

Originally published as:

Pilz, M., Cotton, F., Zaccarelli, R., Bindi, D. (2019): Capturing Regional Variations of Hard-Rock Attenuation in Europe. - *Bulletin of the Seismological Society of America*, *109*, 4, pp. 1401–1418.

DOI: http://doi.org/10.1785/0120190023

1	Capturing regional variations of hard-rock attenuation in Europe
2	
3	
4	Marco Pilz ¹ , Fabrice Cotton ^{1,2} , Riccardo Zaccarelli ¹ , Dino Bindi ¹
5	
6	1 Helmholtz Centre Potsdam – German Research Centre for Geosciences GFZ,
7	Telegrafenberg, 14467 Potsdam, Germany
8	
9	2 Universität Potsdam, Institut für Erd- und Umweltwissenschaften, Karl-Liebknecht-Str. 24-
10	25, 14476 Potsdam, Germany
11	
12	
13	Corresponding author:
14	
15	Marco Pilz
16	Helmholtz Centre Potsdam – German Research Centre for Geosciences GFZ
17	Seismic Hazard and Risk Dynamics
18	Telegrafenberg
19	14467 Potsdam
20	Germany
21	Phone: +49 331 288 28661
22	Email: pilz@gfz-potsdam.de
23	
24	

- 25 Abstract
- 26
- 27

A proper assessment of seismic reference site conditions has important applications as they 28 represent the basis on which ground motions and amplifications are generally computed. Besides 29 accounting for the average S wave velocity over the uppermost 30 m (vs^{30}), the parameterization 30 of high-frequency ground motions beyond source-corner frequency has received significant 31 attention. K, an empirical parameter introduced by Anderson and Hough (1984), is often used to 32 represent the spectral decay of the acceleration spectrum at high frequencies. The lack of hard-rock 33 records and the poor understanding of the physics of κ introduced significant epistemic uncertainty 34 in the final seismic hazard of recent projects Thus, determining precise and accurate regional hard-35 rock κ_0 values is critical. We propose an alternative procedure for capturing the reference κ_0 on 36 regional scales by linking the well-known high-frequency attenuation parameter κ and the 37 properties of multiple-scattered coda waves. Using geological and geophysical data around more 38 than 1300 stations for separating reference and soft soil sites and based on more than 10,000 crustal 39 earthquake recordings, we observe that κ_0 from multiple-scattered coda waves seems to be 40 independent of the soil type but correlated with the hard-rock κ_0 , showing significant regional 41 variations across Europe. The values range between 0.004 s for northern Europe and 0.020 s for 42 the southern and south-eastern parts. On the other hand, measuring κ (and correspondingly κ_0) on 43 the S wave window (as classically proposed), the results are strongly affected by transmitted 44 (reflected, refracted and scattered) waves included in the analysed window biasing the proper 45 assessment of κ_0 . This effect is more pronounced for soft soil sites. In this way, κ_0^{coda} can serve as 46 47 a proxy for the regional hard-rock κ_0 at the reference sites.

49 Introduction

50

The definition of a standard reference site is a key issue for any seismic hazard analysis since it is 51 highly beneficial when ground motion prediction equations (GMPEs) are referenced to a specific 52 53 site condition. Reference site properties can vary significantly from one region to another, and recent projects on probabilistic seismic hazard assessment (for example Seismic Hazard 54 Harmonization in Europe, Woessner et al., 2013) and ground motion attenuation relationships (e.g., 55 NGA-East) have shown the need to clearly define reference hard-rock conditions for seismic 56 hazard computations (e.g., Scherbaum et al., 2004, Delavaud et al., 2012, Hashash et al., 2014). 57 Definitions of reference site conditions, however, are highly heterogeneous, mainly due to the high 58 material variability in the shallower layers, and have evolved over the last few years. The S wave 59 velocity $v_{\rm S}$, the most commonly used parameter, is usually only measured down to shallow depths 60 and 30 m is often used as the reference depth to which the travel time based average S wave velocity 61 is calculated (v_s^{30}) . v_s^{30} alone, however, is considered to be insufficient for the definition of a 62 reference site as it does not capture the effects of shallow crustal attenuation (e.g., Harmsen, 1997, 63 Mucciarelli and Gallipoli, 2006, Lee and Trifunac, 2010, Chiara et al., 2018). The local site 64 conditions can control a significant part of the high-frequency attenuation (Silva et al., 1998, 65 Chandler et al., 2006, Edwards et al., 2011, Kishida et al., 2014). While this high-frequency decay 66 was initially modelled by Hanks (1982) through a frequency value above which the spectrum 67 declines, Anderson and Hough (1984) empirically introduced an exponential decay model 68 69

71

70

 $A(f) = A_0 e^{-\pi\kappa(r)f} \text{ with } f > f_1.$ (1)

in which A_0 is a source- and propagation-path-dependent amplitude, f_1 is the frequency above which the decay is approximately linear, r is the epicentral distance, and κ is an empirical spectral decay factor κ . The dependence on distance can be eliminated by linearly extrapolating the trend of $\kappa(r)$ to r = 0, introducing a site-specific κ , typically denoted as κ_0 , that is free of the regional attenuation effect added by distance.

As the number of hard-rock sites is generally limited, the usual practice is to infer the target κ_0 from existing correlations between v_s^{30} and κ_0 . There is, however, a large scatter in existing correlations, meaning that these approximations are very poorly constrained. Additionally, the measurement procedure and the studied region may increase the level of uncertainty in such correlations (e.g., Silva et al., 1998, Chandler et al., 2006, Van Houtte et al., 2011, Ktenidou et al., 2014, Edwards et al., 2015).

Ktenidou et al. (2015) recently noted that κ_0 is not only influenced by the very shallow layers beneath the site but it contains the upper local site effect (κ_{top}) caused by the entire soil column beneath the receiver. As κ_0 was found to stabilize for high values of v_s^{30} (Ktenidou et al., 2015), κ_0 can be written as a combination of κ_{top} and a κ_{0ref} related to the regional (reference) attenuation effect,

89

90

$$\kappa_0 = \kappa_{\rm top} + \kappa_{\rm 0ref}.$$
 (2)

91

The existence and proper assessment of a regional reference κ_{0ref} have strong implications for highfrequency ground motions (Boore et al., 2003), site-specific hazard assessment (e.g., Budnitz et al., 1997, Rodriguez-Marek et al., 2014) and adjustment of GMPEs for specific sites (e.g., Cotton et al., 2006, Laurendeau et al., 2013, Al Atik and Youngs, 2014). Due to a limited number of reference hard-rock stations it might yet be difficult to separate the two distinct contributions of κ_{top} and κ_{0ref} for many sites. Moreover, numerical simulations by Parolai et al. (2015) and Parolai (2018) confirmed that a direct estimate of κ^{AH} (and correspondingly also κ_0^{AH}) on the S wave window (as classically done, Anderson and Hough, 1984) is strongly affected by the existence of transmitted (reflected, refracted and scattered) waves in the analysed window leading to strongly biased attenuation (overestimated κ_0^{AH} and underestimated Q_S) estimates. While borehole measurements could help in properly assessing hard-rock values, they go along with high costs.

