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A B S T R A C T

There is a shortage of sediment-routing monitoring worldwide, despite its relevance to environmental processes.
In drylands, where water resources are more vulnerable to the sediment dynamics, this flaw is even more
harmful. In the semi-arid Caatinga biome in the North-east of Brazil, rivers are almost all intermittent and hydro-
sedimentological monitoring is scarce. In the biome, water supply derives from thousands of surface reservoirs,
whose water availability is liable to be reduced by siltation and sediment-related pollution. The goal of this
research was to evaluate the potential of multi-temporal high-resolution satellite imagery (RapidEye) to assess
the suspended sediment concentration (SSC) in the medium-sized intermittent Jaguaribe River, Brazil, during a
5-year period. We validated 15 one-, two- and three-band indices for SSC estimation based on RapidEye spectral
bands deduced in the context of the present investigation and nine indices proposed in the literature for other
optical sensors, by comparing them with in-situ concentration data. The in-situ SSC data ranged from 67 mg.L−1

to 230 mg.L−1. We concluded that RapidEye images can assess moderate SSC of intermittent rivers, even when
their discharge is low. The RapidEye indices performed better than those from literature. The spectral band that
best represented SSC was the near infrared, whose performance improved when associated with the green band.
This conclusion agrees with literature findings for diverse sedimentological contexts. The three-band spectral
indices performed worse than those with only one or two spectral bands, showing that the use of a third band did
not enhance the model ability. Besides, we show that the hydrological characteristics of semi-arid intermittent
rivers generate difficulties to monitor SSC using optical satellite remote sensing, such as time-concentrated
sediment yield; and its association with recent rainfall events and, therefore, with cloudy sky.

1. Introduction

Rivers are the major receptors and transporters of sediment from
soil erosion; however, in most watercourses of the globe, sediment in-
formation is not readily available due to lack of monitoring (Syvitski
et al., 2000), which becomes more critical in regions where rivers are
intermittent and the annual sediment load is conveyed in a short period
of time (Mano et al., 2009; Medeiros et al., 2014). Generally, the
monitoring of sediment processes involves in situ observations at spe-
cific cross-sections, which cannot provide a broader spatial view of the
processes in locations other than the monitoring spot. This limitation
can result in inaccurate sediment-dynamic characterization (Liu et al.,
2013). That is particularly serious because sediment transport in rivers

may severely affect water policy, e.g., by reducing water availability
due to reservoir silting (de Araújo et al., 2006) and pollution (Coelho
et al., 2017). The Brazilian Semiarid Region is an extensive area (almost
one million km²), whose rivers are intermittent – with few exceptions –
and whose water supply relies strongly on surface reservoirs, which are
vulnerable to sediment dynamics (Lima Neto et al., 2011; Zhang et al.,
2018). The lack of in-situ spatially and temporally-varied data on se-
diment routing reduces the effectiveness of environmental policies.
Hence, the use of accurate, spatially-extensive and affordable techni-
ques, such as remote sensing, is expected to be of great value for the
improvement of sediment-dynamic knowledge and, therefore, of the
water policy, since, unlike traditional monitoring methods, satellite
remote sensing allows to collect data for large areas on a frequent and
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regular basis.
Previous studies have shown the feasibility of complementing both

hydrological and sedimentological monitoring networks using satellite
imagery (Martinez et al., 2009; Villar et al., 2012; Coelho et al., 2017;
Zhang et al., 2018) because of its wide spatial coverage, high temporal
resolution, and potential use as sediment concentration proxy (Ouillon
et al., 2004; Binding et al., 2005). More specifically, some authors have
reported a positive correlation that exists between the suspended se-
diment concentration (SSC) in rivers and their respective spectral re-
sponse (Doxaran et al., 2002; Zhou et al., 2006; Chen et al., 2007). In
fact, the amount of sediment in the water directly affects the reflectance
of the solar radiation in the visible and near infrared portions of the
spectrum: in general, the higher the suspended sediment concentration,
the higher the surface water reflectance (Ritchie et al., 2003). Mertes
et al. (1993) studied the Amazon River using Landsat images and de-
monstrated that satellite data can be used to estimate SSC accurately;
whereas Martinez et al. (2004) confirmed the correlation of sediment
concentration with satellite reflectance data using the MERIS and
MODIS sensors. J.J. Wang et al. (2009b), investigating the Yangtze
River, concluded that Landsat ETM+ images are an acceptable proxy
of SSC. However, satellite image analysis is limited by the spatial re-
solution of the images in relation to the width of the river. To avoid
mixed spectral information, the river width should be larger than the
pixel size (Wackerman et al., 2017). With pixel sizes of 30m (e.g.
Landsat) to 250–1000m (e.g. MODIS), most optical satellite imagery is
too coarse for monitoring intermittent rivers of small and variable
width (typically ranging from 10 to 200m), as is the case of the rivers
located in the Brazilian Semiarid Region. Therefore, the overall objec-
tive of this work is to evaluate the potential of multi-temporal spatially
high-resolution satellite imagery (RapidEye) for estimating the sus-
pended sediment concentration in the medium-sized intermittent Upper
Jaguaribe River. More specifically, the applicability of previously
published SSC indices to RapidEye imagery is tested, and a set of new
empirical indices that estimate SSC as a function of the spectral re-
sponse of the waters of the Upper Jaguaribe River is evaluated using in-
situ concentration data.

