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ABSTRACT
Ferruginous conditions prevailed in the world’s deep oceans during the Archean and 

Proterozoic Eons. Sedimentary iron formations deposited at that time may provide an impor-
tant record of environmental conditions, yet linking the chemistry and mineralogy of these 
sedimentary rocks to depositional conditions remains a challenge due to a dearth of information 
about the processes by which minerals form in analogous modern environments. We identified 
siderites in ferruginous Lake Towuti, Indonesia, which we characterized using high-resolution 
microscopic and spectroscopic imaging combined with microchemical and geochemical analy-
ses. We infer early diagenetic growth of siderite crystals as a response to sedimentary organic 
carbon degradation and the accumulation of dissolved inorganic carbon in pore waters. We 
suggest that siderite formation proceeds through syntaxial growth on preexisting siderite crys-
tals, or possibly through aging of precursor carbonate green rust. Crystal growth ultimately 
leads to spar-sized (>50 μm) mosaic single siderite crystals that form twins, bundles, and 
spheroidal aggregates during burial. Early-formed carbonate was detectable through micro-
chemical zonation and the possible presence of residual phases trapped in siderite interstices. 
This suggests that such microchemical zonation and mineral inclusions may be used to infer 
siderite growth histories in ancient sedimentary rocks including sedimentary iron formations.

INTRODUCTION
Ancient sedimentary iron formations (IFs) 

are composed of diverse iron oxides, silicates, 
and carbonates that are thought to form through 
diagenesis and subsequent metamorphism of 
primary ferric-ferrous (Fe3+-Fe2+) iron (oxyhydr)
oxide precipitates (Gole, 1980; Raiswell et al., 
2011). Yet iron carbonate minerals such as sider-
ite (FeCO3) are also thought to form as primary 
pelagic precipitates (Canfield et al., 2008; Bek-

ker et al., 2014), and their mineralogy has been 
used to infer atmospheric and oceanic conditions 
on early Earth (Holland, 2006). The interpre-
tation of IFs and their depositional conditions 
depends on our knowledge of their mineral ori-
gins and formation pathways (Ohmoto et al., 
2004), which is limited in part due to scarcity 
of analogous ferruginous (Fe-rich, SO4-poor) 
environments on Earth today (Konhauser et al., 
2005; Posth et al., 2014).

Ferruginous sediments are deposited in the 
Malili Lakes, a chain of five interconnected tec-
tonic lakes on Sulawesi Island, Indonesia (Haff-
ner et al., 2001). Erosion of ultramafic rocks 

and lateritic soils in the Malili Lakes catch-
ment supplies considerable amounts of iron 
(oxyhydr)oxides but little sulfate to the lakes 
(Crowe et al., 2004; Morlock et al., 2019). Lake 
Towuti (2°45′0″S, 121°30′0″E) is currently 
stratified with anoxic conditions below 130 m 
(Costa et al., 2015; Vuillemin et al., 2016). In 
nearby Lake Matano (2°29′7″S, 121°20′0″E), 
carbonate green rust (GR) forms below the 
chemocline, likely via the reduction of ferri
hydrite or via its reaction with dissolved Fe2+ 
and bicarbonate (Zegeye et al., 2012), but the 
fate of this GR is not known. Although carbonate 
GR has been proposed as a precursor to other 
diagenetic mineral phases in banded iron forma-
tions (Halevy et al., 2017), its transformation to 
these phases has not been observed in nature. 
Prior studies suggested that iron phases in Lake 
Towuti sediments undergo dissolution during 
reductive diagenesis, with secondary growth of 
diagenetic phases such as magnetite and siderite 
(Tamuntuan et al., 2015). However, siderite was 
not explicitly documented in that study, nor is 
it clear where in the lake and sediment these 
minerals form.

We discovered spar-sized aggregates 
(>50 μm) of diagenetic siderite crystals in Lake 
Towuti sediments, and used detailed geochemi-
cal and mineralogical information to describe 
their features and infer pathways of formation. 
We suggest that this siderite forms during dia-
genesis through growth on preexisting primary 
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phases, including siderite and possibly carbonate 
GR. We hypothesize that the chemical and min-
eralogical features of these siderites, and their ir-
regular distribution down core, reflect changes in 
redox conditions in the pore water and sediment 
over time, including non-steady-state diagenesis, 
which likely results from variability in the burial 
fluxes of ferric iron and organic matter.

METHODS
Sediments were recovered using the Inter-

national Continental Scientific Drilling Pro-
gram Deep Lakes Drilling System (https://​
www​.icdp​-online​.org). Cores from the 113-m-
deep TDP-TOW15- 1A hole (https://​csdco​.umn​
.edu​/project​/lake​-towuti​-drilling​-project​-tdp), 
drilled in 156 m water depth, were split and 
imaged at the Limnological Research Center 
LacCore Facility, Minneapolis, Minnesota, 
USA. This core mainly consists of alternating 
green and red clays, the latter containing vari-
ably distributed siderite concentrations (Rus-
sell et al., 2016). Sedimentary organic matter 
is mainly autochthonous, albeit at low concen-

trations, with some contribution of fluvially de-
rived material (Hasberg et al., 2019; Morlock 
et al., 2019).