To overcome this shortcoming, Mayor et al. (2018a) suggested that multiple-scattered coda waves 103 can be used for determining κ_{0ref} . This new approach was motivated by the fact that coda waves 104 105 decays are insensitive to source and local site effects (e.g. Rautian and Khalturin, 1978, Sato and Fehler, 1998) and have been shown to reflect regional variations of the attenuation (Akinci and 106 Eyidogan, 2000, Guo et al., 2009, De Lorenzo et al., 2013, Kumar et al., 2016). In particular, at 107 long lapse times, coda waves are composed of multiply scattered waves and enter the diffusive 108 regime. For simple models containing a heterogeneous layer overlying a half-space, Q_{coda} 109 asymptotically approaches the intrinsic Q_i of the underlying uniform half-space (Shapiro et al. 110 2000). These results are consistent with Calvet et al. (2013) who observed that at frequencies higher 111 than a few Hz, the Q_{coda} pattern cannot be related anymore to the shallow layers. As the frequency 112 113 increases, energy transport by body waves becomes more and more efficient and enhances the sensitivity of the coda to deeper crustal structures (Aki and Chouet 1975). Recently, Mayor et al. 114 (2018a) confirmed that κ_0^{coda} (the high frequency decay of coda waves) does not vary with soil 115 type but shows significant regional variations. They further suggested a correlation between κ_0^{AH} 116 measured at rock sites and κ_0^{coda} . This study, however, suffered from the scarcity data used and 117 Mayor et al. (2018a) concluded that further studies were needed to statistically validate the 118 robustness of the relation between the regional κ_0^{coda} and κ_0^{AH} . 119

120 The goal of study is then to test the working hypothesis of Mayor et al. (2018a) and more generally

capture and discuss the regional variations of hard-rock attenuation across Europe using geological 121 and geophysical data of more than 1300 stations and 10,000 crustal earthquake recordings. After 122 describing an automatic method for defining the seismic phases and for determining κ_0^{coda} on a 123 large pan-European data set, we will show that the values of κ_0^{coda} are independent of the local site 124 conditions while they strongly regional-depend. We will discuss the reliability of the mapped 125 regional κ_0^{coda} measurements and compare the results with κ_0^{AH} measured at reference (hard-rock) 126 sites and soft soil sites which can provide information about the amount of scattering in the 127 uppermost crust. 128

129

130

131 Seismic phase windowing

132

In the literature, a number of approaches for measuring κ exist such as broadband inversion 133 techniques and the use of displacement or acceleration spectra (see, for example, Schneider et al., 134 1993, Silva et al., 1997, Biasi and Smith, 2001 as well as an overview by Ktenidou et al., 2014). 135 Here we follow the classical approach by fitting a linear trend to the high-frequency decay of the 136 acceleration spectrum. As we will determine κ (and correspondingly κ_0) both on the direct S wave 137 spectrum and on the coda spectrum, the S wave and the coda onset times need to be known. The S 138 wave onset $T_{\rm S}$ is taken as 1 s before the absolute maximum horizontal amplitude. Although being 139 less precise, for the purpose of spectral analysis of the S wave windows, as they are discussed in 140 this paper, such less accurate estimates are acceptable as long as the determined S wave onset time 141 is not later than the arrival time of the main S wave energy. 142

143 Following Perron et al. (2017), the S wave duration is defined by a relatively simple scheme taking

144 into account the expansion of the signal due to propagation (approximated by difference of the first

arrival times of S and P waves, T_S - T_P) and the influence of the source approximated by the corner frequency f_C while the source term is considered to have only a minor influence for the moderate to large magnitudes used in this study. The duration of the S wave window D_S is then given by

149
$$D_S = \frac{1}{f_C} + (T_S - T_P).$$
(3)

150

151 $f_{\rm C}$ is estimated directly by the Brune (1970) relationship from the seismic moment M_0 , considering 152 a large stress drop $\Delta\sigma$ of 100 MPa and a mean S wave velocity for the crust of 3500 m/s, 153

154
$$f_C = 0.37 \nu_s \left[\frac{16 \,\Delta \sigma \, 10^5}{7M_0} \right]^{1/3}.$$
 (4)

155

Since a very precise estimate of f_C is not critical for the current study, the choice of the rather large stress drop is only due to the fact to avoid any influence of f_C on the corresponding high-frequency spectra. Lower stress drops will cause even lower f_C . Following Kanamori (1977), M_0 is determined from the event's magnitude (the magnitude scale is not critical for the target of this study).

For the coda onset, we follow the definition of Aki (1969) who proposed the beginning of the coda phase as twice the S wave travel time after the occurrence of the earthquake. To be independent of the available information extracted from the seismic bulletins, Perron et al. (2017) proposed an equivalent formulation based only on T_P and T_S parameters only, i.e.

164

 $T_{\rm coda} = 2.3(T_S - T_P) + T_S.$ (5)

166

This definition of $T_{\rm coda}$ has the advantage of being independent of the uncertainty of the 167 earthquake's origin time. Perron et al. (2017) have found that Equation (5) is able to identify 168 precisely the beginning of the coda phase for local events which are only encountered in this study. 169 The multiple-scattering model requires the attenuation of coda waves to be measured from a time 170 window at sufficiently long lapse times, typically larger than twice the time it takes for an S wave 171 to go from the source to the receiver (Calvet and Margerin, 2013). Assuming $v_P \ge \sqrt{3}v_s$, T_{coda} 172 from Equation (5) will always be equal or larger than $2T_s$. Finally, the end of the coda phase T_{end} 173 174 is defined once a threshold of 95% of the cumulative energy is exceeded (Trifunac and Brady, 175 1975). An example of phase intervals and nomenclature is given in Figure 1.

