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3D hyperspectral point cloud generation: fusing airborne laser scanning and 1 hyperspectral imaging sensors for improved object-based information extraction 2 Maximilian Brell1,*, Karl Segl1, Luis Guanter1, Bodo Bookhagen2 3 1. Helmholtz Centre Potsdam–GFZ German Research Centre for Geosciences, Section 1.4 4 Remote Sensing, Telegrafenberg, 14473 Potsdam, Germany; E-mails: maximilian.brell@gfz-5 potsdam.de (M.B.), karl.segl@gfz-potsdam.de (K.S.), and luis.guanter@gfz-potsdam.de 6 (L.G.) 7 2. University of Potsdam, Institute of Earth and Environmental Science, Karl-8 Liebknecht-Str. 24-25, 14476 Potsdam, Germany; E-mail: Bodo.Bookhagen@uni-9 potsdam.de (B.B.) 10 * Corresponding author; E-mail: maximilian.brell@gfz-potsdam.de;  11 Tel.: +49-331-288-1195; Fax: +49-331-288-1192. 12 Abstract 13 Remote Sensing technologies allow to map biophysical, biochemical, and earth surface 14 parameters of the land surface. Of especial interest for various applications in environmental 15 and urban sciences is the combination of spectral and 3D elevation information. However, 16 those two data streams are provided separately by different instruments, namely airborne laser 17 scanner (ALS) for elevation and a hyperspectral imager (HSI) for high spectral resolution data.  18 The fusion of ALS and HSI data can thus lead to a single data entity consistently featuring rich 19 structural and spectral information. In this study, we present the application of fusing the first 20 pulse return information from ALS data at a sub-decimeter spatial resolution with the lower-21 spatial resolution hyperspectral information available from the HSI into a hyperspectral point 22 cloud (HSPC).  During the processing, a plausible hyperspectral spectrum is assigned to every 23 first-return ALS point. We show that the complementary implementation of spectral and 3D 24 information at the point-cloud scale improves object-based classification and information 25 
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extraction schemes. This improvements have great potential for numerous land-cover mapping 26 and environmental applications. 27 Keywords: lidar; multispectral point cloud; laser return intensity; unmixing; 28 sharpening; imaging spectroscopy; in-flight; pixel level; sensor fusion; data fusion; 29 preprocessing; point cloud segmentation; semantic labeling 30  Introduction 31 The automated extraction of object-based information (OBI) from airborne remote sensing data 32 as required in the environmental and earth sciences is challenging, especially for spectrally 33 and spatially heterogeneous data. In general, the ability of remote sensing data to represent 34 the complexity of any environment depends not only on the spatial and spectral resolution of 35 the measurement, but also on the capacity to capture the 3D structural information. In recent 36 years, the fusion of elevation information from light detection and ranging (lidar) especially 37 airborne laser scanning (ALS) with hyperspectral image (HSI) data has demonstrated the 38 potential to meet these advanced requirements (Asner et al., 2017, 2007; Dalponte et al., 2008; 39 Eitel et al., 2016; Alonzo et al., 2014; Debes et al., 2014; Torabzadeh et al., 2014). Applications 40 such as the identification of individual tree species, the estimation of forest biomass, and urban 41 feature classification place enormous demands on the spectral, spatial and elevation 42 information content of remotely sensed data (Cook et al., 2013; Kampe et al., 2009). All these 43 studies indicate that the segmentation of three-dimensional elevation and spectral information 44 into real-world objects is highly advantageous for object-based derivation of ecological, 45 environmental, and earth surface parameters. Spectral and elevation variability, various height 46 parameters, projected areas and volumes of objects are standard parameters, which are 47 necessary for biophysical, biochemical and earth surface parameter estimation. For example, 48 for a digital canopy model, the crown diameter, canopy height, and crown-base height can be 49 derived from the elevation information of the point cloud (e.g. Morsdorf et al., 2003; Holmgren 50 and Persson, 2004; Dalponte et al., 2014). However, individual tree type and species 51 classifications (Clark et al., 2005; Alonzo et al., 2014; Dalponte et al., 2014), as well as vitality 52 
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estimations, can be improved by spectral information. Furthermore, the combination of spectral 53 and structure information is not only beneficial for forest biomass mapping, but also for urban 54 mapping (Man et al., 2015; Heiden et al., 2012; Alonzo et al., 2014) where the degree of soil 55 sealing, plant structure, roof material and roughness of specific surface material are valuable 56 pieces of information. Therefore, environmental applications at local to regional scales will 57 benefit from an improved object-based parameter estimation. 58 Object-based parameter estimation can thus greatly benefit from the combination of elevation 59 and spectral information, which motivates the development of methods to fuse ALS and HSI 60 data. In general, the generation of hyperspectral point clouds can be distinguished into 3 main 61 categories. First, the real physical measurement approaches based on hyperspectral lidar 62 sensor systems (Hakala et al., 2012; Vauhkonen et al., 2013). Second, the generation based 63 on HSI and lidar sensor fusion (Buckley et al., 2013; Buddenbaum et al., 2013; Dalponte et al., 64 2008, 2012; Debes et al., 2014; Sankey et al., 2017; Suomalainen et al., 2011) and third, the 65 generation based on photogrammetric range imaging techniques (Oliveira et al., 2019; Aasen 66 et al., 2015; Näsi et al., 2015; Nevalainen et al., 2017). In operational and quality terms, a 67 single airborne sensor system is not capable of complying with all these demands. Multi-sensor 68 solutions such as ALS and HSI are available, but their spatial and spectral alignment is 69 challenging due to different sampling strategies, interaction with surface objects, and 70 fundamentally different sensor characteristics (Brell et al., 2017, 2016).  The resulting different 71 spatial ground sampling patterns, as well as diverse spectral behavior and interaction with 72 surface objects, result in a discretization of the relatively coarse spatial resolution of the HSI 73 sensor with a fall back to spatially degraded pseudo-3D (2.5D) grid information. However, a 74 pixel-based representation is often not sufficient, because valuable structural and also spectral 75 information are lost, and it often does not represent the necessary details of the environment 76 and thus the appropriate application feature level. HSI measurements especially for 77 heterogeneous areas such as forests (Clasen et al., 2015; Dandois and Ellis, 2013) or urban 78 areas (Alonzo et al., 2015; Heiden et al., 2012; Roessner et al., 2001) are discretized 79 unfortunately in a mixed HSI pixel (Roberts et al., 1998; Bioucas-Dias et al., 2012). Especially 80 
