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Abstract
Water availability during summer inCentral Asia is controlled by the snowmelt in the surrounding
mountains. Reliable forecasts of river discharge during this period are essential for themanagement of
water resources. This study tests the predictive power ofGRACE gravity-basedwater storage
anomalies in a linear regression framework for two large catchments. The results show substantial
improvements of the forecasts in the larger Amudarya catchment compared to forecasts using just
climate, snow cover, and discharge data. In this catchment, GRACEwater storage anomalies even
provide the largest share of explained variance. This leads to the conclusion that GRACEdata can
improve the forecast of seasonal water availability for large basins inCentral Asia. TheGRACE-FO
mission launched inMay 2018 opens up the possibility of operational forecasts utilizing upcoming
near-real time products from satellite gravimetry for Central Asia and similar environments.

1. Introduction

Central Asia (CA) is a semi-arid region spanning overKazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan,
Tajikistan, northernAfghanistan, and north-western regions of China. CAhosts two largemountain ranges
(Tien Shan and Pamir). All the large rivers in the region (Amudarya, Sirdarya, Ili) originate from these
mountains. The semi-arid and endorheic Aral-Sea basin, towhich thementioned river systems drain, shows a
distinct seasonality in precipitation and river discharge. For large parts of CA, the bulk of precipitation occurs in
the boreal wintermonths (Sorg et al 2012, Aizen et al 1996), with a particular spatial concentration in the
mountain ranges. Precipitation during the summermonths is, in contrast, practically zero in the lowland areas.
Water originating from snowmelt and to a lesser extend fromglaciermelt is then the only source for generating
river discharge. During summer river discharge is thus the onlywater resource available and thus of high
importance for the agricultural systems and economies of the countries in the Aral-Sea basin. Particularly the
agriculture with its intensive irrigation schemes crucially depend on thewater provided by the river systems
(Viviroli et al 2007). Therefore the forecast of river discharge during summer is of high importance for the
regions, and in fact amandatory task of all hydro-meteorological services in the area.Here forecasts of the
seasonal river discharge during summer (April to September) are issued operationally on amonthly basis from
January to June. Forwater resources planning the forecasts issued just before the summer period at the start of
April is of highest importance.However, forecastmethods and procedures in theCA countries are chronically
outdated, as well as capacities are limited (Apel et al 2018). Recently, Apel et al (2018) developed a simple concept
for forecastmodels for CA catchments based on precipitation, air temperature, river discharge that are readily
available to the hydromet services, supplemented by operational satellite based snow cover data (Gafurov et al
2016). The concept proved to provide forecasts with high performance for lead times up to 3months and for
catchments of widely varying size and location inCA. This could be achieved because the accumulation period
and runoff generation is well separated between the seasons. Snow is accumulating and stored in themountains
inwinter, and releasedwith the onset of snowmelt in spring. The rational in Apel et al (2018)was that the
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combination of snow cover informationwith temperature and precipitationmay serve as a proxy for thewater
stored in the accumulated snowmass (the snowwater equivalent SWE), and could thus be used for seasonal
discharge prediction. The successful application of themodel supported this rational.

This finding suggests that direct observations of water storage, here SWE, instead of proxies such as
precipitation and snow cover area could also serve well as predictors for seasonal discharge inCA. Such
observations are provided by theGravity Recovery andClimate Experiment (GRACE) SatelliteMission (Tapley
et al 2004). From the continuousmeasurements of the Earth’s gravity field byGRACE, total water storage
anomalies (TWSA) have been derived. GRACETWSA encompasses storage variations in all terrestrial
compartments, including glacier and snow accumulation and depletion. The feasibility of providing products
derived fromGRACE in near-real time has been demonstrated in theHorizon 2020 project EuropeanGravity
Service for Improved EmergencyManagement (EGSIEM). Against the background of the recently launched
GRACE-FollowOn (GRACE-FO)mission of which data products are expected to become available bymid
2019, this, in principle, opens up the possibility of using satellite gravity data in operational forecasts. Thus, the
aimof this study is to includeGRACETWSA in the forecastmodels of Apel et al (2018) to test the applicability
and performance of TWSA in forecasting seasonal discharge takingCA as a test region.