2. Material and methods

2.1. Study area

The Jaguaribe River Basin is inserted in the Caatinga, a tropical
biome uniquely found in the northeast of Brazil, whose climate is hot
semi-arid, with average annual temperature of 28 °C and precipitation
typically ranging from 600 to 800mm.yr−1, concentrated from January
to May, with marked irregularity in time and space (Santos et al.,
2017). The Caatinga, whose name means ‘white forest’, in the native
idiom, composes 12% of the Brazilian territory (800,000 km²) and is
characterized by leaf shedding of a large variety of both herbaceous and
arborescent vegetation. The potential evaporation is three-fold the
precipitation (2,000–2,400mm.yr−1), whereas the real evapo-
transpiration encompasses 75% of annual rainfall. The crystalline
basement composes 85% of the Upper Jaguaribe River Basin; the soils,
mostly Luvisols, are shallow, with medium to high fertility (Pinheiro
et al., 2016; Coelho et al., 2018). Due to its large population (over
25million inhabitants) and its water scarcity, the water supply in the
biome has been met by thousands of dams. The focus area of this study
is the Upper Jaguaribe River Basin (see Fig. 1), which drains an area of
24,538 km2, and is controlled by the large Orós reservoir (1.94 billion
cubic meters). Upstream the Orós dam, there are almost 5000 small
(typically 0.5 hm³) and middle-sized reservoirs (up to 10 hm³), which
strongly influence water and sediment routing in the watershed (Peter
et al., 2014; de Araújo and Bronstert, 2016). The river section analysed
in this study is 30 to 250m wide, located in the city of Iguatu (ap-
proximately 325 km from the river source). We selected because this
section, immediately upstream the large Orós dam, because it coincides

with the location where authorities have monitored water and sediment
discharges for several decades.

2.2. In-situ data

The mean daily in-situ SSC equals the ratio between the sediment
load (QSS) and the river discharge (Q), which is measured daily (ANA,
2017). The sediment load is given by the rating curve (Eq. (1)), de-
veloped by Lima Neto et al. (2011) for the Iguatu section, based on 40
field measurements performed between 2003 and 2009. In the analysis,
an important variable is the precipitation of the five previous days (PP,
see Table 1). Daily-average basin precipitation data is available at
FUNCEME (2018), based on a network of 90 gauges and computed
using the Thiessen-polygon method.

=− −Q (Mg. day ) 5.031. Q(m . s )SS
1 3 1 1.346 (1)

2.3. Satellite data

From July 2009 to May 2014, a total of 64 high-resolution RapidEye
satellite images were acquired, taken simultaneously with in-situ SSC
data. However, only twelve images representing different discharge and
SSC conditions could be used (Fig. 2), i.e., 81% of the set were dis-
carded, mainly due to three reasons: (i) 29 images (56% of the rejected
ones) were from the dry season (July–December), when the river was
not flowing; (ii) 18 (34%) were from the rainy season, but because of
the multi-annual drought (2012–2016: see de Araújo and Bronstert,
2016), there was no discharge in the river; and (iii) six (10%) were
discarded due to excessive cloudiness. Additionally, because of the
drought, there were few high-discharge events in the last three years of
the study period, resulting in a limited number of events with si-
multaneous measurable discharges and useful images in the 59-month
study period. The combination of few discharge events often coinciding
with cloudy conditions poses a great challenge for remote sensing to
monitor intermittent rivers.