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for biomass estimation, the ALS metric is extremely valuable. Single tree detection, tree 81 species, tree height, canopy density, and crown size are sensitive parameters for biomass 82 estimation (Anderson et al., 2008; Clark et al., 2011; Asner et al., 2017; Alonzo et al., 2014; 83 Dalponte et al., 2008; Morsdorf et al., 2006; Luo et al., 2017). Moreover, earth surface 84 parameters such as surface roughness or texture for a certain soil type or surface sealing are 85 advantageous for runoff, erosion and other mass movement estimations (Eitel et al., 2016). 86 However, the expansion of 3D mapping capabilities with adequate spectral information to 87 measure spectral and structural properties simultaneously has not been fulfilled yet and a 88 selective OBI extraction is still limited. One approach to satisfy the need of combined elevation 89 ALS and spectral HSI information is to upgrade the point cloud provided by the ALS with 90 hyperspectral information, while preserving its original spatial resolution, irregular and full 3D 91 characteristics.  In this work, we present an application of a new fusion method, which allocates 92 appropriate spectra to the first-return ALS points. Our method aims to synergistically combine 93 the highest possible 3D and spectral resolution information in one comprehensive 3D 94 hyperspectral point cloud (HSPC) data entity. This manuscripts introduces a method to 95 generate HSPC data from separate HSI and ALS data streams and evaluates the potential of 96 such a data entity for advanced land cover mapping applications. We show that the resulting 97 HSPC is more appropriate for OBI extraction because it combines spectral and structural 98 information at the point cloud level in a consistent manner. 99  General aspects of HSI and ALS data fusion 100 We strive to enable a comprehensive OBI extraction from a homogeneous spectral and point-101 cloud data domain for various environmental and urban applications. The overall concept of 102 the HSPC is illustrated in Fig. 1, showing the properties of each data entity. 103 
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  104 Fig. 1: Concept of the hyperspectral point cloud (HSPC). (A) ALS point cloud (first returns) 105 versus an HSI data cube. (B) Spectral overlap between HSI and the ALS sensor at 1550 nm; 106 other common ALS wavelengths such as 1064 and 532 nm and potential overlaps with 107 alternative sensors like multispectral (MS) ALS and an aerial camera (RGB+ NIR) are also 108 depicted. (C) Conceptual view of the fused HSPC where the spectrum for two points is shown. 109 For the generation of an HSPC and the subsequent OBI extraction, some basic considerations 110 are important. The spatial resolution of the HSI is typically lower than that of the ALS. In 111 contrast, actively sensing ALS systems can provide very high spatial resolution elevation and 112 intensity information (Fig. 1), but presently for only one wavelength, which overlaps with the 113 HSI data cube. These contrasting sensor characteristics and data entities cause the main 114 problems and challenges for a fusion of airborne ALS and HSI data. However, the exploitation 115 of the active illumination of lidar inside the fusion process can overcome these drawbacks. It 116 can be used for geometric co-registration of the two sensors (Brell et al., 2016) and for 117 correcting the HSI data for shadow, illumination, and anisotropic effects on a physical basis 118 (Brell et al., 2017). To address the different spatial and spectral sensor responses of these two 119 contrasting sensor, the assignment of HSI spectra to the ALS point cloud has to comprise 120 spatial and spectral alignments, as well as the unmixing-based spectra assignment itself. 121 Consequently, three pre-processing steps are necessary: First, ALS point cloud filtering to 122 include only the first returns, which represent the primary surface that is measured by the HSI. 123 Highly non-linear interactions of penetrable surfaces are not considered. Second, a radiometric 124 calibration of the ALS intensity data which results in ALS bottom-of-atmosphere reflectance 125 
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data (Briese et al., 2012; Kashani et al., 2015; Wagner, 2010). Third, the atmospherically 126 correction of the HSI data into bottom-of-atmosphere reflectance (Guanter et al., 2009).  127 The simplest method to drape co-registered imagery over a point cloud is matching the nearest 128 neighbor pixel to an XYZ point. This process is adequate for fusing data sets with a similar 129 ground sampling distance. However, for fusing spatial coarse HSI data with a spatial dense 130 point cloud, this nearest neighbor assignment (NNA) does not adequately represent the 131 spectral characteristic at a given point. 132 A wide range of pansharpening approaches exist to address the problem of different spatial 133 resolutions. In general, these approaches combine the high spatial resolution of a 134 panchromatic image with a lower resolution multispectral (MS) image (Thomas et al., 2008; 135 Vivone et al., 2015). For fusing panchromatic images with HSI images, those approaches have 136 been adapted to meet the demands of spatially enhancing high spectral resolution imaging 137 (Loncan et al., 2015). The variety of methods corresponds to MS applications. Nevertheless, 138 the small spectral overlap between the high spatial resolution band and the much wider 139 spectral range of the HSI (400-2500 nm) limits a straight forward fusion of both data entities. 140 The complexity of HSI and ALS data fusion is in general similar to pansharpening methods, 141 but differs in three key aspects: First, only a very narrow wavelength range is covered by ALS 142 intensity information inside the wide spectral HSI (400-2500 nm) range. Compared to a wide 143 panchromatic or MS band, the single wavelength of the ALS information content is highly 144 restricted. Second, the spectral contrast between various objects is poor in the recorded 1550 145 nm wavelength range. Third, the ALS point cloud is irregular and thus sporadically sparse. 146 These three challenges have to be properly addressed for a proper fusion. 147 For HSI images the spatial resolution can be sharpened based on spatial dependent spectral 148 unmixing. (Yokoya et al., 2012). Spectral unmixing is a commonly used method for calculating 149 the fractions (called abundances) of pure materials (called endmembers) within a mixed pixel 150 (Roberts et al., 1998; Bioucas-Dias et al., 2012). It is well known that too many or too few 151 endmembers degrade the unmixing result. Additional information must be taken into account 152 
