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1 Introduction

The exact location of a source, radiating seismiergy, is one of most important tasks in
practical seismology and from time to time mossswlogists have been involved in this
task. The intention here is to describe the mostnaon location methods without going into
the mathematical details, which have been describatimerous textbooks and scientific
papers but to give some practical advice on eastkeiocation.

The earthquake location is defined by the earthgumioocentend, Yo, 2o) and the origin time

to. The hypocenter is the physical location, usuallyegiin longitude Xp), latitude {o), and
depth below the surfacey,([km]). For simplicity, the hypocenter will be ldled xo, Yo, Zo with

the understanding that it can be either measurgéagraphical or Cartesian coordinates, i.e.,
in [deg] or [km], respectively. The origin timetise start time of the earthquake rupture. The
epicenter is the projection of the earthquake looabn the Earth’s surfaceo( yo). When the
earthquake is large, the physical dimension cansderal hundred kilometers and the
hypocenter can in principle be located anywher¢herrupture surface. Since the hypocenter
and origin time are determined by arrival times@fmic phases initiated by the first rupture,
the computed location will correspond to the poewhiere the rupture initiated and the origin
time to the time of the initial rupture. This issaltrue using any P or S phases since the
rupture velocity is smaller than the S-wave velpsih that P- or S-wave energy emitted from
the end of a long rupture will always arrive latiean energy radiated from the beginning of
the rupture. Standard earthquake catalogs (sucfroas the International Seismological
Center, ISC) report location based primarily onvairtimes of high frequency P waves. This
location can be quite different from the centroméa and location obtained by moment-tensor
inversion of long-period waves. The centroid lomatirepresents the average time and
location for the entire energy radiation of thergve
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2  Single station location

In general, epicenters are determined using mamyahtimes from different seismic stations
and phases. However, it is also possible to loaatearthquake using a single 3-component
station. Since the P waves are vertically and Hydmlarized, the vector of P-wave motion
can be used to calculate the backazimuth to theepfdr (see Figure 1). The radial
component of P will be recorded on the 2 horizostmometerdl(orth) andS(outh) and
the ratio of the amplitudesgMy on the horizontal components can be used to catctihe
backazimuth of arrival AZI (elsewhere in the Manabbreviated as BAZ):

AZ| = arctan A/AN (1)

There is then an ambiguity of 186ince the first polarity can be up or down so pibérity
must also be used in order to get the correct lzackdah. If the first motion on vertical
component of the P is upward, (which correspondsiéiynition to a compressional first
motion (FM) arriving at the station related to amtveard directed motion at the source then
the radial component of P is directed away fromhiygocenter. The opposite is true if the P
polarity is negative (see also Figure 1 in Exer€&i¥ell.2).
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Figure 1 Example of P-wave first motions in 3-componentords (left) from which the
backazimuth AZknd incidence anglecan be derived according to Egs. (1) and (2) (feidd

The amplitude A of the Z component can, together with the ampéitdd =V (Ag” + Ay®) on
the radial components, also be used to calculatapparent angle of incidence iapp = arc tan
Ar/ Az of a P wave. However, according already to Wietc(i907) the true incidence angle
lrue Of @ P waves
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Itrue = @resin é x sin 0.5kpp), (2)
S

with the difference accounting for the amplitudstdition due to the reflection at the free
surface. Knowing the incidence angle i and thellsessmic velocity y below the observing
station, we can calculate the apparent velogigyof this seismic phase with

—_ VC
Vere = Sini 3)

With high frequency data it might be difficult toamually read the amplitudes of the first
break or sometimes the first P swings are emerginte the amplitude ratio between the
components should remain constant not only forfitseswing of the P phase but also for the
following oscillations of the same phase, we carthwligital data, use the predicted
coherence method (Roberts et al., 1989) to autcaiBticalculate backazimuth as well as the
angle of incidence. Since this is much more rediaphd faster than using the manually
readings of the first amplitudes, calculation othkezimuth from 3-component records of
single stations has again become a routine pra¢tice, Saari, 1991). In case of seismic
arrays, apparent velocity and backazimuth can bectllf measured by observing the
propagation of the seismic wavefront with array moes (see Chapter 9). As we shall see
later, backazimuth observations are useful in ic8tg epicenter locations and in associating
observations to a seismic event. Knowing the inméeangle and implicitly the ray parameter
of an onset helps to identify the seismic phasetamdliculate the epicentral distance.

With a single station we have now the directiorthte seismic source. The distance can be
obtained from the difference in arrival time of twhases, usually P and S. If we assume a
constant velocity, and origin tintg the P- and S-arrival times can then be written as

t, = to + DIV, ts =ty + DIVs (4)
where f and ¢ are the P- and S-arrival times respectivelyand \ are the P and S velocities

respectively and s the epicentral distance for surface sourceth@hypocentral distance d
for deeper sources. By eliminatingfitom Equation (4), the distance can be calculated

v, [vg

D=(t,-t)) ()

V, — Vg

with D in km and ¢ — t,in seconds. But Equation (5) is applicable only tfog travel-time
difference between Sg and Pg, i.e., the directakrphases of S and P, respectively. They are
first onsets of the P- and S-wave groups of logahes only for distances up to about 100 —
250 km, depending on crustal thickness and souegghdwithin the crust. Beyond these
distances the Pn and Sn, either head waves dyticafracted at the Mohorogic
discontinuity or waves diving as body waves in tigpermost part of the upper mantle
become the first onsets (see Fig. 2.32 and 11H®.“cross-over” distance.xbetween Pn
and Pg (or Pb) can be approximately calculated &ofnear) surface focus from the
relationship

X0 = 2 Zn{ (Vm— Vp) (Vim + Vp)}_llzy (6)
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with v, — average crustal P velocitym v sub-Moho P velocity, and,z crustal thickness.
Inserting the rough average valueswgf= 6 km/s and ¥y = 8 km/s we get, as a “rule of
thumb”, xco= 5 7, At smaller distances we can be rather sure tleabliserved first arrival is
Pg. Note, however, that this “rule of thumb” isidafior surface focus only. As demonstrated
with Fig. 2.40, the crossover distance is only abwlif as large for near Moho earthquakes
and also the dip of the Moho and the direction lndesvation (up- or downdip) does play a
role. However, in continental (intraplate) enviraemt lower crustal earthquakes are rare.
Mostly they occur in the upper crust.

Examples for calculating the epicentral distancard the origin time OT of near seismic
events by means of a set of local travel-time caifee Pn, Pg, Sn, Sg and Lg are given in
exercise EX 11.1. In the absence of local travektcurves for the area under consideration
one can use Equation (5) for deriving “aule of thumb” for approximate distance

determinations from travel-time differences Sg-Pgr an ideal Poisson solid; v vp/\/§.
This is a good approximation for the average comstin the crust. With this follows from
Equation (5) : D = @5 — g X 8.0 for “normal, medium age” crustal conditiongtwiv,= 5.9
km/s, and D = @g— tpg % 9.0 for old Precambrian continental shields wather large v, =

6.6 km/s. However, if known, the locally corregfw ratio should be used to improve this
“rule of thumb”. If the distance is calculated frahe travel-time difference between Sn and
Pn another good rule of thumb is D s,& t) x 10. It may be applicable up to about 1000
km distance.

For distances between abouf 20A < 100 the relationshig\® = {(ts — t )min - 2} x 10 still
yields reasonably good results with errors < 3déner, beyond D = 10° the use of readily
available global travel-time tables such as IASRR&nnett and Engdahl, 1991; Kennett,
1991), SP6 (Morelli and Dziewonski, 1993), or AK1@%ennett et al., 1995) is strongly
recommended for calculating the distance.

With both backazimuth and distance, the epicender loe obtained by measuring off the
distance along the backazimuth of approach. Finktipwing the distance, we can calculate
the P-travel time and thereby get the origin tinseng the P-arrival time (see EX 11.2 for
location of teleseismic events by means of 3-corapbrecords).

