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Abstract. Flood hazard projections under climate change
are typically derived by applying model chains consisting of
the following elements: “emission scenario – global climate
model – downscaling, possibly including bias correction –
hydrological model – flood frequency analysis”. To date, this
approach yields very uncertain results, due to the difficulties
of global and regional climate models to represent precip-
itation. The implementation of such model chains requires
major efforts, and their complexity is high.

We propose for the Mekong River an alternative approach
which is based on a shortened model chain: “emission sce-
nario – global climate model – non-stationary flood fre-
quency model”. The underlying idea is to use a link between
the Western Pacific monsoon and local flood characteristics:
the variance of the monsoon drives a non-stationary flood
frequency model, yielding a direct estimate of flood proba-
bilities. This approach bypasses the uncertain precipitation,
since the monsoon variance is derived from large-scale wind
fields which are better represented by climate models. The
simplicity of the monsoon–flood link allows deriving large
ensembles of flood projections under climate change. We
conclude that this is a worthwhile, complementary approach
to the typical model chains in catchments where a substantial
link between climate and floods is found.

1 Introduction

The frequency of extreme hydrologic events is expected to
increase due to climate change (Milly et al., 2005; Knox,
2000; Allen and Ingram, 2002). There are unfortunately large

uncertainties when it comes to modelling precipitation, in
particular in tropical and monsoon regions such as Southeast
Asia (Wang et al., 2004; Randall et al., 2007; Lambert and
Boer, 2001; Turner and Annamalai, 2012). This handicap of
climate models presents a serious challenge for projecting
changes in flood frequency and intensity.

There is low confidence in projections of changes in flu-
vial floods (Milly et al., 2002; Jain and Lall, 2001; Delgado
et al., 2012a). Thus, shifts and trends in the variance of at-
mospheric circulation patterns are especially important, since
they significantly contribute to changes in the probability of
extreme events, as changes in variability alter the tails of the
extreme value distributions applied to estimate the probabil-
ity of the extreme events. Changes in variance have been wit-
nessed in the past, both for atmospheric circulation and flood
discharges (Delgado et al., 2012a; Whitcher et al., 2002; Vil-
larini et al., 2009), while projections of future streamflow and
precipitation estimate significant changes on variance which
can have impacts on flood frequency (Sperna Weiland et al.,
2011; Arnell, 2003).

Flood design, flood risk management and projections of
flood hazard under climate change can profit from link-
ages between atmospheric circulation and streamflow. The
methodology usually adopted for estimating the sensitivity
of streamflow to atmospheric circulation is to set up a model
chain. Climate change studies typically adopt the following
chain: “emission scenario – global climate model – down-
scaling, possibly including bias correction – hydrological
model – flood frequency analysis”. This approach is asso-
ciated with a number of problems; some of the more im-
portant ones are (1) the complexity of such model chains is
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Figure 1. South and Southeast Asia. The Mekong River is depicted, together with the gauge used as data source in this study. The Mekong
River is located in the transition zone between the Indian and the Western Pacific monsoon regimes (maximum monsoon extents adapted
from Holmes et al., 2009). The boxes for averaging both IMI and WNPMI are shown.

enormous, impeding the understanding of how changes in
the climate system propagate to changes in flood frequency
(Blöschl and Montanari, 2009). (2) The implementation and
computation of climate change scenarios require a huge ef-
fort, in particular when ensembles of model chains are es-
tablished. (3) Uncertainty analyses show that, to date, the
results of these model chains are associated with high un-
certainty. Typically, the variability between different model
chains is higher than the change signal (Teutschbein and
Seibert, 2010; Lauri et al., 2012; Kingston et al., 2011). This
is, among others, a consequence of the low skill of global
and regional climate models in simulating extreme precip-
itation, particularly in tropical monsoon regions (Douville
et al., 2005; Wang et al., 2004; Deser et al., 2010; Turner
and Annamalai, 2012).