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to prevent the selection of inappropriate and incorrect endmembers that do not influence a 153 pixel of interest and to solve this ill-posed inverse problem. A widely used approach is the 154 integration of spatial information for optimal endmember selection. The neighborhood and 155 spatial context considerations are established in various unmixing studies (Roessner et al., 156 2001; Rogge et al., 2007, 2006). A more general overview of incorporating spatial information 157 to unmixing is given in several studies (Gorretta and Gomez, 2016; Shi and Wang, 2014; Wang 158 et al., 2016). 159 The preservation and enhancement of the spectral information content of the HSI data and the 160 3D character of the ALS data inside a HSPC is realized based on these considerations. Our 161 fusion method considers the spectral and spatial neighborhood of the high spatial resolution 162 ALS point cloud. A regularization is carried out by introducing complementary neighborhood 163 and spatial context on a segment level. The goal is to group HSI pixels into segments with 164 similar spectral characteristics and without any structural or spectral gradients. In this way, the 165 HSI endmember set per segment can be optimized. The spectral variation within a segment is 166 usually kept small. Per-segment endmember sets based on the spatial relationship between 167 adjacent segments and the selection of the most representing endmembers for a certain 168 segment can be provided by an adequate algorithm. Such a segmentation-based endmember 169 selection serves as a controlling factor of the unmixing process. The number of endmembers 170 used for unmixing a specific segment is reduced while considering the substantial variation of 171 the endmembers composing such segments. All these basic considerations enable the HSPC 172 generation described in the method part. 173  Materials and Methods 174  Hyperspectral point cloud generation 175 The fused HSPC is achieved by a segmentation-based spatial unmixing assignment (SSA), 176 which extracts adequate spectra for every ALS point. The processing flow can be conceptually 177 separated into input data generation and pre-processing and the production of the HSPC (Fig. 178 2), which are described in the next sections.  179 
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  180 Fig. 2. Overview of the hyperspectral point cloud (HSPC) generation workflow. Data products 181 are represented by rectangles, processing steps are represented by rhomboids, ALS pre-182 processing steps are indicated by yellow outlines, HSI data-related steps are indicated by blue 183 outlines, preprocessing steps relevant for both datasets are outlined in gray, and red outlines 184 are used for the major fusion steps. 185 3.1.1 Input data generation and preprocessing 186 To generate the HSPC, simultaneous ALS (RIEGEL; LMS-Q560) and HSI (Neo HySpex; 187 VNIR-1600 and SWIR-320m-e) data were acquired over a heterogeneous sub-urban area. 188 The resulting native ground sampling resolution of about 1.4 m for the HSI sensors and the 189 point density of about 5 points/m² had to be aligned spatially and spectrally. Both sensors are 190 co-aligned geometrically (Fig. 2 (A)) based on their respective intensity information with 191 subpixel precision. The used approach is described in detail in Brell et al., (2016). Alternative 192 
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approaches that deliver a precise subpixel co-registration of both sensors are equally 193 adequate. Additionally spectral adaptation (Fig. 2 (B)) of both sensor responses is also a 194 prerequisite of the fusion. It includes 3 pre-processing steps. First, an ALS point cloud filtering 195 has to be performed. The goal is to include only the first returns, which represent the surface 196 measured by the HSI and thus can be connected to the HSI signature. Both solar and lidar 197 radiation penetrate vegetation structures. This nonlinearities inside vegetation are not 198 considered. Therefore, higher-order returns inside vegetation cover will not be included (Brell 199 et al., 2017). The assumption that, i.e. trees are well defined objects are a necessary 200 simplification in processing. Second, a radiometric calibration of the ALS intensity data is 201 performed which results in ALS bottom-of-atmosphere reflectance. Third, the atmospheric 202 correction of the HSI data into bottom-of-atmosphere reflectance (Fig. 3 (C)) (Guanter et al., 203 2009) is implemented. Here, the complete spectral adaptation procedure is realized based on 204 radiometric cross-calibration between the two sensor responses introduced by Brell et al. 205 (2017). The cross-calibration approach used here has the advantage that it exploits the active 206 sensor intensity information of the ALS sensor to eliminate object shadows, illumination effects, 207 and anisotropic effects in the HSI data (Brell et al., 2017). During the preprocessing, a look-up 208 table (Fig. 3 (D)) is prepared, which allocates the intersection of every single HSI pointing with 209 the ALS point cloud by ray tracing. 210 3.1.2 Hyperspectral point cloud (HSPC) fusion 211 To establish the HSPC, we focus on the preservation of the spectral content of the HSI data 212 by considering the spectral and spatial neighborhood of the high spatial resolution point cloud. 213 The fused HSPC itself is realized with segment-based spatial unmixing (SSA) (Fig. 2 (C)). The 214 presented spatial resolution enhancement is based on the spectral unmixing of HSI data using 215 non-negative matrix factorization (NMF) (Fig. 3 (II-IIII) (3.1.2.2).  216 SSA is subdivided into three major processing steps (Fig. 3): 217 I. Segmentation-based endmember selection 218 II. Spatial unmixing based on non-negative matrix factorization 219 
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III. Generation of output matrix 220 

 221 Fig. 3. Detailed workflow of the segment-based spatial unmixing. Input and output data 222 products are represented as rectangles (A-E), and processing modules are represented by 223 rhomboids (1-4). Gray shading highlights the non-negative matrix factorization (NMF) 224 procedures. The involved matrices (W = endmembers, H = abundances, VH = Hyperspectral 225 data (low spatial resolution), VL = Lidar data (high spatial resolution). The dimensions of the 226 involved matrices are suggested by the extent of representing rectangles. The abundances 227 are always updated during NMF (indicated by a green border). Endmembers are only updated 228 during initial NMF (indicated by a red border). 229 
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3.1.2.1 Segmentation-based endmember selection 230 Preliminary over-segmentation of the data into segments performed before the unmixing-231 based sharpening (Fig. 4). This segmentation combines the spectral information from the HSI 232 sensor with the original geometric and intensity information of the ALS data. The produced 233 segments divide the data into spectrally and spatially homogeneous and inhomogeneous 234 regions. Various features computed separately for HSI and ALS data are aggregated on the 235 HSI pointing scale to indicate the variability as a fusion criterion. An eight-dimensional feature 236 space is generated based on the first five principal components (representing 94.5 % of the 237 spectral variation of the processed example point cloud) and three features extracted from the 238 point cloud (ALS reflectance, local height, and normal vector). The three point cloud features 239 are aggregated at the HSI pixel scale (Fig. 4 (3)) by calculating the variation of the features 240 inside an HSI pointing. An alternative segmentation approach or easier accessible features 241 are possible as long as the results can be understood as general homogeneity criterion, which 242 indicates the spectral and spatial complexity inside an HSI pixel. We further discuss the point-243 cloud feature derivation in section 5. 244 The generated feature space is partitioned into clusters by a k-means algorithm. The number 245 of potential clusters is not explicit; it depends on the heterogeneity of the scene and should be 246 chosen to be sufficiently high to guarantee over-segmentation. For the example data set, 60 247 clusters have been shown to be adequate. Over-segmentation is intended to keep the spectral 248 and spatial variance and the potential numbers of endmembers small inside a segment. The 249 clustered pixels are regionally labeled to give spatially neighboring pixels the same segment 250 association. To determine potential endmembers within a segment, a pixel is selected by 251 extracting geometric and spectral segment features. A potential seed endmember should be 252 as far as possible from the segment border. In addition, the ALS intensity, elevation and facet 253 normal variations should be as small as possible within a pixel. A ranking of the pixels within 254 every segment is realized, and the pixels with the smallest variations and distance from the 255 morphological segment center are marked as potential endmember candidates (Fig. 4 (4), 256 