Here we focus on material recovered from 
core catchers. In the field, core catchers were 
packed into gas-tight aluminum foil bags flushed 
with nitrogen gas and heat-sealed to keep them 
under anoxic conditions until mineral extraction. 
Pore water was retrieved on site using hydraulic 
squeezers. Alkalinity, pH, and Fe2+ concentra-
tions were determined in the field via colorimet-
ric titration, potentiometry, and spectrophotom-
etry, respectively. Major ions were analyzed at 
GFZ Potsdam by ion chromatography. Dissolved 
inorganic carbon (DIC) was calculated from pH 
and alkalinity. Siderite crystals were retrieved 
via density separation and sorted by placing a 
neodymium magnet under the beaker and rins-

ing out the non-magnetic fraction with deionized 
water. Siderite imaging and elemental analysis 
were performed on a Zeiss Ultra 55 Plus field 
emission scanning electron microscope (SEM) 
equipped with an energy-dispersive X-ray spec-
trometer (EDX). Electron-transparent foils were 
prepared with a FEI focused ion beam, imaged 
and analyzed on a FEI Tecnai G2 F20 X-Twin 
transmission electron microscope (TEM). Struc-
tural information was obtained via selected area 
electron diffraction (SAED) patterns or calcu-
lated from high-resolution lattice fringe im-
ages (HR-TEM). Freeze-dried powdered bulk 
sediments and siderite extracts were analyzed 
in glycerol using a PANalytical Empyrean X-ray 
diffractometer in a theta-theta configuration. A 
complete description of all methods is available 
in the GSA Data Repository1.
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Figure 1. Top: Scanning 
transmission electron 
microscope (TEM) images 
o f  s i d e r i t e  c r ys t a l s 
from 6.2 m and 82.6 m 
sediment depth with 
close-ups of crystal pores 
(A–F); indexed selected 
area electron diffraction 
(SAED) patterns for amor-
phous iron oxide (1), green 
rust (2), siderite (3, 5) and 
magnetite (4, 6), and high-
resolution SAED pattern 
obtained for the entire 
mosaic monocrystal of 
siderite from 82.6 m depth. 
Bottom: Bright-field TEM 
images of a siderite crystal 
from 6.2 m depth in scatter-
ing intensity after siderite 
subtraction. Close-ups 
of crystal pores with the 
corresponding images of 
lattice fringes (A–D) illus-
trate the interface between 
amorphous iron oxide 
(amo), green rust (g.r.), 
siderite (sid) and nano-
magnetite (mgt). Arrows 
point  at  interphases 
between phases.

1GSA Data Repository item 2019201, Complete description of all methods; Table DR1:Calculated d-spacing 
and assignments for mineral diffraction patterns; Table DR2: Modeled saturation indices; Figure DR1: SEM images 
and EDX points of analysis; Figure DR2: TEM images, SAED patterns and interatomic distances for siderite, 
magnetite, and green rust; Figure DR3: TEM images, EDX points of analysis and SAED patterns for siderite inclu-
sions; Figure DR4: EDX elemental mapping of thin sections; Figure DR5: SEM images of magnetite extracts, is 
available online at http://​www​.geosociety​.org​/datarepository​/2019/, or on request from editing@​geosociety​.org.
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DIAGENETIC SIDERITES
We identified many discrete siderite-rich 

layers in the sediment during our initial core 
description (Russell et al., 2016). TEM imaging 
and associated diffraction patterns demonstrate 
that the extracted crystals are indeed siderite 
(Fig. 1 top). These analyses also identified minor 
quantities of carbonate GR and magnetite within 
siderite crystals at 6.2 m sediment depth (Fig. 
1, bottom; Table DR1 in the Data Repository). 
Our detailed mineralogical analyses show that 
the siderites are highly ordered, and we did not 
detect the amorphous carbonate precursors of 
siderite that are commonly observed in labora-
tory experiments (Sel et al., 2012; Dideriksen 
et al., 2015).