2. Study area and data

Out of the set of river basins tested byApel et al (2018) for seasonal forecasts inCentral Asia, the two largest
catchments were selected for this study: theAmudarya catchment upstreamof the gaugeKerky, close to the
border of Tajikistan andTurkmenistan, and theNaryn catchment upstreamof the Toktogul reservoir (figure 1).
TheAmudarya catchment covers an area of 287,714 km2, theNaryn catchment an area of 51,926 km2. The
Naryn catchment is thus actually too small to be properly represented by the coarse spatial resolution ofGRACE
data in the order of 100 000 km2. Below this size the signal-to-noise ratio tends to decreasemarkedly (e.g., Zhang
et al (2016), Vishwakarma et al (2018)). Nevertheless, theNaryn catchment is included in this analysis in order to
test if TWSA signals of the larger area, which are unavoidably included in the TWSAdata extracted forNaryn, are
representative for the storage inNaryn, and if TWSA can potentially be used consequently as a predictor also for
smaller catchments, at least in this geographical context.

For Amudarya the river discharge (Q) time series of gaugeKerkywas used to derive the seasonal discharge.
ForNaryn, the overall inflow into the Toktogul reservoir at the outlet of the catchmentwas used. Precipitation
(P) and air temperature (T) datawere obtained from the climate stationsKerky (Amudarya) andNaryn city
(Naryn). All these data havemonthly resolution.Monthlymean snow coverage (SC) of the catchments was
derived fromdaily snow covermaps derived fromMODIS satellite data by theModSnow tool (Gafurov et al
2016).

Figure 1.TheAmudarya andNaryn basins in Central Asia considered in this study.
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TheGRACEproduct used in this studywas the daily GRACE gravity solutions usingKalman smoothing
produced by the Technical University of Graz (ITGS-Grace2016_Kalman) based on the procedure described in
Kurtenbach et al (2012). The predictions of theKalman smoother in the daily GRACEproduct allow for filling
observational data gaps, however, potentially at the expense of accuracy. The datawas given as global 1 degree
grids of TWSA fromwhich daily area-mean values of all cells covering the two catchments were calculated, and
further aggregated tomonthlymeans.

The daily GRACEproduct was preferred to the standardmonthlyGRACEproducts (as, e.g., provided as
Level-3 products fromGFZ, CSR and JPL at http://grace.jpl.nasa.gov) because it provides data even formonths
with fewGRACEobservations, for which the standardmonthly data have not been produced.Missingmonths
would impair the testing ofGRACE as predictor. In linearmodelling,missing predictor data, which is equivalent
to a lower number of observations towhich themodels arefitted, can lead to overfitting and thus spurious
results. Short time series of observations or predictors can bemuch betterfitted than longer time series,
especially if the number of data points (here years with complete predictor data) to be fitted comes close to the
number of predictors, thus reducing the degrees of freedom formodel fitting. Overfitting reduces the robustness
of the fits and thus the predictions. In the present study, the data gaps in the standardmonthlyGRACEdata
would reduce the number of years withGRACEpredictors to 8, instead of 13 for the daily solution, thereby
considerably increasing the chance ofmodel overfitting and thus also ameaningful test of GRACE as seasonal
discharge predictor. Therefore we did not use the standardmonthlyGRACE solutions nor themonthlyGRACE
mascon solutionswhich have the same temporal coverage as the standardmonthly products, in order to
minimize overfitting and spuriousmodel fitting results and predictions.