3  Multiple station location
3.1 Manual location

When at least 3 stations are available, a simpleuadalocation can be made from drawing
circles (the circle method) with the center at ¢tion locations and the radii equal to the
epicentral distances calculated from the S-P tifses Figure 2).

These circles will rarely cross in one point whiodicates errors in the observations and/or
that we have wrongly assumed a surface focus.cn fa- i, is the travel-time difference for
the hypocentral distance d which is for earthquakigls z > 0 km generally larger than the
epicentral distanc@ (or D). Therefore, the circles drawn around tregishs with radius d
will normally not be crossing at a single pointla epicenter but rather “overshooting”. One
should therefore fix the epicenter either in therter of gravity” of the overlapping area
(shaded area in Figure 2) or draw “chords”, i.&aight lines passing through the crossing
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point between two neighboring circles. These chioes intersect in the epicenter (see Figure
1 in EX 11.1). Still other methodsxist (e.g., Bath, 1979) to deal with this deptbbem
(e.g., the hyperbola method which uses P-wave dimstals only and assumes a constant P-
wave velocity), however since they are rarely usieely will not be discussed here.

d~ (Sg - Pg) x8
or d=t(Sn-Pn)x10

Figure 2 Location by the “circle and chord” method. Thetistas are located in S1, S2 and
S3. The epicenter is found within the shaded afeerevthe circles overlap. The best estimate
is the crossing of the chords, which connect thassing points of the different pairs of
circles.

With several stations available from a local eantiieg, the origin time can be determined by
a very simple technique called a Wadati diagram d&tfa 1933). Using Equation (7) and
eliminating4, the S-P travel-time difference can be calculaied

o=t = (Vp/Va— 1)X (tp- 1) ()

The S-P times are plotted against the absolutemi. tSince & — {, goes to zero at the
hypocenter, a straight line fit on the Wadati dagr(Figure 3) gives the origin time at the
intercept with the P-arrival axis and from the slaf the curve, we getlvs Note that it is
thus possible to get a determination of both thgirotime and a meanvs ratio without any
prior knowledge of the crustal structure, the cadgumption being thatisis constant and
that the P and S phases are of the same typedik@ad Sg or Pn and Sn. Such an independent
determination of these parameters can be very lusbkn using other methods of earthquake
location.

The Wadati diagram can also be very useful in n@kitlependent checks of the observed
arrival times. Any points not fitting the lineadagonship might be badly identified, either by
not being of the same phase type or by misreading.
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Figure 3 An arbitrary example of a Wadati diagram. The ncgpt of the best fitting line
through the data with the x-axis gives the orignet OT. In the given case, the slope of the
line is 0.72 so theps ratio is 1.72. This misfit of the data with a gitd line indicates model
and/or data reading errors.

3.2 Computer location

Manual location methods provide insight into thealibon problems, however in practice we
use computer methods. In the following, the moshrmon ways of calculating hypocenter
and origin time by computer will be discussed.

The calculated arrival tim¢ &t station i can be written as
ti° = T(X, Yi., Z, X0, Yo, Z0) *+ to (8)

where T is the travel time as a function of the locatidntloe station(x, yi, z) and the
hypocenter. This equation has 4 unknowns, so ircyoie 4 arrival-time observations from at
least 3 stations are needed in order to deterrhiméypocenter and origin time. If we have n
observations, there will be n equations of the abtype and the system is over determined
and has to be solved in such a way that the nasfiesiduak; at each station is minimized.

is defined as the difference between the obsermedcalculated travel times which is the
same as the difference between the observed andatad arrival times

=t t5 9)

where £ is the observed arrival time. In principle, thellem seems quite simple. However,
since the travel-time functioi is a nonlinear function of the model parameterss ihot
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possible to solve Equation (8) with any analyticethods. So even thoudghcan be quite
simply calculated, particularly when using a 1-DrtBanodel or pre-calculated travel-time
tables, the non-linearity af greatly complicates the task of inverting for thest hypocentral
parameters. The non-linearity is evident even gingple 2-D epicenter determination where
the travel time; from the point(x, y) to a statior(x y;) can be calculated as

X)) -y’
i Vv )

(10)

wherev is the velocity. It is obvious thgtdoes not scale linearly with eithvepry so it is not
possible to use any set of linear equations toestite problem and standard linear methods
cannot be used. This means that given a set ebatimes, there is no simple way of finding
the best solution. In the following, some of thetmoels of solving this problem will be
discussed.

3.2.1 Grid search

Since it is so simple to calculate the travel tinoésall seismic phases to any point in the
model, given enough computer power, a very simpéhod is to perform a grid search over
all possible locations and origin times and compine arrival time at each station (e.g.,
Sambridge and Kennett, 1986). The hypocentral imecaind origin time would then be the
point with the best agreement between the obseaweldcalculated times. This means that
some measure of best agreement is needed, paticifilenany observations are used. The
most common approach is to use the least squak@sosp which is to find the minimum of
the sum of the squared residuafsom then observations:

e=3 ()’ an

The root mean squared residual RMS, is definedes . RMS is given in almost all location
programs and commonly used as a guide to locatiecigion. If the residuals are of similar
size, the RMS gives the approximate average relsidsawill be seen later, RMS only gives
an indication of the fit of the data, and a low RM&:s not automatically mean an accurate
hypocenter determination. Generally, the precissbrthe computational solution, which is
based on various model assumptions, should notis@akean as real accuracy of the location
and origin time. This point will be discussed lataeder section 7.

The average squared residual e/n is called thanagiof the data. Formally, n should here be
the number of degrees of freedodf, which is the number of observations minus the lmem
of parameters in fit (here 4). Sinoeausually is large, it can be considered equal ¢éoninmber

of degrees of freedom. This also means RM6? is approximately the same as the variance.
The least squares approach is the most common neeabunisfit since it leads to simple
forms of the equations in the minimization problgisese later). It also works quite well if the
residuals are caused by uncorrelated Gaussian. idiseever in real problems this is often
not the case. A particularly nasty problem is thestence of outliers, i.e., individual large
residuals. A residual of 4 will contribute 16 time®re to the misfie, than a residual of 1.
Using the sum of the absolute residuals as a norrthé misfit can partly solve this problem:
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el= Zn:|ri E (12)

This is called the L1 norm and is considered motrist when there are large outliers in the
data. It is not much used in standard location rmg since the absolute sign creates
complications in the equations. This is of coursethe case for grid search. Therefore, most
location programs will have some scheme for werghtiut or truncating large residuals (see
later), which can partly solve the problem.

Once the misfits (e.g., RMS) have been calculatedllagrid points, one could assign the
point with the lowest RMS as the ‘solution’. Forlineehaved data, this would obviously be
the case, but with real data, there might be séperats, even far apart, with similar RMS
and the next step is therefore to estimate the giebuncertainties of the solution. The
simplest way to get an indication of the uncertgirg to contour the RMS as a function of x
and y (2-D case) in the vicinity of the point witte lowest RMS (see Figure 4).

63.0

BZ.E

BZ.3

Figure 4 Left: RMS contours (in seconds) from a grid sedodation of an earthquake off
western Norway (left). The grid size is 2 km. Tlrele in the middle indicates the point with
the lowest RMS (1.4 s). Right: The location of #sthquake and the stations used. Note the
elongated geometry of the station distribution. dffect on the error distribution will be
discussed in section 4.1 below. The RMS ellipsenftbe figure on the left is shown as a
small ellipse in the figure at right. Latitudes degrees North and longitudes degrees East.

Clearly, if RMS is growing rapidly when moving awégm the minimum, a better solution
has been obtained than if RMS grows slowly. If Rid®ontoured in the whole search area,
other minima of similar size might be found indingtnot only large errors but also a serious
ambiguity in the solution. Also note in Figure 4tmetworks with irregular aperture have
reduced distance control in the direction of tisemallest aperture but good azimuth control in
the direction of their largest aperture.

