10P Publishing

® CrossMark

OPENACCESS

RECEIVED
21 November 2018

REVISED
26 March 2019

ACCEPTED FOR PUBLICATION
5April 2019

PUBLISHED
30 April 2019

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Environ. Res. Commun. 1(2019) 031006 https://doi.org/10.1088/2515-7620/ab1681

Environmental Research Communications

LETTER

Forecast of seasonal water availability in Central Asia with near-real
time GRACE water storage anomalies

Heiko Apel' @, Ben Gouweleeuw', Abror Gafurov' ® and Andreas Giintner"’

! GFZ German Research Centre for Geoscience, section 5.4 Hydrology, Potsdam, Germany
> University of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany

E-mail: heiko.apel@gfz-potsdam.de

Keywords: Central Asia, seasonal forecast, water resources, GRACE

Abstract

Water availability during summer in Central Asia is controlled by the snow melt in the surrounding
mountains. Reliable forecasts of river discharge during this period are essential for the management of
water resources. This study tests the predictive power of GRACE gravity-based water storage
anomalies in a linear regression framework for two large catchments. The results show substantial
improvements of the forecasts in the larger Amudarya catchment compared to forecasts using just
climate, snow cover, and discharge data. In this catchment, GRACE water storage anomalies even
provide the largest share of explained variance. This leads to the conclusion that GRACE data can
improve the forecast of seasonal water availability for large basins in Central Asia. The GRACE-FO
mission launched in May 2018 opens up the possibility of operational forecasts utilizing upcoming
near-real time products from satellite gravimetry for Central Asia and similar environments.

1. Introduction

Central Asia (CA) is a semi-arid region spanning over Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan,
Tajikistan, northern Afghanistan, and north-western regions of China. CA hosts two large mountain ranges
(Tien Shan and Pamir). All the large rivers in the region (Amudarya, Sirdarya, Ili) originate from these
mountains. The semi-arid and endorheic Aral-Sea basin, to which the mentioned river systems drain, shows a
distinct seasonality in precipitation and river discharge. For large parts of CA, the bulk of precipitation occurs in
the boreal winter months (Sorg et al 2012, Aizen et al 1996), with a particular spatial concentration in the
mountain ranges. Precipitation during the summer months is, in contrast, practically zero in the lowland areas.
Water originating from snowmelt and to a lesser extend from glacier melt is then the only source for generating
river discharge. During summer river discharge is thus the only water resource available and thus of high
importance for the agricultural systems and economies of the countries in the Aral-Sea basin. Particularly the
agriculture with its intensive irrigation schemes crucially depend on the water provided by the river systems
(Viviroli et al2007). Therefore the forecast of river discharge during summer is of high importance for the
regions, and in fact a mandatory task of all hydro-meteorological services in the area. Here forecasts of the
seasonal river discharge during summer (April to September) are issued operationally on a monthly basis from
January to June. For water resources planning the forecasts issued just before the summer period at the start of
April is of highest importance. However, forecast methods and procedures in the CA countries are chronically
outdated, as well as capacities are limited (Apel et al 2018). Recently, Apel et al (2018) developed a simple concept
for forecast models for CA catchments based on precipitation, air temperature, river discharge that are readily
available to the hydromet services, supplemented by operational satellite based snow cover data (Gafurov et al
2016). The concept proved to provide forecasts with high performance for lead times up to 3 months and for
catchments of widely varying size and location in CA. This could be achieved because the accumulation period
and runoff generation is well separated between the seasons. Snow is accumulating and stored in the mountains
in winter, and released with the onset of snow melt in spring. The rational in Apel et al (2018) was that the
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Figure 1. The Amudarya and Naryn basins in Central Asia considered in this study.

combination of snow cover information with temperature and precipitation may serve as a proxy for the water
stored in the accumulated snow mass (the snow water equivalent SWE), and could thus be used for seasonal
discharge prediction. The successful application of the model supported this rational.

