

Originally published as:

Heslop, J. K., Anthony, K. M. W., Grosse, G., Liebner, S., Winkel, M. (2019): Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments. - *Science of the Total Environment*, *691*, pp. 124–134.

DOI: http://doi.org/10.1016/j.scitotenv.2019.06.402

- 2 Century-scale time since permafrost thaw affects temperature sensitivity of net methane
- 3 production in thermokarst-lake and talik sediments

4 Authors

5 J. K. Heslop^{1*}, K. M. Walter Anthony¹, G. Grosse^{2,3}, S. Liebner^{4,5}, M. Winkel^{1,4}

6 Affiliations

- ⁷ ¹Water and Environmental Research Center, University of Alaska, Fairbanks, USA
- 8 ²Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- ³Institute of Earth and Environmental Sciences, University of Potsdam, Germany
- ⁴GFZ German Research Centre for Geosciences Hemholtz Centre Potsdam, Postdam, Germany
- ⁵Institute of Biochemistry and Biology, University of Potsdam, Germany
- ^{*}Present address: Department of Geography and Planning, Queen's University, Kingston,
- 13 Canada

14 **Corresponding author**

- 15 J. Heslop, Department of Geography and Planning, Mackintosh-Corry Hall, Rm D102A, Queen's
- 16 University, Kingston ON K7L 3N6, 343-333-9925 (phone), 613-533-6122 (fax),
- 17 joannekheslop@gmail.com (email)

18 Abstract

19 Permafrost thaw subjects previously frozen soil organic carbon (SOC) to microbial 20 degradation to the greenhouse gases carbon dioxide (CO_2) and methane (CH_4). Emission of these 21 gases constitutes a positive feedback to climate warming. Among numerous uncertainties in 22 estimating the strength of this permafrost carbon feedback (PCF), two are: (i) how mineralization 23 of permafrost SOC thawed in saturated anaerobic conditions responds to changes in temperature 24 and (ii) how microbial communities and temperature sensitivities change over time since thaw. 25 To address these uncertainties, we utilized a thermokarst-lake sediment core as a natural 26 chronosequence where SOC thawed and incubated *in situ* under saturated anaerobic conditions 27 for up to 400 years following permafrost thaw. Initial microbial communities were characterized, 28 and sediments were anaerobically incubated in the lab at four temperatures (0 °C, 3 °C, 10 °C, 29 and 25 °C) bracketing those observed in the lake's talik. Net CH_4 production in freshly-thawed 30 sediments near the downward-expanding thaw boundary at the base of the talik were most 31 sensitive to warming at the lower incubation temperatures (0 $^{\circ}$ C to 3 $^{\circ}$ C), while the overlying 32 sediments which had been thawed for centuries had initial low abundant methanogenic 33 communities (< 0.02%) and did not experience statistically significant increases in net CH₄ 34 production potentials until higher incubation temperatures (10 °C to 25 °C). We propose these 35 observed differences in temperature sensitivities are due to differences in SOM quality and 36 functional microbial community composition that evolve over time; however further research is 37 necessary to better constrain the roles of these factors in determining temperature controls on 38 anaerobic C mineralization.

39 Keywords

40 carbon, lake sediments, methane, permafrost, talik, temperature sensitivity

41 Graphical Abstract

43	Highlights

- Time since permafrost thaw affects microbe communities and temperature sensitivity
- Recently-thawed sediments had highest temperature sensitivities at low temperatures
- Sediment thawed for centuries was most sensitive to warming at high temperatures
- Deposited sediment produced the most CH₄ but had the lowest temperature sensitivity
- 48 Abbreviations
- 49 BH borehole
- 50 C carbon
- 51 CH₄ methane
- 52 CO_2 carbon dioxide
- 53 F facies
- 54 OM organic matter
- 55 OTU operational taxonomic units
- 56 PCF permafrost carbon feedback
- 57 PCR polymerase chain reaction
- 58 R ratios of C-CH₄ production potentials
- 59 SOC soil organic carbon
- 60 SOM soil organic matter

62 1. Introduction

63 Permafrost landscapes contain an estimated 1,330-1,580 Pg of soil organic carbon (SOC), 64 representing about one-third of total global SOC stocks (Hugelius et al., 2014, Schuur et al., 65 2015). Defined as ground at or below 0 $^{\circ}$ C for at least two consecutive years, permafrost covers 66 about 24% of land surface in the Northern Hemisphere (Zhang et al., 1999). Air temperature 67 records suggest high latitudes (>60 °N) are warming twice as fast as the remainder of the globe 68 (Bekryaev et al., 2010, Schuur et al., 2015), and climate models predict amplified Arctic 69 warming will continue into the coming century. Globally, permafrost temperatures have 70 increased by an average of 0.29 °C during the past decade (Biskaborn et al., 2019). Permafrost 71 warming and subsequent thaw lead to the mobilization and potential microbial degradation of 72 previously frozen, inactive permafrost SOC (Davidson and Janssens, 2006, Olefeldt et al., 2013, 73 Schuur et al., 2015, Yang et al., 2016). Microbial degradation converts permafrost SOC into the 74 greenhouse gases carbon dioxide (CO_2) and methane (CH_4) , which, when released to the 75 atmosphere, cause a positive feedback to climate warming known as the permafrost carbon 76 feedback (PCF; Walter et al., 2006, Schuur et al., 2015). 77 Permafrost thaw also changes local and regional hydrology, leading to fragmented 78 wetting and drying of the landscape (Jorgenson et al., 2013). Landscape wetting and drying play

an important role in controlling whether thawed SOC will be mineralized aerobically as CO_2 or anaerobically as CO_2 and CH_4 . While it has been suggested that permafrost SOC mineralization in aerobic conditions releases an average of 3.4 times more C (C-CO₂) than SOC mineralization in anaerobic conditions (C-CO₂ + C-CO₂; Schädel et al., 2016), CH₄ emissions from permafrost environments are expected to become more important over longer time scales (beyond 2100;

84 Dean et al., 2018). CH₄ production rates in saturated, anaerobic systems are more sensitive to

85	variability in soil temperature than C mineralization in drier, aerobic ecosystems (Olefeldt et al.,
86	2013, Schädel et al., 2016). A recent synthesis of 21 aerobic and anaerobic permafrost soil
87	incubation studies found that a 10 °C increase in temperature (5 °C to 15 °C) resulted in net C
88	release increasing by a factor of 2.0 (i.e. mean $Q_{10} = 2.0, 95\%$ CI = 1.8-2.2; Schädel et al., 2016).
89	However, ranges of previously reported temperature sensitivity values vary between permafrost
90	SOC mineralized under aerobic versus anaerobic conditions. In permafrost soils, previously
91	observed anaerobic C mineralization (C-CO ₂ + C-CH ₄) Q_{10} values ranged from 1.2 to 22.0
92	(Čapek et al., 2015, Chowdhury et al., 2015, Treat et al., 2015, Schädel et al., 2016) while, in
93	aerobic conditions, Q_{10} values for C-CO ₂ ranged from 1.6 to 9.4 (Mikan et al., 2002, Čapek et
94	al., 2015, Bracho et al., 2016, Schädel et al., 2016). Given that CH ₄ has a 34 times higher global
95	warming potential than CO ₂ over a century time scale (Myhre et al., 2013), and that northern
96	soils are expected to warm during the next several decades and beyond (Guo and Wang, 2016), it
97	is important to understand CH ₄ production responses to temperature increases to fully estimate
98	the potential strength of the PCF.
99	SOC mobilization and mineralization from thawing permafrost are expected to become a
100	long-term C source, projected to contribute accelerating rates of C emissions over the coming
101	centuries (10 Pg C by 2100, 50 Pg C by 2200, 120 Pg C by 2300; Parazoo et al., 2018).
102	Therefore, in addition to requiring a better understanding of how CH ₄ production changes with
103	temperature, modeling the potential PCF will require better estimates of how temperature
104	sensitivities change over century-scale time since permafrost thaw. It is difficult to obtain this
105	information from incubations and field warming experiments, which commonly capture
106	temperature responses of labile SOC fractions with fast (days to years) turnover times (Conant et
107	al., 2011, Bracho et al., 2016, Knoblauch et al., 2013, 2018). In permafrost soils, the size of this

fast C pool is small (< 5%) and the majority (> 95%) of permafrost SOC has turnover times of
decades to centuries (Schädel et al., 2014). Temperature sensitivities of these slower C pools are
largely unknown (Conant et al., 2011).