SEM imaging and EDX elemental analysis 
reveal that siderites develop from initial micritic 
phases into mosaic crystals (Fig. 2A; Fig. DR1) 
in the upper 10 m of the sediment, which en-
compasses ~50 k.y. of depositional history (Costa 
et al., 2015). Sediment pore waters are saturated 
with respect to siderite (Table 1), and we therefore 

infer that siderite forms and grows during diagen-
esis and burial (Figs. 1 and 2A; Figs. DR1 and 
DR3). Under these saturated conditions, siderite 
growth proceeds through twinning and aggrega-
tion (Fig. 2A; Fig. DR1), merging microspar-
sized precursor crystals (>20 μM) into larger spar 
mosaic-type crystals (>60 μM), and further into 
bundles and spheroidal clusters (Fig. 2A). For 
instance, the siderites observed at 82.6 m depth 
indicate the complete merger of former crystals 
with growth structures that connect them into 
a fully ordered single mosaic crystal (Fig. 1D, 
top), as evidenced by the SAED pattern of the 
entire crystal, which displays a single crystallo-
graphic orientation (Fig. 1, top; Fig. DR2). These 
deeper siderites, found as bundles of twins and 
spheroidal aggregates in the sediment (Fig. 2A; 
Fig. DR1), appear to be dense and have little re-
maining pore space (Fig. 1F, top; Fig. DR3). In 
contrast, siderites at 6 m depth are porous and 
form multiple twins (Figs. 1 [bottom] and 2A; 
Fig. DR1). Diagenetic maturation thus results 
in an increasing crystallinity of siderites, which 

is supported by the greater sharpness of siderite 
reflections in XRD spectra for deeper siderites 
(Fig. 2D). We also observe aggregates of nano-
magnetite in Lake Towuti in shallow sediments 
(Fig. DR5) or trapped in siderites (Fig. 1). Those 
found in magnetic separates of deeper samples 
may derive from multiple origins (e.g., detrital, 
volcanic, or authigenic) and some display clear 
features of dissolution (Fig. DR5). Given their 
uncertain origins, we do not discuss them further.
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Figure 2. A: Scanning electron microscope images of siderite crystals at increasing sediment depth. B: Energy-dispersive X-ray spectrometer 
point analysis and elemental map of thin section (O, Fe, Mn, Ca, Mg). C: Stratigraphy of Lake Towuti with depths of siderite samples (yellow 
dots); pore-water profiles for pH, dissolved inorganic carbon (DIC), Fe2+, Ca2+ and Mg2+ concentrations with siderite concentrations signified 
by yellow shaded areas. D: X-ray diffraction spectra for siderite (S) extract and bulk sediments from 6.2 and 82.6 m depth. Quartz (Q) and 
lizardite (L) are of detrital origin, whereas siderite forms in situ.

TABLE 1. MODELED SATURATION INDICES

5 m depth Saturation 35 m depth Saturation

talc 1.43 siderite 1.00
siderite 1.29 quartz 0.71
quartz 0.71 vivianite –0.04

vivianite –0.45 talc –0.31
calcite –0.68 calcite –0.83

dolomite –0.77 aragonite –0.97
aragonite –0.82 dolomite –1.27

Note: Saturation indices based on pH, alkalinity, 
pore water concentrations of major ions, and 
borehole temperatures. Bold type—siderite is the only 
carbonate to be saturated throughout the sedimentary 
sequence.
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With limited sulfate reduction in Lake Towuti 
owing to low sulfate concentrations (<20 μM) 
(Vuillemin et al., 2016), microbial Fe3+ reduction 
is likely to promote formation of mixed-valence 
iron oxides, like carbonate GR and magnetite, 
as found in nearby Lake Matano (Zegeye et al., 
2012), with almost no formation of sulfide min-
erals. The presence of carbonate GR and nano-
magnetite aggregates in siderite pore spaces is 
evident from HR-TEM images of crystal lattice 
fringes (Fig. 1, bottom; Fig. DR2). We suggest 
that the carbonate GR and magnetite form in 
the upper reaches of the sediments or bottom 
water and become trapped in siderite interstices 
during its initial formation (Bell et al., 1987). 
Chemical micro-niches, such as the pore spaces 
within siderite, are known to preserve redox-
sensitive minerals on geological time scales 
(Matamoros-Veloza et al., 2018), and trapping in 
siderite could preserve and shield these mineral 
grains preventing their further reaction with pore 
fluids during burial. Fabrics observed in lattice 
fringes may further suggest epitaxial growth of 
siderite on carbonate GR (Fig. 1, bottom; Figs. 
DR2 and DR3), implying that GR may serve 
as a precursor phase for siderite formation as 
found in laboratory experiments (Halevy et al., 
2017). If the GR we see in siderite interstices is 
indeed primary, its preservation at ~6 m sedi-
ment depth implies GR stability over 30 k.y., 
based on existing constraints on sedimentation 
rates (Costa et al., 2015). This stands in contrast 
to carbonate GR instability in laboratory experi-
ments, even at hourly time scales (Ruby et al., 
2010; Guilbaud et al., 2013; Halevy et al., 2017). 
GR is known to rapidly convert into an amor-
phous ferric oxyhydroxycarbonate under stan-
dard conditions, or to more stable phases such as 
goethite and lepidocrocite (Legrand et al., 2004). 
Alternatively, carbonate GR could form through 
reaction with oxygen during sample exposure 
to the atmosphere (Tamaura et al., 1984). We 
acknowledge that both scenarios are possible.