This finding suggests that direct observations of water storage, here SWE, instead of proxies such as
precipitation and snow cover area could also serve well as predictors for seasonal discharge in CA. Such
observations are provided by the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission (Tapley
et al 2004). From the continuous measurements of the Earth’s gravity field by GRACE, total water storage
anomalies (TWSA) have been derived. GRACE TWSA encompasses storage variations in all terrestrial
compartments, including glacier and snow accumulation and depletion. The feasibility of providing products
derived from GRACE in near-real time has been demonstrated in the Horizon 2020 project European Gravity
Service for Improved Emergency Management (EGSIEM). Against the background of the recently launched
GRACE-Follow On (GRACE-FO) mission of which data products are expected to become available by mid
2019, this, in principle, opens up the possibility of using satellite gravity data in operational forecasts. Thus, the
aim of this study is to include GRACE TWSA in the forecast models of Apel et al (2018) to test the applicability
and performance of TWSA in forecasting seasonal discharge taking CA as a test region.

2. Study area and data

Out of the set of river basins tested by Apel et al (2018) for seasonal forecasts in Central Asia, the two largest
catchments were selected for this study: the Amudarya catchment upstream of the gauge Kerky, close to the
border of Tajikistan and Turkmenistan, and the Naryn catchment upstream of the Toktogul reservoir (figure 1).
The Amudarya catchment covers an area of 287,714 km?, the Naryn catchment an area 0of 51,926 km?. The
Naryn catchment is thus actually too small to be properly represented by the coarse spatial resolution of GRACE
data in the order of 100 000 km”. Below this size the signal-to-noise ratio tends to decrease markedly (e.g., Zhang
etal (2016), Vishwakarma et al (2018)). Nevertheless, the Naryn catchment is included in this analysis in order to
test if TWSA signals of the larger area, which are unavoidably included in the TWSA data extracted for Naryn, are
representative for the storage in Naryn, and if TWSA can potentially be used consequently as a predictor also for
smaller catchments, at least in this geographical context.

For Amudarya the river discharge (Q) time series of gauge Kerky was used to derive the seasonal discharge.
For Naryn, the overall inflow into the Toktogul reservoir at the outlet of the catchment was used. Precipitation
(P) and air temperature (T) data were obtained from the climate stations Kerky (Amudarya) and Naryn city
(Naryn). All these data have monthly resolution. Monthly mean snow coverage (SC) of the catchments was
derived from daily snow cover maps derived from MODIS satellite data by the ModSnow tool (Gafurov et al
2016).
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The GRACE product used in this study was the daily GRACE gravity solutions using Kalman smoothing
produced by the Technical University of Graz (ITGS-Grace2016_Kalman) based on the procedure described in
Kurtenbach et al (2012). The predictions of the Kalman smoother in the daily GRACE product allow for filling
observational data gaps, however, potentially at the expense of accuracy. The data was given as global 1 degree
grids of TWSA from which daily area-mean values of all cells covering the two catchments were calculated, and
further aggregated to monthly means.

The daily GRACE product was preferred to the standard monthly GRACE products (as, e.g., provided as
Level-3 products from GFZ, CSR and JPL at http://grace.jpl.nasa.gov) because it provides data even for months
with few GRACE observations, for which the standard monthly data have not been produced. Missing months
would impair the testing of GRACE as predictor. In linear modelling, missing predictor data, which is equivalent
to alower number of observations to which the models are fitted, can lead to overfitting and thus spurious
results. Short time series of observations or predictors can be much better fitted than longer time series,
especially if the number of data points (here years with complete predictor data) to be fitted comes close to the
number of predictors, thus reducing the degrees of freedom for model fitting. Overfitting reduces the robustness
of the fits and thus the predictions. In the present study, the data gaps in the standard monthly GRACE data
would reduce the number of years with GRACE predictors to 8, instead of 13 for the daily solution, thereby
considerably increasing the chance of model overfitting and thus also a meaningful test of GRACE as seasonal
discharge predictor. Therefore we did not use the standard monthly GRACE solutions nor the monthly GRACE
mascon solutions which have the same temporal coverage as the standard monthly products, in order to
minimize overfitting and spurious model fitting results and predictions.