111 Natural chronosequences, where SOC has incubated *in situ*, provide unique opportunities 112 to examine how temperature sensitivity of SOC mineralization changes over time. Due to their 113 formation and thaw histories, thermokarst lake taliks (thaw bulbs) can provide a unique natural 114 laboratory in which permafrost SOC has thawed and incubated *in situ* under saturated anaerobic 115 conditions for hundreds to thousands of years (West and Plug, 2008, Kessler et al, 2012). 116 Thermokarst lakes are known to have high rates of CH₄ emission (Sepulveda-Jauregui et al., 117 2014, Walter Anthony et al., 2018), with the organic matter (OM) substrate for methanogenesis 118 primarily originating from permafrost SOC thawing both beneath and surrounding the lake 119 (Kling and Kipphut, 1991, Zimov et al., 1997, Walter et al., 2008, Brosius et al., 2012, Walter 120 Anthony and Anthony, 2013, Lenz et al., 2016). In surface lake sediments, decomposition of 121 deposited contemporary OM fuels methanogenesis (Walter Anthony et al., 2014, Elder et al., 122 2018). Once formed, thermokarst lakes strongly alter the local ground thermal balance by 123 transferring heat from the water body to the underlying ground more effectively than other land 124 cover types (Burn, 2005, Grosse et al., 2012, Jorgenson et al., 2013), which can subsequently 125 trigger downward permafrost thaw and talik formation beneath the lake (Plug and West, 2009). 126 After accounting for initial SOC heterogeneity in the vertical profile, the thawed permafrost soils 127 beneath a thermokarst lake represent a natural chronosequence of time since thaw, with 128 sediments closest to the thaw boundary at the base of the talik being the most recently thawed. 129 Here, we anaerobically incubated sediments from a thermokarst lake core with the 130 objective of examining the temperature sensitivity of CH_4 production. We examined how both *in*

131 *situ* microbial communities and temperature sensitivities of net CH₄ production change over 132 century time scales since permafrost thaw. Our work involved monitoring temperature along two 133 vertical profiles in the thermokarst lake talik, characterizing *in situ* microbial communities at 134 different depths within the talik, incubating sediments at four temperatures bracketing those 135 found within the talik, and calculating temperature sensitivities of net CH₄ production at different 136 depths within the talik and at different incubation temperature intervals. We show how microbial 137 community composition and temperature sensitivity of net CH₄ production potentials change 138 with depth, using depth as a proxy for increasing time since thaw in the talik. While microbial 139 communities have been characterized in near-surface (<1.5 m) thermokarst-lake sediments (He et 140 al., 2012, Negandhi et al., 2013, Crevecoeur et al., 2016, Matheus Carnevali et al., 2018), to our 141 knowledge this is the first study to examine changes in initial microbial communities at deeper 142 depths (up to 5.9 m) in a thermokarst-lake talik and along a centuries-scale time-since-thaw 143 chronosequence. We also compare microbial community composition and net CH₄ production 144 temperature sensitivity between surface sediments deposited by erosion from the surrounding 145 environment with the underlying thawed in situ permafrost.

146

147 **2. Materials and methods**

148 2.1. Vault Lake sediment core description

During March 2013, a 590-cm long sediment core was collected from the center of Vault Lake, Alaska, USA (65.0293 °N, 147.6987 °W) using methods described in detail in Heslop et al. (2015). Based on ¹⁴C-dating of macrofossils picked from the sediment core, Vault Lake was estimated to have formed ca. 400 cal. years BP (Heslop et al., 2015). Heslop et al. (2015) classified and described in detail the lake profile subdivided into five sediment facies: (F-1)

154 surface organic-rich mud, (F-2) lacustrine silt, (F-3) taberite, (F-4) recently-thawed taberite, and 155 (F-5) frozen transitional permafrost. Briefly, the surface organic-rich mud facies (F-1, 0-152 cm) 156 represents organic-rich sediments deposited following lake formation, which were exposed to the 157 lake water column and settled to the lake bottom. The lacustrine silt (F-2, 153-330 cm) facies 158 represents material that sloughed off the thermokarst lake margin and was exposed to the lake 159 water column during erosion and re-deposition. The lowest three facies (F-3, F-4, F-5, >330 cm) 160 comprise the taberite sequence, consisting of Pleistocene-aged yedoma permafrost that either 161 thawed *in situ* or is presently thawing and transitioning to taberite beneath the lake. Yedoma 162 refers to permafrost formed due to syngenetic sediment, peat, and ice accumulation in 163 unglaciated regions during the Pleistocene and contains high ice and OC contents compared to 164 other mineral-type permafrost soils (Zimov et al., 2006, Strauss et al., 2017). The taberite facies 165 (F-3, 331-507 cm) represents yedoma sediments which thawed *in situ* beneath the lake during the 166 past ~400 years since lake formation; the bottom section of the taberite, which we estimate 167 thawed within the past ~50 years based on talik growth functions of Kessler et al. (2012), was 168 designated as the recently-thawed taberite facies (F-4, 508-550 cm). The frozen portion of the 169 core beneath the talik that is currently thawing and transitioning to taberite was designated as the 170 transitional permafrost facies (F-5, 551-590 cm). Taberite sediments are silt-rich, but lack 171 aquatic macrofossils since they thawed beneath the lake without contacting the overlying water 172 column. Multivariate statistical analyses conducted by Heslop et al. (2017) on geochemical and 173 sediment OM molecular composition data from the core indicate sediments from the surface 174 organic-rich mud facies contained different SOM characteristic than the bottom four facies (F-2 175 lacustrine silt, F-3 taberite, F-4 recently-thawed taberite, and F-5 frozen transitional permafrost), 176 which contained statistically homogenous SOM. Due to the statistical homogeneity of their SOM

(Heslop et al., 2017) and their history of thawing *in situ* beneath Vault Lake, we interpret the
three lower facies (F-3, F-4, F-5) to represent a 400-year chronosequence of time since

179 permafrost thaw.

180 2.2. Vertical temperature profile measurements

181 Temperature below the sediment-water interface at Vault Lake was measured in 182 galvanized steel tubes placed in two boreholes [Borehole (BH) 10 and BH13] described in 183 Heslop et al. (2015). At BH10, located 6.1 m from an actively expanding thermokarst margin in 184 2013 (Figure 1), the talik thickness was 8.6 m and the lake water column was 1.4 m depth. At 185 BH13, located in the center of the lake, farther away from the expanding margins, the lake water 186 column was deeper (4.0 m) and the talik was thinner (5.7 m). At each borehole, we installed 187 temperature sensors (Onset TMCx-HD, accuracy $\pm 0.21^{\circ}$ C) at four depths below the sedimentwater interface and recorded temperatures hourly from May 2013-April 2019. The temperature 188 189 sensor depths were representative of the F-1 surface organic-rich mud (BH10 and BH13: 0.5 m 190 and 1.0 m), the F-3 taberite (BH10: 6.2 m), the F-4 recently-thawed taberite (BH13: 5.7 m), and 191 the F-5 frozen transitional permafrost (BH10: 8.9 m, BH13: 6.2 m) facies.

192 2.3. Anaerobic sediment incubations

We prepared and incubated sediment slurries [mean \pm SD 262 \pm 121 g dw sediment L⁻¹; range 124-455 g dw sediment L⁻¹] from five depths in the core, representing one depth from each of the five facies described above (Table 1), using methods previously described in Heslop et al. (2015). Briefly, we used a stir bar to homogenize 150 \pm 70 cc of lake core sediment with 750 mL O₂-free, sterilized DI water (Milli-Q) while purging the slurry with ultra-high-purity (UHP) N₂ gas (Air Liquide). Fifty mL of the homogenized slurry were transferred to each 100 mL glass serum incubation vial, and each vial was flushed with a constant stream of UHP N₂ gas for 5

201 (Sigma-Aldrich) was injected in each vial to a concentration of 0.025% wt/v to serve as a 202 reducing agent, and anaerobic conditions were verified by measuring initial headspace O_2 203 concentrations using gas chromatography (Shimadzu GC-2014). For each core depth, we incubated sediment slurries in triplicate at four temperatures (0 °C, 3 °C, 10 °C, and 25 °C) 204 205 bracketing those found within thermokarst-lake environments. Incubation temperatures were 206 selected to be representative of temperatures measured in the Vault Lake talik using methods 207 described above (0 °C, 3 °C, 10 °C) and previously published upper bounds for permafrost OC 208 incubation studies (25 °C; Vonk et al., 2015). We measured headspace CH₄, N₂, and O₂ 209 concentration monthly using gas chromatography (Shimadzu GC-2014; detection limits 0.1 ppm, 210 50 ppm, and 50 ppm for CH₄, N₂, and O₂, respectively) for a period totaling 150 days. 211 Cumulative C-CH₄ production potential (mg C-CH₄) was calculated as the total mass of net C-212 CH₄ produced in each incubation vial during the 150-d incubation period normalized by the mass of initial SOC in each bottle (mg C-CH₄ g SOC⁻¹). 213

minutes prior to being sealed with butyl rubber stoppers and aluminum crimp caps. L-cysteine

214 2.4. Temperature sensitivity calculations

200

215 We calculate temperature sensitivity in our incubations using two methods. We first 216 calculate temperature sensitivity across all our incubation temperatures as the slope of a linear regression between the log of cumulative net C-CH₄ production (mg C-CH₄ g SOC⁻¹) and 217 218 incubation temperature (°C; Gudasz et al., 2015). For each facies, cumulative net C-CH₄ 219 production of each incubation vial at each incubation temperature was treated as one observation 220 (n = 1) in the linear regression. Because we treat each incubation vial as one observation, we use 221 the GC CH_4 detection limit (0.1 ppm CH_4) to calculate potential analytical error in measured C-222 CH_4 production. Linear regressions were calculated for each facie (n = 12 observations per facie) using MATLAB R2016a software, and 95% confidence intervals were calculated for the slope and intersect in each linear regression. We report the slope (temperature sensitivity) of the regression line for each facies, the p-value of the calculated slope, and the R^2 value of the calculated slope fit to the observations (Table S1, Figure 2).