If a sufficiently strong link between climate state and flood
generation exists, flood frequency can be predicted based
on atmospheric circulation patterns. For example, ENSO
(El Niño–Southern Oscillation) has been linked to floods
all around the world (Ward et al., 2014), such as in Peru
(Waylen and Caviedes, 1986), in the United States (Cayan
et al., 1999; Jain and Lall, 2000, 2001; Sankarasubrama-
nian and Lall, 2003) and China (Zhang et al., 2007). Other
climate modes, such as the Pacific Decadal Oscillation, the
North Atlantic Oscillation or selected weather patterns have
been shown to influence the flood regime and to lead to flood
episodes of varying intensity as well (Cayan, 1996; Jain and
Lall, 2000; Pizarro and Upmanu Lall, 2002; Bouwer et al.,
2006; Kingston et al., 2006).

We apply this idea of linking floods (Fig.1) to climate
(Tramblay et al., 2013; López and Francés, 2013), in order to
derive flood projections under climate change. Large-scale
monsoon intensity is used to explain the scale parameter of
the non-stationary flood frequency distribution representing
the variability of floods in the lower Mekong Basin. By link-

ing flood hazards directly with monsoon intensity, we sig-
nificantly shorten the climate change model chain to “emis-
sion scenario – global climate model – non-stationary flood
frequency model”. This approach is not only much simpler,
but it avoids relying on precipitation for flood projections.
Precipitation is poorly simulated by global and regional cli-
mate models in this region, as the monsoon dynamics are
still both poorly understood and represented in general cir-
culation models (Turner and Annamalai, 2012; Wang et al.,
2004). Instead, large-scale wind fields from GCMs are di-
rectly used for the estimation of flood frequencies, as the
monsoon intensity is described by monsoon indexes calcu-
lated from the strength of those wind fields in defined areas.

Previous work byDelgado et al.(2012a) showed that the
variance of the Western North Pacific (WNP) monsoon index
and of the annual maximum discharge in the lower Mekong
River followed the same pattern: from the mid-20th century
to 1976 they remained low, only to later experience a phase
of enhancement, and increase the flood frequency. It has also
been shown that the link between the WNP monsoon and
summer precipitation is comparably stronger than for the In-
dian monsoon in most of the lower Mekong Basin. Differ-
ent climate regimes have been shown to occur in the Pacific
(Mantua et al., 1997), due to its decadal oscillation. We pro-
pose a representation of these different climate regimes and
capture its impact on flood hazard.

The innovation in the methodology is twofold. First, we di-
rectly apply the link between flood probability and a climate
index in flood projections under climate change. Further, we
focus on changes in variance, namely in variance of the at-
mospheric circulation as a defining driver of change, and in
variance of flood peaks as a more important factor compared
to the mean flood behaviour.
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2 Methods and data

In this paper three different flood frequency models were
used. The simplest was a stationary log-normal distribution
that was fitted to the measured annual maximum discharge.
A second model was a non-stationary log-normal distribu-
tion, which was fitted to the measured annual maximum dis-
charge, but whose scale parameter was regressed on the vari-
ance of the WNP monsoon index (calculated with reanaly-
sis data). The third model was based on the previous non-
stationary log-normal distribution. Its parameters were kept,
except for the scale parameter, which was regressed on the
variance of the WNP monsoon index from the GCMs. This
last model was used for making projections of flood fre-
quency under climate change.

2.1 Data

The discharge data used in this study is the annual maximum
discharge for the Mekong River station of Kratie. This sta-
tion is very significant for the flood levels in the Mekong
Delta, constituting a natural boundary condition for the Delta
(Fig. 1). Since the river cross section in Kratie is not well
defined due to common overbank flow and difficulties in ob-
taining the rating curves for some years, the results of this
work were also validated against data from the upstream sta-
tion of Stung Treng. The data were quality checked by the
data provider (MRC 2005).

The climatic data necessary for this study was the zonal
component of the 850 hPa wind velocity. The annual mon-
soon intensity is composed of the average wind velocity over
a defined region minus the average wind velocity over an-
other region during June, July, August and September. The
regions are a rectangular area between Southern Indochina
and Southern Philippines and another area including South-
ern China and the East China Sea (Fig.1). The difference
between the wind velocity within these areas is a good indi-
cator of the intensity of the monsoon (Wang et al., 2001) (in
Fig. 1, the monsoon indexes correspond to the averages over
a minus the averages overb). The monsoon index for the
20th century was obtained fromKajikawa and Wang(2012).