The noise window is taken before the P wave arrival T_P with a variable length but only up until 0.5 s before T_P . If a late trigger causes the record to be shorter than this value, the data are discarded. All windows are tapered with a 5%-cosine taper, converted to acceleration through differentiation (if necessary) and transformed to the Fourier domain. Their spectral amplitudes are smoothed using a Konno-Ohmachi filter (Konno and Ohmachi, 1998) with a bandwidth b = 40.

For the calculation of κ , we fit a straight line in a variable frequency range $[f_1, f_2]$ to the S wave and coda acceleration spectra. f_1 should lie well above the source corner frequency and f_2 should lie below the frequency at which the noise floor begins. In the suggested algorithm, a range of frequencies for both f_1 ($f_C + 2$ Hz to 18 Hz with a Δf_1 of 1 Hz) and f_2 ($f_1 + 10$ Hz to 40 Hz with a Δf_2 of 3 Hz) is used. For the automatic approach, we use only events with M > 3.5 and set the minimum value of f_1 at 10 Hz noting that $f_C = 10$ Hz is equivalent to a stress drop of approximately 100 MPa at $M_w = 3.5$ (with lower stress drops and/or larger magnitudes leading to lower f_c).

188 The RMS residual *E* between the smoothed spectrum and the fit is calculated for each frequency 189 band Δf between f_1 and f_2 , and followed by a division by the square-root of the respective 190 bandwidth,

192

$$P = \frac{E}{\sqrt{\Delta f}} \,. \tag{6}$$

193

194 The parameter *P* depicts a quantitative criterion for fitting a straight line over a variable frequency range adjusted by its width used to obtain this measure. The motivation for picking a rather straight 195 196 line (and a corresponding small RMS residual) over a broad spectral range (large Δf) is assigned by choosing the lowest P value for the actual measurement of κ . Strong deviations due to spectral 197 198 curves or bulges are considered being less acceptable by this algorithm, as the corresponding values 199 of E would be significantly higher than those from a more linear section. In this way, the influence of site resonance peaks, which can cause significant variability in κ (Parolai and Bindi 2004, 200 201 Kishida et al., 2014, Van Houtte et al., 2014, Edwards et al., 2015, Laurendeau et al., 2017), is minimized. Additionally, deviations from a straight line due converging to the noise level in the 202 high-frequency range or further irregularities are mostly excluded as long as a sufficiently linear 203 204 spectral range exists in the main part of the spectral window fulfilling the signal-to-noise (SNR) criterion. 205

The harmonic mean of the spectral ratio of the signal to the pre-event noise at all frequencies is 206 207 used for calculating the SNR. This criterion is less strict than limiting the bandwidth to a single frequency value for which the SNR will fall below a certain threshold, as this might occur already 208 209 at much lower frequencies if the spectra contains narrow spikes or troughs, whereas on average the 210 SNR might still be considered acceptable. On the other hand, the arithmetic average is generally 211 too insensitive to low values while the harmonic mean might strongly decrease in the presence of a few low values which might result in a too conservative average. For our study, the SNR limit is 212 set to 4, in turn excluding frequency bands falling below this threshold for further analysis. In the 213

end, the best estimate for κ (dotted line in Figure 2) minimizing the RMS is taken with its associated uncertainty.

216 Once the individual κ values are computed for each site for the S wave and for the coda windows, we follow the classical approach (Anderson and Hough, 1984) and perform an automatic linear 217 218 regression with epicentral distance but only if the distance range was larger than 25 km. We remark that, as acknowledged by Hough et al. (1988), there is no reason to expect a linear dependence for 219 small distance ranges, although they say that it is a reasonable first order approximation (see also 220 221 Boore and Campbell, 2017). Since only for very few sites we observed a flattening of κ with distance for distances less than 50 to 60 km without any regional pattern (not shown), the κ value 222 223 at the intercept of the straight line with the minimized epicentral distance r = 0 is taken as κ_0 .

224

225

226 Data set

227

The main database is composed of seismic events that were recorded between January 2000 and December 2017. All data have been downloaded from the EIDA (European Integrated Data Archive) data centres and processed using the stream2segment software (Zaccarelli et al., 2019). EIDA currently offers uniform data access via standard FDSN (Federation of Digital Seismograph Networks) protocols to unrestricted data from 10 European nodes, hosting data from about 100 permanent and a large number of temporary networks.

Only events with M > 3.5 have been used, ensuring a sufficiently high SNR over a broad frequency range. We rejected events coming from subduction regimes, thus limiting the focal depths to a maximum of 30 km. For ensuring that the propagation is only in the crust, only events with epicentral distances less than 120 km have been used. For each station, we require at least five

238	recordings. Starting from more than 4000 stations available, we created a subset of more than
239	87,000 recordings (velocity and acceleration seismograms) of 10,732 events at 1384 sites. Their
240	geographical distribution and a magnitude-distance representation are shown in Figure 3.

242

243 Lapse-time dependence and window length sensitivity

244

For the S wave window and the corresponding κ_0^{AH} , several studies have already investigated the 245 influence to the duration of the signal window (e.g., Tsai and Chen, 2000, Douglas et al., 2010). 246 These studies have mostly concluded that there is only a limited dependence of the window length 247 on the determination of κ_0^{AH} , as long as the most energetic part is encapsulated in the selected time 248 window. For the determination of κ_0^{coda} , however, a proper choice of the coda window is crucial. 249 250 In particular, if different coda phases are mixed during the analysis (i.e. early and late coda phases), it might be difficult to separate variations of the epicentral distance from spatial variations of κ^{coda} 251 and correspondingly κ_0^{coda} (Calvet and Margerin, 2013, Mayor et al., 2016). 252

For avoiding biased κ_0^{coda} , the epicentral distance range must be bounded, and the coda window 253 parameters (onset and duration) must be chosen in a way such that the measurements are free from 254 255 any lapse-time dependence. To convince the reader of the robustness of the applied criterion, we show in Figure 4 κ_0^{coda} for different choices of the coda window length L_{coda} and different coda 256 onset times $T_{\rm coda}$. $\kappa_0^{\rm coda}$ typically ranges between 0.01 and 0.05 for a window length between 5 and 257 35 s and a fixed onset time of 20 s. This is likely due to events at larger epicentral distances for 258 which the ballistic time of the S waves is close to the coda window onset, meaning that these waves 259 have not entered the multiple-scattering regime. On the other hand, κ_0^{coda} is smaller and largely 260

time-independent for an onset time of $T_{coda} = 40$ s (Figure 4 middle), meaning that the dependence 261 of κ_0^{coda} on L_{coda} is strongly affected by the value of T_{coda} but shows a larger standard deviation on 262 average. A coda window onset of $T_{coda} = 2.3(T_S - T_P) + T_S$ (Figure 4 right) and a sufficiently 263 long coda window length of at least 15 s seems to provide the best compromise for stable values 264 of κ_0^{coda} since only stable values of κ_0^{coda} for varying L_{coda} can be considered as an approximation 265 of the intrinsic attenuation (similar to the observations of Calvet and Margerin 2013). This 266 procedure is particularly important when performing a regionalization of κ_0^{coda} over a broad region. 267 In this way, the range of fluctuations for κ_0^{coda} indicates the strong lateral variations of the 268 attenuation across Europe and only partially reflects the measurement uncertainties. 269