227 To differentiate between temperature sensitivities at colder versus warmer incubation 228 temperatures for each facies, we also calculated ratios of the mean cumulative net C-CH₄ 229 production potentials from the triplicate incubation vials for pairs of incubation temperature 230 treatments (3 °C : 0 °C ; 10 °C : 0 °C; 25 °C : 0 °C; 10 °C : 3 °C; 25 °C : 10 °C). Temperature 231 sensitivities were calculated as ratios, as opposed to using Q_{10} values, to account for variables 232 such as functional microbial community size and composition that diverge with temperature 233 during long-term incubations (Bracho et al., 2016) and subsequently affect CH₄ production rates 234 (Wagner et al., 2007, Knoblauch et al., 2013, 2018), potentially causing misrepresentative Q_{10} 235 values for net CH₄ production.

236 2.5. Microbial community analysis

237 We characterized the microbial community composition at four of our incubation facies 238 (F-1 surface-rich organic mud and the taberite sequence F-3, F-4, and F-5) using sediment 239 collected adjacent to the incubated sediments from the same lake core. Given the analyzed 240 sediment subsamples were collected adjacent to the incubated sediment subsamples, we assumed 241 measured microbial communities are representative of microbial communities both *in situ* and at 242 the start of our incubations. Sediments were collected using a sterilized spatula, placed in a 243 sterilized glass vial, sealed, and immediately frozen until further analyses. Genomic DNA of 4.7-244 13 g sediment was extracted using the protocol of Zhou et al. (1996). DNA concentrations were

quantified with a Nanophotometer® P360 (Implen GmbH) and Qubit® 2.0 Flurometer (ThermoFisher Scientific).

247	The 16S rRNA gene for bacteria was amplified with the primer combination S-D-Bact-
248	0341-a-S-17 and S-D-Bact-0785-a-A-21 (Herlemann et al., 2011). The 16S rRNA gene for
249	archaea was amplified in a nested approach with the primer combination S-D-Arch-0020-a-S-19
250	and S-D-Arch-0958-a-A-19 in the first polymerase chain reaction (PCR) for 40 cycles and S-D-
251	Arch-0349-a-S-17 and S-D-Arch-0786-a-A-20 in the second PCR for 35 cycles, respectively.
252	The primers were labelled with unique combinations of barcodes. The PCR mix contained 1x
253	PCR buffer (Tris•Cl, KCl, (NH ₄)2SO ₄ , 15 mM MgCl ₂ ; pH 8.7; QIAGEN), 0.5 µM of each
254	primer (Biomers), 0.2 mM of each deoxynucleoside (Thermo Fisher Scientific), and 0.025U μ l ⁻¹
255	hot start polymerase (QIAGEN). The thermocycler conditions were: 95°C for 5 min
256	(denaturation), followed by 40 cycles of 95°C for 1 min (denaturation), 56°C for 45 seconds
257	(annealing) and 72°C for 1 minute and 30 sec (elongation), and concluding with a final
258	elongation step at 72°C for 10 min. PCR products were purified with a Hi Yield® Gel/PCR
259	DNA fragment extraction kit (Süd-Laborbedarf). PCR products of three individual runs per
260	sample were combined. PCR products of different samples were pooled in equimolar
261	concentrations and compressed to a final volume 10 μ l with a concentration of 200ng μ l ⁻¹ in a
262	vacuum centrifuge Concentrator Plus (Eppendorf). Individual samples were sequenced in
263	duplicates. Illumina sequencing was performed by GATC Biotech AG using 300 bp paired-end
264	mode. Due to different sequencing length, we used 20% PhiX control v3 library for better
265	performance.

267 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ by S. Andrews). Sequence raw reads

The quality of the sequences was checked using the fastqc tool

266

268 were demultiplexed and barcodes were removed with the CutAdapt tool (trim-n; e 0.1; only 269 consider exact barcodes for mapping; Martin, 2011). The subsequent steps included merging of 270 reads using overlapping sequence regions PEAR (Q 25; p 0.0001; v 20; Zhang et al., 2014), 271 standardizing the nucleotide sequence orientation, and trimming and filtering of low quality 272 sequences using Trimmomatic (SE; LEADING Q25; TRAILING Q25; SLIDINGWINDOW 273 5:25; MINLEN 200; Bolger et al., 2014). After quality filtering, chimera were removed by the 274 ChimeraSlayer tool of the QIIME pipeline. Subsequently, sequences were clustered into 275 operational taxonomic units (OTU) at a nucleotide cutoff level of 97% similarity and singeltons 276 were automatically deleted. To reduce noise in the dataset, sequences with relative abundances 277 below 0.1% per sample were also removed. All archaeal libraries contained at least 14,300 278 sequences, while bacterial libraries contained at least >71,400 sequences. OTUs were 279 taxonomically assigned employing the Silva database release 128 (Quast et al., 2012) using the 280 QIIME pipeline (Caporaso et al., 2010). Older taxonomic assignments for archaea and bacteria 281 were manually corrected according to new publications, e.g. Micellaneous Crenarchaeal Group 282 (MCG) was renamed to *Bathyarchaeota* (Rinke et al., 2013, Castelle et al., 2015, Adam et al., 283 2017).

Sequences have been deposited at NCBI under the Bioproject PRJNA381521 with the
 sequence read archive accession numbers SRX3047223- SRX3047228 for bacterial and
 SRX3047230- SRX3047235 for archaeal sequences, respectively.

287 *2.6. Statistics*

All statistical analyses were conducted using MATLAB R2016a software. Values from each triplicate incubation vial were treated as n=1 for all statistical analyses. We determined if CH₄ production potentials significantly deferred between facies (selected facie versus remaining 291 facies at the same incubation temperature) and with warming incubation temperatures (colder v.

warmer temperature for the same facies) using two-sample t-tests. We considered differences

between facies and incubation temperatures statistically significant when $p \le 0.05$.

294

3. Results

296 *3.1. Temperatures in the Vault Lake talik*

297 Temperature data were recorded continuously, except for a data gap between 25 July and 298 11 November 2014; a period between 18-20 January 2017, during which very cold atmospheric 299 temperatures interfered with the logger operation; and 24 October 2017 to 7 April 2018 in BH13, 300 due to an animal chewing through wiring. In the profile adjacent to the southern thermokarst 301 margin (BH10) hourly temperatures recorded from May 2013 to October 2017 ranged from -0.40 302 to 14.45 °C (annual mean \pm SD 2.50 \pm 3.37 °C; Figure 1). In the center of Vault Lake (BH13), 303 observed temperatures in the vertical profile ranged from -0.40 to 4.51 °C (annual mean \pm SD 304 1.11 ± 1.42 °C; Figure 1). In both profiles, the shallow sediment depths (50-100 cm below the 305 sediment-water interface) were warmer (0.14 to 14.45 °C) and showed clear seasonal variations 306 compared to the deepest (5.70 m and 8.85 m) sediments near the thaw boundary (-0.40 to 2.37 307 $^{\circ}$ C), which showed less seasonal variation. Mean annual temperature was 3.26 ± 2.94 $^{\circ}$ C in the 308 shallower sediments and 0.18 ± 0.59 °C near the thaw boundary.

309 *3.2. Net CH*⁴ *production potentials*

Net CH_4 production potentials roughly increased with increasing incubation temperatures (Figures 2, S2) in all samples except the F-5 frozen transitional permafrost samples, in which the net CH_4 production potential was highest at the 3 °C incubation temperature. Cumulative net C-CH₄ production potentials during the 150-d incubation ranged from 0.0 to 610 mg C-CH₄ g SOC⁻ ¹(Figures 2, S2). Except for at the 25 °C incubation temperature, the F-1 surface organic-rich

315 mud facies produced the most net C-CH₄. At the 25 °C incubation temperature, the F-3 taberite

facies produced the most net C-CH₄ g SOC⁻¹ (610 mg C-CH₄ g SOC⁻¹). The F-5 frozen

317 transitional permafrost produced the least net C-CH₄ at all incubation temperatures except at 3

³¹⁸ °C. At the 3 °C incubation temperature, the F-3 taberite facies produced the least net C-CH₄ g

319 SOC^{-1} . Full net C-CH₄ production potential results are presented in Figures 2 and S2.

320 *3.3. Temperature sensitivities*

321 Temperature sensitivities at each facies, calculated across all incubation temperatures,

ranged from 0.11 to 0.42 (Table S1, Figure 2). The F-1 organic-rich mud facies had the lowest

323 overall temperature sensitivity, while the F-3 taberite facies had the highest overall temperature

324 sensitivity. Ratios (R) of net C-CH₄ production potentials between different incubation

temperatures in our study ranged from 0.01 to 99,200 (Table 2). At the coldest temperature

326 interval (3 °C : 0 °C), the F-4 recently-thawed taberite and the F-5 frozen transitional permafrost

327 had the highest R values. At the remaining temperature intervals, the F-3 taberite facies had the

328 highest R values in our study. Full R results are presented in Table 2.

