel-time derivative with respect to depth changes very slowly as function of depth (see 
Figure 8) unless the station is very close to the epicenter. In other words, the depth can be 
moved up and down without changing the travel time much. Figure 8 shows a shallow (ray 1) 
and a deeper event (ray 2). It is clear that the travel-time derivative with respect to depth is 
nearly zero for ray 1 but not for ray 2. In this example, it would thus be possible to get an 
accurate depth estimate for the deeper event but not for the shallower one. Unfortunately, at 
larger distances from the source, most rays are more like ray 1 than ray 2 and locations are 
therefore often made with a fixed ‘normal’ start depth. Only after a reliable epicenter is 
obtained will the program try to iterate for the depth. Another possibility is to locate the event 
with several starting depths and then use the depth that gives the best fit to the data. Although 
one depth will give a best fit to all data, the depth estimate might still be very uncertain and 
the error estimate must be checked.  

 

            
 

Figure 8  The depth – distance trade off in the determination of focal depth. 
 
 
For teleseismic events, the best way to improve the depth determination is to include readings 
from the so-called depth phases (e.g., Gutenberg and Richter, 1936b and 1937; Engdahl et al., 
1998) such as pP, pwP (reflection from the ocean free surface), sP, sS or similar but also 
reflections from the Earth's core like PcP, ScP or ScS (see Figure 7). The travel-time 
differences (i.e., depth phase-direct phase) as pP-P, sP-P, sS-S and pS-S are quite constant 
over a large range of epicentral distances for a given depth so that the depth can be 
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determined nearly independently of the epicenter distance. Another way of getting a reliable 
depth estimate for teleseismic locations is to have both near and far stations available. In 
particular, event observations from local and regional stations together with PKP observations 
have been used together for this purpose. However, this is unfortunately not possible for many 
source regions. 
 
For local events, a rule of thumb is that at least several near stations should not be further 
away than 2 times the depth in order to get a reliable estimate (Figure 8). This is very often 
not possible, particularly for regional events. At a distance of more than 2×depth, the depth 
depending partial derivative changes very little with depth if the first arriving phase is the 
more or less horizontally propagating Pg. But at distances where the critically refracted (so-
called head-waves) Pb or Pn arrive, there is again some sensitivity to depth due to the steeply 
down going rays of Pb or Pn (Figure 9) and because of the different sign of the partial 
derivatives of their travel times with depth, which is negative, as compared to Pg, which is 
positive. So, if stations are available at distances with both direct and refracted rays as first 
arrivals, reasonably reliable solutions might be obtained. An even better solution is when both 
Pg and Pn are available at the same station and the location capability could be similar to 
using P and pP for teleseismic events. The problem is that it might be difficult to identify 
correctly secondary P phases and a wrong identification might make matters worse. 
 

       
  

Figure 9  Example of both Pg and Pn rays in the a single layer crustal model.  
 
 
The depth estimate using a layered crustal model remains problematic even with a mix of 
phases. In checking catalogs with local earthquakes, it will often be noted that there is a 
clustering of hypocenters at layer boundaries. This is caused by the discontinuities in the 
travel-time curves of the direct phase Pg as a function of depth at layer boundaries (see Figure 
10 for an example). The Pg travel time suddenly decreases when the hypocenter crosses a 
boundary (here Moho) since a larger part of the ray suddenly is in a higher velocity layer, 
while the Pn travel time continuously decreases as the depth increases as long as the event is 
still within the crust. This gives rise to the discontinuities in the Pg-Pn travel-time curve. So 
one Pn-Pg travel-time difference is not enough to ensure a reliable depth estimate, several 
such phase arrivals must be available. 
 