270

271

272 Regional variations of κ_0

273

Figure 5 presents the regional variations of κ_0^{coda} across Europe interpolated between 1363 sites. We note that for 21 sites (1.6 % of the total number of sites) no reliable values of κ_0^{coda} have been obtained by the automatic procedure (i.e., negative values for 17 sites and unrealistically high values with $\kappa_0^{coda} \gg 0.1$ s for four sites). If hypothesizing that κ_0^{coda} captures only attenuation, then negative values of κ_0^{coda} are physically not realistic. However, κ_0^{coda} is an empirical parameter, meaning that the measurements might therefore be influenced by further site-specific unmodelled phenomena, such as particular site conditions and anisotropy.

Linearly interpolating between the 1363 remaining sites, we observe a clear regional pattern with strong attenuation ($\kappa_0^{\text{coda}} > 0.014 \text{ s}$) for the southern and south-eastern part of Europe while central and northern Europe, as far as the station coverage allows to conclude, shows significantly lower

284	attenuation values ($\kappa_0^{coda} \lesssim 0.008$ s). The physical reason for such regional pattern might be due to
285	the fact that coda waves are mainly sensitive to the attribues of the crust within a radius of around
286	0.25l (with <i>l</i> being the scattering mean free path which is of the order of 100 km for the standard
287	crust) around the source and the station, when the time in the coda is equal to twice the time of the
288	S wave (Mayor et al. 2014). Regarding our epicentral distance range (less than 120 km) and the
289	position of the coda window, we can infer that coda waves tend to average the properties of the
290	crust in the volume between the source and the station. Moreover, we expect that the coda wave
291	trains sample almost the same volume of the crust around each station in each region of
292	investigation but we cannot exclude that attenuation may be depth-dependent due to changes in
293	material properties.

295

296 Influence of soil properties

297

Since previous studies have indicated that the local soil properties can have a significant impact on 298 κ_0^{AH} , we try to identify the effects of the shallow soil characteristics on κ_0^{coda} . To this regard, we 299 300 try to differentiate our results between sites which might serve as regional reference (hard-rock) 301 sites and sites characterized by significant local amplification effects. To do so, in a first step, each 302 network site has been assigned to a lithology class following the harmonized pan-European surface 303 geological map (European Geological Data Infrastructure EGDI, 2017). Herein, lithological 304 descriptions follow the official INSPIRE (INfrastructure for SPatial Information in EuRopE) reference document (INSPIRE, 2013). Variations of rock and stone types are identified as reference 305 306 sites whereas sand, clay and sedimentary materials are identified as non-reference sites.

307 As only earthquake recordings are available in a consistent manner for all instrumented sites, in a

second step, we classify the network sites according to their horizontal-to-vertical (H/V) spectral ratio from earthquake recordings (Lermo and Chavez-Garcia, 1993). At each site, each S wave window D_S was cosine-tapered (5 per cent) and a Fast Fourier Transformation (FFT) for each seismometer component was performed. Spectral amplitudes were smoothed using the Konno and Ohmachi (1998) recording window (b = 20). Finally, the horizontal spectrum was calculated considering the root-mean square average of the two horizontal component spectra and divided by the vertical spectrum.

In seismic site response analysis, a reference site is generally defined as a site without significant resonances. Resonances, however, can also develop due to energy trapped in shallow low-velocity layers even at sites with high values of v_s^{30} (Boore, 2004, Cadet and Duval, 2009). Since reference sites can be considered not being absolutely free from amplification effects due to their S wave velocity gradient, we require the H/V spectral ratio for reference sites to be sufficiently flat in a frequency range between 0.2 and 10 Hz with an amplitude less than 2.5, hereby slightly relaxing the proposal of Zhao et al. (2006). H/V spectral ratios of reference sites are shown in Figure 6.

In total, out of 1363 sites for which κ_0^{coda} has been calculated, only 717 sites fulfil both the criterion on geology and on H/V. These sites are classified as reference sites in the following and listed in Appendix A1. 456 sites were identified as non-reference sites while for 190 sites no clear classification could be made.

We try to identify differences between reference and non-reference sites due to shallow soil layers on κ_0 . Figure 7 plots κ_0^{AH} and κ_0^{coda} for the both site classes. While κ_0^{coda} seems to be independent of the soil type (as can be seen in Figure 5), clear differences between reference and non-reference sites can be observed for κ_0^{AH} . For non-reference sites, on average, higher values for κ_0^{AH} are observed with respect to κ_0^{coda} while there is only a limited number of non-reference sites for which κ_0^{coda} is larger than κ_0^{AH} .

332 Reliability of the proposed κ_0^{coda}

333

As measurements of κ and κ_0 generally go along with large scatter, a number of quantitative quality criteria have been developed including standard deviations from each slope (Lai et al., 2016) as well as from the combination of the two horizontal components' κ (Purvance and Anderson, 2003), using several spectral windows to obtain a mean and standard deviation (Ktenidou et al., 2016) and using the fitted slope's standard error or the variability from different component orientations (Van Houtte et al., 2014).

In a first step, we rely on the parameter P, as defined by Equation (6), quantifying the quality of 340 the spectral fit. Averaged over all recordings and all 1363 sites, P, and correspondingly $\Delta \kappa$, 341 indicates a decay proportional with $\sqrt{\Delta f}$ (not shown). Although the sensitivity of $\Delta \kappa$ to Δf is mainly 342 linked to source and site effects, in our case, site resonance peaks can be considered having only a 343 minor influence on the variability of κ (see description of the methodology above). Moreover, for 344 multiple-scattered coda waves, the source effects are also averaged out assuming the validity of the 345 Brune (1970) source model. Simple models varying other source parameters (such as the take-off 346 angle) highlight that the apparent decay of displacement will not always be ω^2 (e.g., Madariaga, 347 1976) but this uncertainty of $\Delta \kappa$ decreases significantly as magnitude increases (Perron et al., 2017) 348 and can therefore be considered to be of minor influence. Since we apply an automatic method for 349 phase picking phases, we avoid additional uncertainty to the k calculations due to a manual picking 350 of phases (Douglas et al 2010). 351

To verify the magnitude independence of κ_0^{coda} , we also present κ_0^{coda} as a function of magnitude (Figure 8). As stated above, the magnitude scale has been assumed to be not critical for the target of this study. We calculate κ_0^{coda} separately for magnitude bins with a width of 0.5 magnitude units.