However, we evaluated the correlation between themonthlyGRACEproducts (JPL RL05, GFZRL05, CSR
RL05, ITSG-Grace2016) and the daily Kalman smoothed solutions in order to get an insight into the potential
applicability of different GRACEproducts for seasonal discharge forecasts. The analysis showed that predictors
based on themonthlyGRACEproducts are highly correlated to the predictors based on the daily ITSG solution
inAmudarya, with linear correlation coefficients in the range of 0.96–0.97. For theNaryn basin, the correlations
are lower but still high in the range of 0.77–0.87. Thismeans that using one of themonthlyGRACE solutions as
predictor would result in similar to identical results compared to the predictors based on the daily GRACE
products, because in linearmodelling highly correlated predictors result in similar or even identicalmodels. In
linearmodelling the variance of the predictors is ofmuch higher importance than the actual value. The
continuous time series of theGRACEpredictors based on the daily ITSG solution is thus equivalent to the
monthly solutions, with the additional benefit ofmore robustmodel fits, and is thus preferred in this study.

In order to properlymap thewater storage change over the accumulation period, differences between the
monthly TWSA and theTWSA in September of the same seasonwere calculated and used for the forecasts. By
this procedure possible long term trends in the TWSA time series are eliminated and the TWSA signals of the
particular accumulation periods are isolated. The time period of the analysis was 2003–2015 according to the
availability of GRACETWSA and discharge data.

3.Methods

Statistical forecastmodels for seasonal dischargewere derived as in Apel et al (2018), based on station data
(Precipitation P, air temperature T, antecedent dischargeQ), satellite-based snow cover data (SC) (Gafurov et al
2016), and composites of P, T and SC. The core of themethod is aMultiple Linear Regression (MLR),
accompanied by a Leave-One-Out CrossValidation (LOOCV), testing all allowed combinations of predictors.
The best performing 20models were chosen according to theminimumof the Predictive ResidualMean of
Squares (PREMS) between predicted and observed seasonal river discharge (meanmonthly discharge April -
September) of the LOOCV,whereby onlymodels with overall significance at p=0.1 and all predictors
significant at p=0.1were selected. The predictors were grouped into 8 classes: T predictors, P predictors, SC
predictors, Q predictors, and 4 composite predictors, combining T, P, and SC. Eachmodel was allowed 1
predictor per group only, up to amaximumof 4 predictors (Apel et al 2018).

In order to exploit the specific value of TWSA as predictor, themaximumnumber of predictors permodel
was iteratively fixed to 1, 2, 3, and 4 predictors, respectively. This allows the investigation of TWSA as predictor
inmore detail, because the predictive power of TWSA alone and in combinationwith other predictors can be
isolated. For comparison, the same procedure was applied to derivemodels excluding TWSA as predictor.

The performance of themodels is reported as adjusted R2 values of the best LOOCVperformingmodel, and
asmean adjusted R2 of the best 20models in the LOOCV.Additionally, the importance of the predictors was
extracted as portions of the overall explained variance (adjusted R2) in order to identify the contribution of the
single predictors to the overall explained variance. For a better interpretation of the contribution of the
predictors tomodel performance, the importance of the predictors was averaged over the set of best 20models.
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By this procedure potential spurious results in terms of predictor importance originating from a goodmodel fit
by chance can be avoided.

4.General results

Figure 2 illustrates the seasonal discharge forecasts for bothAmudarya andNaryn by the best LOOCVmodel for
the different forecastmonths. In general, the forecast improvewith later forecastmonths (i.e. decreasing lead
time) andwith higher numbers of predictors, up to almost perfect forecasts for the late forecastmonths and 3–4
predictors. This high performance of themodels is exceptional for seasonal forecasts, as already pointed out in
Apel et al (2018) for the results without usingGRACEdata.Moreover, also the forecasts with only a single
predictor provide reasonable forecasts of the seasonal discharge. The forecastsmap the observed inter-annual
variability of seasonal discharge quite well, evenwith 2–3months lead time (cf figure 2). The visual impression
given by figure 2 is substantiated by statisticalmodel performance values (table 1). Themean performance
follows the trend of the performance of the bestmodel, thus indicating robust regressions with different
predictor combinations. The performance is similarly high for both catchments for all lead times and predictor
numbers whenTWSA is included in the predictor set.Without TWSA, the performance of the Amudarya
forecasts with 2–3months lead time (January/February) is notably lower. For theNaryn basin, on the contrary,
there is generally nomarked improvement of the performancewhenTWSA is included.