The climate change (CC) and 20th century baseline sce-
nario (20C) experiments used were obtained from the CERA
database (http://www.mad.zmaw.de/). Each experiment is
made of one coupled GCM, which is a combination of land
surface parameterisation, ocean circulation and atmospheric
circulation, and a set of CC emission scenarios, for which one
or more runs are performed by each institution. Table1 lists
the institutions, the number of runs for each scenario and the
respective reference. Although they were run by different in-
stitutions and with different land surface, ice cover and ocean
circulation models, most of these coupled GCMs are based
on the ECHAM, ARPEGE and Hadley Centre atmospheric
circulation models. Figure2 shows which atmospheric GCM
corresponds to which experiment. The scenarios used were

taken fromLeggett et al.(1992) and the additional scenario
E1 was taken fromJohns et al.(2011). Scenario A1B and A2
are medium-high emission scenarios, B1 is a low emission
scenario and E1 a scenario that introduces aggressive mitiga-
tion and translates into lower greenhouse gas (GHG) emis-
sions than B1. The combination of all scenarios was named
ALL.

2.2 The non-stationary log-normal distribution

The distribution of the annual maximum dischargex in the
lower Mekong can be modelled with a log-normal distribu-
tion (Dung, 2011). The probability density function is given
as (Hosking and Wallis, 1997)

g (x) =

exp
(
kX −

X2

2

)
α
√

2π
(1)

and

X =

{
−k−1 log{1− k (x − ξ)/α} if k 6= 0

(x − ξ)/α if k = 0
, (2)

whereξ is the location parameter,α scale parameter andk is
the shape parameter.

While the usual limitations in sample size of annual maxi-
mum flood are overcome by fitting a frequency distribution to
the data, there is additional uncertainty coming from the fact
that floods are phenomena subject to natural variability. Even
without considering human-induced climate change, flood-
rich and flood-poor periods are expected. In the stationary
flood frequency framework, the uncertainty related to col-
lecting a sample in a certain time period and not any other is
calledsampling uncertainty. For a time series of sizeN , the
sampling uncertainty can be calculated by drawing a large
numberm of random samples of sizeN from the original
time series with replacement. By computing the statistic of
interest for each of them samples, a distribution of this statis-
tic can be created, and the uncertainty bounds determined.

Contrary to the standard stationary approach, a non-
stationary flood frequency approach was used in this study.
The scale parameter of the probability density function was
modelled as a function of the non-stationary variance of the
monsoon. That is a generalization of the particular case of
the usual stationary density function, meaning that the sta-
tionary modelM0 is nested in the non-stationary modelM1
(Coles, 2001; El Adlouni et al., 2007). The scale parameterα

was parameterised as a linear function of the non-stationary
standard deviation of an atmospheric circulation indexσ∗(t):

α(t) = α0 + α1σ∗(t). (3)

To estimate the parameters in Eq. (1), the negative log-
likelihood l was optimised with the shuffled complex evolu-
tion method (Duan et al., 1992). The negative log-likelihood
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Table 1.Names and number of runs of each experiment with a general circulation model. Models that were not rejected by the statistical test
explained in Sect.2.1are marked with an asterisk.

#runs per scenario Reference
20C A1B B1 A2 E1

BCM2* 1 1 1 1 0 Otterået al.(2009)
CNCM33 2 1 0 0 0 Johns et al.(2011)
CNCM3 5 0 0 0 0 Salas-Mélia et al.(2005)
DMICM3 2 0 0 0 2 Johns et al.(2011)
DMIEH5C 3 3 0 0 0 Roeckner and Bäuml(2003)
DMIEH5* 1 1 0 0 0 Roeckner and Bäuml(2003)
EGMAM2 3 1 0 0 2 Huebener et al.(2007)
FUBEMA 3 3 3 3 0 Huebener et al.(2007)
HADCM3C* 1 2 0 0 1 Johns et al.(2003)
HADGEM2* 1 3 0 0 2 Collins et al.(2008)
HADGEM* 6 1 0 1 0 Ringer and Martin(2006)
IPCM4V2* 7 3 0 0 3 Marti et al.(2006)
INGVCE* 1 1 0 0 1 Gualdi et al.(2003)
INGVSX* 1 1 0 1 0 Gualdi et al.(2003)
MPEH5C 3 3 0 0 3 Roeckner and Bäuml(2003)

takes the following form:

l(k,α(t),ξ) = −

N∑
t=1

log
[
g (x(t),k,α(t),ξ)