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pixels numbered 0-3). These endmembers represent the spectral and spatial complexity of a 257 certain segment. 258 

 259 Fig. 4. Scheme of segmentation-based endmember reduction. (1) Point cloud is indicated by 260 irregular points, and its segmentation is indicated by rasterized colored patches. (2) HSI data 261 segmentation. (3) Red bordered patches represent the spectrally and spatially homogenous 262 segments, which result from the intersection of (1) and (2). (4) Segment of interest (dashed 263 outline) with relevant neighboring segments (colored red-bordered patches). Numbers indicate 264 the HSI spectra used as seed endmembers for unmixing the segment of interest. (5) Subset 265 representing the segment of interest (dashed outline) with relevant neighbors at point cloud 266 scale and the resulting initial endmember matrix. 267 3.1.2.2 Spatial unmixing based on nonnegative matrix factorization (NMF)) 268 The presented NMF unmixing-based ALS intensity sharpening is adopted from already 269 established methods based on NMF unmixing for hyper- and multi-spectral as well as 270 panchromatic data fusion (Loncan et al., 2015; Yokoya et al., 2012). The technique relies on 271 the assumption that the spectrum represented by an HSI pixel is based on a linear combination 272 of several endmembers and can thus be factorized by two non-negative matrices W and H 273 (Fig. 3 (5)). The matrix W accounts for the endmembers and H for relative abundances. Since 274 the potential endmembers W are known we can approximate their relative abundances based 275 on minimization. In the following, we describe the use of NMF for the spatial unmixing in detail. 276 The NMF unmixing is carried out for each segment, including the potential endmember 277 candidates of the adjacent segments. In the first step (Fig. 3 (5)), the initial endmember 278 candidates (WI) for a certain segment are reduced by NMF. The abundance matrix (HI) is 279 
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initialized randomly, and the minimization performed with the multiplicative update rule (Lee 280 and Seung, 2001). The initial endmember candidates (WI) are also updated by the NMF. Only 281 the most important endmembers (WH) whose abundances (HI) have a fractional amount > 282 0.1 % are used for the unmixing of a certain segment in the second step (Fig. 3 (6)). These 283 endmembers (WH) are not updated in contrast to the randomly initialized HSI abundances (HH). 284 These abundances (HH) are interpolated spatially to the distribution of the irregular ALS point 285 cloud using bilinear interpolation (Fig. 3 (7)). The resulting interpolated abundances (HL) are 286 initially used, while WL is not updated by the multiplicative update rule during minimization (Fig. 287 3 (8)).  288 3.1.3 Hyperspectral point cloud (HSPC) output 289 The generated output matrix bundled with the X, Y, Z information of the ALS point cloud 290 represents the HSPC (X, Y, Z and spectra). 291  Object-based information extraction method 292 We apply a data assessment approach specifically designed for the evaluation of the spectral 293 and structural information content of the generated HSPC. Standard classification and 294 segmentation procedures are used to examine the spectral and structural information content 295 of the generated HSPC at the object scale. In a first step, the spectral information content of 296 every HSPC point is classified with a supervised classification procedure. We implement a 297 support vector machine (SVM) algorithm (Chang and Lin, 2011), because it has been shown 298 to be powerful in classifying high-dimensional spectral data (Melgani and Bruzzone, 2004). 299 Next, we split the HSPC based on spectral class affiliation into several single point clouds. 300 These point clouds represent the various spectral sub-classes and are then segmented 301 individually based on their structural information content by a basic 3D point cloud 302 segmentation technique. The implemented structural segmentation procedure (Cluster-All 303 algorithm, Douillard et al., 2011) is a voxel-based connected component labeling. Instead of 304 using the bare ground surface filtering as initial separation between freestanding point cloud 305 
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objects (Douillard et al., 2011), we have already pre-segmented the point cloud beforehand by 306 splitting the HSPC based on spectral class affiliation. 307 
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 Results 308  Hyperspectral point cloud (HSPC) 309 The generated HSPC is shown in Fig. 5. To illustrate the combined spectral and structural properties 310 and the overall character, the HSPC is shown from three different points of view and with different 311 color composites (A: RGB (red, green, blue); B: CIR (color infrared) and C: MS ALS). 312 

 313 Fig. 5: Different perspective views and color composites of the hyperspectral point cloud. (A) 314 RGB composite (R = 640 nm, G = 549 nm, B = 469 nm), (B) CIR (R = 851 nm, G = 640 nm, B 315 = 549 nm), and (C) example of a MS ALS composite (R = 532 nm, G = 1069 nm, B = 1550 316 nm).  317 
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The initial visual investigation of the point cloud shows that the assignment of the spectra 318 distinctively reflects the morphological object borders. This indicates a successful assignment 319 of a HSI spectrum to every first return ALS point. 320 We perform a detailed investigation of the HSPC in the following two chapters. The 321 performance of the SSA and the valid transfer of the hyperspectral information acquired by the 322 HSI sensor to the high-spatial resolution of the ALS point cloud are verified spatially (4.1.1) 323 and spectrally (4.1.2). Since there are no extensive ground truth data available which meet the 324 high spatial and spectral resolution of the resulting HSPC, an absolute accuracy assessment 325 is not possible. Therefore, the HSPC can only be evaluated relative to its original data or 326 relative to a conventional draping method. For evaluation purposes we generated a more 327 traditionally fused hyperspectral point cloud by matching the nearest neighbor pixel of the co-328 registered HSI image to every XYZ lidar point (nearest neighbor assignment (NNA)). This NNA 329 point cloud represents the standard method for draping HSI information to a point cloud. For 330 direct comparison it is important that the NNA point cloud has the same spatial metric as the 331 HSPC. However, the spectral information is draped by NNA in HSI sampling resolution. We 332 explain this relative evaluation in the following chapters in detail. 333 4.1.1 Enhancement of spatial content 334 The spatial enhancement accompanied by the assignment of the spectral information to the 335 ALS point cloud is validated by the visual inspection of the gridded RGB HSPC information 336 (Fig. 6). The visual comparison against the original HSI data indicates that the spatial 337 enhancement is also realized for the non-overlapping true color RGB wavelength. In general, 338 the blurred impression of the HSI image is replaced by the spatially high contrasting ALS 339 characteristic. Spatial patterns, which are slightly indicated but not traceable in the HSI image, 340 are carved out in the gridded RGB image Fig. 6 B (blue outline), representing the fused point 341 cloud. In particular, single trees and sidewalks (Fig. 6 (1 B and 5 B)), road markings (Fig. 6 (2 342 B)) and thin tar joints between concrete slabs (Fig. 6 (3 B)) show that the overall object 343 delineation and selectivity have been significantly improved for all subsets. The absolute 344 