Themean absolute error (MAE) and the rootmean squared error (RMSE) follow the same trend as the
adjusted R2 (figure 3), with bothmeasures being less than 10%of themean seasonal discharge averaged over the

Figure 2. Forecasts of themean seasonalmonthly discharge for the periodApril to September for theAmudarya andNaryn
catchments by the bestmodel for the different forecastmonths. The rows present forecasts ofmodels withmaximum1–4 predictors
(No. pred.) respectively. The blue lines in the background indicate the observed seasonal discharge.
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investigation period 2003–2015. This holds true for the bestmodel, but also on average for themodel sets of 20
models. This indicates high reliability of the forecasts. The robustness of the forecasts is investigated by setting
the LOOCV residuals in relation to the residuals of themodel fitted to the complete time series (black dashed line
infigure 3). This shows that the robustness of the January and February forecasts is comparativelymoderate, but
fromMarch onwards very high.

5. The role of GRACETWSAas predictor

In general, the results in terms of forecasts performance follow the findings of Apel et al (2018), but with some
distinct differences. The comparison of the forecasts with andwithoutGRACETWSA shows substantial
improvements for Amudarya for almost all lead times and number of predictors, while forNaryn the

Table 1.Performance of the best LOOCV forecastmodels of seasonal discharge for theAmudarya andNaryn catchments for all forecast
months, different numbers of predictors, andwith andwithoutGRACETWSA as predictor. Performance is reported as adjusted R2-values.
The ‘best’ columns show the performance of the single best LOOCVmodel, while ‘mean’ indicates themean adjustedR2 of the best 20
LOOCVmodels. The symbols below the performance values indicate the significance of themodel fits.
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performancemostly remained identical. For Amudarya the smallest improvements are observed for the January
toMarch forecasts with 1 predictor. However, for themost important forecasts for watermanagement inApril,
improvements could be achieved evenwith a single predictor. This indicates that TWSAoutperforms all other
observables when used as the only predictor for Amudarya. Ifmore than 1 predictor is used, themodel
performance increased substantially in Amudarya, particularly for the early forecasts. Although the later
forecasts show a high performance evenwithout using TWSA, an increase in performance is still achieved.

The quantification of predictor importance corroborates these findings (figure 4). For Amudarya, TWSA is
responsible for the highest portion of the explained variance (= highest importance) for the forecastmonths
January to April. This can be observed formodels with a single and up to 4 predictors. ForMay and June, the
antecedent discharge gainsmore importance and explains the highest share of variance, as already observed in
Apel et al (2018). This is reasonable from a hydrological point of view, because snowmelt already occurs inMay
and June and thus the observed discharge has a high indicative power for the overall seasonal discharge. This is
expressed by a high correlation of sub-seasonal discharges spanning over shorter periods (e.g.May-September)
to the discharge of the full summer period. In contrast to Amudarya, TWSA is ofmuch lower importance in
Naryn. It shows hardly any importance in the January toMay forecasts. Only for the late June forecast, TWSA

Figure 3.Performancemeasures of the seasonal discharge forecasts for the Amudarya andNaryn catchments.mean adj. R 2/min adj.
R 2 is themean/lowest performance of the (up-to) best 20 LOOCVmodels; robustness is ratio ofmean LOOCV-adj. R2 to themean adj.
R2;RMSE/MAEnorm. is the RMSE/MAEof the bestmodels normalized tomulti-annualmean seasonal discharge;meanRMSE/MAE
norm is themeanRMSE/MAE in relation to themulti-annualmean seasonal discharge; No. pred. indicates themaximumnumber of
predictors in themodels.
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explains some variance, which is in line with themodest improvement of themean performance for June
reported in table 1.