The RapidEye imagery has five bands in the VNIR range: blue
(440–510 nm), green (520–590 nm), red (630–685 nm), red edge
(690–730 nm) and near-infrared (NIR, 760–850 nm). Orthorectified
Level 3 A imagery with a spatial resolution of 5m was obtained
(RapidEye, 2015) and subsequently atmospheric corrections of the
images were performed using the 6S (Second Simulation of Satellite
Signal in the Solar Spectrum) model (Antunes et al., 2012; Bonansea
et al., 2015), originally developed to simulate radiance at the satellite
level (Vermote et al., 1997). Clouds in the images were masked
manually before further analyses. The selected Iguatu cross section
encompasses several RapidEye pixels due to the high spatial resolution
(5m) of the images and the river width (typically 20m – 60m during
acquisition of the available images). At the first step, we selected 21
transverse pixels of the Iguatu cross section, where measurements of
water discharge and sediment load have been made for several decades:
one in the center of the riverbed, and ten pixels at each side. Then, we
analyzed each pixel individually to check if it really contained water,
considering that water has a much lower reflectance than the terrestrial
surfaces. The central pixel is associated with the number zero, with
negative-numbered pixels to its left and positive-numbered pixels to its
right (Fig. 1). When it was not possible to analyze the data in the exact
Iguatu section due to the presence of clouds or macrophytes (Zhang
et al., 2018), a cross section as close as possible to the original one was
selected (upstream, maximum 100m). The macrophytes were visually
detected, according to the spectral response of the pixel.

In order to assess the applicability of RapidEye imagery for SSC
monitoring in intermittent rivers, we analyzed the performance of 24
indices that correlate SSC with reflectance values in the Jaguaribe
River, which consisted of two groups: (a) nine existing indices from the
literature; and (b) fifteen indices generated in the context of the present
investigation that used one (SSB), two (DSB), and three (TSB) bands
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(Table 2). The nine indices proposed in the literature were developed
based on data from different sensors. Table 3 shows the wavelength
ranges of the spectral bands used and the spatial resolution of the
sensors including RapidEye for reference purposes. The RapidEye in-
dices were generated by the LABFit software (Silva et al., 2004), ap-
plying the Levenberg-Marquardt optimization algorithm (Levenberg,
1944; Marquardt, 1963), also known as damped least-squares. The best-
fit relations between the in-situ SSC of the central pixel (pixel zero) and
the spectral reflectance of individual or a combination of bands were
obtained based on the LABFit library that provides approximately 500
predefined non-linear regression functions. From the twelve selected
events, six were employed for calibration (of the 15 indices derived in
this research) and the remaining six for validation of the 24 indices. We
hierarchized the events represented in the images in terms of SSC
magnitude, and used the odd-numbered ones for validation and the
even-numbered ones for calibration (Table 1). The performance

parameters were the determination coefficient (R2); the mean absolute
error (MAE, Eq. (2)); the root of the mean square error (RMSE, Eq. (3));
and the Nash-Sutcliffe coefficient (NSE, Eq. (4)). In Eqs. (2)–(4), Cm

refers to measured SSC; CC to computed SSC; C̄m to the average mea-
sured SSC; and N to the sample size.

∑= −MAE 1
N

. |C C |
1

N

m c
(2)

∑= −RMSE 1
N

(C C )
1

N

m c
2

(3)

= −
∑ −

∑ −
NSE 1

(C C )
(C C̄ )

m c
2

m m
2 (4)

Fig. 1. Location of the Upper Jaguaribe Basin (UJB); the Iguatu river section; the Orós reservoir; and Rapideye image pixels along the analyzed cross section (spatial
resolution of 5m, numbers indicate distance in meters from the center pixel).

Table 1
Dates of image acquisition, precipitation of five previous days (PP), river discharge (Q), suspended sediment concentration (in-situ SSC) and reflectance of spectral
bands of the center pixel (RapidEye) in the Jaguaribe River (Iguatu section): band 1 (blue: 440–510 nm); band 2 (green: 520–590 nm); band 3 (red: 630–680 nm);
band 4 (red edge: 690–730 nm); and band 5 (NIR: 760–850 nm). The events are presented in decreasing order of SSC, the criterion to separate ‘calibration’ from
‘validation’ events.