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difference images (Fig. 6 C 1-5) indicates that the object borders introduce the greatest 345 differences, whereas the unmixing-based fusion only slightly influences homogenous areas. 346 All these findings suggest that the high spatial information of the ALS data is implemented 347 correctly in the spectral information. Apart from that, the NNA approach which can be seen as 348 a more traditionally method to drape spatially course HSI data to a point cloud, does not 349 improve the spatial content and delivers the same blurred impression as the original HSI data; 350 therefore, it is not shown separately. 351 

 352 
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Fig. 6: Spatial comparison of the fusion procedure based on four (1-5) different gridded RGB 353 color composite subsets (R = 640 nm, G = 549 nm, and B = 469 nm; images are displayed 354 with 1 % linear global stretch). (A 1-5) Geo-corrected HSI reflectance images resampled to 355 original ground sampling distance of 1.4 m. (B 1-5) Geo-corrected hyperspectral point cloud 356 gridded to a resolution of 0.5 m. (C 1-5) Absolute difference between HSI reflectance images 357 subsampled to 0.5 m by cubic convolution and (B) for 549 nm wavelength. 358 4.1.2 Preservation of spectral content 359 The presented approach is designed to preserve the spectral content of the hyperspectral data. 360 For validation, the spectral root-mean-square error (RMSE) between the original HSI spectra 361 and the corresponding reverse degraded SSA spectra is calculated. The spatial reverse 362 degradation of high spatial resolution HSPC to native HSI ground sampling distance is realized 363 by weighting the hyperspectral points, which intersect with an HSI cone, with its point spread 364 function (PSF). The image of the RMSE (Fig. 7 (A)) indicates that the preservation of the 365 spectral content is poorer for spatially and spectrally heterogeneous areas. These differences 366 are expected because of small geometric co-registration problems and increased non-linear 367 mixing conditions. However, the histogram shows that in these areas, the RMSE does not 368 exceed 2 % reflectance. The mean RMSE is approximately 1.25 %, and the standard deviation 369 of 0.33 % is minimal.  370 

 371 Fig. 7: Spectral deformation represented by RMSE images and histograms. (A) Spectral RMSE 372 calculated between original HSI spectra and the segmentation-based spatial unmixing (SSA) 373 point cloud which was spatially resampled to the spatial resolution of the original HSI data, (B) 374 spectral RMSE calculated between original HSI spectra and the natural neighbor assignment 375 (NNA) point cloud which was spatially resampled to the spatial resolution of the original HSI 376 data, and (C) spectral RMSE calculated between SSA and the NNA assignment. 377 
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For a comparison, the RMSE between the spectra of original HSI data and spatially adopted 378 spectra based on NNA assignment are shown in Fig. 7 (B). The spectral preservation of both 379 assignment methods (SSA and NNA) is in agreement. Both approaches result in spectral 380 RMSEs that are smaller than 2 % reflectance. A slight shift toward higher RMSEs is 381 ascertainable for the unmixing-based spectra assignment Fig. 7 (A). Direct comparison 382 between the spectral assignment based on the nearest neighbor and the presented SSA 383 approach is realized by calculating the spectral RMSE between the point clouds (Fig. 7 (C)). 384 The higher mean RMSE (5.73 %) compared to the mean RMSE between original HSI data and 385 SSA (Fig. 7 (A)) and mean RMSE between original HSI data and NNA (Fig. 7 (B)) indicates 386 that the spectral variation inside an HSI beam is well described. The increase in spatially 387 induced spectral variance and thus the spatial enhancement of the SSA approach is confirmed. 388 The subsets of Fig. 8 shows the RMSE differences between the two point clouds. Not 389 surprisingly, the patterns outlining the objects indicate that the nearest neighbor technique is 390 not feasible to model the morphological shape of a certain object in a spectrally consistent 391 manner. However, the areas where no spatially induced spectral variance occurs, indicate that 392 the spatial HSI resolution is adequate and that no improvement is achieved through using a 393 higher-spatial resolution ALS point density. This scale-dependent issue is discussed in more 394 detail in chapter 5.1. 395 

 396 Fig. 8: Subsets of point cloud comparison. RMSE between NNA and segment-based unmixing 397 (SSA) spectrum assignment for (A) an urban area and (B) a runway. 398 
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 Object-based information extraction 399 Many application in ecology and geography require object identification and existing analysis 400 method rely on object-based assessments for the derivation of biochemical, biophysical, and 401 earth surface object parameters. The main advantage of the fused HSPC compared to the 402 separated entities is the combination of spectral and structural characteristics, which are 403 represented at the same spatial scale as the point cloud. To obtain a realistic and application 404 independent understanding of the quality and advantages of the proposed HSPC generation, 405 we evaluate the synergistic benefits of structural and spectral information in a single entity for 406 biophysical and earth surface parameter estimation in this section. 407 4.2.1 Spectral point cloud classification 408 A classification comparison is performed to assess the spectral information content of the 409 HSPC and to illustrate the spectral potential of the developed fusion approach. The result of 410 classifying the generated HSPC (spectral + elevation properties) into seven common object 411 classes is shown in Fig. 9 (A) 412 
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 413 Fig. 9 (A) Perspective view of the HSPC classification results (Table 1 (1); classification is 414 performed with a supervised support vector machine classification of spectral and elevation 415 properties). (B) Map view showing classification differences between HSPC and NNA point 416 cloud (see Table 1 (1 & 2)). 417 The assignment of spectra to a single first-return point results in a precise classification of a 418 single point due to its high information content (X, Y, Z, spectra). From 123.741 reference 419 HSPC points used for validation, 121.825 have been classified correctly. This result indicates 420 an overall classification accuracy of 98.45 % with a kappa coefficient of 0.96. Elevated objects 421 such as trees and roofs can be separated more easily due to the consideration of their object 422 height and 3D structure during the classification procedure. In addition, ground or near-ground 423 objects are classified with high accuracy. To put this result into context, a classification 424 