However, we evaluated the correlation between the monthly GRACE products (JPL RL05, GFZ RL05, CSR
RLO5, ITSG-Grace2016) and the daily Kalman smoothed solutions in order to get an insight into the potential
applicability of different GRACE products for seasonal discharge forecasts. The analysis showed that predictors
based on the monthly GRACE products are highly correlated to the predictors based on the daily ITSG solution
in Amudarya, with linear correlation coefficients in the range of 0.96-0.97. For the Naryn basin, the correlations
are lower but still high in the range of 0.77—-0.87. This means that using one of the monthly GRACE solutions as
predictor would result in similar to identical results compared to the predictors based on the daily GRACE
products, because in linear modelling highly correlated predictors result in similar or even identical models. In
linear modelling the variance of the predictors is of much higher importance than the actual value. The
continuous time series of the GRACE predictors based on the daily ITSG solution is thus equivalent to the
monthly solutions, with the additional benefit of more robust model fits, and is thus preferred in this study.

In order to properly map the water storage change over the accumulation period, differences between the
monthly TWSA and the TWSA in September of the same season were calculated and used for the forecasts. By
this procedure possible long term trends in the TWSA time series are eliminated and the TWSA signals of the
particular accumulation periods are isolated. The time period of the analysis was 2003—2015 according to the
availability of GRACE TWSA and discharge data.

3. Methods

Statistical forecast models for seasonal discharge were derived as in Apel et al (2018), based on station data
(Precipitation P, air temperature T, antecedent discharge Q), satellite-based snow cover data (SC) (Gafurov et al
2016), and composites of P, T and SC. The core of the method is a Multiple Linear Regression (MLR),
accompanied by a Leave-One-Out Cross Validation (LOOCV), testing all allowed combinations of predictors.
The best performing 20 models were chosen according to the minimum of the Predictive Residual Mean of
Squares (PREMS) between predicted and observed seasonal river discharge (mean monthly discharge April -
September) of the LOOCV, whereby only models with overall significance at p = 0.1 and all predictors
significantatp = 0.1 were selected. The predictors were grouped into 8 classes: T predictors, P predictors, SC
predictors, Q predictors, and 4 composite predictors, combining T, P, and SC. Each model was allowed 1
predictor per group only, up to a maximum of 4 predictors (Apel et al 2018).

In order to exploit the specific value of TWSA as predictor, the maximum number of predictors per model
was iteratively fixed to 1, 2, 3, and 4 predictors, respectively. This allows the investigation of TWSA as predictor
in more detail, because the predictive power of TWSA alone and in combination with other predictors can be
isolated. For comparison, the same procedure was applied to derive models excluding TWSA as predictor.

The performance of the models is reported as adjusted R* values of the best LOOCV performing model, and
as mean adjusted R” of the best 20 models in the LOOCV. Additionally, the importance of the predictors was
extracted as portions of the overall explained variance (adjusted R®) in order to identify the contribution of the
single predictors to the overall explained variance. For a better interpretation of the contribution of the
predictors to model performance, the importance of the predictors was averaged over the set of best 20 models.
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Figure 2. Forecasts of the mean seasonal monthly discharge for the period April to September for the Amudarya and Naryn
catchments by the best model for the different forecast months. The rows present forecasts of models with maximum 14 predictors
(No. pred.) respectively. The blue lines in the background indicate the observed seasonal discharge.

By this procedure potential spurious results in terms of predictor importance originating from a good model fit
by chance can be avoided.

4. General results

Figure 2 illustrates the seasonal discharge forecasts for both Amudarya and Naryn by the best LOOCV model for
the different forecast months. In general, the forecast improve with later forecast months (i.e. decreasing lead
time) and with higher numbers of predictors, up to almost perfect forecasts for the late forecast months and 3—4
predictors. This high performance of the models is exceptional for seasonal forecasts, as already pointed out in
Apel et al (2018) for the results without using GRACE data. Moreover, also the forecasts with only a single
predictor provide reasonable forecasts of the seasonal discharge. The forecasts map the observed inter-annual
variability of seasonal discharge quite well, even with 2—-3 months lead time (cf figure 2). The visual impression
given by figure 2 is substantiated by statistical model performance values (table 1). The mean performance
follows the trend of the performance of the best model, thus indicating robust regressions with different
predictor combinations. The performance is similarly high for both catchments for all lead times and predictor
numbers when TWSA is included in the predictor set. Without TWSA, the performance of the Amudarya
forecasts with 2—3 months lead time (January/February) is notably lower. For the Naryn basin, on the contrary,
there is generally no marked improvement of the performance when TWSA is included.