An important point in all grid-search routines leetmethod of how to search through the
possible model space. In particular for events feseat teleseismic distances the model
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space can be very large. Sambridge and Kennettl}2p0blished a fast neighborhood
algorithm to use for global grid search.

3.2.2 Location by iterative methods

Despite increasing computer power, earthquake itotatare done mainly by other methods
than grid search. These methods are based onisimgathe problem. The first step is to
make a guess of hypocenter and origin timg ¥ 2o, to). In its simplest form, e.g., in case of
events near or within a station network, this cardbne by using a location near the station
with the first arrival time and using that arriviliine as 4. Other methods also exist (see
below). In order to linearize the problem, it isnsnassumed that the true hypocenter is close
enough to the guessed value so that travel-timduas at the trial hypocenter are a linear
function of the correction we have to make in hygcal distance.

The calculated arrival times at stationifrom the trial location are, as given in Equati8i, (

ti = T(Xo, Yo, 20, Xi, Vi, Z) + toand the travel-time residualsare r-t° — t°. We now assume that
these residuals are due to the error in the tdalti®n and the corrections needed to make
them zero areAx, Ay, Az, and At. If the corrections are small, we can calculdie t
corresponding corrections in travel times by appnating the travel time function by a
Taylor series and using only the first term. Th&deal can now be written:

r, = (0T/0x;) * Ax + (0T/dy;) * Ay + (0T/0z) * Az + At (13)
In matrix form we can write this as
r=G*X, (14)

wherer is the residual vecto6 the matrix of partial derivatives (with 1 in thast column
corresponding to the source time correction tema) > is the unknown correction vector in
location and origin time.

This is a set of linear equations with 4 unknowsections to hypocenter and origin time),
and there is one equation for each observed pirase Nlormally there would be many more
equations than unknowns (e.g., 4 stations with &gl each would give 12 equations). The
best solution to Equation (13) or Equation (14)ssially obtained with standard least squares
techniques. The original trial solution is thenrecoted with the results of Equation (13) or
Equation (14) and this new solution can then bel @setrial solution for a next iteration. This
iteration process can be continued until a preddfitbreakpoint is reached. Breakpoint
conditions can be either a minimum residuyror a last iteration giving smaller hypocentral
parameter changes than a predefined limit, or fhet total number of iterations. This
inversion method was first invented and applied@®grger (1910) and is called the ‘Geiger
method’ of earthquake location. The iterative psscasually converges rapidly unless the
data are badly configured or the initial guessasyvfar away from the mathematically best
solution (see later). However, it also happens tthatsolution converges to a local minimum
and this would be hard to detect in the outputamtée residuals are very bad. A test with a
grid search program could tell if the minimum igdg or tests could be made with several
start locations.

So far we have only dealt with observations in &rmh arrival times. Many 3-component
stations and arrays now routinely report backazmuitarrival @. It is then possible to locate
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events with only one station and P and S times Fsgere 1). However, the depth must be
fixed. If one or several backazimuth observatiomsavailable, they can be used together with
the arrival time observations in the inversion #meladditional equations for the backazimuth
residual are

i® = @@ax;) * AX + @q@ay;) * Ay (15)

Equations of this type are then added to the Egust(13) or (14). Thé\x and Ay in
Equation (15) are the same as for Equation (13yeler the residuals are now in degrees. In
order to make an overall RM&e degrees must be ‘converted to seconds’ instefrscaling.
For example, in the location program Hypocenteelfert and Havskov, 1995), a 10 deg
backazimuth residual was optionally made equivalert s travel time residual. Using e.g.,
20 deg as equivalent to 1 s would lower the weightthe backazimuth observations.
Schweitzer (2001a) used in the location program G3RT a different approach. In this
program the measured (or assumed) observationseofothe input parameters are used to
weight individually the different lines of the ediom system (13) or (14) before inverting it.
Thereby, more uncertain observations will contbutuch less to the solution than well-
constrained ones and all equations become non-dioread.

Arrays (see Chapter 9) or single stations (see ttqug3)) cannot only measure the
backazimuth of a seismic phase but also its rayarpater (or apparent velocity).
Consequently, the equation system (13) or (14etedived for locating an event, can also be
extended by utilizing such observed ray paramgiéos apparent velocities) as defining data.
In this case we can write

P = @plox;) * Ax + @pldy;) * Ay + Opldz) * Az (16)

Equation (16) is independent of the source time tedpartial derivatives are often very
small. However, in some cases, in particular ifezent is observed with only one seismic
array, the observed ray parameter will give addélaonstraint for the event location.

Equations (13) and (14) are written without disaugsvhether working with a flat Earth or a
spherical Earth. However, the principle is exacthe same, and using a flat-Earth
transformation (e.g., Mller, 1977) any radiallyrspetric Earth model can be transformed
into a flat model. The travel times and partialig&ives are often calculated by interpolating
in tables and in principle it is possible to usg &arth model including 2-D and 3-D models
to calculate theoretical travel times. In practit€) models are mostly used, since 2-D and 3-
D models are normally not well enough known and tthgel-time computations are much
more time consuming. For local seismology, it soanmon practice to specify a 1-D crustal
model and calculate arrival times for each ray &/dr global models, an interpolation in
travel-time tables such as IASP91 is the most comrimwever, as Kennett and Engdahl
(1991) pointed out, the preferred and much moreigeemethod for obtaining travel times
from the IASP91 model or other 1-D global Earth mlsdsee DS 2.1) is to apply the tau-p
method developed by Buland and Chapman (1983).alculate your own travel-time tables
for local or global Earth models, the computer paog LAUFZE (see PD 11.2) can be
downloaded fronitp://ftp.norsar.no/pub/outgoing/johannes/laaf/description of the program
is annexed in PD 11.2. It allows calculating tratreles for many different seismic phases
and an arbitrary horizontally layered model withy asombination of layers with constant
velocities, gradients, or first-order discontinesti

3.2.3 Example of location in a homogeneous model

10
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The simplest case for earthquake location is a lg@meous medium. The arrival times can be
calculated as

o dOx) YY) rEmz)”

Lo, (17)
\

where v is the velocity. The partial derivatives dg estimated from Equation (17) and e.g.,
for x, the derivative is

oT; :(X_Xi)* 1
X Vo Jx=x ) Hymy) 2

(18)

Similar expressions can be made for y and z. Tablgives an example of locating an
earthquake with 10 stations in a model with cortstatocity (from Stein, 1991). The stations
are from 11 to 50 km from the hypocenter. The eprdlke has an origin time of O s at the
point (0, 0, 10) km. The starting location is at4320) km at 2 s. The exact travel times were
calculated using a velocity of 5 km/s and the tierss were done as indicated above. At the
initial guess, the sum of the squared residuals 924 3, after the first iteration it was
reduced to 0.6%sand already at the second iteration, the ‘corrsaitition was obtained. This
is hardly surprising, since the data had no erfdfs. shall later see how this works in the
presence of errors.

Table 1 Inversion of error free data. Hypocenter is therexd location, Start is the start
location, and the location is shown for the twddwaing iterations. Units for x, y and z are
[km], for t [s] and for the misfit e according to Equation ([lih)s?].