Since only events with M > 3.5 have been used, meaning that we can exclude any influence of $f_{\rm C}$, there is no significant dependence on magnitude for $\kappa_0^{\rm coda}$. Such results is consistent with previous findings of, e.g., Fernández et al. (2010), Van Houtte et al. (2014) and Castro and Ávila-Barrientos (2015) who also observed no or little correlation of κ_0 with magnitude.

For a quantitative and objective approach to quantify the randomness and the degree to which 359 similar κ_0^{coda} features cluster, we calculate the spatial autocorrelation based on Moran's I test 360 (Moran 1948). While positive values for I indicates that neighbouring features with similarly high 361 or properties exist (i.e., this feature is part of a cluster), a negative value for I indicates that a feature 362 363 has neighbouring features with dissimilar values (i.e., this feature can be considered an outlier). Values close to zero indicate a random pattern. Using distances of 50 and 100 km, no negative 364 values for I are observed but the global Moran's I index takes values of 0.58 and 0.42 (p < 0.05), 365 which indicates a strong and positive spatial correlation. 366

Furthermore, we calculate the standard error of the mean and the standard deviation of the data 367 points. The former, representing the confidence intervals around the estimated mean values of κ_0 , 368 generally takes values around 0.002 to 0.003 s for κ_0^{coda} and κ_0^{AH} . Although this does not fully 369 reflect the standard deviations of the measured κ_0 values, it can still provide high confidence in the 370 mean κ_0^{coda} and κ_0^{AH} values. The standard deviation, on the contrary, is rather high, taking values 371 of $\Delta \kappa_0^{\text{coda}} = 0.0068$ s and $\Delta \kappa_0^{\text{AH}} = 0.0082$ s. Because rock sites tend to be more variable (Schneider 372 et al., 1993), we also calculate $\Delta \kappa_0$ separately for reference and non-reference sites. While the 373 former show an $\Delta \kappa_0^{\text{coda}} = 0.0078 \text{ s}$ and $\Delta \kappa_0^{\text{AH}} = 0.0092 \text{ s}$, soft sites are characterized by less 374 variability as $\Delta \kappa_0^{\text{coda}} = 0.0055 \text{ s}$ and $\Delta \kappa_0^{\text{AH}} = 0.0063 \text{ s}$. Since we consider the wide distribution of 375 distances, we do not observe better constrained values κ_0 values restricting the analysis to smaller 376 distance ranges. 377

Although the low values of the error of the mean might imply that we need a large number of 378 records to get a reliable estimate of the mean κ_0 value, Kendall's τ correlation coefficient between 379 the number of records at a single station and $\Delta \kappa_0$, which measures the ordinal association between 380 the two variables taking values between +1 and -1 (with +1 representing a total positive correlation 381 and 0 representing no linear correlation), takes values of only 0.17 for the S wave portion and 0.21 382 for the coda window. This indicates that there is only a slight correlation between the number of 383 records and the uncertainty in κ_0^{coda} and κ_0^{AH} as long as a sufficient number of high-quality records 384 is available. 385

In this way, since κ_0^{coda} seems not to be affected by the shallow surface layers (κ_{top} in Equation 2), 386 it might serve as a lower bound estimate for the regional hard-rock reference $\kappa_0^{AH}(\kappa_{0ref}\ in$ 387 Equation 2). The existence of such a reference κ_0^{AH} has already been suggested by Ktenidou et al. 388 (2015) and Mayor et al. (2018a) have argued that κ_0^{coda} can be seen as the weighted time (weighted 389 by attenuation properties quantified by coda) spent by the wave in the crust. In practice, when site-390 specific data is not available (for instance, when adjusting a GMPE to a stable continental region 391 392 with little seismic activity and instrumentation), κ_0 is often inferred from available site data, mainly $v_{\rm S}^{30}$ along with large scatter and limited applicability (e.g., Ktenidou et al., 2011, 2014, Van Houtte 393 et al., 2011, Biro and Renault, 2012). 394

For this reason, we now revisit if the regional κ_0^{coda} can serve as a proxy for the regional κ_0^{AH} at reference sites. To this regard, we compare the interpolated κ_0^{coda} from Figure 5 and the measured S wave κ_0^{AH} at reference sites (Figure 9). A clear and positive correlation between measured κ_0^{AH} and interpolated κ_0^{coda} is found. In general, the patterns of these two data sets seem to exhibit considerable mutual similarity and similar trends. For the two variables, the Pearson correlation coefficient, being based on the assumption that we have bi-variable normal distributions and

401	similarly taking values between +1 and -1 (with +1 representing a total positive linear correlation),
402	is equal to 0.71. Such value is significantly higher than previously found correlations coefficients
403	in most $\kappa_0 - v_S{}^{30}$ correlations with values ranging between less than 0.3 (Ktenidou et al., 2014) and
404	0.4 (Van Houtte et al., 2011). Of course, besides large uncertainties in properly assessing κ_0 , there
405	is also a significant uncertainty in the estimation of v_s^{30} . In turn, while many studies conclude that
406	$v_{\rm S}{}^{30}$ as a proxy for assessing κ_0 cannot lead to accurate estimations of the attenuation and its
407	variability (e.g., Laurendeau et al., 2013, Cabas et al., 2017), inferring κ_0 from existing κ_0^{coda} maps
408	might allow better constraining the regional dependence of attenuation (in agreement with the
409	findings of Ktenidou et al., 2014).
410	
411	
412	Comparison of attenuation models
413	
414	Until a regionalized site-response model for the calculation of surface ground motion is developed,
415	hypothetical velocity reference profiles (e.g., Petersen et al., 2008, Poggi et al., 2011, Woessner et
416	al., 2013) remain the only possibility for estimating ground motions. It might, however, be difficult
417	to properly mimic its attenuation properties and to properly constrain the profile's κ_0 given that κ_0
44.0	
418	can often not be directly estimated from local waveform data. Therefore, one way of choosing an

419 appropriate attenuation value is fixing κ_0 based on its correlation to v_S^{30} but such correlations are 420 very weak and many possibilities exist for κ_0 for different sites with the same v_S^{30} .