The observed differences of the TWSA importance in the two catchments had to be expected due to the too
small catchment size ofNaryn forGRACE gravity signals, and can be explained by the spatial resolution of
GRACEdata. TheNaryn catchment (about 50,000 km2) is well below estimated limits of catchment sizes that
GRACE is able to resolve (Vishwakarma et al 2018), given the noise inGRACEobservations and signal
deterioration due to subsequent filtering, causing not only the reduction of noise but also signal attenuation and
leakage fromneighboring areas. This effect could also explain the observed TWSA importance in the June
forecasts inNaryn.Here, TWSApredictors show the difference betweenTWSA inMay and September of the
previous year, i.e. over thewhole accumulation periodwheremass changes are likely to be better detectable by
GRACE. This is particularly relevant for theNaryn catchment, which receives substantial precipitation—in
contrast to Amudarya - also in late spring/early summer bywesterly circulation patterns (Gerlitz et al 2016).
Hence it can be argued that the additional precipitation received inMay inNaryn provides the criticalmass
input that can be detected byGRACE in this catchment. However, in general the hypothesis that the TWSA
signal forNaryn, which is influenced by the TWSA anomalies of the surrounding region, is actually
representative for thewater storage inNaryn, has to be rejected.

6. Conclusions

In the semi-arid study area of Central Asia, GRACE gravity basedwater storage anomalies TWSA showed high
performance in forecasting river discharge in the vegetation period for the large Amudarya catchment. In this
catchment, GRACETWSA is themost important predictor. However, the combination of TWSAwith other
predictors even increased the importance of TWSA, alongwith the overall forecast performance. For the smaller
Naryn catchment, which size is actually too small forGRACE, TWSA could not improve the forecasts based on
climate data, snow cover and antecedent discharge alone. This finding supports the conclusion that TWSA
actuallymaps the total water accumulation in the large Amudarya catchment, and is thus ameaningful predictor

Figure 4.Mean predictor importance of the best 20models as portions of themean adj. R2 for theAmudarya andNaryn catchments.
The rows present forecasts ofmodels withmaximum1–4 predictors (No. pred.), respectively.
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for the subsequent seasonal discharge. Furthermore, it can be reasoned that TWSAmight be used for forecasting
seasonal discharge in other large regionswith similar climatic and hydrological conditions, i.e., snow
accumulation inwinter and snowmelt asmost important factor for river discharge in summer, such as the
Californian SierraNevada or theChileanAndes, for instance.

Thefindings also suggest that direct observations of SWEwould be an ideal predictor for seasonal forecasts,
especially for smaller catchments. However, ground based SWEobservations, particularly continuous time
series spanning decades, are very scarce and limited to a few areas worldwide. This impairs a generalization of
such an approach. On the other hand, state-of-the-art continental-scale, satellite observation-based SWE
products, such as theCopernicus Global Land service SWEproduct (https://land.copernicus.eu/global/
products/swe) based on the retrieval algorithmof Takala et al (2011), are restricted to non-mountainous areas.
These products thus cannot deliver so far useful information for Central Asia and for similar regionswhere
seasonal discharge is dominated by snow accumulation andmelt in themountains.

Dedicated post-processing ofGRACEdata for small basins of interest as proposed, e.g.,. by Longuevergne
et al (2010) orKhaki et al (2018), may reduce themagnitude offilter and leakage errors in the final storage time
series for these areas, but such an approachwill be of limited use for the present forecasting study due to the gaps
in the time series, thus suffering the same constraints in linearmodelling as the standardmonthly solutions.
Expectations, albeit of limited scope, of a slightly higher spatial resolution of GRACE-FollowOndata based on its
laser ranging interferometer (Flechtner et al 2016)may open pathways for transferring the proposed seasonal
discharge forecastingmethodwithGRACEpredictors to smaller catchments. It should be noted that the same
argument applies for the use ofmultiplicative time-invariant scaling factors applied in post-processing of
GRACEdata to restore part of the signal amplitudes that have spuriously been lost duringGRACEfiltering
operations before (e.g., Landerer and Swenson (2012)) is expected to have no effect on the forecast results. This
sort of linear bias correctionwill result inGRACE-based predictors that are highly correlated to the original
ones, and thus, as explained above, will have no effect on the linear forecastingmodel applied in the present
study.