]
, (4)

whereN is the length of the time series.
The stationary modelM0 can be tested against the more

general formulation of the non-stationary modelM1. The
deviance statistic is therefore computed as

D = 2(l0 − l1) . (5)

This quantity is known to beχ2
u distributed (Coles, 2001); u

is the additional number of parameters in the non-stationary
model.

2.3 Estimating the time series of the monsoon variance

Delgado et al.(2012a) showed that the variance of the WNP
monsoon and annual maximum discharge in Kratie are in
phase and their correlation coefficient is statistically signifi-
cant for periods below 10 years. This means that the WNP
monsoon modulated the annual flood variance for periods
lower than 10 years (Grinsted et al., 2004). The variance of
the WNP monsoon was therefore extracted by integrating the
monsoon wavelet spectrum for periods lower than 10 years.

To obtain a time series of variance, which is necessary as
an input to the non-stationary statistical model, the wavelet
coefficients are integrated, as given inTorrence and Compo
(1998). The result is a time series whose values are an esti-
mate of the contribution of each year to the overall variance.
In practice, the varianceσ 2

∗ (t) is given by the following sum-

mation:

σ 2
∗ (t) =

δtδj

Cδ

j2∑
j=j1

∣∣Wn

(
sj

)∣∣2
sj

. (6)

δt is the time step of the computation, whereasδj is the reso-
lution on the scale domain. In the same sense,j1 andj2 give
the lower and upper limit of the scale functionsj , which can
be translated into a frequency or period in the Fourier sense.
Cδ is a constant that depends on the kind of wavelet utilised.
Wn is the result of the wavelet transform, which can be seen
as the convolution of a wavelet over the time series.

The scale-averaged wavelet power is a time series of the
averaged variance in a certain frequency band. Note that the
same could have been done by computing variance on a mov-
ing window. However, the use of the wavelet is not only
a moving window, but also filters undesired frequencies, like
the low frequencies that account for interdecadal oscillations
in the data, and smooths the output.

The time series has to be padded with zeros to the next-
higher power of two before processing the wavelet trans-
form. The Fourier transform assumes that the data is cyclic,
so errors would occur without zero-padding. This means that
close enough to the edges of the time-series, the wavelet
spectrum will be underestimated. To avoid this, the time
series was extended with values randomly sampled from
the time series instead of zeros. This was donem times in
a Monte Carlo approach and each time the wavelet transform
was processed. In the end, the results were cropped to the
original size and them wavelet transforms averaged.

Nat. Hazards Earth Syst. Sci., 14, 1579–1589, 2014 www.nat-hazards-earth-syst-sci.net/14/1579/2014/
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2.4 A test of equality of variances

From the GCMs mentioned in Table1, only some were
used in the analysis. A test was performed to reject mod-
els whose WNP monsoon variance for the 20C scenario was
significantly different to the reanalysis data. For that, a non-
parametric method described inCahoy (2010) was used,
which tests the equality of variances.

The time series of the WNP monsoon intensity were
pooled according to the experiment they were derived from,
so that for each pool there was a set of time series that be-
longed to the same experiment. In this test the variance was
computed in a stationary sense, that is one value was ob-
tained for each time series and only these values were com-
pared. The time series were previously filtered in order to
test only the subdecadal variance. The null hypothesis of the
test is that the time series obtained from the reanalysis data
have the same variance as the time series in the pool. This
would mean that the output of a certain experiment would be
good enough for simulating the variance computed from the
reanalysis data. By rejecting the null hypothesis, the exper-
iment corresponding to the pool being tested was excluded
from the analysis. The significance level used was 5 %. By
comparing sets of time series with the reanalysis, it was pos-
sible to exclude whole experiments instead of individual time
series. The natural variability given by different runs within
the same experiment was therefore preserved.