Event date PP
(mm)

Q
(m³.s−1)

SSC
(mg.L−1)

Reflectance of the RapidEye image (%)

Band 1 Band 2 Band 3 Band 4 Band 5

Events used for calibration
30/03/2011 27 44.83 217 9.56 13.67 17.47 18.57 18.84
07/03/2011 29 23.71 174 4.95 9.01 11.53 11.09 7.44
21/03/2011 9 6.89 114 6.18 8.88 8.54 7.87 6.64
31/03/2014 34 3.79 92 4.72 7.86 7.25 6.56 5.82
27/06/2011 1 2.07 75 1.19 2.56 1.63 3.22 2.73
26/05/2014 6 1.47 67 1.06 2.22 2.53 4.09 3.53
Events used for validation
20/04/2010 31 52.75 230 5.12 8.77 11.26 10.86 9.12
21/05/2011 35 42.83 214 4.16 7.84 9.14 9.21 8.51
11/04/2011 30 10.63 132 6.23 10.92 13.54 12.91 11.78
25/04/2012 8 4.00 94 2.76 5.15 4.76 4.69 5.56
18/05/2010 18 2.35 78 3.75 6.20 6.70 5.67 4.34
18/07/2009 1 1.69 70 3.21 4.87 2.18 2.29 3.09
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Fig. 2. Temporal evolution (2009–2014) of precipitation (grey lines on top), river discharges (black dots) and dates of analysis, when both SSC and good-quality
satellite imagery were available, shown in grey dots in the lower axis (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article).

Table 2
Indices that relate suspended sediment concentration (SSC, mg L−1) with reflectance (ρ, %). In part (a) of the table, the indices (1–9) are derived from literature,
whereas the indices of part (b) (SSB, DSB, TSB) were established in this work. The Nash-Sutcliffe coefficient (NSE) refers to SSC data from the intermittent Jaguaribe
River.

(a)

Index ID SSC range (mg.L−1) Satellite Index Nash-Sutcliffe coefficient (NSE)

Calibration / Source Validation

1 100–1,000 LANDSAT
= − + +( ) ( )SSCln( ) 6.2* 1.4* 10.8ρ

ρ
ρ
ρ

red
nir

red
nir

2 Topliss et al. (1990) −14.31

2 17–2,500 MODIS = +SSC ρniln( ) (43.233* r) 1.396 Wang et al. (2009a) −2.27
3 < 2000 CASI =SSC ρni529* r Wass et al.(1997) −2.23
4 7–1,150 LANDSAT = −SSC ρ(69.39* red) 201 Islam et al. (2001) −22.89
5 2–168 LANDSAT

= − + +( ) ( )SSCln( ) 9.21* 2.71* 8.45ρ
ρ

ρ
ρ

green
red

green
red

2 Ritchie and Cooper (1991) −3.77

6 100–1,000 MOS/MESSR
= − + +( ) ( )SSCln( ) 4.8* 0.9* 10.4ρ

ρ
ρ

ρ
green

red
green

red

2 Topliss et al. (1990) −159.51

7 17–2,500 MODIS = +SSC ρln( ) (50.171* red) 1.523 Wang et al. (2009a) −24.80
8 1–500 MODIS = +ρ CSSred 7.5*log( ) 1.6 Chu et al. (2009) −3.65
9 22–2,610 LANDSAT = −SSC ρniln( ) 3.18236*ln( r) 1.40060 Wang et al. (2009b) −9.77
(b)
SSB1a 67–230 RapidEye =SSC EXP ρ62.56* [0.13* blue] 0.76 0.04
SSB2 67–230 RapidEye = +SSC ρ0.94*[ green] 51.702 0.94 0.07

SSB3 67–230 RapidEye =SSC 62.68*1.08ρred 0.93 0.30

SSB4 67–230 RapidEye = −SSC ρ ρ18.49*[ red edge] 0.36*[ red edge]2 0.95 0.44

SSB5 67–230 RapidEye = −SSC ρ ρ23.65*[ nir] 0.64*[ nir]2 0.88 0.54

DSB1a 67–230 RapidEye = −SSC ρ ρ16.88*[ red edge] 0.27*[ nir]2 0.96 0.41

DSB2 67–230 RapidEye =
+

SSC ρ
ρ

[ red]
0.0589 0.0012*[ nir]