421 Another possibility for fixing κ_0 is to compare the amplification factors predicted from given 422 velocity profiles and varying the candidate values of κ_0 with site coefficients used in the building 423 codes (e.g., Campbell, 2009). However, our map in Figure 5 can provide direct lower bound 424 estimates for the regional reference κ_0 . The measured κ_0^{coda} are rather free from soil-type and source 425 effects and mimic the regional attenuation variations.

Although only a limited number of studies have published regional variations of κ_0^{coda} , our results are relatively consistent with literature: Mayor et al. (2018a) identify clear differences between northern and south-eastern France with low attenuation (low values of κ_0^{coda}) for the central southern part. The sedimentary southeast basins in the extreme south-eastern part of France, on the contrary, are characterized by higher attenuation values with $\kappa_0^{coda} > 0.01$ s.

While the use of κ_0^{coda} is currently limited, further studies have focused on calculating localized 431 κ_0^{AH} values for various site conditions across Europe. For Switzerland, the values obtained in the 432 present study are reasonably consistent with the 0.0125 s value for hard-rock stations obtained by 433 Bay et al. (2005) and the 0.012 s value for the western Alps found by Morasca et al. (2006) although 434 they were using a different technique. Douglas et al. (2010) and by Drouet et al. (2010) indicate 435 values of κ_0^{AH} in the order of 0.008 to 0.03 s for France and the Pyrenees with some variations 436 between the two studies due to differences in data processing (site effect corrections, frequency 437 range). García-García et al. (2002) examined stations near the Granada basin and found κ_0^{AH} 438 between 0.006 to 0.04 s depending on the local soil conditions, confirming the results shown in 439 Figure 7. For Croatia, Stanko et al. (2017) indicated κ_0^{AH} ranging from 0.016 s for stations in the 440 southern part of the country to 0.027 s for northern sites. While there is a clear correlation between 441 κ_0^{coda} values in Figure 5 and the classical κ_0^{AH} analysis for hard-rock and reference sites, the κ_0^{AH} 442 values in studies focusing only on soft and very soft sites (e.g., Dimitriu et al., 2001, Askan et al., 443 2014) are significantly larger, in agreement with the results presented in Figure 7. It seems rather 444 445 obvious that such differences might be caused mainly by attenuation effects of the soft surface materials. 446

In general, attenuation can be caused by scattering as well as anelasticity and several studies have 447 already shown that κ_0^{AH} results both from anelasticity and scattering: Ktenidou et al. (2015) 448 compared their estimates of κ_0^{AH} with the values of Q_S for the Euroseistest area and concluded that 449 their κ_0^{AH} observations cannot be explained by intrinsic Q_S values alone, meaning that there is a 450 high probability of an additional scattering contribution in their S wave window. Rodriguez-Marek 451 452 et al. (2017) have shown that neglecting scattering are liable in practice to fail for high-frequency waves. Also in our study scattering due to superficial soil layers at non-reference sites seems to 453 strongly influence the values of κ_0^{AH} (Figure 7, see also Parolai et al., 2015, Pilz and Fäh, 2017, 454 Parolai, 2018), therefore hiding any regional pattern for κ_0^{AH} . While scattering and intrinsic 455 attenuation are difficult to separate in a classical κ_0^{AH} analysis (even on rock), this separation may 456 be easier using κ_0^{coda} and varying the coda window length. Indeed, our analysis of κ_0^{coda} over short 457 and long windows (Figure 4) shows, on average, an increase in κ_0^{coda} when using the shorter early 458 coda windows. Compared to soft sites, this effect is less significant but not negligible at reference 459 sites. This suggests that κ_0^{coda} may be controlled both by scattering and anisotropy effects when 460 measured close to the S wave phase. At large lapse time in the coda, however, coda waves can be 461 seen as multiple-scattered waves having entered the diffusive regime and the mapped κ_0^{coda} 462 represents the intrinsic κ_0 . 463

In this way, the results of Figure 7 further confirm the findings of Jin et al. (1994, their Figure 9) who compiled studies from several regions around the world and concluded that Q_{coda} is close to Q_{s} only when the scattering contribution is small. Strong deviations are found for measurements at frequencies smaller than 6 Hz (Mayeda et al., 1992). Therefore and following Calvet and Margerin (2013), Q_{coda} for large lapse times (multiple-scattering regime) alone can be seen as an 469 approximation of the intrinsic quality factor which quantifies the average attenuation properties of470 the crust.

It is obvious that the effect of scattering is expected to be frequency-dependent as different 471 wavelengths will interact in different ways with the velocity discontinuities (generally indicated 472 through the definition of different scattering regimes) that they encounter during propagation. In 473 turn, when a segment of the S wave signal is considered, as generally done in standard $\kappa_0^{\rm AH}$ 474 assessments, the values might differ greatly and may strongly be dependent on the chosen 475 frequency band and not accounting for the influence of scattering on κ_0^{AH} may be problematic for 476 high frequencies (Richards and Menke, 1983), mainly due the complicated shape of the identified 477 S wave pulse. 478

479 While previous studies (e.g., Edwards et al., 2015, Mayor et al., 2018a) relied on a fixed frequency band for the automatic calculation of κ_0^{AH} , we allowed some variability for the frequency range for 480 aiming at the best linear fit (lowest RMS) over a broad spectral range (at least 10 Hz) for κ_0^{AH} and 481 κ_0^{coda} . Trials using a fixed frequency band were carried out as well but most of such cases turned 482 out to be bad choices since disturbing effects such as site resonance peaks have been included. A 483 human analyst would identify such situations and disregard the chosen frequency range but such 484 approaches are hardly feasible for large data sets. Although the automatic procedure will not be 485 free from biased κ estimates, in the absence of alternative models, the approach adopted here tries 486 to minimize, at first order, epistemic uncertainty in κ_0^{coda} measurements. 487

We should keep in mind that the concept of κ , moreover being frequency-independent, is a rather simple empirical model for an observation without providing a full explanation of the physical basis. Any frequency-dependent inelasticity due to spectral variations of the scatters density is certainly possible and likely to be present in Earth's crust. In this way, accounting for the 492 frequency-dependence of κ_0^{AH} could provide some constraints on the roughness and the scattering 493 properties of the shallow layers.