Many location programs give the RMS of the travel-time residuals in a grid around the 
calculated hypocenter. In addition to the error estimates, this gives an idea about the accuracy 
and thus a local minimum might be found. A more direct way of estimating the quality of the 
depth estimate is to calculate the RMS as a function of depth in order to check if a local 
minimum has been reached. This is particularly relevant for crustal earthquakes at shallow 
depth and can also be used as a complementary tool for discriminating better between quarry 
blasts and earthquakes.  
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Figure 10  Ray paths of Pg and Pn phases in a two-layer crustal model (left). On the right side 
the travel-time curve of Pg-Pn as a function of depth is sketched.  
Even when several Pg and Pn phases are available, depth estimates still remain a problems at 
regional distances due to the uncertainty in the crustal models. Since the depth estimates are 
critically dependent on the accurate calculation of Pg and Pn travel times, small uncertainties 
in the model can quickly throw off the depth estimate. 
 
 
6.4 Outliers and weighting schemes 
 
The largest residuals have a disproportionally large influence on the fit of the arrival times 
due to the commonly used least squares fit. Most location programs will have some kind of 
residual weighting scheme in which observations with large residuals are given lower or even 
no weight. Bisquare weighting is often used for teleseismic events (Anderson, 1982). The 
residual weighting works very well if the residuals are not extreme since the residual 
weighting can only be used after a few iterations when the residuals are already close to the 
final ones. Individual large residuals can often lead to completely wrong solutions, even when 
90% of the data are good; residual weighting will not help in these cases. Some programs will 
try to scan the data for gross errors (like minute errors) before starting the iterative procedure. 
If an event has large residuals, try to look for obvious outliers. A Wadati diagram can often 
help in spotting bad readings for local earthquakes (see Figure 3). 
 
The arrival-time observations by default will always have different weights in the inversion. 
A simple case is that S waves may have larger weights than P waves due to their lower 
velocities. An extreme case is the T wave (a guided wave in the ocean), which with its low 
velocity (1.5 km/s) can completely dominate the solution. Considering that the accuracy of 
the picks is probably best for the P waves, it should be natural that P arrivals have more 
importance than S arrivals in the location. However, the default parameter setting in most 
location programs is to leave the original weights unless the user actively changes them. It is 
normally possible to give a priori for all S phases a lower weight and in addition, all phases 
can be given individual weights, including being totally weighted out. 
 
When working with local earthquakes, the nearest stations will usually provide the most 
accurate information due to the clarity of the phases. In addition, uncertainty in the local 
model has less influence on the results at short distances than at large distances; this is 
particularly true for the depth estimate. It is therefore desirable to put more weight on data 
from near stations than on those from distant stations and this is usually done by using a 
distance weighting function of 
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where ∆ is the epicentral distance, xnear is the distance to which full weight is used and xfar is 
the distance where the weight is set to zero (or reduced). The constants xnear and xfar are 
adjusted to fit the size of the network; xnear should be about the diameter of the network, and 
xfar about twice xnear. For a dense network, xnear and xfar might be made even smaller for more 
accurate solutions.  
 
 
6.5 Ellipticity of the Earth 
 
Until now we only assumed that the model used for calculating distances or travel times is 
either a flat model for local or regional events or a standard spherical model of the Earth for 
teleseismic events. However, the Earth is neither a sphere nor a flat disk but an ellipsoid 
symmetrical to its rotation axis. It was Gutenberg and Richter (1933) who first pointed out 
that the difference between a sphere and an ellipsoid must be taken into account when 
calculating epicentral distances and consequently also the travel times of seismic phases. 
Therefore, they proposed the usage of geocentric coordinates instead of geographic 
coordinates to calculate distances and angles on the Earth. Because of the axially symmetrical 
figure of the Earth, the geocentric longitude is identical to the geographic longitude. To 
convert a geographic latitude latg into a geocentric latitude latc one can use the following 
formula: 
 

)tan)136.6378/)751.6356136.6378(1arctan(( 2
gc latlat ∗−−= .  (25) 

 
With this formula all station latitudes have to be converted before an event location and after 
the inversion, the resulting geocentric event latitude has to be converted back by applying the 
inverse equation 
 