Hypocenter Start 1. Iteration 2. lteration
X 0.0 3.0 -0.5 0.0
Y 0.0 4.0 -0.6 0.0
Z 10.0 20.0 10.1 10.0
to 0.0 2.0 0.2 0.0
e 94.2 0.6 0.0
RMS 3.1 0.25 0.0

3.2.4 Advanced methods

The problem of locating seismic events has receskperienced a lot of attention and new
procedures have been developed such as the datfelece earthquake location algorithm
(Waldhauser and Ellsworth, 2000), a novel globHEdential evolution algorithm (Ruzek and
Kvasntka (2001), a probabilistic approach to earthquakation in 3-D and layered models
by Lomax et al. (2000) as well as advanced gridckeprocedures to be applied in highly
heterogeneous media (Lomax et al.,, 2001). Recerdnags in travel-time calculations for
three-dimensional structures complements this noefleog., Thurber and Kissling, 2000).
Several of these and other more recent developnagatsummarized in a monograph edited
by Thurber and Rabinowitz (2000), which includesoabdvances in global seismic event
location (Thurber and Engdahl, 2000); and in a spp@olume about event location in context

11



| Information Sheet 1IS11.1]

with the special requirements for monitoring theBTT{Ringdal and Kennett, 2001). Figure 5
shows how much the accuracy of location within legurake clusters can be improved by
applying the above mentioned double-differencehefaidke location algorithm.
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Figure 5 Examples of improving the ABCE locations for earthke clusters (red dots) from
regional networks of seismic stations (triangles)China by relocating the events with the
double-difference location algorithm (courtesy allPG. Richards).

4 Location errors

4.1 Error quantification and statistics

Since earthquakes are located with arrival timeg tdontain observational errors and the
travel times are calculated assuming we know thdehall hypocenters will have errors.
Contouring the grid search RMS (Figure 4) givesiratication of the uncertainty of the
epicenter. Likewise it would be possible to makie 8entours to get an indication of the 3-D
uncertainty. The question is now how to quantifig theasure. The RMS of the final solution
is very often used as a criterion for ‘goodnes§itofAlthough it can be an indication, RMS
depends on the number of stations and does ndseif give any indication of errors and
RMS is not reported by e.g., PDE and ISC.

From Figure 4 it is seen that the contours of edRiIS are not circles. We can calculate
contours within which there is a 67 % probability &ny other desired probability) of finding
the epicenter (see below). We call this the ertlppse. This is the way hypocenter errors
normally are represented. It is therefore not sigfit to give one number for the hypocenter
error since it varies spatially. Standard catalogsy PDE and ISC give the errors in latitude,
longitude and depth, however, that can also be mesieading unless the error ellipse has the
minor and major axis NS or EW. In the example iguFé 4, this is not the case. Thus the
only proper way to report error is to give the &plecification of the error ellipsoid.

12
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Before going into a slightly more formal discussiinerrors, let us try to get a feeling for
which elements affect the shape and size of theeapial error ellipse. If we have no arrival
time errors, there are no epicenter errors so tagnitude of the error (size of error ellipse)
must be related to the arrival time uncertaintiesve assume that all arrival time reading
errors are equal, only the size and not the shapieecerror ellipse can be affected. So what
would we expect to give the shape of the erropsdi? Figure 4 is an example of an elongated
network with the epicenter off to one side. It isac that in the NE direction, there is a good
control of the epicenter since S-P times contrel tistances in this direction due to the
elongation of the network. In the NW direction, tbentrol is poor because of the small
aperture of the network in this direction. We wothdrefore expect an error ellipse with the
major axis NW as observed. Another way of undedstepwhy the error is larger in NW
than in NE direction is to look at Equation (12heTpartial derivativedT/dx will be much
smaller thandT/dy so theAy-terms will have a larger weight then tiAe-terms in the
equations (strictly speaking the partial derivadivevith respect to NW and NE).
Consequently, errors in arrival times will afféot more thanAy. Note that if backazimuth
observations were available for any of the statiandNorth or South of the event, this would
drastically reduce the error estimate in the EVédtion sinced@ox is large whiledq@dy is
nearly zero.

Another geometry of the stations would give anotsiespe of the error ellipse. It is thus
possible for any network to predict the shape amehtation of the error ellipses, and given
an arrival error, also the size of the ellipseday desired epicenter location. This could e.g.,
be used to predict how a change in network condigom would affect earthquake locations at
a given site.

In all these discussions, it has been assumedtibagrrors have Gaussian distribution and
that there are no systematic errors like clockrettas also assumed that there are no errors in
the theoretical travel times, backazimuths, or payameter calculations due to unknown

structures. This is of course not true in real, liwwever error calculations become too

difficult if we do not assume a simple error disttion and that all stations have the same
arrival time error.

The previous discussion gave a qualitative desonpaf the errors. We will now show how

to calculate the actual hypocentral errors frometrers in the arrival times and the network
configuration. The most common approach to eartkguacation is based on the least
squares inversion and a Gaussian distribution efatrival time errors, in which case the
statistics is well understood and we can use theS@hare probability density distribution to

calculate errors. For a particular earthquake lonay? can be calculated as:

XP==3r2, (19)

where o is the assumed same standard deviation of any bmieearesiduals and n is the
number of observations. We can now look at thedstahstatistical tables (extract in Table 2)
to find the expected value gf within a given probability. As can be seen frore table,
within 5% probability,x* is approximately the number of degrees of freedodf),(which in
our case i$-4.

13



| Information Sheet 1IS11.1]

Table 2 The percentage points of thé distribution for different numbers of degrees of
freedom (df)

ndf | ¥*(95%) | ¥*(50%) | x*(5%)
5 1.1 4.4 11.1
10 3.9 9.3 18.3
20 10.9 19.3 31.4
50 34.8 49.3 67.5
100 77.9 99.3 124.3

If e.g., an event is located with 24 stationdf£20), there is only a 5% chance théwill
exceed 31.4. The value gt will grow as we move away from the best fittingaemter and in
the example above, the contour within whjghis less than 31.4 will show the error ellipse
within which there is a 95 % chance of finding #@center. In practice, errors are mostly
reported within 67 % probability.

The errors in the hypocenter and origin time ca&o &rmally be defined with the variance —
covariance matrigx® of the hypocentral parameters. This matrix isrdedias

2 2 2 2

O ny O, O4

2 2 2 2

2 _ Jyx UW UVZ Jyt
Oy = 2 2 2 2 (20)

O, Jzy o, 0,4

2 2 2 2

O Uty O, 0Oy

The diagonal elements are variances of the locagiamameters, y, z andty while the off
diagonal elements give the coupling between thererin the different hypocentral
parameters. For more detalils, see e.g., Stein {199 nice property abouws?’ is that it is
simple to calculate:

o’=d* (G'G)Y, (21)

where & is the variance of the arrival times multiplied the identity matrix ands' is G
transposed. The standard deviations of the hypmdeparameters are thus given by the
square root of the diagonal elements and theséharasual errors reported. So how can we
use the off diagonal elements? Singe is a symmetric matrix, a diagonal matrix in a
coordinate system, which is rotated relatively e teference system, can represent it. We
now only have the errors in the hypocentral parametand the error ellipse simply have semi
axesdoyy, Gy, and g . The main interpretation of the off diagonal eletseis thus that they
define the orientation and shape of the error&ligh complete definition therefore requires 6
elements. Egs. (20) and (21) also show, as stateedktively earlier, that the shape and
orientation of the error ellipse depends only oa gieometry of the network and the crustal
structure whereas the standard deviation of therehtons is a scaling factor.

The critical variable in the error analysis is #fere the arrival-time varianag®. This value

is usually larger than would be expected from tgnand picking errors alone, however it
might vary from case to case. Setting a fixed vdluea given data set could result in

14
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unrealistic error calculations. Most location pramgs will therefore estimate from the
residuals of the best fitting hypocenter:

o? = izriz | (22)

Division byndf rather than by compensates for the improvement in fit resultimgf the use
of the arrival times from the data. However, thidygpartly works and some programs allow
setting an a priori value which is used only if thember of observations is small. For small
networks this can be a critical parameter.

Recently, some studies (e.g., Di Giovambattista Badba, 1997; Parolai et al., 2001)
showed, both for regional and local seismic netwpttkat the error estimates ERH (in
horizontal) and ERZ (in vertical direction), as givby routine location programs (e.g., in
Hypoellipse) can not be considered as a consepe/a$timate of the true location error and
might lead investigators to unjustified tectonioclusions (see also Figures 11 and 12).