494

495

496 **Conclusions**

497

A first attempt of mapping regional variations of κ_0^{coda} attenuation across Europe has been proposed based on the analysis of local crustal earthquakes. Using more than 10,000 moderate to large magnitude events that have occurred in Europe after January 2000, for each record, we performed two sets of κ measurements on the S wave portion and on the late coda window over a broad but variable spectral band. For the automatic selection of the earthquake signal phases, our analysis is based on P and S wave arrival times only, making the windowing independent of uncertainties of the seismic bulletins.

We observed that κ_0^{coda} for large lapse times does not vary with soil type but shows significant 505 regional variations. The map indicates distinct regional attenuation patterns with stronger 506 attenuation for the southern and south-eastern parts of Europe while much lower attenuation values 507 are found for the northern parts. This analysis confirms previous findings of Mayor et al. (2018a, 508 2018b) who showed that κ_0^{coda} can be used as a proxy to capture the regional reference κ_0 and the 509 corresponding intrinsic attenuation if κ_0^{coda} is measured on the latest part of the coda. Current 510 GMPEs are not able to take into account these regional variations thereby introducing large 511 512 uncertainties in ground motion estimates. To overcome this limitation, next generation GMPEs 513 should obviously incorporate spatial variations in the decay of the shallow seismic attenuation properties. The task of constructing region-dependent GMPEs might be facilitated by high-514 515 resolution attenuation maps such as the one produced in this work.

516 Comparing the large lapse-time κ_0^{coda} and κ_0^{AH} (classically determined on the S wave window), we 517 see that the latter is strongly affected by transmitted waves included in the analysed window, further 518 indicating a clear dependence on the local soil properties which might be indicative of stronger 519 (and frequency-dependent) scattering properties of the shallow soft layers. In this way, because the 520 classical κ_0^{AH} might not be able to correctly capture the absolute intrinsic attenuation, in 521 combination with κ_0^{coda} measured on various time windows, it might provide some indication about 522 the amount of scattering in the uppermost crust and surface layers.

For mapping regional variations of κ_0^{coda} , we fully relied on classical methodologies and properties of multiple-scattered coda waves which have widely been applied in seismological studies. Future works might further quantify the effects of intrinsic and scattering attenuation κ_0^{AH} and explore the sensitivity of κ_0^{coda} measurements to depth variations of absorption. It is clear that our simple mapping approach can only provide the gross features of the lateral variations of attenuation without any constraint on the depth behaviour.

- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536

537

- 538
- 539

540	Data and resources
541	
542	
543	The European Integrated Data Archive (EIDA, www.orfeus-eu.org/eida, last accessed January
544	2019) strong ground motion database was searched for this publication.
545	
546	
547	
548	
549	
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	

564 Acknowledgments

567	The authors would like to thank the different organisms who operate seismological networks across
568	Europe and for making their data available through EIDA. We are thankful to associate editor Sheri
569	Molnar, Gail Atkinson and one anonymous reviewer for the useful comments and suggestions. We
570	warmly Marie Calvet, Jessie Mayor and Ludovic Margerin for their stimulating discussions and
571	explanations about the coda. This study has been partially funded by the H2020 project SERA
572	(Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe, grant
573	agreement No. 730900).
574	
575	
576	
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	

588	References
589	
590	
591	Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of
592	Geophysical Research, 74, 615-631.
593	
594	Aki, K. (1980). Quantitative seismology. Theory and Methods, New York, W. H. Freeman and Co.
595	
596	Aki, K., Chouet, B. (1975). Origin of coda waves: source, attenuation, and scattering effects.
597	Journal of Geophysical Research, 80, 3322-3342.
598	
599	Akinci, A., Eyidoğan, H. (2000). Scattering and anelastic attenuation of seismic energy in the
600	vicinity of north Anatolian fault zone, eastern Turkey. Physics of the Earth and Planetary Interiors,
601	122 , 229-239.
602	
603	Al Atik, L., Youngs, R. R. (2014). Epistemic uncertainty for NGA-West2 models. Earthquake
604	<i>Spectra</i> , 30 , 1301-1318.
605	
606	Anderson, J. G., Hough, S. E. (1984). A model for the shape of the Fourier amplitude spectrum of
607	acceleration at high frequencies. Bulletin of the Seismological Society of America, 74, 1969-1993.
608	
609	Askan, A., Sisman, F. N., Pekcan, O. (2014). A regional near-surface high frequency spectral
610	attenuation (kappa) model for northwestern Turkey. Soil Dynamics and Earthquake Engineering,

611 65, 113-125.

- Bay, F., Wiemer, S., Fäh, D., Giardini, D. (2005). Predictive ground motion scaling in Switzerland:
 best estimates and uncertainties. *Journal of Seismology*, 9, 223-240.
- 615
- Biasi, G. P., Smith, K. D. (2001). Site effects for seismic monitoring stations in the vicinity of
 Yucca Mountain, Nevada. MOL20011204, 0045. Report for the US DOE/University and
 Community College System of Nevada (UCCSN) Cooperative Agreement.
- 619
- 620 Biro, Y., Renault, P. (2012). Importance and impact of host-to-target conversions for ground
- 621 motion prediction equations in PSHA. *Proceedings of the 15th World Conference on Earthquake*
- 622 *Engineering*, paper 1855, Lisbon, Portugal.
- 623
- Boore, D. M. (2003). Simulation of ground motion using the stochastic method. *Pure and Applied Geophysics*, 160, 635-676.
- 626
- Boore, D. M. (2004). Estimating Vs30 (or NEHRP site classes) from shallow velocity models
 (depths< 30 m). *Bulletin of the Seismological Society of America*, 94, 591-597.
- 629
- Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. *Journal of Geophysical Research*, **75**, 4997-5009.
- 632
- Budnitz, R. J., Apostolakis, G., Boore, D. M. (1997). Recommendations for probabilistic seismic
- hazard analysis: guidance on uncertainty and use of experts (No. NUREG/CR-6372-Vol. 1; UCRL-
- 635 ID-122160). Nuclear Regulatory Commission, Washington, United States.