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comparison has been carried out. The original ALS and HSI data, traditionally fused raster 425 data (stacked hyperspectral image + digital surface model) and the point cloud assigned by 426 NNA were also classified (Table 1).The result of the HSPC classification shows only a small 427 advantage over the merged raster data and the NNA point cloud (Table 1). However, the 428 available ground truth data used for validation does not reflect the high spatial and spectral 429 contrast present in the HSPC (see 4.1.1 and 4.1.2). Because of this constraint, the expected 430 higher spectral separability of the HSPC appears to be low-to-moderate in the classification 431 comparison. Ground truth with spatial and spectral resolution of the HSPC would emphasize 432 classification differences more strongly. 433 Table 1 Classification accuracies of HSPC, NNA, fused grid data and source data sets 434 Fused point clouds Overall classification accuracy [%] Kappa coefficient 1. Hyperspectral point cloud (HSPC) (HSI + Elevation; 400-2500 nm; 267 channels) 98.45 0.96 2. Hyperspectral point cloud (NNA) (HSI + Elevation; 400-2500 nm; 267 channels) 98.07 0.95 
Fused grid data Overall classification accuracy [%] Kappa coefficient 3. Hyperspectral image + Digital surface model (HSI; 400-2500 nm; 267 channels + elevation) 96.88 0.95 

Source data sets Overall classification accuracy [%] Kappa coefficient 4. Original hyperspectral image (HSI; 400-2500 nm; 267 channels) 80.69 0.69 5. Original airborne laser scanner point cloud (ALS reflectance + elevation) 60.46 0.22  435 For, the HSPC significant amounts of concrete were falsely assigned to asphalt and soil 436 (omission error Table 2). Also, asphalt was falsely assigned to concrete. Furthermore, soil and 437 asphalt was misclassified as tile roof. 438  439 
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Table 2 Accuracy (Acc), commission (Com) and omission (Om) errors in percent [%] for the 440 different point cloud classifications. Gray labeled cells indicate strikingly significant errors. 441 
Class 1 HSPC (HSI + Elevation) 2 NNA (HSI + Elevation) 3 Grid data (HSI + Elevation) Acc Com Om Acc Com Om Acc Com Om Grass 99.91  0.32  0.09 99.93 1.18  0.07 99.17 0.85 0.83 Soil 99.51  6.38  0.49 99.19 4.79  0.81 99.63 4.84 0.37 Tree 96.30  0.72  3.70 77.90 0.74 22.10 79.71 16.74 20.29 Tile roof 93.38  6.28  6.62 97.01 7.88  2.99 96.44 5.36 3.56 Concrete 80.85  0.96 19.15 85.63 3.19 14.37 85.38 3.20 14.62 Tin roof 99.53  0.39  0.47 99.76 0.55  0.24 71.28 0.00 28.72 Asphalt 92.09 12.23  7.91 85.48 4.42 14.52 99.17 0.85 0.83  442 Fig. 9 (B) shows the falsely classified points from the NNA point cloud as compared to the 443 HSPC classification. The visual inspection of Fig. 9 (B), confirms that the differences occur at 444 the surface and object borders for concrete, soil, asphalt, tin roofs, and near ground trees, 445 such as hedges. These areas are not sufficiently covered by the ground truth data. Despite an 446 oversimplification due to generalized classes, the HSPC investigation indicates that the 447 assigned hyperspectral information leads to a more accurate object discrimination and thus 448 improves the overall point cloud filtering and real object classification capabilities. The reduced 449 spectral information is also sufficient to classify a single point with high probability, but the 450 HSPC outperforms them. The overall preservation of high spectral and spatial 3D elevation 451 information indicates that more diverse classes without implicit oversimplification are feasible; 452 however, the direct observation and thus to assess their classification accuracy entirely is more 453 challenging. 454 4.2.2 Hierarchical point cloud segmentation 455 Adequate point cloud segmentation is an essential step for the modeling and capturing of real-456 world objects. We perform a segmentation to assess 3D object information. We demonstrate 457 the combined spectral and structural potential in object-based classification of the HSPC (Fig. 458 10 A-D). 459 
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 460 Fig. 10 Perspective view of the labeled object segments; (A) – (C) Hierarchical segmentation 461 of previous spectrally filtered point clouds (A) for the tree class, (B) for tile and tin roof classes, 462 (C) for the soil class, (D) for all classes and (E) segment labeling of a spectrally unfiltered HSI 463 point cloud. 464 Due to the previous complexity reduction of the point cloud based on high-accuracy spectral 465 classification, a simple segmentation method is sufficient to subdivide and label the point cloud 466 into meaningful surface objects (Fig. 10 A-C). The automatic detection of individual trees (Fig. 467 10 A), roofs (Fig. 10 B) and soil patches (Fig. 10 C) is shown not only for free-standing objects 468 but also for overlapping and densely distributed objects (Fig. 10 D). As expected, without 469 preceding spectral filtering, the simple point cloud segmentation approach cannot adequately 470 
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handle the complexity (Fig. 10 E). Neighboring spectrally heterogeneous surfaces with 471 structural homogeneity are segmented into mindless patches. Advanced segmentation and 472 classification approaches are feasible to handle this complexity to a certain degree. However, 473 the hierarchical point cloud segmentation demonstrates that an accurate preceding or 474 integrated spectral point cloud filtering supports the 3D object level access. 475 4.2.3 Derivation of object-based parameters 476 The object-based point cloud measurement and calculation of certain parameters, for example, 477 the local variance of parameters, ground projection area and volume of certain objects, are 478 obligatory for a great number of environmental applications. To demonstrate the potential of 479 the HSPC and an object-based information extraction, we show the difference and 480 dependencies of object parameter estimations from two different point clouds (HSCP and 481 NNA, Table 3). Table 3 gives an impression of the sensitivity regarding the spectral assignment 482 method for parameter estimation as well as the relevance of the developed fusion approach 483 for applications.  484 Table 3: Statistical comparison of object parameter differences between mean object 485 parameters derived from the hyperspectral point cloud (HSPC) and natural neighbor-based 486 assignment (NNA); negative values indicate classes where the mean derived object 487 parameter is greater for NNA assignment, green marked cells indicate expected values, and 488 orange cells indicate selected values for discussion. 489 