For an operational use ofGRACETWSA in seasonal forecasts, the data need to be provided in near-real time
(NRT). Given the recent development of aNRT service forGRACEproducts within the EuropeanGravity
Service for Improved EmergencyManagement EGSIEM (Jäggi et al (2019)), such data are expected to be soon
available based on theGRACE-FollowOnmission, whichwas launched inMay 2018. Our study thus paves the
road for a novel application of satellite gravity data in hydrological forecasting, possibly in several regions
worldwide, including chronically data scarce areas. Given the specific findings for Central Asia, GRACE-FO
could be included in operational forecasts procedures byCentral Asianwater authorities for the summer
season 2019.

Acknowledgments andData

This studywas undertakenwithin theCAWaproject (http://www.cawa-project.net), funded by theGerman
Federal ForeignOffice as part of theGermanWater Initiative for Central Asia (grant number AA7090002). The
studywas partly co-funded by the EuropeanUnion’sHorizon 2020 project EuropeanGravity Service for
Improved EmergencyManagement (EGSIEM) under grant agreementNo 637010.

TheGRACETWSAdata is open source and available at https://www.tugraz.at/institute/ifg/downloads/
gravity-field-models/itsg-grace2016/

ORCID iDs

HeikoApel https://orcid.org/0000-0002-8852-652X
AbrorGafurov https://orcid.org/0000-0003-0337-465X

References

AizenVB, Aizen EMandMelack JM1996 Precipitation,melt and runoff in the northern Tien Shan J. Hydrol. 186 229–51
ApelH, Abdykerimova Z, AgalhanovaM, Baimaganbetov A, GavrilenkoN,Gerlitz L, KalashnikovaO,Unger-Shayesteh K,

Vorogushyn S andGafurovA 2018 Statistical forecast of seasonal discharge inCentral Asia using observational records: development
of a generic linearmodelling tool for operational water resourcemanagementHydrol. Earth Syst. Sci. 22 2225–54

Flechtner F,Neumayer KH,Dahle C,DobslawH, Fagiolini E, Raimondo J C andGuntner A 2016What can be expected from theGRACE-
FO laser ranging interferometer for Earth Science applications ? Surv. Geophys. 37 453–70

GafurovA, Lüdtke S, Unger-Shayesteh K, Vorogushyn S, Schöne T, Schmidt S, KalashnikovaO andMerz B 2016MODSNOW-Tool: an
operational tool for daily snow covermonitoring usingMODIS dataEnvironmental Earth Sciences 75 1–15

Gerlitz L, Vorogushyn S, ApelH, GafurovA,Unger-Shayesteh K andMerz B 2016A statistically based seasonal precipitation forecastmodel
with automatic predictor selection and its application to central and southAsiaHydrol. Earth Syst. Sci. 20 4605–23

8

Environ. Res. Commun. 1 (2019) 031006

https://land.copernicus.eu/global/products/swe
https://land.copernicus.eu/global/products/swe
http://www.cawa-project.net
https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2016/
https://www.tugraz.at/institute/ifg/downloads/gravity-field-models/itsg-grace2016/
https://orcid.org/0000-0002-8852-652X
https://orcid.org/0000-0002-8852-652X
https://orcid.org/0000-0002-8852-652X
https://orcid.org/0000-0002-8852-652X
https://orcid.org/0000-0003-0337-465X
https://orcid.org/0000-0003-0337-465X
https://orcid.org/0000-0003-0337-465X
https://orcid.org/0000-0003-0337-465X
https://doi.org/10.1016/S0022-1694(96)03022-3
https://doi.org/10.1016/S0022-1694(96)03022-3
https://doi.org/10.1016/S0022-1694(96)03022-3
https://doi.org/10.5194/hess-22-2225-2018
https://doi.org/10.5194/hess-22-2225-2018
https://doi.org/10.5194/hess-22-2225-2018
https://doi.org/10.1007/s10712-015-9338-y
https://doi.org/10.1007/s10712-015-9338-y
https://doi.org/10.1007/s10712-015-9338-y
https://doi.org/10.1007/s12665-016-5869-x
https://doi.org/10.1007/s12665-016-5869-x
https://doi.org/10.1007/s12665-016-5869-x
https://doi.org/10.5194/hess-20-4605-2016
https://doi.org/10.5194/hess-20-4605-2016
https://doi.org/10.5194/hess-20-4605-2016