0.80 0.35

DSB3 67–230 RapidEye =
+

SSC ρ
ρ

[ nir]
0.03909 0.00023*[ green]2

0.83 0.58

DSB4 67–230 RapidEye = −SSC ρ ρ19.49 *[ red edge] 0.46*[ red]2 0.95 0.47

DSB5 67–230 RapidEye =
+

SSC ρ
ρ

[ red edge]
0.05306 0.00017*[ green]2

0.97 0.51

DSB6 67–230 RapidEye =SSC ρ74*[ green] ρ0.02446*[ red] 0.90 0.21

TSB1a 67–230 RapidEye
=

+ +( )SSC 32.29* ρ ρ ρ[ nir] [ red edge] [ red]
3

0.6613 0.92 0.44

TSB2 67–230 RapidEye =SSC 10,209.ξ−1.EXP(-16.55/ξ); =ξ nir ρred edge ρred[ρ ]. [ ]/[ ] 0.87 0.40
TSB3 67–230 RapidEye

= ( )SSC ρ46.46* [ nir]* ρ
ρ

[ red]
[ red edge]

0.531 0.82 0.43

TSB4 67–230 RapidEye
= +( )SSC 0.433* 67.19ρ ρ

ρ
[ red edge] * [ red]

[ nir]

2 0.95 0.22

a SSB refers to one-band indices, DSB to two-band indices, and TSB to three-band indices.
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3. Results

3.1. In-situ data

Table 1 presents the data of the twelve events used in the analysis.
According to the in-situ data, SSC in the Upper Jaguaribe River was low
to moderate, ranging from 67mg.L−1 to 230mg.L−1. Measured dis-
charges of the events analyzed did not surpass 53 m³.s−1 (Table 1)
although two floods with peaks of 650 m³.s−1 and 200m³.s−1 occurred
in the study period (May 2011 and April 2012, respectively). These
events could not be included in the analysis due to the high cloudiness
of imagery. Six of the twelve available RapidEye images were acquired
in 2011, a year in which also most of the relatively high SSC values
were measured (Table 1). In fact, 2011 presented above-average pre-
cipitation (1651 mm: FUNCEME, 2018) and the most intense pre-
cipitation events during the study period, which justifies the occurrence
of relatively high sediment loads. In 2012, there was the onset of a
multi-annual drought (de Araújo and Bronstert, 2016), with a marked
decrease in precipitation, runoff, and consequently sediment load
(visible from Fig. 2).

3.2. Satellite data

Table 2 presents the performance (NSE) of the 24 indices relating

SSC and spectral reflectance for the Jaguaribe River section. Ad-
ditionally, Fig. 3 presents the performance (R², MAE, RMSE, NSE) of all
indices graphically. None of the literature formulations could represent
the SSC data in the intermittent Jaguaribe River: they all generated
negative NSE values and excessively high error measures (Table 2,
Fig. 3). The error estimates of the literature indices are extremely high
(maximum MAE=705mg.L−1, maximum RMSE=805mg.L−1),
whereas the errors of the indices derived in this study are one order of
magnitude lower (maximum MAE=48mg.L−1; maximum REMQ=
63mg.L−1). The RapidEye-based indices had an outstanding NSE in the
calibration process, with an average of 0.90. However, the NSE in the
validation process was considerably lower (0.36 on average). From the
indices developed for one band (SSB), the one that performed best
(highest NSE) was SSB5, which relates the SSC with the near infrared
reflectance. Among the two-band indices (DSB), those that employed
the short wavelength band 1 (blue, 440–510 nm) did not achieve
minimally acceptable results and, therefore, were excluded from
Table 2. The best result for the combination of two bands was that of
index DSB3, which relates SSC with the reflectance of a short and a long
wavelength band (green band 2 and near infrared band 5, respectively).
Other indices (e.g., DSB1, DSB4 and DSB5) also achieved good re-
sponses as SSC proxies, with moderate coefficient of determination (R² ˜
0.6) and NSE (˜0.5), as shown in Fig. 3. In general, one depicts that, for
the RapidEye images, the longest wavelength bands (red edge and near

Table 3
Spectral band ranges and spatial resolution of the sensors used in the derivation of the nine published SSC indices that were tested in this study (for references to the
published indices see Table 2).