The mean absolute error (MAE) and the root mean squared error (RMSE) follow the same trend as the
adjusted R* (figure 3), with both measures being less than 10% of the mean seasonal discharge averaged over the
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Table 1. Performance of the best LOOCYV forecast models of seasonal discharge for the Amudarya and Naryn catchments for all forecast
months, different numbers of predictors, and with and without GRACE TWSA as predictor. Performance is reported as adjusted R*-values.
The ‘best’ columns show the performance of the single best LOOCV model, while ‘mean’ indicates the mean adjusted R* of the best 20
LOOCV models. The symbols below the performance values indicate the significance of the model fits.

Amudarya January February March April May June
predictors best mean | best mean | best = mean | best mean | best mean | best mean

1 with 0.433 0401 | 0433 0.321 | 0400 0.321 | 0588 0.348 | 0.796 0.530 | 0.889 0.638
GRACE s ++ ey + (R 0 i K e + et ti

1 without | 0.426 0.386 | 0.426 0.281 | 0.400 0.298 | 0.451 0.256 | 0.721 0.437 | 0.889 0.521
GRACE 4+ ++ 4+ + ++ + 4 + 4 RS

2 with 0.433  0.448 | 0.753 0.609 | 0.826 @ 0.692 | 0.882 0.756 | 0.905 0.827 | 0.965 0.930
GRACE (RS e (R I R s R P b et et s

2 without | 0.426 0.386 | 0.456 0.336 | 0.732 0.513 | 0.567 0.477 | 0.794 0.662 | 0.948 0.888
GRACE - ++ ++ ++ - ++ e - . 4 4+ H+

3 with 0.792 0590 | 0.838 0.774 | 0914 | 0.879 | 0.963 0.900 | 0.927 0.890 | 0.982 0.969
GRACE +H+ ++ e 4+ i it e+ i i s it +H+

3 without | 0.426 0.386 | 0.456 0.366 | 0.826 0.724 | 0.802 0.702 | 0.927 0.824 | 0.964 0.953
GRACE e+t ++ ER it e e 4 e+ it s +++ ERRs

4 with 0.894 0.737 | 0917 0.837 | 0.940 0.924 | 0.981 0.965 | 0.974 0.954 | 0.991 0.985

GRACE h 4 it e s i 4 s e it e e

4 without | 0.426 0.386 | 0.456 0.366 | 0.862 0.796 | 0.918 0.843 | 0.958 0.905 | 0.967 0.967
GRACE +++ + ++ + +++ +++ +++ R e +H+ s s

Naryn

1 with 0.407 0.281 | 0.473 0.288 | 0.602 0.346 | 0.812 0.478 | 0.409 0.302 | 0.593  0.399
GRACE ++ + i + e + et + + + it +

1 without | 0.407 0.281 | 0.473 0.288 | 0.602 0.355 | 0.812 0.478 | 0.409 0.297 | 0.498 0.357
GRACE ++ + +++ + +++ + 4 + 4+ + 4+ +

2 with 0.593 0.505 | 0.602 0.556 | 0.779 0.700 | 0.889 0.821 | 0.837 0.719 | 0.905 0.811

GRACE | 444 ++ et ++ et t o+ et it +t it ht
2 without | 0.593 0.501 | 0.602 0.555 | 0.779  0.698 | 0.889 0.823 | 0.837 0.719 | 0.905 0.798
GRACE 4 ++ F++ ++ 4 4 4 4 4 4 +++ 4
3 with 0.751 0.620 | 0.787 0.744 | 0985 0.905 | 0.919 0.886 | 0.915 0.878 | 0.909  0.888
GRACE it ++ HHt +H+ o H e+ et e et it it
3 without | 0.751 @ 0.612 | 0.787 0.740 | 0.985  0.904 | 0919 0.887 | 0915 0.885 | 0.905 0.871
GRACE 4 ++ ++ +H+ +++ 4+ +++ i HH+ i ++ H+

4 with 0.819 0.721 | 0.787 0.762 | 0.985 0.973 | 0.969 0947 | 0.968 0.933 | 0.933 0.928