329 *3.4. Microbial community composition*

330 The initial archaeal communities of the F-1 mud and F-4 recently-thawed taberite facies

331 were dominated by methanogens such as *Methanobacteriaceae*, *Methanoregulaceae*,

332 *Methanosaetaceae*, and *Methanosarcinaceae*, which collectively accounted for ~84% to 89% of

333 all sequences. The F-3 taberite facies exclusively revealed Methanoperedenaceae sequences

belonging to the anaerobic methanotrophic clade ANME-2d (Winkel et al., 2019).

335 *Methanoperedenaceae*/ANME-2d were also detected in F-4 (1%) and F-5 (15%) facies. In

addition to methanogens and anaerobic methanotrophs, facies F-5 contained high relative

337 sequence abundances of *Bathyarchaeota* (24%), metabolic generalists widespread in anaerobic 338 systems, and ammonia-oxidizing Thaumarchaeota/ Nitrososphaerales (21%; Figure 3). 339 The initial bacterial communities in all facies were dominated by Actinobacteria, 340 Chloroflexi, Firmicutes, Alphaproteobacteria, and Betaproteobacteria, which collectively 341 contributed 71-85% of all bacterial sequences. Certain taxa only appeared in high relative 342 abundances in specific facies of the Vault lake core (Figure 4). Taxa such as *Plantomycetes* and 343 Saccharibacteria only appeared in the F-4 recently-thawed taberite, Gemmatimonadetes 344 appeared only in the F-3 and F-4 facies, and Gammaproteobacteria was only observed in the F-1 345 organic-rich mud.

346

347 **4. Discussion**

348 Short-time scale studies (days to years) have shown that time is an important factor in 349 determining temperature sensitivity of C mineralization, but how temperature sensitivity changes 350 over long (decades to centuries) time scales is poorly understood. Understanding changes in 351 temperature sensitivity over these longer time scales is vital to improve estimates of the long-352 term magnitude of the PCF. Our study utilizes a unique approach for examining how potential 353 net CH₄ production changes in the decades to centuries following permafrost thaw under 354 saturated anaerobic conditions. Our results suggest that net CH₄ production in sediments at the 355 base of the talik (decadal time scales since thaw) are most sensitive to temperature increases at 356 lower temperatures, while net CH_4 production in sediments which have been thawed for longer 357 periods of time (centuries time scales) were most sensitive at higher temperatures (Table 2). We 358 attribute these changes to differences in available substrate and microbial community 359 acclimation.

360 4.1. Temperature sensitivities at decadal timescales since thaw

361 The F-5 transitional permafrost facies immediately below the thaw boundary had lower 362 CH₄ production potential values and lower temperature sensitivity (overall temperature 363 sensitivity and 0 °C to 3 °C R values) than the F-4 recently-thawed taberite immediately above 364 the thaw boundary. We acknowledge that slopes used to calculate overall temperature sensitivities at the F-4 and F-5 facies had lower ($R^2 < 0.33$) fit to our data compared to the slopes 365 366 of the overlying (F-1, F-2, and F-3) facies, and p-values which were significant at the $\alpha = 0.10$ level but not at the $\alpha = 0.05$ level. The lower R² values in the F-4 and F-5 facies are influenced 367 368 by the significant increases in CH₄ production between 0 °C to 3 °C at these facies, which we 369 discuss below. Sediments from the F-5 transitional permafrost facies were frozen when the 370 sediment core was collected and thawed at the commencement of the incubation, and we 371 estimate sediments in the F-4 recently-thawed taberite thawed within the past 50 years (Heslop et 372 al., 2015). This result is consistent with findings from anaerobic incubations of sediment cores 373 from ice wedge polygons collected in Northern Alaska, where soils above the thaw boundary 374 produced more CH₄ and had greater temperature sensitivity of CH₄ production than soils from 375 the underlying permafrost (Zheng et al., 2018).

We observed the highest 0 °C to 3 °C R values in the F-4 recently-thawed taberite and F-5 transitional permafrost facies. The 0 °C to 3 °C temperature interval is representative of temperature increases as permafrost thaws and warms and is consistent with *in situ* temperatures observed in the temperature profiles at the base of the talik below Vault Lake (BH13 5.7 m and 6.2 m depth; BH10 8.9 m depth). We postulate the high net CH₄ temperature sensitivity values observed in these facies at this temperature interval are due to a combination of a rapid increase in CH₄-producing communities following thaw and freshly-thawed sediments containing greater

proportions of fresher, more labile SOC compared to the overlying sediments thawed for longerperiods of time.

385 Methanogens are known to be naturally present in permafrost environments (this study; 386 Rivinka et al., 2000, Mackelprang et al., 2017, Malard and Pearce, 2018). While methanogenic 387 activity has been measured at temperatures as low as -20 $^{\circ}$ C (Rivinka et al., 2000), CH₄ 388 production rates in permafrost are extremely low due to a lack of activation energy to initiate the 389 chemical reactions involved in CH₄ production (Davidson and Janssens, 2006, Conant et al., 390 2011). Permafrost warming and thaw have been associated with increases in the number of 391 methanogens and subsequent CH_4 production rates (Knoblauch et al., 2018, Wei et al., 2018). 392 We suggest an initial, rapid bloom in methanogen biomass following thaw and the subsequent 393 mineralization of accumulated, biolabile permafrost SOC compounds due to the input of heat 394 energy may contribute to the high 0 °C to 3 °C R values we observed in the F-4 and F-5 facies. 395 Microbial community composition has also been found to control C decomposition responses to 396 changes in temperature and precipitation in temperate aerobic systems (Glassman et al., 2018). 397 Archaeal communities in the F-4 recently-thawed taberite facies were dominated (89% 398 relative abundance) by methanogens and contained low initial abundance (1%) of methanotrophs 399 (Figure 5). The archaeal community in the F-4 facies mainly revealed acetoclastic methanogens 400 of the family Methanosaetaceae (64%), which are known to be specialist for cold neutral 401 environments (Wen et al., 2017). The initial microbial communities in the F-4 facies also showed 402 sequences related to bacteria (Firmicutes-Clostridiales, Betaproteobacteria-Rhodocyclales, and 403 Actinobacteria) that are known as soil fermenters in low temperature soil and can produce 404 precursors for methanogens such as acetate, formate and H_2 (Tveit et al., 2015). In comparison, 405 the observed taxa Saccharibacteria, Burkholderiales, Actionmycetales, and Bathyarchaeota in

406 the F-5 transitional permafrost facies are suggestive of the presence of organic material that 407 needs to break down from polymers to fermentation products, which in turn can be used as 408 substrate for methanogens. The microbial community in the F-5 facies also showed many taxa 409 (Alphaproteobacteria-Caulobacterales/Rhizobiales/Rhodospiralles, Planctomycetes-Pirellulales, 410 and *Thaumarchaeota-Nitrososphaerales*) that are indicative for oxic conditions during 411 permafrost formation in the Pleistocene. These results suggest changes in microbial community 412 composition and biomass during decadal time scales following thaw, which we propose 413 contribute to the increases we observed in net CH₄ production potentials at the 0 °C to 3 °C 414 temperature interval near the thaw boundary. 415 In thermokarst lake environments, the permafrost thaw boundary at the outer extent of the 416 lake's talik has been previously identified as a region of high CH₄ production (Kessler et al., 417 2012, Walter Anthony et al., 2016). We propose this is due to the CH_4 -producing microbial 418 communities observed in the F-4 facies consuming recently-thawed, previously unavailable 419 permafrost OM. In both thermokarst and non-thermokarst lake sediments, CH₄ production has 420 been shown to be highly dependent on substrate availability (Gudasz et al., 2015, de Jong et al., 421 2018) Permafrost warming and thaw near the thaw boundary remove a major physical barrier to 422 C mineralization, initializing the rapid mineralization of the most biolabile SOM compounds 423 (Davidson and Janssens, 2006, Drake et al, 2015, Yang et al., 2016). Independent analyses of 424 frozen permafrost from the Vault Creek site revealed high proportions of reduced, low molecular 425 weight compounds in the water-extractable fraction of the SOC (Heslop et al., 2019). These 426 compounds are considered highly bioavailable and are rapidly depleted following permafrost 427 thaw (Spencer et al., 2015, Drake et al., 2015, 2018).