4.2 Example of error calculation

We can use the previous error free example (se&e Tgband add some errors (from Stein,
1991). We add Gaussian errors with a mean of zedoaastandard deviation of 0.1 s to the
arrival times. Now the data are inconsistent amthogfit exactly. As it can be seen from the
results in Table 3, the inversion now requireseBaitions (2 before) before the locations stop
changing. The final location is not exactly thedtien used to generate the arrival times and
the deviation from the correct solution is 0.2,,@dd 2.2 km for x, y, and z respectively, and
0.2 s for the origin time. This gives an indicatimfrthe location errors.

Table 3 Inversion of arrival times with a 0.1 s standartbe Hypocenter is the correct
location, Start is the start location, and the fores are shown after the three following
iterations. e is the misfit according to Equatiaf)(

Hypocenter Start| 1. Iteration 2. Iteration 3. Iteration
X [km] 0.0 3.0 -0.2 0.2 0.2
y [km] 0.0 4.0 -0.9 -0.4 -0.4
Z [km] 10.0 20.0 12.2 12.2 12.2
to[S] 0.0 2.0 0.0 -0.2 -0.2
e[s] 93.7] 0.33 0.04 0.04
RMS [s] 3.1 0.25 0.06 0.06

It is now interesting to compare what is obtainathwhe formal error calculation. Table 4
gives the variance — covariance matrix. Takingdfeare root of the diagonal elements we
get the standard deviations»ofy, z andty as 0.3, 0.3 and 1.1 km and 0.1 s, respectivelys Thi
is close to the ‘true’ error so the solution istguacceptable. Also note that the RMS is close
to the standard error.
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Table 4 Variance — covariance matrix for the example ibl&a.

X Y Z t
x | 0.06 0.01 0.01 0.00
y | 0.01 0.08 -0.13 0.01
z | 0.01 -0.13 1.16 -0.08
t | 0.00 0.01 -0.08 0.0

The variance — covariance matrix shows some irtiage$eatures. As seen from the dialog
elements of the variance — covariance matrix, therés much larger in the depth estimate
than in x and y. This clearly reflects that the ttieip less well constrained than the epicenter
which is quite common unless there are stationg cleise to the epicenter and thusAjl/ A

>> 1. For simplicity, we have calculated the staddaeviations from the diagonal terms,
however since the off diagonal terms are not z#@true errors are larger. In this example it
can be shown that the semi-major and semi-mina akithe error ellipse have lengths of
0.29 and 0.24 km respectively, and the semi-maj taends N22E, so the difference from
the original diagonal terms is small.

The zt term, the covariance between depth androtigie, is negative, indicating a negative

trade-off between the focal depth and the origimeti an earlier source time can be

compensated by a larger source depth and vice.vEnggis commonly observed in practice

and is more prone to happen if only first P-phaseals are used such that there is no strong
limitation of the source depth by P times in diffiet distances.

Error calculation is a fine art, there are endleasgations on how it is done and different
location programs will usually give different retsul

5 Relative location methods

5.1 Master event technique

The relative location between events within a @éentagion can often be made with a much
greater accuracy than the absolute location ofoditlye events. This is the case when velocity
variations outside the local region are the magarse of the travel-time residuals such that
residuals measured at distant stations will be ganylar for all of the local events. Usually,
the events in the local area are relocated rel&iane particularly well-located event, which
is then called thenaster event It should be clear that the Master Event Techaigan only
be used when the distance to the stations is nangkr than the distance between the events.

Most location programs can be used for a mastentelaxation. For this travel-time
anomalies outside the source region are assumealise all individual station residuals after
the location of the master event. By using thea#ost residuals as station corrections, the
location of the remaining events will be made retato the master event since all relative
changes in arrival times are now entirely due tangfes in location within the source region.
It is obvious that only stations and phases forcWlibservations are available for the master
event can be used for the remaining events. Idethiey same stations and phases should be
used for all events.
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5.2 Joint hypocenter location

In the Master Event Technique, it was assumedtthatstructure dependent residuals could
be obtained absolutely correct from the master evenwever other errors could be present in
the readings for the master event itself. A beitay is to determine the most precise station
residuals using the whole data set. This is whait Jdypocenter Determination (JHD) is
about. Instead of determining one hypocenter aiginotime, we will jointly determinem
hypocenters and origin times, andstation corrections. This is done by adding tlaia
residualsdt;®to Equation (13) and writing the equations fomakkarthquakes (indgx:

lij = (6T/6xi,-) * AX + (OT/Oy.,) * Ay + (aT/aZij) * AX + Atis+ Atj. (23)

The first to propose the JHD method was Dougla$7L9Since the matrixc of Equation
(14) is now much larger than the 4 x 4 matrix fagirrgle event location, efficient inversion
schemes must be used. If we use e.g., 20 statidh2yphases each for 10 events, there will
be 20 *10 *2 = 400 equations and 80 unknowns (1Pohgnters and origin times, and 20
station residuals).

The relative locations obtained by the Master Eviethnique or the JHD are usually more
reliable than individually estimated relative Idoas. However, only if we have the absolute
location of one of the events (e.g., a known explgs will we be able to convert the relative
locations of a Master Event algorithm into absolotations, whereas for the JHD “absolute”
locations are obtained for all events if the assiredocity model is correct. Accurate relative
locations are useful to study, e.g., the structifra subduction zone or the geometry of an
aftershocks area, which might indicate the oriématnd geometry of the fault. Recently,
Pujol (2000) has given a very detailed outlinehsd method and its application to data from
local seismic networks. Figure 6 shows an examefteirficreased location accuracy after
applying JHD.
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Figure 6 Comparison of earthquake locations using the nbpracedure at ISC (left) and
JHD relocations (right). The events are locatedh@ Kurile subduction zone along the
rupture zones of large thrust events in 1963 areB19he vertical cross sections shown
traverse the thrust zone from left to right. Ndtattthe JHD solutions reduce the scatter and
make it possible to define a dipping plane (frorh\&artz et al., 1989).
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6  Practical consideration in earthquake locations

This section is intended to give some practicatshan earthquake location. The section does
not refer to any particular location program, butstnof the parameters discussed can be used
with the Hypocenter program (Lienert and Havskd99) or with HYPOSAT (Schweitzer,
2001a).

6.1 Phases

The most unambiguous phase to pick is usually P Ringl the main phase used in most
teleseismic locations. For local earthquakes, hg&aphases are also used. Using phases with
different velocities and slowness has the effediadfer constraining the distances and there is
then less trade-off between depth and origin timepicenter location and origin time if the
epicenter is outside the network. The focal depthest controlled (with no trade-off between
depth and origin time) when phases are includethénlocation procedure which have a
different sign of the partial derivatidd/0z in Equation (13) such as for very locally observe
direct up-going Pg (positive) and Pn (negativeg (section 6.3 Hypocentral de@hd Figure

9). In general, it is thus an advantage to use asyndifferent phases as possible under the
assumption that they are correctly identified. RégeSchoffel and Das (1999) gave a
striking example (see Figure 7). But one very wrphgse can throw off an otherwise well
constrained solution. This highlights the cruciahppbrtance of the capability of the
observatory personnel to recognize and report phelses during their routine seismogram
analysis.

P P+S P, S,pP,sP,PcP,ScP
. -7.00 K -
75 129 501‘,} 75 129.50/!\ 7.00 75 129.503 7.00
i ¢ '
| . |
_ 125, P ( I A 1254 .- (0. @ ...............
£ A 60
£ ’ ¢ @ ®
g . @@ @ :
& 175/ 75 ] 1754 B @ ..............
Y :
: : 225 f
5 ; 225 ; '
s 0 75 5 0 s T8 0 s

Distance [km]

Figure 7 Examples of significant improvement of hypocentaration for teleseismic events
by including secondary phases. Left: hypocenteatlons using only P phases; middle: by
including S phases; right: by including also depiiases and core reflections with a different
sign of dT/0z (modified from Schéffel and Das, J. Geophys. R¥sl. 104, No. B6, page
13,104, Figure 21 1999, by permission of American Geophysical Union)

Engdahl et al. (1998) used the entire ISC databagselocate more than 100,000 seismic
events. They used not only a new scheme to assampatectly secondary phases, they also
systematically searched for pwP onsets in the cAseibduction-zone events to get better
depth estimates, and they used a modern globah Baotel (AK135) to avoid the known
problems with the Jeffreys-Bullen tables. With thiese changes the authors reached a far
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more consistent distribution (in particular for dubtion zones) and sharper picture of global
seismicity.