))136.6378/)751.6356136.6378(1/(arctan(tan 2−−= cg latlat .  (26) 

 
With this procedure all angle calculations related to an event location are done for a sphere. 
The calculated distances are measured in degrees and to convert them into km, one has to use 
the local Earth radius Rloc: 
 

22 )sin751.6356()cos136.6378( ccloc latlatR ∗+∗= .   (27) 

 
This value has then to be applied for converting a distance D measured in degrees into a 
distance measured in km, or vice versa: 
 

[ ] [ ]deg360
2 DkmD locR ∗= ∗π  or [ ] [ ]kmDD

locR ∗= ∗π2
360deg   (28) 

 
All standard Earth models are spherically symmetrical Earth with a mean radius of 6371 km. 
Therefore the standard tables also contain travel times calculated for a sphere. Bullen (1937, 
1938, 1939) was the first to calculate latitude-depending travel-time corrections (ellipticity 
corrections) to be used together with travel-time tables for a spherical Earth. Later work on 
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this topic was done by Dziewonski and Gilbert (1976) and Dornboos (1988b). Kennett and 
Gudmundsson (1996) published the most recent set of ellipticity corrections for a large 
number of seismic phases. 
 
In conclusion: to get the theoretical travel time for an event in teleseismic or regional 
distance, one has first to calculate the geocentric epicentral distance, then use travel-time 
tables as calculated for a spherical Earth model, and finally apply the latitude (event and 
station!) dependent ellipticity correction. Most location routines automatically apply the 
described methods and formulas but it is important to check this in detail and eventually to 
change a location program. 
 
 
6.6 Importance of the model 
 
In this context the importance of the model assumptions underlying the location procedure 
has to be emphasized. Many studies have shown (e.g., Kissling, 1988) that accuracy of 
locating hypocenters can be improved by using a well-constrained minimum 1-D velocity 
model with station corrections and is better than using a regional 1-D model. However, 
Spallarossa et al. (2001) recently showed that in strongly heterogeneous local areas even a 1-
D model with station corrections does not significantly improve the accuracy of the location 
parameters. High-precision location in such cases can be achieved only by using a 3-D model. 
This is particularly true for locating earthquakes in volcanic areas (see Lomax et al., 2001). 
 
Smith and Ekström (1996) investigated the improvement of teleseismic event locations by 
using a recent three-dimensional three-dimensional Earth model. They came to the conclusion 
that it “... offers improvement in event locations over all three 1-D models with, or without, 
station corrections.” For the explosion events, the average mislocation distance is reduced by 
approximately 40 %; for the earthquakes, the improvements are smaller. Corrections for 
crustal thickness beneath source and receiver are found to be of similar magnitude to the 
mantle corrections, but use of station corrections together with the 3-D mantle model provide 
the best locations. Also Chen and Willemann (2001) carried out a global test of seismic event 
locations using 3-D Earth models. Although a tighter clustering of earthquakes in subduction 
zones was achieved by using a 3-D model rather than using depth from the ISC Bulletin based 
on 1-D model calculations, they concluded that the clustering was not as tight as for depths 
computed by Engdahl et al. (1998) who used depth phases as well as direct phases. Thus, 
even using the best available global 3-D models can not compensate for the non-use of depth 
phases and core reflections in teleseismic hypocenter location (see Figure 7). 
 