3 Results and discussion

3.1 The variance of the monsoon intensity

The WNP monsoon intensity and its variance were computed
from the GCM outputs described in Sect.2.1. First, the re-
sults from the 20th century forcing were analysed. The scat-
ter plot in Fig.2 shows the mean and variance of the JJAS
WNP monsoon intensity for different runs and experiments
in the period 1948–1999.

A first observation is that the results are clustered based
on atmospheric circulation model and institution, such as the
models DMIEH5C and MPEH5C. This is no surprise, since
they correspond to the combinations of the same land sur-
face scheme, oceanic circulation model and atmospheric cir-
culation model run by different institutions. DMIEH5 and
DMIEH5C, although run in the same institution, present
a very different monsoon variance, presumably because they
use different versions of the ECHAM5 atmospheric GCM.

The monsoon variance derived from the different GCMs is
separated in two clusters. The majority of model realisations
is distributed around the reanalysis value. The other cluster,
composed of the above-mentioned DMIEH5C and MPEH5C
experiments, strongly overestimates monsoon variance. This
is mainly due to the results from one particular combination
of land surface scheme, ocean circulation and atmospheric

Table 2. Model parameters and estimated HQ100 of the statistical
test that rejected the stationary modelM0. ForM1, the range of
HQ100 values represents the variation between 1948 and 2004.

Stationary modelM0

k α0 α1 ξ HQ100

[
m3 s−1

]
0.0166 1.0133 – 0.0074 64.5e3

Non-stationary modelM1

k α0 α1 ξ HQ100

[
m3 s−1

]
0.0333 −0.1257 1.3292 −0.1911 {61.2e3,72.2e3}

circulation models. Contrary to the variance, the mean of the
monsoon index is less well simulated by most of the model
realisations, showing a strong bias compared to reanalysis
data.

To overcome the deficient simulation of monsoon variance
by some models, a statistical test of heterogeneity (Sect.2.4)
was performed to exclude certain experiments based on their
representation of the monsoon variance. The results are given
in Table1. Out of the 15 different model configurations used,
8 were not rejected by the statistical test. For the remaining,
the test states with a 5 % significance level that the monsoon
intensity from the experiments and from the reanalysis do
not have the same variance and were therefore discarded in
the remaining investigation. After the removal of the rejected
GCMs, the distribution of results is not bimodal anymore and
takes the shape of a regular skewed histogram, resembling
a skewed distribution of the exponential family.

3.2 Validation of the flood hazard estimation

The flood frequency model introduced by Eq. (1) was tested
with discharge data from Kratie and Stung Treng for the
period 1948–2004. The hydrographs at these stations de-
fine the intensity, duration and dynamics of the flood sea-
son in the Mekong Delta. In the flood frequency model, the
scale parameter is conditioned on the variance of the non-
stationary monsoon intensity. During the last decades of the
20th century, annual maximum discharge variance suffered
an enhancement that made the occurrence of both excep-
tionally high and exceptionally low flood events more proba-
ble. A similar enhancement was found in the variance of the
WNP monsoon index.

In order to prove that the non-stationary extreme value dis-
tribution is appropriate, both stationary and non-stationary
flood frequency models were statistically tested. Herein,
the stationary modelM0 is a particular case of the non-
stationary modelM1, namely forα1 = 0 (cf. Eqs.1 and3).
Therefore, it is possible to test the null hypothesis ofM0
fitting the data better thanM1, by evaluating a deviance
statistic based on the log-likelihood of the parameter fit. The

www.nat-hazards-earth-syst-sci.net/14/1579/2014/ Nat. Hazards Earth Syst. Sci., 14, 1579–1589, 2014



1584 J. M. Delgado et al.: Projecting flood hazard under climate change

Figure 2. Realisations of WNP monsoon index mean and variance from single runs of the GCM ensemble for the period of 1948 to 1999.
The results from the CC scenario A1B are also shown. The WNP monsoon index mean and variance as calculated from reanalysis data are
given with 90 % uncertainty bounds.

parameters for both models are shown in Table2. ModelM1
was found to be a significant improvement to the stationary
modelM0.