The majority of location programs for local earthges use only first arrivals (e.g., HYPO71,
Lee and Lahr, 1975). This is good enough for maases. In some distance ranges, Pn is the
first arrival, and it usually has small amplitudéhis means that the corresponding Sn phase,
which is then automatically used by the progranghnhave also very small amplitudes and
IS not recognized, while actually the phase rea&gsor Lg instead. Since the program
automatically assumes a first arrival, a wrong dkdime curve is used for the observed
phase, resulting in a systematic location erroiis Haror is amplified by the fact that the S
phase, due to its low velocity, has a larger inflteeon the location than the P phase. It is
therefore important to use location programs wiadirerustal phases can be specified.

Schweitzer (2001a) developed an enhanced routindotate both local/regional and
teleseismic events, called HYPOSAT. The prograns nwith global Earth models and user
defined horizontally layered local or regional misdét provides the best possible hypocenter
estimates of seismic sources by using travel-tinfferdnces between the various observed
phases besides the usual input parameters suchriea &mes of first and later onsets
(complemented by backazimuth and ray parametetiseircase of array data or polarization
analyses). If S observations are also availabiirpinary origin times are estimated by using
the Wadati approach (see Figure 3) and a starfigeeter with a priori uncertainties by
calculating the intersection of all backazimuth ervations. By relocating events with real
data Schweitzer could show that HYPOSAT solutioargehthe smallest errors when, besides
the absolute onset times the travel-time differengkall available primary and secondary
phase readings are also taken into account. Thé adganced version of HYPOSAT can be
found at ftp://ftp.norsar.no/pub/outgoing/johannes/hyposatd a program description is
givenin PD 11.1.

6.2 Starting location

Iterative location programs commonly start at anpaiear the station recording the first
arrival. This is good enough for most cases, palgity when the station coverage is good
and the epicenter is near or within the networkweleer, this can also lead to problems when
using least squares techniques, which convergelyslowsometimes not at all for events
outside the limits of a regional network (Buland®7®). Another possibility is that the
solution converges to a local minimum, which miglet far from the correct solution. For
small-elongated networks, two potential solutiorsyraxist at equal distances from the long
axis. A starting location close to the first arfigéation can then bias the final solution to the
corresponding side of such a network. Although Hiés usually is on the correct side, any
systematic error in the first-arrival station’s &ncan have a disproportionately strong effect
on the final location. Thus in many cases, it isiddle to use a better start location than the
nearest station. There are several possibilities:

a) in many cases the analyst knows by experiencegbmzaimate location and can then
manually give a start location; most programs haisoption;

b) similar phases at different stations can be usetttermine the apparent velocity and
backazimuth of a plane wave using linear regressiothe arrival times with respect
to the horizontal station coordinates. With theappt velocity and/or S-P times, an
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estimate of the start location can be made. Thithaaeis particularly useful when
locating events far away from the network (regibnaf globally);

c) Backazimuth information is frequently availablerfr@-component stations or seismic
arrays and can be used as under b;

d) if backazimuth observations are available fromeatdht stations, a starting epicenter
can be determined by calculating the intersectiaadldackazimuth observations;

e) S-P and the circle method can be used with paissatibns to get an initial location;

f) the Wadati approach can be used to determinetangtaource time.

The starting depth is usually a fixed parameter setdo the most likely depth for the region.
For local earthquakes usually the depth range 1kR2@s used, while for distant events, the
starting depth is often set to 33 km. If depth glsa®.g., pP are available for distant events,
these phases can be used to set or fix the deggméxt section).

6.3 Hypocentral depth

The hypocentral depth is the most difficult paraandb determine due to the fact that the
travel-time derivative with respect to depth changery slowly as function of depth (see

Figure 8) unless the station is very close to thieemter. In other words, the depth can be
moved up and down without changing the travel t/mech. Figure 8 shows a shallow (ray 1)

and a deeper event (ray 2). It is clear that theelrtime derivative with respect to depth is
nearly zero for ray 1 but not for ray 2. In thisaeple, it would thus be possible to get an
accurate depth estimate for the deeper event ubnohe shallower one. Unfortunately, at

larger distances from the source, most rays are kg ray 1 than ray 2 and locations are
therefore often made with a fixed ‘normal’ startptte Only after a reliable epicenter is

obtained will the program try to iterate for theptte Another possibility is to locate the event
with several starting depths and then use the dbptigives the best fit to the data. Although
one depth will give a best fit to all data, the tthepstimate might still be very uncertain and
the error estimate must be checked.

!4 = =|
EpiEenter Sta‘tion
I
o
Ray 2

Figure 8 The depth — distance trade off in the determimadiofocal depth.

For teleseismic events, the best way to improveddpth determination is to include readings
from the so-called depth phases (e.g., GutenbatdqRarhter, 1936b and 1937; Engdahl et al.,
1998) such as pP, pwP (reflection from the ocear Burface), sP, sS or similar but also
reflections from the Earth's core like PcP, ScPSofS (see Figure 7). The travel-time
differences (i.e., depth phase-direct phase) aP,pdR-P, sS-S and pS-S are quite constant
over a large range of epicentral distances for \&ergidepth so that the depth can be
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determined nearly independently of the epicentstadce. Another way of getting a reliable
depth estimate for teleseismic locations is to hlbawth near and far stations available. In
particular, event observations from local and registations together with PKP observations
have been used together for this purpose. How#hsris unfortunately not possible for many
source regions.

For local events, a rule of thumb is that at lesesteral near stations should not be further
away than 2 times the depth in order to get abldiastimate (Figure 8). This is very often
not possible, particularly for regional events. &tlistance of more tharx@epth, the depth
depending partial derivative changes very littlehwdlepth if the first arriving phase is the
more or less horizontally propagating Pg. But atatices where the critically refracted (so-
called head-waves) Pb or Pn arrive, there is agaime sensitivity to depth due to the steeply
down going rays of Pb or Pn (Figure 9) and becaifsthe different sign of the partial
derivatives of their travel times with depth, whishnegative, as compared to Pg, which is
positive. So, if stations are available at distanegth both direct and refracted rays as first
arrivals, reasonably reliable solutions might b&aoted. An even better solution is when both
Pg and Pn are available at the same station antb¢h&on capability could be similar to
using P and pP for teleseismic events. The prolethat it might be difficult to identify
correctly secondary P phases and a wrong idertdicanight make matters worse.

Station
A

Hypocenter
Pg

Pn

Figure 9 Example of both Pg and Pn rays in the a singlerlagustal model.

The depth estimate using a layered crustal modehires problematic even with a mix of
phases. In checking catalogs with local earthquaitesill often be noted that there is a
clustering of hypocenters at layer boundaries. Thisaused by the discontinuities in the
travel-time curves of the direct phase Pg as atiomof depth at layer boundaries (see Figure
10 for an example). The Pg travel time suddenlyrelses when the hypocenter crosses a
boundary (here Moho) since a larger part of thesagdenly is in a higher velocity layer,
while the Pn travel time continuously decreasethaglepth increases as long as the event is
still within the crust. This gives rise to the distinuities in the Pg-Pn travel-time curve. So
one Pn-Pg travel-time difference is not enoughrsues a reliable depth estimate, several
such phase arrivals must be available.