Sensor Wavelength bands (nanometers) Spatial Resolution (m)

Blue Green Red Red-edge NIR

MODIS 459–479 545–565 620–670 – 841–876 250,500 and 1000
MOS – MESSR 510–590 610–690 – 720–800

800–1100
50

CASI (airborne) 402.5–421.8
453.4–469.2

531.1–543.5
571.9–584.3

630.7–643.2
666.5–673.7

– 736.6–752.8
776.3–785.4

1

Landsat 4-5 –MSS and TM 450–520 520–600 630–690 – 760–900 30
Landsat 7 – ETM+ 450–520 520–600 630–690 – 770–900 30
Landsat 8 – OLI 452–512 533–590 636–673 – 851–879 30
RapidEye 440k510 520–590 630–685 690–730 760–850 5

Fig. 3. Performance of (A) nine literature; and (B) 15 Rapid-Eye indices that relate SSC with spectral reflectance (Table 2) for six events (validation) in the
intermittent Jaguaribe River (Table 1), using the following parameters: mean absolute error (MAE); root mean square error (RMSE); coefficient of determination (R2);
and Nash-Sutcliffe coefficient (NSE). The NSE upper graphic is empty because all Literature indices provided negative NSE values (in this specific graphic, the scale
goes from zero to one).
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infrared) compose all good-performance formulations, not only in two-
band (DSB1, DSB3, DSB4, DSB5), but also in one-band (SSB5) and
three-band (TSB1) spectral indices. Contrarily, short wavelength bands
are limited in representing SSC: band 1 (blue) seems inadequate for this
purpose, whereas band 2 (green) can be helpful, as long as it is com-
bined with a long wavelength band (e.g., DSB3 and DSB5). According to
Table 2, the best index considering three spectral bands (3 red, 4 red-
edge, and 5 NIR) was TSB1. Fig. 4 shows a spatially variable SSC plot of
a Jaguaribe River reach during the 12 events, estimated by the best-
performing (DSB3) index, with the respective 5-day previous pre-
cipitation. The plots show that, due to the RapidEye pixel size of 5m, it
is possible to trace concentration spatial distribution even in an inter-
mittent river, such as the Jaguaribe, during low-discharge periods.

4. Discussion

4.1. In-situ data

One factor influencing the SSC behavior is the geological char-
acteristic of its basin. Because it is mostly (85%) composed of crystal-
line bedrock the UJB has limited groundwater storage capacity, which
contributes to the increase in discharge following intensive

precipitation events, favoring the rapid and efficient loading of mate-
rials to the rivers. However, Medeiros et al. (2014) have shown that the
sediment routing in the Brazilian semiarid region is strongly dis-
connected, and high loads should only be expected during storms.
Another feature that is strongly associated with the generally moderate
SSC concentration in the intermittent Jaguaribe River is the dense
network of dams in the watershed, which causes sediment trapping. In
fact, Lima Neto et al. (2011) state that, in the UJB, small and middle-
sized dams are responsible for the retention of 52% of the total sedi-
ment yield, reducing the SSC in the early rainy season (usually the first
three months of the year). Should the rainy season continue for a longer
period, and/or an extreme event happen, flood avalanches will occur
(Peter et al., 2014), silted material will be remobilized and SSC tends to
augment considerably, causing the propagation of peaks of sediment to
the basin outlet (Lima Neto et al., 2011; Medeiros et al., 2014). This
phenomenon has not happened in any of the monitored events in the
context of this work, which partially explains the moderate SSC values.
The concentration time of a watershed, which is the duration of the
water transfer from the furthest point in the basin to its outlet, is 4.3
days in the study catchment area. The fact that the previous rainfall
duration (5 days) is close to the concentration time of the watershed
(4.3 days) is a strong indication that the sediment mobilization occurs

Fig. 4. Five-day previous precipitation (PP) and spatial distribution of suspended sediment concentration (SSC) in the Jaguaribe River, estimated by Index DSB3
(Table 2).
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primarily at the hillslopes, rather than at the river bed, which agrees
with Lima Neto et al. (2011) and Medeiros et al. (2014).