 Difference (HSCP – NNA) Total number of segments Spectral object variability [%] Structural variability [m] Max object height [m] Mean object height [m] Projected object area [m²] Object volume [m³] Grass -468 -266.53 -0.465 -1.98 -0.56 -198.51 -11.78 Trees -285 127.47 0.47 2.69 0.94 113.21 2.5 Asphalt 261 -89.08 0.22 0.61 -0.13 115.07 1.09 Concrete -237 -278.08 -0.1 -0.49 -0.13 61.3 -1.4 Soil -695 -98.18 0.09 0.67 0.3 245.29 0.02 Tile roof -360 -40.06 -0.06 1.82 1.81 8.17 0.77 Tin roof -100 -189.27 0.07 1.8 1.4 27.92 1.18  490 The differences between the mean derived object parameters for the respective classes do 491 not show a clear tendency. The reasons are complex and depend on the spatial and spectral 492 homogeneity of a class and its objects, its surroundings and spatial overlaps. Therefore, the 493 
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individual interpretation is difficult and, to a certain point, speculative. However, some notable 494 values are discussed: The difference between the total amounts of respective segmented 495 objects shows that fewer objects of a class are generated and that the mean spectral object 496 variability is predominantly reduced for the HSPC data basis. The mean projected area of an 497 object is also increased. This circumstance indicates that the spectra are not assigned 498 accurately to the object shape by NNA. The conducted segmentation leads to smaller patches 499 around the objects and overall fragmentation. Asphalt stands out because the number of 500 objects and the measured projected area are increased which was also observed in the 501 classification results. In addition, the mean projected grass area indicates an effective 502 reduction probably at the expense of soil. The overall spectral and structural variability for trees 503 is increasing for the HSPC. Trees consist of leaves and branches, and thus, they are inherently 504 spectral and structural heterogeneous objects. It seems that HSPC assignment reflects this 505 trait less discretized. The increased parameters (tree max, mean object heights and the 506 projected object area) as well as the relatively stable object volume parameter support this 507 interpretation. In any case, the overall consideration indicates the sensitivity of the parameter 508 estimations to the spectra assignment. It can be concluded that object parameter derivation 509 based on combined HSI and ALS data is significantly sensitive to an appropriate data fusion. 510 This circumstance is highly relevant for environmental applications. In general, these standard 511 parameters and more advanced empirically modeled parameters are easily derivable from the 512 fused 3D HSPC. Studying the spectral and spatial variability of these parameters can be easily 513 realized with the HSPC and enhances the differentiation within object classes. This approach 514 provides the opportunity to differentiate between types and statuses of objects at the point 515 cloud level. 516  Discussion  517 The generation of HSPCs is an emerging method with currently only very limited existing 518 research. The fusion approach proposed in this work adds to the growing body of literature 519 and the manuscript attempts to provide relevant background information. The opportunities 520 
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and limitations for applications resulting from the HSPC generation (chapter 3.1) and the 521 performed OBI (chapter 3.2) are discussed in detail below. 522  Hyperspectral point cloud (HSPC) generation approach 523 The presented ALS and HSI data fusion relies on segmentation-based spatial unmixing. The 524 resulting HSPC indicates that the spectral assignment to an irregular point cloud is a clear 525 spatial enhancement. It is shown that the developed approach is capable of assigning spectra 526 to the spatially irregular ALS point cloud. Furthermore, simple NNA is not sufficient for precise 527 spectral assignment. Thereby, the following three inherent fusion challenges have been solved 528 successfully:  529 (1) The narrow wavelength overlap compared to the wide HSI spectral range of the two 530 sensors;  531 (2) the low-intensity contrast between certain objects in the overlapping wavelength 532 domain; and 533 (3) the irregular spatial distribution of the ALS point cloud. 534 Additionally, the results show that the generated HSPC improves classification and 535 segmentation accuracies for heterogeneous environments by appropriate fusion of the data 536 entities. Compared to pixel-level discretized data, the HSPC reproduces extreme local spectral 537 and structural variations. Thus, the fused HSPC enables new opportunities for point cloud 538 filtering and object-based parameter estimation. However, three prerequisites must be fulfilled 539 to gain such accurate results with the presented approach. First, ALS and HSI data must be 540 co-registered precisely. Second, the ALS point cloud should only represent first returns which 541 can be connected to the HSI signature. Therefore, higher order returns inside vegetation, which 542 have no assignable contribution to the spectral signature in the HSI, cannot be assigned with 543 a proper spectrum. Third, the ALS data have to be radiometrically calibrated and the HSI data 544 has to be atmospherically corrected. Due to the performed preprocessing (see3.1.1), the 545 represented fusion approach is capable of handling geometric co-registration issues (Brell et 546 al., 2016), sensor cross-calibration and thus passive illumination drawbacks (Brell et al., 2017) 547 
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to support the elimination of spectral and spatial resolution incompatibilities. However, 548 alternative standard approaches are sufficient for the fusion. 549 Despite the slightly larger deformation of the spectral information compared to the original HSI 550 data (Fig. 7 (A and B)), the classification and segmentation performance results in proper and 551 clear delineation of the relevant surface objects. It is beneficial for the generation of the HSPC 552 to optimize the HSI endmember set on a per-segment basis. The per-segment processing is 553 computationally efficient. Reducing the number of iterations and of potentially involved 554 endmembers reduces the number of matrix calculations compared to pixel-oriented 555 approaches. Furthermore, restrictions that are caused by the insufficient intensity contrast 556 among all relevant land-cover classes in the 1550 nm domain can be overcome by the SSA, 557 and the wrong mixture results caused by poor endmember selection are prevented with the 558 preceding segmentation. The approach is based on the assumption that endmember pixels 559 are located in the adjacent and respective segments. Thus, building the segments is a sensitive 560 key step in the fusion procedure. The intended tendency to over-segmentation ensures that 561 the segments are not underrepresented by the optimized endmember set. Calculating the point 562 cloud feature variability on the HSI pixel scale is efficient to capture the spectral heterogeneity 563 inside a pixel and thus inside the segment. The results indicated that the segmentation is 564 essential but the type of segmentation is not crucial. Alternative point cloud features for the 565 segmentation are possible as long as the overall focus is retained. The over-segmentation 566 should differentiate the data into segments representing spectrally and spatially homogeneous 567 regions and inhomogeneous regions. For the unmixing procedure itself, NMF was used 568 because it is easy to implement and to adopt despite remarkable performance (Loncan et al., 569 2015; Yokoya et al., 2012). 570 However, the overall quality and operability of the fusion approach are dependent on the 571 proportion of HSI resolution to ALS point density. Additionally, the spatial and spectral surface 572 heterogeneity itself and the spatial distribution of the ALS points inside one HSI pixel have an 573 effect on the resulting data quality. Ultimately, the optimal proportion depends on the 574 