Many location programs give the RMS of the trawalet residuals in a grid around the
calculated hypocenter. In addition to the erromestes, this gives an idea about the accuracy
and thus a local minimum might be found. A morediway of estimating the quality of the
depth estimate is to calculate the RMS as a funatibdepth in order to check if a local
minimum has been reached. This is particularlyviaaté for crustal earthquakes at shallow
depth and can also be used as a complementarfotodilscriminating better between quarry
blasts and earthquakes.
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Pg -APn travel time

V /Conrad- D. Hypocentral depth

Moho - D.

Station
A

Figure 10 Ray paths of Pg and Pn phases in a two-layeratmnsidel (left). On the right side
the travel-time curve of Pg-Pn as a function oftdep sketched.

Even when several Pg and Pn phases are availapt) dstimates still remain a problems at
regional distances due to the uncertainty in thistat models. Since the depth estimates are
critically dependent on the accurate calculatiof?gfand Pn travel times, small uncertainties
in the model can quickly throw off the depth estiena

6.4 Outliers and weighting schemes

The largest residuals have a disproportionallydargluence on the fit of the arrival times
due to the commonly used least squares fit. Masdtion programs will have some kind of
residual weighting scheme in which observation$\\atge residuals are given lower or even
no weight. Bisquare weighting is often used foeseismic events (Anderson, 1982). The
residual weighting works very well if the residuadse not extreme since the residual
weighting can only be used after a few iteratiotemvthe residuals are already close to the
final ones. Individual large residuals can oftesdléo completely wrong solutions, even when
90% of the data are good; residual weighting woll help in these cases. Some programs will
try to scan the data for gross errors (like mirerters) before starting the iterative procedure.
If an event has large residuals, try to look foviobs outliers. A Wadati diagram can often
help in spotting bad readings for local earthqudkes Figure 3).

The arrival-time observations by default will alvgalyave different weights in the inversion.
A simple case is that S waves may have larger weigtan P waves due to their lower
velocities. An extreme case is the T wave (a guidade in the ocean), which with its low
velocity (1.5 km/s) can completely dominate theusoh. Considering that the accuracy of
the picks is probably best for the P waves, it sthdxe natural that P arrivals have more
importance than S arrivals in the location. Howevke default parameter setting in most
location programs is to leave the original weigin¢ess the user actively changes them. It is
normally possible to giva priori for all S phases a lower weight and in additidhphases
can be given individual weights, including beintptly weighted out.

When working with local earthquakes, the neareaticsts will usually provide the most
accurate information due to the clarity of the @sadn addition, uncertainty in the local
model has less influence on the results at shatamites than at large distances; this is
particularly true for the depth estimate. It isréfere desirable to put more weight on data
from near stations than on those from distant @tatiand this is usually done by using a
distance weighting function of

22



| Information Sheet 1IS11.1]

Xew — A
Wy, = ——, (24)
Xear — X

ar near
whereA is the epicentral distancgey is the distance to which full weight is used angdis
the distance where the weight is set to zero (duaged). The constantge, and X are
adjusted to fit the size of the netwoKge, should be about the diameter of the network, and
Xrar @DOUL tWiCEXear. FOr @ dense networkgesr andxs,r might be made even smaller for more
accurate solutions.

6.5 Ellipticity of the Earth

Until now we only assumed that the model used &dcudating distances or travel times is
either a flat model for local or regional eventsacstandard spherical model of the Earth for
teleseismic events. However, the Earth is neithspleere nor a flat disk but an ellipsoid
symmetrical to its rotation axis. It was Gutenbargl Richter (1933) who first pointed out
that the difference between a sphere and an dllipsmst be taken into account when
calculating epicentral distances and consequertsly tne travel times of seismic phases.
Therefore, they proposed the usage of geocentriordotates instead of geographic
coordinates to calculate distances and angleseokdhth. Because of the axially symmetrical
figure of the Earth, the geocentric longitude igntical to the geographic longitude. To
convert a geographic latitudaty into a geocentric latitudeat; one can use the following
formula:

lat, = arctan({- (6378136~ 6356751)/6378136)” (tanlat, ) . (25)

With this formula all station latitudes have todmnverted before an event location and after
the inversion, the resulting geocentric eventudtt has to be converted back by applying the
inverse equation

lat, = arctan(tamat, /(1- (6378136~ 635675 /6378136)°). (26)

With this procedure all angle calculations relatedn event location are done for a sphere.
The calculated distances are measured in degrée® aonvert them into km, one has to use
the local Earth radius&:

R.. =+/(6378136[Icosat,)? + (6356751 sinlat, )’ . (27)

This value has then to be applied for convertindistanceD measured in degrees into a
distance measured in km, or vice versa:

D[km| = 25 (D[ded or  D[ded =522 OD[km| (28)

360 2M Ry,

All standard Earth models are spherically symmalritarth with a mean radius of 6371 km.
Therefore the standard tables also contain trawvest calculated for a sphere. Bullen (1937,
1938, 1939) was the first to calculate latitudeeatepng travel-time corrections (ellipticity

corrections) to be used together with travel-timlelés for a spherical Earth. Later work on
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this topic was done by Dziewonski and Gilbert (19d@6d Dornboos (1988b). Kennett and
Gudmundsson (1996) published the most recent setllipticity corrections for a large
number of seismic phases.

In conclusion: to get the theoretical travel tinmr fin event in teleseismic or regional
distance, one has first to calculate the geocemfpicentral distance, then use travel-time
tables as calculated for a spherical Earth modwl, fanally apply the latitude (event and
station!) dependent ellipticity correction. Mostcédion routines automatically apply the
described methods and formulas but it is importantheck this in detail and eventually to
change a location program.

6.6 Importance of the model

In this context the importance of the model assionptunderlying the location procedure
has to be emphasized. Many studies have shown €igsling, 1988) that accuracy of
locating hypocenters can be improved by using d-ealstrained minimum 1-D velocity
model with station corrections and is better thamg a regional 1-D model. However,
Spallarossa et al. (2001) recently showed thatrongly heterogeneous local areas even a 1-
D model with station corrections does not signifibg improve the accuracy of the location
parameters. High-precision location in such casesbe achieved only by using a 3-D model.
This is particularly true for locating earthquakesolcanic areas (see Lomax et al., 2001).

Smith and Ekstrom (1996) investigated the improvened teleseismic event locations by
using a recent three-dimensional three-dimensiBagh model. They came to the conclusion
that it “... offers improvement in event locatiomger all three 1-D models with, or without,
station corrections.” For the explosion events,aherage mislocation distance is reduced by
approximately 40 %; for the earthquakes, the imenoents are smaller. Corrections for
crustal thickness beneath source and receivercamedfto be of similar magnitude to the
mantle corrections, but use of station correctimgether with the 3-D mantle model provide
the best locations. Also Chen and Willemann (2@@itjied out a global test of seismic event
locations using 3-D Earth models. Although a tigltlestering of earthquakes in subduction
zones was achieved by using a 3-D model ratherubeny depth from the ISC Bulletin based
on 1-D model calculations, they concluded thatdlustering was not as tight as for depths
computed by Engdahl et al. (1998) who used deptsgsh as well as direct phases. Thus,
even using the best available global 3-D modelsnmrcompensate for the non-use of depth
phases and core reflections in teleseismic hypecéotation (see Figure 7).

A case example for improved location of local eseist given in Figures 11 and 12. The
upper panel in Figure 11 shows the initial epicetdeations of aftershocks of the Cariaco
earthquake (Ms = 6.8) on July 9, 1997 in NE Venkzbased on an averaged 1-D crustal
velocity model. The mean location error (i.e., taculated precision with respect to the
assumed model) was about 900 m. On average, tbesladtks occurred about 2 to 3 km
north of the surface fault trace. A detailed tonapdric study revealed lateral velocity

contrasts of up to 20 % with higher velocities todgathe north of the El Pilar fault.