GRACE | 444 ++ +++ +H +H+ +++ ++ +H+ +H +++ +H+ +HH
4 without | 0.751 @ 0.703 | 0.787 0.756 | 0.985 | 0.973 | 0.957 0942 | 0941 0.933 | 0.940 0.899
GRACE | +++ ++ +H+ H+ F +H+ +H F H +H Fo Fe

Significance level p: +++=0.01, ++ =0.05, + = 0.1, 0 = 0.2, -- = >0.2; for mean the lowest significance of the model set
is used.

investigation period 2003-2015. This holds true for the best model, but also on average for the model sets of 20
models. This indicates high reliability of the forecasts. The robustness of the forecasts is investigated by setting
the LOOCYV residuals in relation to the residuals of the model fitted to the complete time series (black dashed line
in figure 3). This shows that the robustness of the January and February forecasts is comparatively moderate, but
from March onwards very high.

5. The role of GRACE TWSA as predictor

In general, the results in terms of forecasts performance follow the findings of Apel et al (2018), but with some
distinct differences. The comparison of the forecasts with and without GRACE TWSA shows substantial
improvements for Amudarya for almost all lead times and number of predictors, while for Naryn the
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Figure 3. Performance measures of the seasonal discharge forecasts for the Amudarya and Naryn catchments. mearn adj. R*/min adj.
R7is the mean/lowest performance of the (up-to) best 20 LOOCV models; robustness is ratio of mean LOOCV-adj. R? to the mean adj.
R%; RMSE/MAE norm. is the RMSE /MAE of the best models normalized to multi-annual mean seasonal discharge; mean RMSE/MAE
norm is the mean RMSE/MAE in relation to the multi-annual mean seasonal discharge; No. pred. indicates the maximum number of
predictors in the models.

performance mostly remained identical. For Amudarya the smallest improvements are observed for the January
to March forecasts with 1 predictor. However, for the most important forecasts for water management in April,
improvements could be achieved even with a single predictor. This indicates that TWSA outperforms all other
observables when used as the only predictor for Amudarya. If more than 1 predictor is used, the model
performance increased substantially in Amudarya, particularly for the early forecasts. Although the later
forecasts show a high performance even without using TWSA, an increase in performance is still achieved.

The quantification of predictor importance corroborates these findings (figure 4). For Amudarya, TWSA is
responsible for the highest portion of the explained variance (= highest importance) for the forecast months
January to April. This can be observed for models with a single and up to 4 predictors. For May and June, the
antecedent discharge gains more importance and explains the highest share of variance, as already observed in
Apel eral (2018). This is reasonable from a hydrological point of view, because snow melt already occurs in May
and June and thus the observed discharge has a high indicative power for the overall seasonal discharge. This is
expressed by a high correlation of sub-seasonal discharges spanning over shorter periods (e.g. May-September)
to the discharge of the full summer period. In contrast to Amudarya, TWSA is of much lower importance in
Naryn. It shows hardly any importance in the January to May forecasts. Only for the late June forecast, TWSA

6



Environ. Res. Commun. 1(2019) 031006

P Letters
No.
- Amudarya - Naryn d
© © pred.
o 7 c 7
N N
[ , [ 4
T =)
3 % 3 ! 1
e | . . ! o | ;
o o
Jan Feb Mar  Apr May Jun Jan Feb Mar  Apr May Jun
® | ® 4
o o
N N
o . o 4
A g 3 2
e ! o |
o o
Jan Apr May Jan Feb Mar Apr May Jun
@ @© 4
o (=
N N
o , o 4
) 3 B s 3
< e
o o
Apr May Jan Feb
N l 5
o o
N N
[0 , o 4
8 3- 3 2 H ’
e | o H
o o
Jan Feb Mar  Apr May Jun Jan Feb Mar  Apr May Jun
- snow cover - temperature - composites
[ erecipitation [ antecedenta [l GRACE Twsa
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explains some variance, which is in line with the modest improvement of the mean performance for June
reported in table 1.