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application scale. For this study, 3-4 points per HSI pixel seem to be a minimum for an 575 improvement of the more heterogeneous parts (trees, urban structures). However, for the more 576 homogeneous parts (streets, runway), where the point density is generally higher, also small 577 spatial features such as lane marking or concrete joins can be sharpened. The point density 578 for the runway area and the roads is up to 10-20 points per square meter. A low surface 579 heterogeneity but high point density leads to a higher spatial and spectral accuracy and vice 580 versa. In principle, one can say that the higher the ALS point density is compared to the native 581 HSI resolution, the better the fusion quality. Due to the overall scale-dependency, we avoid a 582 set definition of the proportion between the point cloud density and the spatial resolution. The 583 application determines the scale of the point-cloud data collection and point-cloud analysis. 584  Application perspectives 585 The developed fusion approach is holistic in order to support a broad range of environmental, 586 urban local to regional applications with state-of-the-art spectral and spatial remote sensing 587 data. The demonstrated improved object-based information extraction introduced by the fusion 588 is an outstanding advantage for a great number of environmental and urban applications. 589 Especially the reduction of the intra-class variability and the enhancement of the inter-class 590 separability (see 4.2.1) significantly improves the overall information content. Additionally, due 591 to the assigned active ALS measurement characteristic to the HSI data which reduces 592 illumination and shadowing issues (Brell et al., 2017), even advantages reserved for active 593 lidar measurements (Dai et al., 2018; Zou et al., 2016; Suomalainen et al., 2011) can be 594 reproduced and implemented. Compared to a surface description based on the combination 595 of photogrammetric 3D surface models and HSI spectral information (Aasen et al., 2015; 596 Nevalainen et al., 2017; Oliveira et al., 2019), the HSPC provides full ALS inherent structural 597 and spatial quality characteristics (including multiple returns within the vegetation). In addition, 598 such combinations have so far only been limited to the VNIR spectral range and consistent 599 illumination correction in a physical manner is an unsolved issue.  600 
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The demonstrated HSPC inherent capability of spectral point cloud filtering reduces the 601 structural complexity and contrasts the dissimilarities (4.2.2). Compared to the complex 602 complete point cloud, the resulting spectrally homogeneous subclasses can be segmented 603 structurally more easily also with very simple segmentation approaches. More sophisticated 604 segmentation approaches, which need a priori knowledge to consider certain object shapes 605 and structures are not mandatory anymore. Additionally, structurally similar but spectrally 606 heterogeneous surface patterns can be differentiated or recognized as separated objects with 607 the support of spectral information. 608 In general, it is preferable to support applications with maximum flexibility regarding the scale 609 of measurement. The HSPC has the potential to accomplish the spatial and spectral scalability 610 to meet customized demands to the highest measured scale. Due to the Airborne technology 611 of the sensors the HSPC is especially suited for applications that serve a regional to local scale 612 level. With increasing miniaturization of the sensors and the professionalization of the UAVs, 613 it will be possible to combine the properties of both sensors on these platforms as well (Sankey 614 et al., 2017). It is shown (see 4.2.3) that the generated HSPC is an adequate and powerful 615 data basis and especially biophysical, biochemical, and earth surface parameter estimation 616 can profit from the scalable point cloud metric. In particular, the scalable combination of 617 spectral and structural information on a point cloud level is beneficial for environmental 618 parameter derivation for mixed land covers, where the point cloud metric is not inevitably the 619 dominant attribute. 620  Opportunities and limitations 621 The potential of HSPCs is demonstrated by classifying (see 4.2.1) and segmenting (see 4.2.2) 622 the generated point cloud and by showing object level parameter estimation for certain 623 applications (see 4.2.3). Based on the evaluation of the generated HSPC, the following 624 opportunities can be highlighted: 625 1. The data fusing at the point cloud level enhances the potentially available analyzing 626 scale, and thus expands and combines the scope of both technologies. The information 627 
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content of the point cloud can be adjusted and application-oriented to special issues or 628 scales. 629 2. Accurate spectral point cloud filtering of certain land-cover classes can be utilized at 630 the individual point level based on hyperspectral methods (classification, dimension 631 reduction techniques). 632 3. The opportunity to combine HSI classification and point cloud segmentation capabilities 633 results in overall improvement of object recognition robustness. 634 4. Improved and intuitive object level parameter estimation based on spectral and three-635 dimensional geometric information is enabled. 636 The following limitations for applications can be mentioned: 637 1. The overall quality of the data fusion is sensitive to the proportion between point cloud 638 density and spatial resolution of HSI data. 639 2. ALS points reflected inside vegetation bodies (higher-order returns) that are not 640 represented in hyperspectral data cannot be provided with adequate spectra. 641 3. The resulting HSPC is subsect to an increasing complexity of required methods 642 considering acquisition, data access, storage, fusing and analyzing strategies 643 compared to raster approaches. 644  Conclusion 645 In this study, we have presented a comprehensive approach for fusing spectral and 3D data 646 derived from a hyperspectral imaging system and airborne lidar system. The developed 647 segmentation-based spatial unmixing is capable of assigning hyperspectral information to 648 every first-pulse return of the high-spatial resolution airborne laser point cloud. The generated 649 HSPC combines spectral and three-dimensional information content at the spatial scale of the 650 point cloud in a single data entity. It thus represents the high spectral and spatial resolution 651 and overcomes the discretization inherent to the respective sensor characteristics. The HSPC 652 provides enhanced context, which can be easily accessed, filtered, and parameterized. We 653 have demonstrated that the HSPC includes the capability of simultaneous spectral 654 
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