4.2. Satellite data

The best-fit literature index (Wass et al., 1997: lowest mean absolute
error MAE=99mg.L−1; and highest NSE -2.23) was generated for
British rivers, using spatially high-resolution airborne Compact Air-
borne Spectrographic Imager (CASI) imagery and considering a wide
range of turbidity. These might be the reasons for its relatively good
performance in the Jaguaribe River, if compared to the other indices. At
the opposite extreme, the indices deduced for Fundy Bay and Mack-
enzie River (Topliss et al., 1990), located in low-temperature regions on
the Atlantic coast of North America, performed poorly using MOS-
MESSR imagery. They yielded high absolute error (threefold the mea-
sured concentration: MAE up to 705mg.L−1) and NSE as low as -160.
Besides the climatic inequality, there are other relevant differences
between the regions (cold wet North America and hot dry South
America), such as the high SSC of their samples; the high amplitude of
the tides (Desplanque and Mossman, 2001); the type of material present
in the water, mainly due to the influence of the North Atlantic Sea; as
well as the images used and their processing method. The poor per-
formance of all selected literature indices (based on measured in-river
SSC) calls for the fact that the state-of-the-art remote sensing has lim-
ited potential to extrapolation, both in terms of application site and
optical sensors. The retrieval of SSC from remotely sensed images is
limited by the spatial, temporal, and spectral resolutions of the sensors
(Imen et al., 2015) In this regard; Dorji and Fearns (2017) studied the
impact of the spatial resolution of satellite sensors in the suspended
sediment concentration in Australia and concluded that different sen-
sors with different spatial resolutions alter the results. Ody et al. (2016)
showed that, in the Gulf of Lion, France, and the variability of the
suspended sediment concentration at the turbid fronts and edges of the
river plume increased with the decrease of spatial image resolution. The
results based on the literature indices show that Landsat (30m) and
MODIS (250–1000m) indices have similar behavior when applied to
Jaguaribe River.

Lodhi et al. (1998) stated that, between 700 and 900 nm, the re-
flectance increases more uniformly with increasing SSC than in the
region of 400 to 700 nm and that the near-infrared region seems to be
the most useful for estimating SSC in water. In a study by Wang et al.
(2010), the reflectance of the bands 3 (459–479 nm), 4 (545–565 nm)
and 1 (620–670 nm) of the MODIS sensor, showed a positive relation-
ship with SSC, but the increase in reflectance with the increase of SSC
became significantly slower when SSC surpassed 150mg.L−1. The same
behavior was observed for the RapidEye images, as can be depicted
from Fig. 5 (bands 1 and 2). It indicates that the reflectance of the
shortest wavelength bands (1, blue; and 2, green) increases with SSC for
low concentration values. However, when SSC surpasses 100mg.L−1,
reflectance does not vary accordingly, ranging typically from 5% to
10% (blue band) and 8% to 14% (green band), which points out to a
saturation process or an overall low signal-to-noise ratio of the shorter
wavelength bands. Differently, for the remaining bands, the spectral
response is sensitive for the whole concentration spectrum. This ex-
plains, at least partially, why the short wavelength bands 1 and 2 (blue
and green, respectively) performed worse than the other bands.
Wackerman et al. (2017), examining the SSC in the Mekong River,
suggested the division of the data into two ranges to achieve better
linear indices. The authors divided the SSC values below and above
70mg.L−1, improving their results (see also Dorji et al., 2016). Another
way to improve SSC results is using neural network regression methods
that have potential to surpass traditional techniques of remote sensing
data analysis (Mas and Flores, 2008; Peterson et al., 2018). Neural
network have been applied and considered a viable option for sedi-
mentological research (Adib and Jahanbakhshan, 2013); Sari et al.
(2017) experimented artificial neural networks to estimate SSC in

Taboão River (Brazil) with limited data, and emphasized the im-
portance of this new methodology. Ouillon et al. (2004) and Binding
et al. (2005) appointed several bands of the visible and the near in-
frared (NIR) range as possible proxies of SSC, which is in agreement
with the results in the Jaguaribe River. Long and Pavelsky (2013) called
the attention to the prevalence of long wavelength bands (near infrared
and red) as SSC predictors, as also detected in the present investigation.
However, the authors also state that some of the top indices combined
near infrared bands with a green or blue band, implying that short
wavelength bands may be useful in detecting sediment concentration,
as long as they are interconnected with a near infrared band. This
statement agrees with the result by Wackerman et al. (2017), which
shows that the best index was a function of the NIR/green ratio, which
provided higher correlation and lower RMSE than the index using the
red band. These findings are in full agreement with our work: the best
performing models were those with either red, red edge or near infrared
bands. Notwithstanding the poor performance of the green band for
one-band indices, it composes the best-fit index (DSB3), together with
the NIR band. The analysis of the best RapidEye-based model for dif-
ferent numbers of bands shows an improvement when, instead of only
one (SSB5, validation NSE=0.54, ratio between validation and cali-
bration NSE=0.61), two bands were used (DSB3, validation NSE=
0.58, ratio between validation and calibration NSE=0.70). This
means that the inclusion of the green band reflectance added relevant
information. However, when we added a third band, the best-fit model
clearly deteriorated (TSB1, validation NSE=0.44, ratio between vali-
dation and calibration NSE=0.48), indicating that the addition of
more data did not result in the improvement of information.