428	Our results suggest there is an initial spike in net CH ₄ production in the decades
429	following permafrost thaw under anaerobic conditions. We attribute this to CH ₄ -producing
430	microbial communities, which may not have been active in the frozen permafrost, acclimating to
431	thawed conditions, stabilizing, and consuming accumulated bioavailable SOC. Our results
432	suggest net CH ₄ production in freshly-thawed sediments will increase as methanogen
433	communities acclimate to thawed conditions. These results are consistent with a recent study
434	which suggested, following establishment of stable CH ₄ -producing microbial communities, equal
435	amounts of CO ₂ and CH ₄ were produced from thawing permafrost SOC (Knoblauch et al., 2018).
436	4.2. Temperature sensitivities at century timescales since thaw
437	Our results suggest that the initial increase in net CH ₄ production at current <i>in situ</i>
438	temperatures during decadal time scales since permafrost thaw (F-4 and F-5) will not be
439	sustained over century time scales following thaw (F-3). This is consistent with findings from
440	long-term field temperature sensitivity studies conducted in aerobic, non-permafrost systems,
441	which suggest initial increases in SOC mineralization upon the first several years of warming do
442	not persist (Conant et al., 2011). Compared to the underlying F-4 recently-thawed taberite facies,
443	the F-3 taberite facies, representing permafrost which has been thawed for longer periods of time
444	(up to 400 years based on estimated lake age; Heslop et al., 2015), had lower CH ₄ production
445	potential values at lower incubation temperatures (0 $^{\circ}$ C and 3 $^{\circ}$ C). However, at our higher
446	incubation temperatures (10 °C and 25 °C) sediments in the F-3 facies had greater net CH_4
447	production and temperature sensitivity. This is consistent with examinations of boreal lake
448	sediments, which found that increasing temperature sensitivity was coupled with decreasing C
449	respiration (Gudasz et al., 2015). In our study, we posit the shift from net CH ₄ production in
450	recently-thawed sediments (F-4 and F-5) having the highest temperature sensitivities at colder

451 incubation temperatures to net CH₄ production in sediments which have been thawed for longer 452 periods of time (F-3) only responding to warming at higher incubation temperatures is due to 453 changes in SOC quality and *in situ* microbial community composition over century timescales. 454 SOM is composed of a continuum of compounds with increasing molecular complexity 455 and, consequently, increasing activation energies required for microbial decomposition 456 (Davidson and Janssens, 2006, Conant et al., 2011, Schädel et al., 2014, Bracho et al., 2016). 457 Generally, activation energies for more complex molecules are higher due to the higher number 458 of enzymatic steps needed for biological processing; therefore, per kinetic theory, complex 459 (lower quality) OC should have greater temperature sensitivity than simpler (higher quality) OC 460 (Bosatta and Agren, 1999, Conant et al., 2008, Craine et al., 2010, Conant et al., 2011, Gudasz et 461 al., 2015). This also implies that, as temperatures increase, previously recalcitrant SOM fractions 462 should become bioavailable due to increased ambient thermal energy and increased chemical 463 reaction rates. Temperature data collected from the BH-13 vertical profile at Vault Lake suggest 464 that, as sediments from the F-3 taberite facies historically incubated for centuries *in situ* beneath 465 the lake center, they were exposed to temperatures below 10 °C, but not temperatures as high as 466 10 °C and 25 °C. Over time, our results suggest simpler, higher quality OC compounds may have 467 mineralized *in situ*, leaving behind more complex OC compounds that did not have sufficient 468 activation energies to be processed into CH₄ at the temperatures present in the talik. Remaining 469 fractions of OC may also have been more closely associated with soil minerals, protecting the 470 OC from *in situ* mineralization and increasing potential temperature sensitivities with warming 471 (Gentsch et al., 2018). Increasing temperatures to 10 °C and 25 °C in the incubations may have 472 provided additional ambient energy to mineralize a fraction of the OC compounds that had not 473 been previously mineralized *in situ*, increasing the potential substrate pool for methanogens. The

significant increases in CH₄ production in the F-3 facies at the 10 °C and 25 °C incubation
temperatures (Table 2; Figure 2) supports the suggestion that warming the sediments above *in situ* temperatures allowed a greater proportion of SOC to be mineralized. We attempted to run a
C pool deconvolution model (Schädel et al., 2014) to estimate the relative sizes of initial SOC
quality pools in each of our samples, but were unable to constrain the model parameters because
most of our samples did not experience exponential declines in CH₄ production rates during our
incubation (Figure S2).

481 Initial microbial communities shifted from predominately methanogens in the F-4 facies 482 to predominately methanotrophs in the F-3 facies. This observed shift in initial microbial 483 communities suggests, in sediments thaved centuries, a significant portion of CH_4 produced in 484 situ may also be consumed in situ (Winkel et al., in review). Even though the initial archaeal 485 community in the F-3 taberite facies showed only anaerobic methanotrophic communities related 486 to Methanoperedenaceae at a cut-off of 0.1% relative sequence abundance, we could detect 487 methanogens of mainly Methanocellales, Methanoregulaceae, Methanosarcinaceae, and 488 Methanosaetaceae in the rare biosphere (Figure S3), which we defined as taxa below 0.1% 489 relative abundance. We did not detect these rarer taxa of methanogens in the underlying F-4 490 recently thawed taberite or F-5 transitional permafrost facies, suggesting that methanogen 491 communities in the F-3 facies were forced to adapt over time in response to decreasing 492 proportions of available substrate. When we experimentally increased temperatures to 10 °C and 493 25 °C in our incubations, our results indicate the resultant increase in potential available substrate 494 may have triggered a rapid increase in the abundance of methanogens and subsequent net CH_4 495 production potentials (Knoblauch et al., 2018, Wei et al., 2018). Previous studies have found that 496 optimum temperature ranges for methanogenesis in permafrost soils range from 18 °C to 30 °C

497	(Tveit et al., 2015, Dean et al., 2018). Thus, experimentally warming sediments from the F-3
498	facies to 25 °C may have subsequently increased the availability of potential substrate and
499	triggered a rapid increase in the abundance of methanogens, creating optimal conditions for
500	increases in CH ₄ production rates.

501 While CH₄ oxidation rates also increase with increasing temperatures, the temperature 502 responses of anaerobic CH₄ oxidation rates are largely unknown and it has been suggested that 503 CH_4 oxidation rates in sediment are less temperature-dependent than CH_4 production rates 504 (Schipper et al., 2014). Anaerobic incubations of ice wedge polygon cores from Northern Alaska 505 found temperature sensitivity of CH₄ production was 1.7 to 3.7 times higher than the temperature 506 sensitivity of CH_4 oxidation in the same soils (Zheng et al., 2018). The high R values we 507 observed in the F-3 facies at our higher incubation temperatures (10 °C and 25 °C) compared to 508 our lower temperatures (0 °C and 3 °C) suggest, in our lake core, warming the thawed permafrost 509 above in situ temperatures caused CH₄ production rates to increase more than anaerobic CH₄ 510 oxidation rates, leading to increases in net anaerobic CH₄ production potentials. This suggests, 511 with additional warming, active microbial communities in permafrost thawed centuries could 512 potentially shift from predominately methanotrophs to back to predominately methanogens. 513 4.3. Temperature sensitivities in deposited sediments

Sediments from the F-1 facies, which contained significantly higher levels of recentlydeposited SOC, generally produced the most net CH_4 but had the lowest temperature sensitivities in our study. This is consistent with recent findings from aerobic incubations of active layer soils from a different permafrost region, which found that C decomposition rates at 0-10 cm depth were higher than at 20-30 cm depth, but temperature sensitivity of C decomposition was higher in the deeper layer (Li et al., 2018). This is also consistent with prior studies of thermokarst lake

520	systems, which have shown that the majority (~90%) of CO_2 and CH_4 produced and emitted
521	from Alaskan lakes originates from younger C found in more recently-deposited sediments, as
522	opposed to Pleistocene-aged C found in deeper permafrost (Heslop et al., 2015, Elder et al.,
523	2018). Like the F-4 recently-thawed taberite sediments, which also contained relatively "fresh"
524	SOC from recently-thawed permafrost, the archaeal communities in the F-1 sediments were
525	dominated by methanogens (84% of sequences; Figure 3). This agrees with previous
526	examinations of microbial communities in near-surface thermokarst-lake sediments, which found
527	higher abundance and diversity of methanogens in sediments with higher OM levels (Crevecoeur
528	et al., 2016, Matheus Carnevali et al., 2018). This dominance of methanogens, coupled with high
529	substrate levels and increases in net CH ₄ production across all temperature intervals, suggests
530	temperature is a limiting factor in net CH ₄ production in this facies and future sediment warming
531	could increase net CH ₄ production and emissions from the near-surface lake sediments.
532	Sediments in the F-2 lacustrine silt facies, which have experienced longer times since
533	deposition (up to 400 years based on estimated lake age; Heslop et al., 2015), had greater
534	temperature sensitivity and higher R values than the more recently-deposited F-1 mud facies.
535	Geochemical data measured by Heslop et al. (2015) show this facies also has lower SOC content
536	than the overlying F-1 facies. We suggest the lower SOC and higher R values in the F-2 facies
537	compared to the F-1 facies are the result of <i>in situ</i> CH ₄ production over time depleting the most
538	labile substrate. Initial microbial communities in the F-2 lacustrine silt sediments were not
539	analyzed.