Elemental mapping of siderite crystals re-
vealed Mn/Fe zonation (Fig. 2B; Fig. DR4), 
with elevated Mn concentrations at the center of 
all crystals. We also observed minor substitution 
of Fe2+ by Ca2+ (<20%) at the crystal rims. DIC 
concentrations gradually increase with depth 
in Lake Towuti’s sediments, likely due to dia-
genetic organic matter degradation (Vuillemin 
et al., 2018), which at pH between 7.1 and 7.5 
leads to an accumulation of DIC, mainly in the 
form of HCO3

– (Fig. 2C). The Mn/Fe zonation 
could thus imply precipitation of siderite in the 
upper reaches of the sediment where pore water 
Mn2+ can accumulate due to reductive dissolu-
tion of Mn (oxyhydr)oxides at relatively low 
HCO3

– activities. High Mg2+ concentrations (Fig. 
2C) may further inhibit the initial nucleation of 
carbonates and result in increased substitution of 
Fe by Mn in siderite grains (Fig. 2B; Fig. DR4).

SIDERITES IN THE PRECAMBRIAN
The morphologies and microchemistry of 

siderites in Lake Towuti can be compared to 
siderites from Precambrian rocks to inform 
on depositional conditions. In Precambrian 
rocks, pelagic siderites are usually identified as 
spheroidal crystals that are thought to represent 
primary precipitates that formed in the water 
column in response to Fe3+ reduction and organic 
matter oxidation (Konhauser et al., 2005). These 
crystals can further transform into rhombohedral 
and massive siderite in the sediment (Köhler 
et al., 2013), often with Mg-Ca substitution 
(Mozley, 1989; Klein, 2005). Fe reduction 
in the sediment can also lead to formation of 
similar spheroidal siderite concretions during 
diagenesis, which can further coalesce into lat-
erally extensive bands of cemented spherules 
(Coleman, 1993).

In Lake Towuti, we observe laterally con-
tinuous siderite-rich layers and the development 
of spheroidal aggregates of mosaic siderite crys-
tals during burial, but with Ca rather than Mg 

overgrowth, which instead is often associated 
with marine or diagenetic fluids (Klein, 2005). 
In comparison, siderite in marine settings usu-
ally displays extensive Mg substitution (Moz-
ley, 1989), as observed in Precambrian rocks. 
The Mn/Fe and Ca compositions observed in 
Lake Towuti (Fig. 2B) are typical of siderites 
formed in freshwater depositional environments 
(Mortimer et al., 1997), and the main carbon-
ates forming in modern marine pore waters (i.e., 
calcite, aragonite, dolomite) were all under-sat-
urated in Lake Towuti (Table 1) due to the much 
lower Ca and Mg ion activities in Lake Towuti 
pore waters (Fig. 2C) than in seawater.

Spheroidal siderite is often inferred to be 
a water-column precipitate and precursor for 
rhombohedral and cemented diagenetic siderites 
in Precambrian rocks (Konhauser et al., 2005; 
Köhler et al., 2013). In contrast, the preservation 
of residual phases trapped in spheroidal mosaic 
siderite crystals in Lake Towuti may, if primary, 
suggest initial formation of GR, which is sub-
sequently transformed into siderite in the sedi-
ment. We suggest that identification of micro-
chemical zoning in ancient siderites, such as we 
observe in Lake Towuti siderites (Fig. 3), may 
provide clearer insight into water-column and 
pore-fluid chemistries at the time of IFs deposi-
tion. For example, the Mn-rich nuclei of sider-
ite crystals preserved in Lake Towuti sediments 
likely reflects diagenetic Mn reduction, and if 
identified in IFs, siderites may signal contem-
poraneous pelagic or sedimentary Mn cycling 
with corresponding implications for evolving 
seawater chemistry and the redox state of the 
ocean-atmosphere system. Likewise, the pos-
sible preservation of mineral inclusions in sider
ite, like the magnetites and possibly GR we see 
in Lake Towuti, may assist in reconstruction of 
diagenetic sequences in IFs. Further explora-
tion of IF mineral microchemistry and mineral 
inclusions, along with corresponding analyses 
in modern analogues, holds promise for recon-
structing environmental conditions at the time 
of IF deposition.
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Diagenetic reduction of Mn4+ and Fe3+ and organic matter degradation lead to pore-water satu-
ration with respect to siderite, initially forming Mn-bearing siderites. As pore water remains 
saturated with respect to siderite in the entire sediment sequence, siderite crystals con-
tinue to grow with depth into Ca-bearing mosaic monocrystals forming twins, bundles, and 
spheroidal aggregates.
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