The observed differences of the TWSA importance in the two catchments had to be expected due to the too
small catchment size of Naryn for GRACE gravity signals, and can be explained by the spatial resolution of
GRACE data. The Naryn catchment (about 50,000 km?) is well below estimated limits of catchment sizes that
GRACE is able to resolve (Vishwakarma et al 2018), given the noise in GRACE observations and signal
deterioration due to subsequent filtering, causing not only the reduction of noise but also signal attenuation and
leakage from neighboring areas. This effect could also explain the observed TWSA importance in the June
forecasts in Naryn. Here, TWSA predictors show the difference between TWSA in May and September of the
previous year, i.e. over the whole accumulation period where mass changes are likely to be better detectable by
GRACE. This is particularly relevant for the Naryn catchment, which receives substantial precipitation—in
contrast to Amudarya - also in late spring/early summer by westerly circulation patterns (Gerlitz et al 2016).
Hence it can be argued that the additional precipitation received in May in Naryn provides the critical mass
input that can be detected by GRACE in this catchment. However, in general the hypothesis that the TWSA
signal for Naryn, which is influenced by the TWSA anomalies of the surrounding region, is actually
representative for the water storage in Naryn, has to be rejected.

6. Conclusions

In the semi-arid study area of Central Asia, GRACE gravity based water storage anomalies TWSA showed high
performance in forecasting river discharge in the vegetation period for the large Amudarya catchment. In this
catchment, GRACE TWSA is the most important predictor. However, the combination of TWSA with other
predictors even increased the importance of TWSA, along with the overall forecast performance. For the smaller
Naryn catchment, which size is actually too small for GRACE, TWSA could not improve the forecasts based on
climate data, snow cover and antecedent discharge alone. This finding supports the conclusion that TWSA
actually maps the total water accumulation in the large Amudarya catchment, and is thus a meaningful predictor

7
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for the subsequent seasonal discharge. Furthermore, it can be reasoned that TWSA might be used for forecasting
seasonal discharge in other large regions with similar climatic and hydrological conditions, i.e., snow
accumulation in winter and snow melt as most important factor for river discharge in summer, such as the
Californian Sierra Nevada or the Chilean Andes, for instance.

The findings also suggest that direct observations of SWE would be an ideal predictor for seasonal forecasts,
especially for smaller catchments. However, ground based SWE observations, particularly continuous time
series spanning decades, are very scarce and limited to a few areas worldwide. This impairs a generalization of
such an approach. On the other hand, state-of-the-art continental-scale, satellite observation-based SWE
products, such as the Copernicus Global Land service SWE product (https://land.copernicus.eu/global /
products/swe) based on the retrieval algorithm of Takala et al (2011), are restricted to non-mountainous areas.
These products thus cannot deliver so far useful information for Central Asia and for similar regions where
seasonal discharge is dominated by snow accumulation and melt in the mountains.

Dedicated post-processing of GRACE data for small basins of interest as proposed, e.g.,. by Longuevergne
etal (2010) or Khaki et al (2018), may reduce the magnitude of filter and leakage errors in the final storage time
series for these areas, but such an approach will be of limited use for the present forecasting study due to the gaps
in the time series, thus suffering the same constraints in linear modelling as the standard monthly solutions.
Expectations, albeit of limited scope, of a slightly higher spatial resolution of GRACE-FollowOn data based on its
laser ranging interferometer (Flechtner et al 2016) may open pathways for transferring the proposed seasonal
discharge forecasting method with GRACE predictors to smaller catchments. It should be noted that the same
argument applies for the use of multiplicative time-invariant scaling factors applied in post-processing of
GRACE data to restore part of the signal amplitudes that have spuriously been lost during GRACE filtering
operations before (e.g., Landerer and Swenson (2012)) is expected to have no effect on the forecast results. This
sort of linear bias correction will result in GRACE-based predictors that are highly correlated to the original
ones, and thus, as explained above, will have no effect on the linear forecasting model applied in the present
study.

For an operational use of GRACE TWSA in seasonal forecasts, the data need to be provided in near-real time
(NRT). Given the recent development of a NRT service for GRACE products within the European Gravity
Service for Improved Emergency Management EGSIEM (Jaggi et al (2019)), such data are expected to be soon
available based on the GRACE-Follow On mission, which was launched in May 2018. Our study thus paves the
road for a novel application of satellite gravity data in hydrological forecasting, possibly in several regions
worldwide, including chronically data scarce areas. Given the specific findings for Central Asia, GRACE-FO
could be included in operational forecasts procedures by Central Asian water authorities for the summer
season 2019.
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