540 Unlike recently-thawed sediments in the taberite chronosequence (F-4, F-5), sediments 541 deposited following lake formation (F-1, F-2) experienced exponential increases in net CH_4 542 production across all temperature intervals, as indicated by high R^2 values ($R^2 = 0.73$) when

543 fitting the log of CH_4 production versus incubation temperature (Figure 2). Also unlike the 544 thawed taberite chronosequence, we did not observe temperature thresholds where net CH_4 545 production sharply increased in the F-1 and F-2 facies. Differences in *in situ* temperatures may 546 contribute to these differences. Temperature data collected from depth corresponding to the F-1 547 facies in the Vault Lake profiles (0.5 m and 1.0 m depth in both profiles) showed clear seasonal 548 temperature fluctuations at depths consistent with deposited sediments in the F-1 and F-2 facies 549 (Figure 1). In the lake center (BH13), shallow sediments experienced in situ seasonal 550 temperature variations ranging from 1.26 °C to 4.51 °C; sediments in the near-shore profile 551 (BH10) experienced larger seasonal fluctuations of 0.14 °C to 14.45 °C. This suggests microbial 552 communities in deposited sediments seasonally adapt in response to fluctuating temperatures, 553 and thus may have been more readily responsive to warming during our incubations. 554 4.4. Conclusions

555 In this study, we used microbiological data and trends in net CH₄ production potentials to 556 show that century-scale time since permafrost thaw affects both methanogen community 557 composition and temperature sensitivity of CH₄ production. We suggest that these changes are 558 due to changes in SOC quality and *in situ* microbial community composition over time. While 559 we only examined one core and further research is necessary to determine if our findings are 560 widespread across different thermokarst lake environments, our approach of using sediments 561 from a core collected from a thermokarst lake talik is particularly relevant in refining estimates 562 of the long-term magnitude and timing of the PCF given that, with climate warming, taliks are anticipated to become widespread in northern permafrost regions, covering up to 14 million km² 563 564 and emitting up to 120 Pg C by 2300 (Parazoo et al., 2018).

565 Recently-thawed sediments (decadal time scales since thaw) collected from the F-4 566 recently-thawed taberite and F-5 transitional permafrost were most sensitive to warming at lower 567 temperatures. Initial microbial community composition data suggest the increases in net CH_4 568 production are due to the establishment of stable, cold-adapted CH₄-producing communities in 569 the years to decades following thaw. Increased time since thaw (century time scales) in the F-3 570 taberite lead to a shift in initial microbial communities from being predominately methanogens 571 (F-4) to predominately methanotrophs (F-3). However, in the F-3 facies we also observed the 572 highest overall CH₄ production temperature sensitivities and significant increases in net CH₄ 573 production when we experimentally increased temperatures above observed *in situ* temperatures, 574 suggesting additional ambient energy allows a greater proportion of thawed OC to be 575 mineralized and microbes associated with CH₄ production had a greater temperature response 576 than microbes associated with CH₄ oxidation. This suggests, on centuries time scales following 577 permafrost thaw, additional warming could potentially reduce mitigation effects of CH₄ 578 oxidation. In contrast to the thawed permafrost sequence (F-3, F-4, F-5), sediments deposited 579 following lake formation (F-1 and F-2) generally followed exponential increases in CH_4 580 production across the full incubation temperature range and had the lowest overall temperature 581 sensitivity values. This suggests our observed thresholds where net CH_4 production sharply 582 increased in the thawed permafrost sequence (F-3, F-4, F-5) are a property of time since 583 permafrost thaw.

584

585 Acknowledgements

586 We thank P. Anthony, S. Billings, A. Bondurant, J. Cherry, M. Engram, N. Haubenstock, F.

587 Horn, T. Howe, K. Martinez-Cruz, P. Lindgren, A. Saborowski, C. Schädel, A. Sepulveda-

- 588 Jauregui, and M. Zhang for assistance in data collection and/or analysis; C. Knoblauch, V.
- 589 Romanovsky, M. Zhang, and three anonymous reviewers for their feedback on earlier versions of
- this manuscript; and S. Skidmore for granting access to Vault Lake. Funding for J.K.H. and
- 591 K.M.W.A. was provided NSF ARC-1304823 and ARC-1500931 and NASA ABoVE
- 592 NNX15AU49A. M. W. was supported by the NSF ARCSS-1500931. G.G. was additionally
- supported by ERC 338335. The Helmholtz Gemeinschaft (HGF) is acknowledged for funding
- 594 the Young Researcher's Group of S.L. (VH-NG-919). Additional funding for J.K.H. was
- 595 provided under STAR Fellowship Assistance agreement no. FP-91762901-0 awarded by the US
- 596 Environmental Protection Agency (EPA). The publication has not been formally reviewed by the
- 597 EPA. The views expressed in this publication are solely those of the authors and the EPA does
- 598 not endorse any products or commercial services mentioned.

599 Tables

Sample			Geochem	istry	
ID	Facies	Depth in	SOC	Ν	SOC:N
		Core (cm)	(% wt)	(% wt)	
F-1	Surface organic-rich mud	8	4.8*	0.5*	10.6
F-2	Lacustrine silt	178	1.6	0.1	17.8
F-3	Taberite	384	1.0	0.1	9.6
F-4	Recently-thawed taberite	550	1.1	0.1	9.2
F-5	Frozen transitional permafrost	582	1.1	0.2	6.6

Table 1. Initial characteristics of each sediment subsample (n = 1 subsample per depth),
 modified from Heslop et al. (2015).

603	Table 2. Ratios of cumulative net C-CH ₄ production potentials between incubation temperatures.
604	Ratios were calculated using mean cumulative net C-CH ₄ production potentials from the

605	trinlicate	incut	nation	viale

 · · · · · · · · · · · · · · · · · · ·						
Facies	3 °C : 0 °C	10 °C : 0 °C	25 °C : 0 °C	10 °C : 3 °C	10 °C : 3 °C	25 °C : 10 °C
F-1	1.1	9.9	14.0^{γ}	8.6	12.2	1.4 ^γ
F-2	4.1	131 ^γ	436 ^γ	32.4 ^{<i>γ</i>}	107^{γ}	3.3 ^γ
F-3	5.1	1,470 ^γ	99,200 ^γ	289 ^γ	19,400 ^γ	67.3 ^γ
F-4	365	4.7 ^γ	86.5 ^γ	0.01 ^γ	0.24 ^γ	18.4^{γ}
F-5	46.4	140^{γ}	20.9^{γ}	3.0 ^γ	0.45^{γ}	0.15^{γ}
γ Higher incubation temperature warmer than <i>in situ</i> temperatures observed at similar depth in the					epth in the	
Vault L	ake talik (Fig.	1)				

<u>va</u>

Figure 1. Location map of Vault Lake and the sediment core and temperature profile locations

- within Vault Lake. The aerial photograph of Vault Lake was taken 14 October 2011 by J.
 Cherry. Temperature data at Vault Lake were recorded hourly from May 2013 through April
- 612 2019 at BH13 and BH10. Temperature sensor depths are representative of the F-1 surface
- 613 organic-rich mud (BH10 and BH13: 0.5 m and 1.0 m), the F-3 taberite (BH10: 6.2 m), the F-4
- recently-thawed taberite (BH13: 5.7 m), and the F-5 frozen transitional permafrost (BH10: 8.9
- 615 m, BH13: 6.2 m) facies. Atmospheric temperature data are mean \pm SD daily mean temperatures
- 616 from Fairbanks, AK (ACIS Station Fairbanks AP #2) during the same time period.

Figure 2. Net methane (C-CH₄) production potentials and temperature sensitivities during the 150-day anaerobic incubation period at four incubation temperatures. Analytical error bars for

621 CH₄ production are not visible due to error being smaller than the marker size. Temperature

622 sensitivities were calculated using linear regression as the slope of net C-CH₄ production 623 potentials versus the incubation temperature; each point represents one incubation vial (n = 12

624 observations per facies). Please see Table S1 in the supplementary information for 95%

625 confidence intervals of calculated temperature sensitivity slope parameters.

Figure 3. Relative sequence abundance of archaeal 16S rRNA genes in sediment facies of the Vault lake core. Archaeal taxa over 0.1% relative abundance are shown to genus level.

Figure 4. Relative sequence abundance of bacterial 16S rRNA genes in sediment facies of the
Vault lake core. Bacterial taxa over 0.1% relative abundance are shown to order level.