A case example for improved location of local events is given in Figures 11 and 12. The 
upper panel in Figure 11 shows the initial epicenter locations of aftershocks of the Cariaco 
earthquake (Ms = 6.8) on July 9, 1997 in NE Venezuela based on an averaged 1-D crustal 
velocity model. The mean location error (i.e., the calculated precision with respect to the 
assumed model) was about 900 m. On average, the aftershocks occurred about 2 to 3 km 
north of the surface fault trace. A detailed tomographic study revealed lateral velocity 
contrasts of up to 20 % with higher velocities towards the north of the El Pilar fault. 
Relocating the events with the 3-D velocity  the epicenters were systematically shifted 
southward by about 2 km and now their majority aligns rather well with fault traces mapped 
before the earthquake as well as with newly ruptured fault traces. Also in the cross sections 
the data scatter was clearly reduced so that closely spaced outcropping surface faults could be 
traced down to a depth of more than 10 km. These results point to the fact that in the presence 



Information Sheet                                                                                              IS 11.1 
 

 25 

of lateral velocity inhomogeneities epicenter locations are systematically displaced in the 
direction of higher velocities. We will look into this problem more closely in section 7. 
 

               
 
Figure 11  Epicentral distribution of aftershocks of the Cariaco earthquake (Ms=6.8) on July 
9, 1997 in NE Venezuela. Top: results from HYPO71 based on a one-dimensional velocity-
depth distribution. Bottom: Relocation of the aftershocks on the basis of a 3-D model derived 
from a tomographic study of the aftershock region (courtesy of M. Baumbach, H. Grosser and 
A. Rietbrock). 

 
 
Figure 12  3-D distribution of the P-wave velocity in the focal region of the 1997 Cariaco 
earthquake as derived from a tomographic study. The horizontal section shows the velocity 
distribution in the layer between 2 km and 4 km depth. Red and blue dots mark the epicenters 
of the aftershocks. The red ones were chosen because of their suitability for the tomography. 
The six vertical cross sections show the depths' distribution of the aftershocks (green dots) 
together with the deviations of the P-wave velocity from the average reference model. The 
depth range and the lateral changes of fault dip are obvious (courtesy of M. Baumbach, H. 
Grosser and A. Rietbrock). 
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7 Internal and external (real) accuracy of locations 
 
For decades the international data centers have located earthquakes world-wide by means of 
the 1-D Jeffreys and Bullen (1940, 1948, 1958, 1967, and 1970) travel-time tables without 
external control of the accuracy of such solutions by independently checking them with 
similarly strong events of exactly known position and origin time. Therefore, the question has 
remained open for a long time as to whether these calculated location errors were real or just 
the minimized average errors for the best fitting solutions to the observed data based on 
model assumptions with respect to the validity of the velocity model, the non-correlation of 
the various parameters to be determined and the Gaussian distribution of both the model 
errors and the data reading errors. If the latter is the case then the calculated errors are no 
measure of the real accuracy of the calculated location and origin time but rather a measure of 
the internal precision of fitting the data to the model assumptions. 
 
In order to investigate this in more detail, Bormann (1972a and b) looked into the travel-time 
errors reported by the international data centers for the German seismological observatory 
Moxa (MOX) for earthquakes in different regions of the world. As an example, he got for the 
same data set of events from the Kurile Islands the mean residualδtp = + 0.16 s and a 
standard deviation σ = ± 0.65 s when referring the MOX onset-time readings to the locations 
published by the U.S. Coastal and Geodetic Survey (USCGS, World Data Center A, WDC A) 
and δtp = + 0.35 s with σ = ± 1.1 s when referring to the locations published by the Academy 
of Sciences of the Soviet Union (ANUSSR, World Data Center B, WDC B) which used the 
same J-B travel-time model as USCGS. Thus, the travel-time (or onset-time reading) errors 
calculated by the data centers for seismic stations are not real errors of these stations or their 
readings but depend on the number and distribution of stations used by these centers in their 
location procedure. And these were rather different for WDC A and WDC B. While the 
USCGS used the data of a worldwide station network, ANUSSR based its locations on the 
station network of the former Soviet Union and East European countries and these “looked at” 
events outside Eurasia from a much narrower azimuth and distance range. But this is 
equivalent to the discussion related to Figure 4. The mean residuals calculated by these two 
centers for the considered region were not significantly different and not far from zero. 
Therefore, the question remained as to whether there were systematic biases in these solutions 
and if so, of what kind and how big.  
 