Satellite imagery offers a wide spatial coverage (Martinez et al.,
2009; Villar et al., 2012; Coelho et al., 2017; Zhang et al., 2018) and has
been shown to be useful for estimating SSC by several authors (Ouillon
et al., 2004; Binding et al., 2005). However, the poor performance of
indices from remote sensing literature and the moderate validation NSE
of the RapidEye-based indices (when compared to the high calibration
NSE) indicate that there are important challenges to face, especially for
intermittent rivers. In the Brazilian semiarid region, where most rivers
are intermittent (even those with catchment areas as large as 105 km²),
baseflow discharges are usually negligible and Hortonian runoff pre-
vails, causing river discharges to be mainly composed of hillslope sur-
face runoff (Santos et al., 2017). Despite the low river discharges, the
cloud coverage in the focus region is high during the rainy season,
which enhances the obstacles to perform spectral analysis of orbital
images (Fig. 4). We have investigated if there was any valid correlation
between in-situ SSC and rainfall for several durations, and observed a
good positive correlation between SSC and the five-day antecedent
precipitation (PP). Considering all (12) valid images, the relation SSC
versus PP yielded R²= 0.58. However, if one cloudy image (31 March
2014, see Fig. 4) is discarded, the correlation increases considerably
(R²= 0.78). Consequently, the most relevant sediment loads occur, due
to widespread sediment remobilization, during high-discharge events,
which are inevitably associated with recent precipitation events. This
simultaneity of relevant sediment load and intensive cloudiness in in-
termittent rivers brings, therefore, a major obstacle to the application of
remote sensing to assess SSC. Another consequence of the hydrological
features of intermittent rivers is that only few events are able to gen-
erate flow avalanches (Peter et al., 2014). In fact, Lima Neto et al.
(2011) concluded that only one semester (in 2004) contributed with
83% of the total sediment load in the UJB for a period of 25 years
(1984–2008). This means that, either due to the excessive presence of
clouds or to unavailability of images, and the acuteness of sediment
routing in these areas, remote sensing techniques may fail to register
the events that can cause outstanding impacts on regional geomor-
phology.
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5. Conclusions

The results of this investigation show that images of the RapidEye
satellite constellation can assess moderate (67–230mg.L−1) suspended
sediment concentration (SSC) of an intermittent river, even when the
discharge is low (2 m³.s−1). The here-proposed RapidEye indices per-
formed better for the intermittent Jaguaribe River than those proposed
in the literature, which used other optical sensors with different spatial,
spectral and temporal resolutions. In general, the spectral band of the
RapidEye satellite constellation that best represented SSC in the inter-
mittent Jaguaribe River was that of the longest wavelength (band 5,
NIR, 760–850 nm). The NIR band composes the three best-performing
RapidEye-based indices, using one (SSB), two (DSB) and three (TSB)
spectral bands. The index that provided the best result in this work was
DSB3, composed by an association of green (520–590 nm) and near
infrared (760–850 nm) bands, which agrees with the conclusion by
Long and Pavelsky (2013) that the combination of green and NIR bands
yields good predictors for SSC. It is noteworthy that the authors op cit.
studied wetland waters with high sediment concentration (up to
3602mg.L−1), whereas the Jaguaribe River dataset presented only
moderate SSC. The three-band spectral indices (TSD) performed worse
than those with only one (SSB) or two (DSB) spectral bands, showing
that the addition of data (a third band, in this case) does not necessarily
enhance the model representativeness. Despite the promising results,
the hydrological features of intermittent rivers impose some serious
challenges to monitor SSC using remote sensing: sediment yield is
highly concentrated in time, and simultaneous satellite imagery might
not be available. Besides, high-yield events in intermittent rivers sub-
stantially depend on recent precipitation, which presupposes cloudy sky
and, therefore, limited optical access. Additionally, in our study, the
long-term drought that happened during the 59-month monitoring

period minimized the number of events with simultaneous measurable
discharges and useful satellite images. It is significant, therefore, to
proceed with the validation of the indices resulting from this research
for larger flows. Another relevant outlook would be to test the new
multispectral Sentinel-2 image data, whose spatial resolution is 10 m, to
assess suspended sediment concentration in intermittent rivers.
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