A probabilistic approach cannot be validated based on
measures of goodness of fit that are normally used in deter-
ministic models. A flood frequency model is fundamentally
different from a deterministic model in regard to its valida-
tion and its measures of goodness of fit. The frequency of
a 100-year event, which is a variable of interest for flood
hazard assessment, is by definition very low, meaning that
we would need a time series with a length of a higher order
of magnitude in order to be able to formally validate the re-
sults. Hence, a new model is always compared to a simpler
accepted model, and its improvements are assessed by test-
ing their significance regarding the previous version of the
model, usually in the same sample used for the optimisation
(in this case the previous version was a stationary flood fre-
quency model).

Optimising the parameters of the distribution could be
considered a “calibration”, whereas the subsequent statisti-
cal test could be called “validation”. An additional effort was
made to prove the robustness of the non-stationary approach
based on the variance of the monsoon: several calibration
subsets were randomly generated and the model skill was
tested when applied to these samples. Another approach con-

sisted of evaluating the fitted parameters obtained in these
random “calibration” subsets, when applied to their “valida-
tion” subsets, which were assumed to be the whole length of
the time series. In the first approach, about 97 % of the pa-
rameter sets were found significant. In the second approach,
the majority of the parameters sets could be validated.

The temporal development of the 100-year return period
flood HQ100 estimated by the non-stationary modelM1 is
presented in Fig.3a for the 20th century. This estimate (black
dashed line) is based on the reanalysis monsoon variance.
It lies within the 90 % sampling uncertainty interval of the
stationary modelM0 ({61.8e3,71.1e3} m3 s−1). Hence, the
sampling uncertainty bounds of the stationary approach coin-
cide approximately with the maximum and minimum of the
estimates of the non-stationary model. Sampling uncertainty
is internalised byM1 when the interannual variance of the
monsoon is parameterised.

When forced by GCM outputs, rather than by reanalysis
data, the range of results ofM1 is much wider (Fig.3a).
Thus GCM uncertainty is greater than what can be expected
from natural variability. It is worth mentioning that the un-
certainty range given byM1 forced by GCM outputs would
have been even greater if some models had not been statisti-
cally rejected, as seen in the dotted black line in Fig.3. The

Nat. Hazards Earth Syst. Sci., 14, 1579–1589, 2014 www.nat-hazards-earth-syst-sci.net/14/1579/2014/
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Figure 3. HQ100 in Kratie obtained by fitting a statistical model to the results of the ensemble of GCMs. The ensemble mean is drawn in
red with its 5th and 95th percentile. The black dashed line is the application of the non-stationary model to the monsoon index based on
the reanalysis data. In addition, HQ100 estimated by the stationary modelM0 on the basis of the observed flood peaks, including the 90 %
sampling uncertainty, is shown (black solid line).(a) shows results based on measured and reanalysis data, together with GCM results under
the baseline scenario 20C;(b) shows GCM results for the set of all scenarios considered ALL.

excluded models would have largely overestimated HQ100 at
values that are way beyond the flood of record.

The ensemble mean of the GCM estimations of flood haz-
ard for the 20th century is the red line given in Fig.3. The en-
semble mean is very close to the stationary estimation and al-
ways within the sampling uncertainty of the stationary flood
frequency distribution. The edges of the time series should
be interpreted with care, though, since a correction based on
a synthetic prolongation of the data was performed to avoid
boundary effects (see Sect.2.3).

3.3 The 100-year flood in Kratie under CC

The change projected by the set of scenarios ALL is insignif-
icant for most of the 21st century, because it stays within the
sampling uncertainty of the stationary model based on the
observation data for the period 1924–2009. Emission sce-
narios play a role in the CC projections, though. Figure4
shows the box plot of the 100-year flood in 2050 for A1B,
E1 and ALL scenarios. A difference between the three emis-
sion scenarios is observable. The ensemble mean is higher
for scenario A1B than for E1 and ALL. The 95 % uncer-
tainty range changes from 54.7e3,96.4e3m3 s−1 under A1B
to 56.7e3,80.0e3m3 s−1 under E1.