From the 1960s onwards testing of strong underground nuclear explosions (UNE) provided 
for the first time independent strong sources with precisely known coordinates and origin time 
to allow checking the accuracy of calculated seismic source locations from global seismic 
observations. During recent years such information has been released for many UNEs. 
However, for the LONGSHOT explosion on the Amchitka Islands, Aleutians, the source 
parameters were known for many years. For this event the residual of MOX was δtp = -4.6 s. 
This contrasted sharply with calculated residuals for the Aleutian earthquakes. From 53 
analyzed earthquakes in that region, no negative residual at MOX was larger than -0.8 s! 
Interestingly, the USGS had calculated for LONGSHOT a location 25 km NW of the true 
place (which explains -1 s travel-time error at MOX) and an origin time which was 3.5 s 
earlier than the real one (which accounts for the remaining -3.5 s) (Sykes, 1966). The too 
early source time is a well-understood artifact of the Jeffreys-Bullen tables, which generally 
give too long P-wave travel times. According to Fedotov and Slavina (1968) epicenters 
calculated by the WDC B from events in the Aleutians are generally displaced towards NW 
with respect to those of the WDC A. Consequently, with the same systematic tendency of 
shift, they deviate still more from the true locations of events in that area. 
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The ISC waits for about two years before running its final earthquake location procedure. 
This allows to collect as many seismogram readings as possible from worldwide distributed 
seismological observatories and thus assures the best geographic coverage for each seismic 
event. 
 
What is the reason for this systematic mislocation, which usually remains unrecognized 
unless one locates strong independently controlled sources of exactly known source 
parameters and origin time? Figure 13 shows some hypothetical earthquakes at different depth 
on a vertically dipping fault. It separates two half-spaces with different wave propagation 
velocity v2 > v1. This is a realistic model for parts of the San Andreas Fault. The lateral 
velocity difference across the fault may be as large as 5 to 7 %. S1 and S2 may be two 
stations at the same hypocentral distances from the events. But because of v2 > v1 the onset 
time t2 at S2 is earlier (travel-time shorter) than for t1 at S1. Running the location procedure 
with the common residual minimization on the assumption of a laterally homogeneous 
velocity model will result in hypocentral distances d2(h) < d1(h). Since the difference 
increases with depth, the hypocenters are not only offset from the real fault but seem to mark 
even a slightly inclined fault, which is not the case. 
 

                     
 
Figure 13  Illustration of the systematic mislocation of earthquakes along a fault with strong 
lateral velocity contrast. vo is the assumed model velocity with v2 > vo > v1. 
 
 
From this hypothetical example we learn that locations based on 1-D velocity models in the 
presence of 2-D or 3-D velocity inhomogeneities will be systematically shifted in the 
direction of increasing velocities (or velocity gradients), the more so, the less the station 
distribution controls the event from all azimuths. This is precisely the cause for the above 
mentioned larger systematic mislocation of WDC B as compared to WDC A. While the latter 
localizes events using data from a global network, the former used solely data from the former 
Soviet and East European territory, i.e., stations which view the Aleutian Islands from only a 
narrow azimuth range. The direction of systematic mislocation of both centers to the NW 
agrees with the NW directed subduction of the Pacific plate underneath the Aleutians. 
According to Jacob (1972) this cold lithospheric plate has 7 to 10% higher P-wave velocities 
than the surrounding mantle. A recent study by Lienert (1997) also addresses this problem of 
assessing the reliability of earthquake locations by using known nuclear tests. The Prototype 
International Data Center (PIDC) in Arlington separated in its Reviewed Event Bulletins 
(REBs) the a priori location errors as measurement and modeling errors. The latter specify, as 
a function of distance for each type of seismic phases, the uncertainties in the model when 
representing the real Earth (see IS 10.3). 
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