Jäggi A et al 2019 European gravity service for improved emergencymanagement (EGSIEM) - from concept to implementationUnpublished
toGeophysical Journal International (minor revision)

KhakiM, Forootan E, KuhnM,Awange J, Longuevergne L andWadaY 2018 Efficient basin scalefiltering ofGRACE satellite products
Remote Sens. Environ. 204 76–93

Kurtenbach E, Eicker A,Mayer-Gurr T,HolschneiderM,HaynM, FuhrmannMandKusche J 2012 Improved daily GRACE gravity field
solutions using aKalman smoother J. Geodyn. 59-60 39–48

Landerer FWand Swenson SC 2012Accuracy of scaledGRACE terrestrial water storage estimatesWater Resour. Res. 48
Longuevergne L, Scanlon BR andWilsonCR 2010GRACEhydrological estimates for small basins: evaluating processing approaches on the

high plains aquifer, USAWater Resour. Res. 46
SorgA, BolchT, StoffelM, SolominaO andBenistonM2012Climate change impacts on glaciers and runoff in Tien Shan (Central Asia)Nat.

Clim. Change 2 725–31
TakalaM, Luojus K, Pulliainen J, DerksenC, Lemmetyinen J, Kärnä J-P, Koskinen J andBojkov B 2011 Estimating northern hemisphere

snowwater equivalent for climate research through assimilation of space-borne radiometer data and ground-basedmeasurements
Remote Sens. Environ. 115 3517–29

Tapley BD, Bettadpur S, Ries J C, Thompson P F andWatkinsMM2004GRACEmeasurements ofmass variability in the Earth system
Science 305 503–5

VishwakarmaB,Devaraju B and SneeuwN2018What is the spatial resolution of grace satellite products for hydrology?Remote Sensing
10 852

Viviroli D,DurrHH,Messerli B,MeybeckMandWeingartner R 2007Mountains of theworld, water towers for humanity: typology,
mapping, and global significanceWater Resour. Res. 43

Zhang L J, DobslawHandThomasM2016Globally gridded terrestrial water storage variations fromGRACE satellite gravimetry for
hydrometeorological applicationsGeophys. J. Int. 206 368–78

9

Environ. Res. Commun. 1 (2019) 031006

https://doi.org/10.1016/j.rse.2017.10.040
https://doi.org/10.1016/j.rse.2017.10.040
https://doi.org/10.1016/j.rse.2017.10.040
https://doi.org/10.1016/j.jog.2012.02.006
https://doi.org/10.1016/j.jog.2012.02.006
https://doi.org/10.1016/j.jog.2012.02.006
https://doi.org/10.1029/2011WR011453
https://doi.org/10.1029/2009WR008564
https://doi.org/10.1038/nclimate1592
https://doi.org/10.1038/nclimate1592
https://doi.org/10.1038/nclimate1592
https://doi.org/10.1016/j.rse.2011.08.014
https://doi.org/10.1016/j.rse.2011.08.014
https://doi.org/10.1016/j.rse.2011.08.014
https://doi.org/10.1126/science.1099192
https://doi.org/10.1126/science.1099192
https://doi.org/10.1126/science.1099192
https://doi.org/10.3390/rs10060852
https://doi.org/10.1029/2006WR005653
https://doi.org/10.1093/gji/ggw153
https://doi.org/10.1093/gji/ggw153
https://doi.org/10.1093/gji/ggw153

	1. Introduction
	2. Study area and data
	3. Methods
	4. General results
	5. The role of GRACE TWSA as predictor
	6. Conclusions
	Acknowledgments and Data
	References