Relocating the events with the 3-D velocity thdcepters were systematically shifted

southward by about 2 km and now their majority ridigather well with fault traces mapped
before the earthquake as well as with newly ruptdeailt traces. Also in the cross sections
the data scatter was clearly reduced so that gi@peiced outcropping surface faults could be
traced down to a depth of more than 10 km. Thesdteepoint to the fact that in the presence
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of lateral velocity inhomogeneities epicenter lomas are systematically displaced in the
direction of higher velocities. We will look intbis problem more closely in section 7.

focal depth d[km]
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Figure 11 Epicentral distribution of aftershocks of the Cadaarthquake (Ms=6.8) on July
9, 1997 in NE Venezuela. Top: results from HYPO@&asdal on a one-dimensional velocity-
depth distribution. Bottom: Relocation of the aftewcks on the basis of a 3-D model derived
from a tomographic study of the aftershock regiwou(tesy of M. Baumbach, H. Grosser and

A. Rietbrock).
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Figure 12 3-D distribution of the P-wave velocity in the fécagion of the 1997 Cariaco
earthquake as derived from a tomographic study. Aidrezontal section shows the velocity
distribution in the layer between 2 km and 4 kmtdeRed and blue dots mark the epicenters
of the aftershocks. The red ones were chosen beadubeir suitability for the tomography.
The six vertical cross sections show the depttsdtidution of the aftershocks (green dots)
together with the deviations of the P-wave velodiym the average reference model. The
depth range and the lateral changes of fault dgpolwious (courtesy of M. Baumbach, H.
Grosser and A. Rietbrock).
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7 Internal and external (real) accuracy of locatios

For decades the international data centers haetedearthquakes world-wide by means of
the 1-D Jeffreys and Bullen (1940, 1948, 1958, 196/ 1970) travel-time tables without
external control of the accuracy of such solutitaysindependently checking them with
similarly strong events of exactly known positiardaorigin time. Therefore, the question has
remained open for a long time as to whether thakailated location errors were real or just
the minimized average errors for the best fittimjusBons to the observed data based on
model assumptions with respect to the validityh@ velocity model, the non-correlation of
the various parameters to be determined and thesdizau distribution of both the model
errors and the data reading errors. If the lakethe case then the calculated errors are no
measure of the real accuracy of the calculateditmtand origin time but rather a measure of
the internal precision of fitting the data to thedel assumptions.

In order to investigate this in more detail, Bormgh972a and b) looked into the travel-time
errors reported by the international data centerstie German seismological observatory
Moxa (MOX) for earthquakes in different regionstioé world. As an example, he got for the
same data set of events from the Kurile Islandsntiean residuabt, = + 0.16 s and a
standard deviatioo = £ 0.65 s when referring the MOX onset-time readitagthe locations
published by the U.S. Coastal and Geodetic SuMSCGS, World Data Center A, WDC A)
and dt, = + 0.35 s witho =+ 1.1 s when referring to the locations publishedHgyAcademy

of Sciences of the Soviet Union (ANUSSR, World D&@enter B, WDC B) which used the
same J-B travel-time model as USCGS. Thus, thesltitame (or onset-time reading) errors
calculated by the data centers for seismic statwasot real errors of these stations or their
readings but depend on the number and distributistations used by these centers in their
location procedure. And these were rather diffefentWDC A and WDC B. While the
USCGS used the data of a worldwide station netwANUSSR based its locations on the
station network of the former Soviet Union and Bastopean countries and these “looked at”
events outside Eurasia from a much narrower azinamth distance range. But this is
equivalent to the discussion related to Figure e Tean residuals calculated by these two
centers for the considered region were not siganifily different and not far from zero.
Therefore, the question remained as to whethee tvere systematic biases in these solutions
and if so, of what kind and how big.

From the 1960s onwards testing of strong undergtawrclear explosions (UNE) provided
for the first time independent strong sources \pigcisely known coordinates and origin time
to allow checking the accuracy of calculated seissuurce locations from global seismic
observations. During recent years such informatias been released for many UNEs.
However, for the LONGSHOT explosion on the Amchitiséands, Aleutians, the source
parameters were known for many years. For thisteWenresidual of MOX waét, = -4.6 s.
This contrasted sharply with calculated residuals the Aleutian earthquakes. From 53
analyzed earthquakes in that region, no negatiselual at MOX was larger than -0.8 s!
Interestingly, the USGS had calculated for LONGSH®Tocation 25 km NW of the true
place (which explains -1 s travel-time error at MCatd an origin time which was 3.5 s
earlier than the real one (which accounts for #gmaining -3.5 s) (Sykes, 1966). The too
early source time is a well-understood artifacthed Jeffreys-Bullen tables, which generally
give too long P-wave travel times. According to éed and Slavina (1968) epicenters
calculated by the WDC B from events in the Aleusiame generally displaced towards NW
with respect to those of the WDC A. Consequentlighwhe same systematic tendency of
shift, they deviate still more from the true locas of events in that area.
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The ISC waits for about two years before runnirggfihal earthquake location procedure.
This allows to collect as many seismogram readagypossible from worldwide distributed

seismological observatories and thus assures thiegeegraphic coverage for each seismic
event.

What is the reason for this systematic mislocatiwhjch usually remains unrecognized
unless one locates strong independently controBedrces of exactly known source
parameters and origin time? Figure 13 shows sorpethgtical earthquakes at different depth
on a vertically dipping fault. It separates two fregdaces with different wave propagation
velocity w > vy. This is a realistic model for parts of the Sandfgas Fault. The lateral
velocity difference across the fault may be asdaag 5 to 7 %. S1 and S2 may be two
stations at the same hypocentral distances fronevkats. But because of ¥ v; the onset
time t at S2 is earlier (travel-time shorter) than foat S1. Running the location procedure
with the common residual minimization on the assuompof a laterally homogeneous
velocity model will result in hypocentral distanceigh) < di(h). Since the difference
increases with depth, the hypocenters are not aifdgt from the real fault but seem to mark
even a slightly inclined fault, which is not thesea

apparent locations

fault apparent fault

Figure 13 lllustration of the systematic mislocation of éguakes along a fault with strong
lateral velocity contrast.,us the assumed model velocity with> v, > v;.

From this hypothetical example we learn that laoatibased on 1-D velocity models in the
presence of 2-D or 3-D velocity inhomogeneities| viié systematically shifted in the
direction of increasing velocities (or velocity dgrants), the more so, the less the station
distribution controls the event from all azimutfAsis is precisely the cause for the above
mentioned larger systematic mislocation of WDC Raspared to WDC A. While the latter
localizes events using data from a global netwitré former used solely data from the former
Soviet and East European territory, i.e., statwhgh view the Aleutian Islands from only a
narrow azimuth range. The direction of systematislanation of both centers to the NW
agrees with the NW directed subduction of the Ragilate underneath the Aleutians.
According to Jacob (1972) this cold lithospheriatplhas 7 to 10% higher P-wave velocities
than the surrounding mantle. A recent study by &ie(l1997) also addresses this problem of
assessing the reliability of earthquake locatiopsising known nuclear tests. The Prototype
International Data Center (PIDC) in Arlington segiad in its Reviewed Event Bulletins
(REBSs) thea priori location errors as measurement and modeling effbeslatter specify, as

a function of distance for each type of seismicsgisathe uncertainties in the model when
representing the real Earth (see 1S 10.3).

27



| Information Sheet 1IS11.1]

Acknowledgments

Some of the preceding text has followed a simiscdiption in Shearer (1999). Some figures
and ideas have also been taken from Stein (19%i)abd Wallace (1995), Schoffel and Das
(1999). Thanks go to M. Baumbach, H. Grosser anRiétbrock for making Figures 11 and
12 available and to R. E. Engdahl for critical groeading and valuable suggestions which
helped to improve the text and to complement tfereaces.

Referencegsee References under Miscellaneous in Volume 2)

28