Another important feature is the temporal variation of the
ensemble mean and uncertainty. The estimations of the 100-
year flood are shown in Fig.3b. The red line represents the
ensemble mean of GCM runs for the ALL set of scenarios
considered in Table1. The ensemble mean has the tendency
to increase with time but only leaves the uncertainty range
estimated for HQ100 for the 20th century shortly in the end

Figure 4. The results of the Monte Carlo simulation of HQ100 for
2050 based on two different scenarios (A1B and E1) and the com-
bination of all emission scenarios ALL for the 21st century. The
5th, 25th, 50th, 75th and 95th percentiles of the GCM ensemble are
given by the boxplots. The ensemble mean is marked with a cross.
The 90 % sampling uncertainty of the 20th century 100-year flood
is also shown in grey shading.

of the modelled domain. Also, the spread of the ensemble in-
creases with time, mainly due to a change in the upper bound.

In general, an increase in the ensemble mean is observed
in 2050 (Fig.4), when the CC projections are compared with
the stationary model for the 20th century, although the en-
semble median decreases. Under scenario A1B, the empirical
ensemble mean shows the greatest value in the projections of

www.nat-hazards-earth-syst-sci.net/14/1579/2014/ Nat. Hazards Earth Syst. Sci., 14, 1579–1589, 2014
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HQ100 in 2050. The increase in HQ100 under the scenarios
considered is not statistically significant, as it lies within the
natural uncertainty estimated for the 20th century HQ100.

Due to the non-stationary characteristics of the model, it is
difficult to compare the presented results with the few stud-
ies in the literature that focused on changes in the variance of
floods in the Mekong River. Many investigations have differ-
ent reference periods: for example,Arnell (2003) compares
the coefficient of variation of annual runoff around 2050 in
the Mekong Basin with measurements in 1961–1990. In-
creases and decreases in this parameter are dependent on the
scenario used. Other investigations use control runs, where
GHG concentrations are kept constant, instead of 20th cen-
tury baseline scenarios, where GHG concentrations follow
the historical trends and therefore cannot be compared with
the present study.

Sperna Weiland et al.(2011) found an insignificant in-
crease in variance of mean annual discharge between A1B
scenario between 2081 and 2100 and a baseline scenario for
the 20th century between 1971 and 1990. The study used
an ensemble of GCMs and also projected a significant in-
crease in average annual maximum discharge of about 50 %
at Mukdahan (approximately halfway between the border
with China and the river mouth).

The only study that focuses explicitly on the variance of
floods isArora (2001). An increase of 5 % in the standard
deviation of annual floods is predicted, although the 5 and
50-year return period flood decreases by 28 and 15 %, respec-
tively. The results are a comparison between control scenario
and CC scenarios from 2070 to 2100 and are statistically
significant, although an estimation of GCM or hydrological
model uncertainty is not provided. The study presents the re-
sult of only one GCM, so the decrease in flood variance could
very well be contained within the GCM ensemble uncertainty
range presented in Fig.3b, although the 15 % decrease in 50-
year return period floods is a remarkable figure.

Hoanh et al.(2010) andEastham et al.(2008), among oth-
ers, point to an increase in flood hazard.Lauri et al.(2012) in-
terestingly conclude that changes introduced by reservoir op-
eration of projected dams are likely to have stronger impacts
on the floods of the Mekong than CC. The CC scenarios,
however, increased the uncertainty of estimated hydropower
impact. This is in line with the present study, where it was
found that GCMs cannot predict whether there is a significant
increase or decrease in flood hazard, due to high uncertainty.
Although these results do not provide a crisp statement about
flood hazard under CC, they are very helpful in providing
a space of possible future realisations of flood hazard change.

The WNP monsoon index used is based on zonal wind
velocity at 850 hPa geopotential height. An attempt is there-
fore made to avoid the use of often badly represented tropical
and monsoonal precipitation by GCMs (Randall et al., 2007).
Wang et al.(2004) discussed the particular case of the East
Asian monsoon region and found that the poor simulation of
rainfall in the region is a “striking characteristic of all the

models” tested, while the WNP monsoon index could be re-
alistically represented.