References

635	Adam, P.S., Borrel, G., Brochier-Armanet, C., Gribaldo, S., 2017. The growing tree of Archaea:
636	new perspectives on their diversity, evolution and ecology. ISME J. 11, 2407-2425.
637	doi:10.1038/ismej.2017.122.
638	Bekryaev, R., Polyakov, I., Alexeev, V., 2010. Role of Polar Amplification in Long-Term
639	Surface Air Temperature Variations and Modern Arctic Warming. Journal of Climate, 23,
640	3888–3906.
641	Biskaborn, B.K., Smith, S.L., et al., 2019. Permafrost is warming at a global scale. Nature
642	Communications, 10, 264. doi: 10.1038/s41467-018-08240-4
643	Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina
644	sequence data. Bioinformatics, 30, 2114–2120.
645	Bracho, R., Natali, S., Pegoraro, E., et al., 2016. Temperature sensitivity of organic matter
646	decomposition of permafrost-region soils during laboratory incubations. Soil Biology and
647	Biochemistry, 97, 1-14.
648	Brosius, L., Walter Anthony, K.M., Grosse, G., et al., 2012. Using the deuterium isotope
649	composition of permafrost meltwater to constrain thermokarst lake contributions to
650	atmospheric CH ₄ during the last deglaciation. Journal of Geophysical Research
651	Biogeosciences 117, G01022.
652	Čapek, P., Diáková, K., Dickopp, JE., et al., 2015. The effect of warming on the vulnerability
653	of subducted organic carbon in arctic soils. Soil Biology and Biochemistry, 90, 19–29.
654	Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al.,
655	2010. QIIME allows analysis of high-throughput community sequencing data. Nat
656	Methods, 7, 335–336.

657	Castelle, C.J., Wrighton, K.C., Thomas, B.C., Hug, L.A., Brown, C.T., Wilkins, M.J., et al.,
658	2015. Genomic Expansion of Domain Archaea Highlights Roles for Organisms from
659	New Phyla in Anaerobic Carbon Cycling. Curr Biol, 25, 690–701.
660	Chowdhury, R.T., Herndon, E.M., Phelps, T.J., 2015. Stoichiometry and temperature sensitivity
661	of methanogenesis and CO ₂ production from saturated polygonal tundra in Barrow,
662	Alaska. Global Change Biology, 21, 722-737.
663	Conant, R.T., Drijber, R.A., Haddix, M.L., 2008. Sensitivity of organic matter decomposition to
664	warming varies with its quality. Global Change Biology, 14, 868-877.
665	Conant, R.T., Ryan, M.G., Ågren, G.I., et al., 2011. Temperature and soil organic matter
666	decomposition rates- synthesis of current knowledge and a way forward. Global Change
667	Biology, 17, 3392–3404.
668	Craine, J., Fierer, N., McLauchlan, K., 2010. Widespread coupling between the rate and
669	temperature sensitivity of organic matter decay. Nature Geoscience, 3, 854-857.
670	Crevecoeur, S., Vincent, W.F., and Lovejoy, C., 2016. Environmental selection of planktonic
671	methanogens in permafrost thaw ponds. Scientific Reports, 6, 31312. doi:
672	10.1038/srep31312
673	Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and
674	feedbacks to climate change. Nature, 440, 165-173.
675	Dean, J., Middelburg, J., Röckmann, T., et al., 2018. Methane feedbacks to the global climate
676	system in a warmer world. Reviews of Geophysics, 56, 207-250.
677	de Jong, A.E.E., in 't Zandt, M.H., Meisel, O.H., et al., 2018. Increases in temperature and
678	nutrient availability positively affect methane-cycling microorganisms in Arctic
679	thermokarst lake sediments. Environmental Microbiology, 20(12): 4314-4327.

680	Drake, T., Wickland, K., Spencer, R., McKnight, D., Striegl, R., 2015. Ancient low-molecular-
681	weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.
682	Proceedings of the National Academy of Sciences, 112, 13946–13951.
683	Elder, C., Xu, X., Walker, J., Schnell, J., et al., 2018. Greenhouse gas emissions from diverse
684	Arctic Alaskan lakes are dominated by young carbon. Nature Climate Change, 8(2), 166-
685	171.
686	Ewing, S., O'Donnell, J., Aiken, G., Butler, K., Butman, D., Windham-Myers, L., Kanevskiy,
687	M., 2015. Long-term anoxia and release of ancient, labile carbon upon thaw of
688	Pleistocene permafrost. Geophysical Research Letters, 42, 10,730–10,738.
689	Fey, A., Conrad, R., 2000. Effect of Temperature on Carbon and Electron Flow and on the
690	Archaeal Community in Methanogenic Rice Field Soil. Applied and Environmental
691	Microbiology, 66, 4790–4797.
692	Gentsch, N., Wild, B., Mikutta, R., et al., 2018. Temperature response of permafrost soil carbon
693	is attenuated by mineral protection. Global Change Biology 24, 8, 3401-3415. doi:
694	10.1111/gcb.14316
695	Glassman, S.I., Weihe, C., Li, J., et al., 2018. Decomposition responses to climate depend on
696	microbial community composition. PNAS. doi: 10.1073/pnas.1811269115.
697	Graham, D., Wallenstein, M., Vishnivetskaya, T., et al., 2012. Microbes in thawing permafrost:
698	the unknown variable in the climate change equation. The ISME Journal, 6, 709–712.
699	Grosse, G., Jones, B., Arp, C., 2012. Thermokarst Lakes, Drainage, and Drained Basins, in:
700	Treatise on Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego, 325-
701	353.

702	Gudasz, C., Sobek, S., Bastviken, D., 2015. Temperature sensitivity of organic carbon
703	mineralization in contrasting lake sediments. Journal of Geophysical Research:
704	Biogeosciences, 120, 1215–1225.
705	Guo, D., Wang, H., 2016. CMIP5 permafrost degradation projection: A comparison among
706	different regions. Journal of Geophysical Research: Atmospheres, 121, 4499-4517.
707	He, R., Wooller, M.J., Pohlman, J.W., et al. Diversity of active anaerobic methanotrophs along
708	depth profiles of arctic and subarctic lake water column and sediments. The ISME
709	Journal, 6, 1937-1948.
710	Herlemann, D.P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J.J., Andersson, A.F., 2011.
711	Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic
712	Sea. ISME J, 5, 1571–1579.
713	Heslop, J.K., Walter Anthony, K.M., Sepulveda-Jauregui, A., Martinez-Cruz, K., Bondurant, A.,
714	Grosse, G., Jones, M.C., 2015. Thermokarst lake methanogenesis along a complete talik

715 profile. Biogeosciences, 12, 4317–4331.

716 Heslop, J.K., Walter Anthony, K.M., Zhang, M., 2017. Utilizing pyrolysis GC-MS to

characterize organic matter quality in relation to methane production in a thermokarstlake sediment core. Organic Geochemistry, 103, 43-50.

719 Heslop, J.K., Winkel, M., Walter Anthony, K.M., Spencer, R.G.M., Podgorski, D.C., Zito, P.,

720 Kholodov, A., Zhang, M., Liebner, S., 2019. Increasing organic carbon biolability with

- 721 depth in yedoma permafrost: ramifications for future climate change. Journal of
- 722 Geophysical Research: Biogeosciences, doi: 10.1029/2018JG004712.

723	Hugelius, G., Strauss, J., Zubrzycki, S., et al., 2014. Estimated stocks of circumpolar permafrost
724	carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11,
725	6573–6593.

- Jorgenson, T., Harden, J., Kanevskiy, M., et al., 2013. Reorganization of vegetation, hydrology
- and soil carbon after permafrost degradation across heterogeneous boreal landscapes.
 Environmental Research Letters, 8, 035017.
- Kessler, M.A., Plug, L.J., Walter Anthony, K.M., 2012. Simulating the decadal- to millennialscale dynamics of morphology and sequestered carbon mobilization of two thermokarst
- 731 lakes in NW Alaska. Journal of Geophysical Research: Biogeosciences, 117, G00M06.
- 732 Kling, G., Kipphut, G., 1991. Arctic lakes and streams as gas conduits to the atmosphere:
- implications for tundra carbon budgets. Science, 251, 298-301.
- Knoblauch, C., Beer, C., Sosnin, A., Wagner, D., Pfeiffer, E.-M., 2013. Predicting long-term
 carbon mineralization and trace gas production from thawing permafrost of Northeast
 Siberia. Global Change Biology, 19, 1160–1172.
- 737 Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M.N., Pfeiffer, E.-M., 2018. Methane production
- as key to the greenhouse gas budget of thawing permafrost. Nature Climate Change, doi:
 10.1038/s41558-018-0095-z
- Lenz, J., Jones, B., Wetterich, S., et al., 2016. Impacts of shore expansion and catchment
- characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic
 Coastal Plain. Arktos, 2:25.
- Li, J., Yan, D., Pendall, E., et al., 2018. Depth dependence of soil carbon temperature sensitivity
- across Tibetan permafrost regions. Soil Biology and Biochemistry, 126:82-90. doi:
- 745 10.1016/j.soilbio.2018.08.015