It is important to say that the estimation of flood hazard
presented has only one explanatory variable. Based on the
forcing of the monsoon, a relationship between the interan-
nual variance of the WNP monsoon and the annual maximum
discharge in Kratie is found that explains the variation of the
scale parameter. It is however acknowledged that other fac-
tors play a role in flood generation, such as land use change
(Bernard and Koninck, 1997), land management (Haddeland
et al., 2006), dam building (Lauri et al., 2012) and local me-
teorological conditions (Hsu et al., 2008) that may not be
related to the larger monsoon circulation. There is however
a point in assessing the impacts of a change in the monsoon
regime, since it constitutes the dominant factor for floods in
the lower Mekong Basin.

4 Conclusions

The novel approach introduced in this paper is an alterna-
tive to the use of the typical model chain to estimate CC-
driven changes in flood hazard. The method can be applied
to regions where one main forcing mechanism is well quanti-
fied in the relevant timescale. The monsoon is such a forcing
mechanism with a strong annual periodicity matching that of
the annual flood season. In other regions where more than
one main atmospheric circulation pattern contributes to flood
generation this approach would be more difficult. However,
other atmospheric phenomena of strong interannual variabil-
ity exist that can serve as driver for conditioning statistical
model parameters (e.g.Kwon et al., 2008).

We showed that the relationship between monsoon vari-
ance and flood variance has implications for flood risk assess-
ment. By creating a non-stationary statistical model that is
forced by monsoon variance, we were able to provide a range
of projections of flood hazard under CC. The subdecadal
variance of the WNP monsoon index previously proved to
be a statistically significant covariate for the scale parameter
of a flood frequency model (Delgado et al., 2012b). We used
the zonal wind velocity as described byWang et al.(2001)
to compute a WNP monsoon index based on GCM ensemble
runs under several CC scenarios.

The projection of the 100-year return period flood under
CC was presented as a range of results based on the GCM en-
semble, rather than as only one value. The ensemble mean for
2010–2090 is slightly greater than the stationary estimation
of the 100-year flood for the 20th century, and regarding the
end of the modelled domain, the ensemble mean leaves the
range of uncertainty calculated for the stationary HQ100 in
the 20th century. The 5 and 95 % average uncertainty bounds
of the non-stationary HQ100, when forced by the GCMs, are
57.5e3 and 86.4e3m3 s−1, respectively. This is a greater in-
terval than the uncertainty bounds of 61.2e3 to 72.2e3m3 s−1

estimated with the stationary model for the 20th century data,
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but still within range of what are believed to be realistic dis-
charge values for the Mekong River (the instantaneous dis-
charge of the 1978 event has been estimated from 72e3 to
78e3m3 s−1, MRC, 2005).

This approach is a simple way of creating a space of pos-
sible future realisations of flood hazard change. To date it
is not possible to make a statement regarding the impact of
climate change on the flood regime of the Mekong River
with a reliable statistical significance. The GCMs produce
a range of results that includes both negative and positive
change and the ensemble mean is not clearly different from
the reference period. This is due both to GCM uncertainty
and to the non-stationary nature of our approach (averaging
the results across several decades would have likely reduced
the uncertainty range). The results of this study should be
taken as a range of CC scenarios in the Mekong River. Ap-
proaches that use only one or a very small number of cli-
mate change model chains without provision of an uncer-
tainty range should be avoided, as this can easily mislead
flood risk management.

Our alternative approach, based on a shortened model
chain, has three advantages: (1) it bypasses precipitation
which is badly represented by climate models in our study
area. (2) Its simplicity allows for deriving large ensembles of
flood projections almost immediately from the output from
global climate models – an important characteristic in com-
parison to the efforts needed to implement, calibrate/validate
and run the typical climate change model chains. (3) It re-
duces complexity: the huge amount of parameters, processes,
interactions between processes and interactions in space and
time of typical model chains impedes the understanding of
how changes in certain processes or parameters are trans-
ferred to changes in flood hazard. The direct linkage between
changes in atmospheric circulation systems and flood haz-
ard used here is not plagued by such complexity. Overall, we
conclude that the fundamental idea underlying this approach,
namely to search for and to focus on dominant driver-impact
linkages, is a worthwhile avenue, not substituting but com-
plementing the usual climate model chain approach.
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