746	Mackelprang, R. et al. (2017), Microbial survival strategies in ancient permafrost: insights from
747	metagenomics, The ISME Journal, 1-14, doi:10.1038/ismej.2017.93.
748	Malard, L., and D. Pearce (2018), Microbial diversity and biogeography in Arctic soils, Env
749	Microbiol Rep, doi:10.1111/1758-2229.12680.
750	Matheus Carnevali, P.B., Herbold, C.W., Hand, K.P., et al., 2018. Distinct microbial assemblage
751	structure and archaeal diversity in sediments of Arctic thermokarst lakes differing in
752	methane sources. Front. Microbiol., doi: 10.3389/fmicb.2018.01192.
753	Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
754	EMBnet.journal, 17, 10–12.
755	Michaelson, G.J., Ping, C.L., 2003. Soil organic carbon and CO ₂ respiration at subzero
756	temperature in soils of Arctic Alaska. Journal of Geophysical Research, 108, 8164.
757	Mikan, C.J., Schimel, J.P., Doyle, A.P., 2002. Temperature controls of microbial respiration in
758	arctic tundra soils above and below freezing. Soil Biology and Biochemistry, 34, 1785-
759	1795.
760	Myhre, G., Shindell, D., Breon, F.M., et al., 2013. Anthropogenic and Natural Radiative Forcing.
761	In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
762	to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
763	Intergovernmental Panel on Climate Change, New York, USA.
764	Negandhi, K., Laurion, I., Whiticar, M.J., et al., 2013. Small thaw ponds: an unaccounted source
765	of methane in the Canadian High Arctic. PLOS ONE, doi: 10.1371/journal.pone.0078204
766	Olefeldt, D., Turetsky, M., Crill, P., McGuire, D., 2013. Environmental and physical controls on
767	northern terrestrial methane emissions across permafrost zones. Global Change Biology,
768	19, 589–603.

769	Parazoo, N. C., Koven, C. D., Lawrence, D. M., Romanovsky, V., and Miller, C. E.: Detecting
770	the permafrost carbon feedback: talik formation and increased cold-season respiration as
771	precursors to sink-to-source transitions, The Cryosphere, 12, 123-144,
772	https://doi.org/10.5194/tc-12-123-2018, 2018.
773	Plug, L., West, J., 2008. Thaw lake expansion in a two-dimensional coupled model of heat
774	transfer, thaw subsidence, and mass movement. Journal of Geophysical Research, 114,
775	F01002.
776	Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al., 2012. The SILVA
777	ribosomal RNA gene database project: improved data processing and web-based tools.
778	Nucleic Acids Res, 41, D590–D596.
779	Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, JF., et al., 2013.
780	Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499,
781	431–437.
782	Schädel, C., Schuur, E., Bracho, R., et al., 2014. Circumpolar assessment of permafrost C quality
783	and its vulnerability over time using long-term incubation data. Global Change Biology,
784	20, 641–652.
785	Schädel, C., Bader, M., Schuur, E., et al., 2016. Potential carbon emissions dominated by carbon
786	dioxide from thawed permafrost soils. Nature Climate Change, 6, 950-953.
787	Schipper, L., Hobbs, J., Rutledge, S., Arcus, V., 2014. Thermodynamic theory explains the
788	temperature optima of soil microbial processes and high Q_{10} values at low temperatures.
789	Global Change Biology, 20, 3578–86.
790	Schuur, E., McGuire, A., Schädel, C., et al., 2015. Climate change and the permafrost carbon
791	feedback. Nature, 520, 171–179.

792	Sepulveda-Jauregui, A., Walter Anthony, K.M., Martinez-Cruz, K., Greene, S., Thalasso, F.,
793	2015. Methane and carbon dioxide emissions from 40 lakes along a north south
794	latitudinal transect in Alaska. Biogeosciences, 12, 3197–3223.
795	Spencer. R., Mann, P., Dittmar, T., et al., 2015. Detecting the signature of permafrost thaw in
796	Arctic rivers. Geophysical Research Letters, 42, 2830–2835.
797	Strauss, J. et al., 2017. Deep Yedoma permafrost: A synthesis of depositional characteristics and
798	carbon vulnerability. Earth-sci Rev, 172, 75-86, doi:10.1016/j.earscirev.2017.07.007.
799	Treat, C.C., Natali, S.M., Ernakovich, J., et al., 2015. A pan-Arctic synthesis of CH_4 and CO_2
800	production from anoxic soil incubations. Global Change Biology, 21, 2787–2803.
801	Tveit, A.T., Urich, T., Frenzel, P., Svenning, M.M., 2015. Metabolic and trophic interactions
802	modulate methane production by Arctic peat microbiota in response to warming. Proc
803	Natl Acad Sci, 201420797.
804	Vonk, J.E., Tank, S.E., Mann, P.J., Spencer, R.G.M., Treat, C.C., Striegl, R.G., Abbott, B.W.,
805	Wickland. K.R., 2015. Biodegradability of dissolved organic carbon in permafrost soils
806	and aquatic systems: a meta-analysis. Biogeosciences, 12, 6915–30.
807	Walter, K., Zimov, S., Chanton, J., Verbyla, D., Chapin, F., 2006. Methane bubbling from
808	Siberian thaw lakes as a positive feedback to climate warming. Nature, 443, 71–75.
809	Walter, K., Edwards, M., Grosse, G., Zimov, S., Chapin, F., 2007. Thermokarst Lakes as a
810	Source of Atmospheric CH ₄ During the Last Deglaciation. Science, 318, 633–636.
811	Walter, K., Chanton, J., Chapin, F., Schuur, E., Zimov, S., 2008. Methane production and bubble
812	emissions from arctic lakes: Isotopic implications for source pathways and ages. Journal
813	of Geophysical Research: Biogeosciences (2005–2012), 113.

814	Walter Anthony, K.M., Anthony, P., 2013. Constraining spatial variability of methane ebullition
815	seeps in thermokarst lakes using point process models. Journal of Geophysical Research:
816	Biogeosciences,118, 1015–1034.
817	Walter Anthony, K.M., Zimov, S.A., Grosse, G., et al., 2014. A shift of thermokarst lakes from
818	carbon sources to sinks during the Holocene epoch. Nature, 511, 452–456.
819	Walter Anthony, K.M., et al., 2018. 21st-century modeled permafrost carbon emissions
820	accelerated by abrupt thaw beneath lakes. Nature Communications, 9, 3262.
821	Wagner, D., Gattinger, A., Eacher, A., Pfeiffer, E., Schloter, M., Lipski, A., 2007. Methanogenic
822	activity and biomass in Holocene permafrost deposits of the Lena Delta, Siberian Arctic
823	and its implication for the global methane budget. Global Change Biology, 13, 1089–
824	1099.
825	Wen, X., Yang, S., Horn, F., Winkel, M., Wagner, D., Liebner, S., 2017. Global biogeographic
826	analysis of methanogenic archaea identifies community-shaping environmental factors of
827	natural environments. Front. Microbiol. 8. doi:10.3389/fmicb.2017.01339.
828	Winkel, M., Sepulveda-Jauregui, A., et al., 2019. First evidence for cold-adapted anaerobic
829	oxidation of methane in deep sediments of thermokarst lakes. Environmental Research
830	Communications, 1, 021002.
831	Yang, Z., Wullschleger, S., Liang, L., Graham, D., Gu, B., 2016. Effects of warming on the
832	degradation and production of low-molecular-weight labile organic carbon in an Arctic
833	tundra soil. Soil Biology and Biochemistry, 95, 202–211.
834	Yvon-Durocher, G., Caffrey, J., Cescatti, A., et al., 2012. Reconciling the temperature
835	dependence of respiration across timescales and ecosystem types. Nature, 487, 472–476.

- Zhang, J., Kobert, K., Flouri, T., Stamatakis, A., 2014. PEAR: a fast and accurate Illumina
 Paired-End reAd mergeR. Bioinformatics, 30, 614–620.
- 838 Zheng, J., Roy-Chowdhury, T., Yang, Z., et al., 2018. Impacts of temperature and soil
- 839 characterisitcs on methane production and oxidation in Arctic tundra. Biogeosciences, 15,
- 840 6621-6635. doi: 10.5194/bg-15-6621-2018
- Zhou, J., Bruns, M.A., Tiedje, J.M., 1996. DNA recovery from soils of diverse composition.
 Appl Environ Microbiol, 62, 316–322.
- 843 Zimov, S.A., et al., 1997. North Siberian lakes: A methane source fueled by Pleistocene carbon.
- 844 Science, 277, 800-802.
- 845 Zimov, S., et al., 2006. Permafrost carbon: Stock and decomposability of a globally significant
- carbon pool. Geophysical Research Letters, 33(20), doi:10.1029/2006GL027484.