- 636
- Cabas, A., Rodriguez-Marek, A., Bonilla, L. F. (2017). Estimation of site-specific Kappa (κ0)consistent damping values at KiK-net sites to assess the discrepancy between laboratory-based
 damping models and observed attenuation (of seismic waves) in the field. *Bulletin of the Seismological Society of America*, **107**, 2258-2271.
- 641
- 642 Cadet, H., Duval, A. M. (2009). A shear wave velocity study based on the KiK-net borehole data:
 643 A short note. *Seismological Research Letters*, **80**, 440-445.
- 644
- Calvet, M., Margerin, L. (2013). Lapse-time dependence of coda Q: Anisotropic multiplescattering models and application to the Pyrenees. *Bulletin of the Seismological Society of America*, **103**, 1993-2010.
- 648
- Campbell, K. W. (2009). Estimates of shear-wave Q and κ0 for unconsolidated and
 semiconsolidated sediments in Eastern North America. *Bulletin of the Seismological Society of America*, 99, 2365-2392.
- 652
- Campillo, M., Plantet, J. L., Bouchon, M. (1985). Frequency-dependent attenuation in the crust
 beneath central France from Lg waves: data analysis and numerical modeling. *Bulletin of the Seismological Society of America*, **75**, 1395-1411.
- 656
- Castro, R. R., Ávila-Barrientos, L. (2015). Estimation of the spectral parameter kappa in the region
 of the Gulf of California, Mexico. *Journal of Seismology*, **19**, 809-829.
- 659

660	Chandler, A. M., Lam, N. T. K., Tsang, H. H. (2006). Near-surface attenuation modelling based
661	on rock shear-wave velocity profile. Soil Dynamics and Earthquake Engineering, 26, 1004-1014.
662	
663	Chiara, F., Giovanni, L., Rodolfo, P., Lucia, L., Francesca, P. (2018). Ground motion model for

- reference rock sites in Italy. *Soil Dynamics and Earthquake Engineering*, **110**, 276-283.
- 665
- Cotton, F., Scherbaum, F., Bommer, J. J., Bungum, H. (2006). Criteria for selecting and adjusting
 ground-motion models for specific target regions: Application to central Europe and rock sites. *Journal of Seismology*, 10, 137.
- 669
- De Lorenzo, S., Del Pezzo, E., Bianco, F. (2013). Qc, Qβ, Qi and Qs attenuation parameters in the
 Umbria–Marche (Italy) region. *Physics of the Earth and Planetary Interiors*, 218, 19-30.
- 672
- Delavaud, E., Cotton, F., Akkar, S., Scherbaum, F., Danciu, L., Beauval, C., Drouet, S., Douglas,
 j., Basili, R., Abdullah Sandikkaya, M., Segou, M., Faccioli, E., Theodoulidis, N. Segou, M.
 Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. *Journal of Seismology*, 16, 451-473.
- 677
- Dimitriu, P., Theodulidis, N., Hatzidimitriou, P., Anastasiadis, A. (2001). Sediment non-linearity
 and attenuation of seismic waves: a study of accelerograms from Lefkas, western Greece. *Soil Dynamics and Earthquake Engineering*, 21, 63-73.
- 681
- Douglas, J., Gehl, P., Bonilla, L. F., Gélis, C. (2010). A κ model for mainland France. *Pure and Applied Geophysics*, 167, 1303-1315.

- Drouet, S., Cotton, F., Guéguen, P. (2010). Vs30, κ, regional attenuation and Mw from
 accelerograms: application to magnitude 3–5 French earthquakes. *Geophysical Journal International*, 182, 880-898.
- 688
- Edwards, B., Fäh, D., Giardini, D. (2011). Attenuation of seismic shear wave energy in
 Switzerland. *Geophysical Journal International*, 185, 967-984.
- 691
- Edwards, B., Ktenidou, O. J., Cotton, F., Abrahamson, N., Van Houtte, C., Fäh, D. (2015).
 Epistemic uncertainty and limitations of the κ0 model for near-surface attenuation at hard rock

694 sites. *Geophysical Journal International*, **202**, 1627-1645.

- 695
- EGDI (2017) 1:1 Million OneGeology pan-european Surface Geology, www.europe-geology.eu(last accessed January 2019).

- Fernández, A. I., Castro, R. R., Huerta, C. I. (2010). The spectral decay parameter kappa in
 northeastern Sonora, Mexico. *Bulletin of the Seismological Society of America*, 100, 196-206.
- 701
- Frankel, A., Wennerberg, L. (1987). Energy-flux model of seismic coda: separation of scattering
 and intrinsic attenuation. *Bulletin of the Seismological Society of America*, 77, 1223-1251.
- 704
- García-García, J. M., Romacho, M. D., Jiménez, A. (2002). The corner frequencies, stress drops
- and apparent stresses of microearthquakes in the Betic region (southern Spain). Fisica de la Tierra,
- **2002**, 161-182.

709	Guo, M. Q., Fu, L. Y., Ba, J. (2009). Comparison of stress-associated coda attenuation and intrinsic
710	attenuation from ultrasonic measurements. Geophysical Journal International, 178, 447-456.
711	
712	Hanks, T. C. (1982). fmax. Bulletin of the Seismological Society of America, 72, 1867-1879.
713	
714	Harmsen, S. C. (1997). Estimating the diminution of shear-wave amplitude with distance:
715	Application to the Los Angeles, California, urban area. Bulletin of the Seismological Society of
716	America, 87 , 888-903.
717	
718	Hashash, Y. M., Harmon, J., Stewart, J. P., Kottke, A., Kim, B., Silva, W., Rathje, E., Campbell,
719	K. W. (2014). Reference rock site condition for central and eastern North America. Bulletin of the
720	Seismological Society of America, 104, 684-701.
721	
722	Herrmann, R. B. (1980). Q estimates using the coda of local earthquake. Bulletin of the
723	Seismological Society of America, 70, 447-468.
724	
725	Hough, S. E., Anderson, J. G., Brune, J., Vernon III, F., Berger, J., Fletcher, J., Haar, L., Hanks,
726	T., Baker, L. (1988). Attenuation near Anza, California. Bulletin of the Seismological Society of
727	<i>America</i> , 78 , 672-691.
728	
729	Houtte, C. V., Ktenidou, O. J., Larkin, T., Holden, C. (2014). Hard-site K0 (kappa) calculations for
730	Christchurch, New Zealand, and comparison with local ground-motion prediction models. Bulletin

of the Seismological Society of America, **104**, 1899-1913.

733	INSPIRE (2013). D2.8.III.3 INSPIRE Data specification on soil - Technical Guidelines,
734	$https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_SO_v3.$
735	0rc3.pdf (last accessed January 2019).
736	
737	Jin, A., Mayeda, K., Adams, D., Aki, K. (1994). Separation of intrinsic and scattering attenuation
738	in southern California using TERRAscope data. Journal of Geophysical Research, 99, 17835-
739	17848.
740	
741	Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research,
742	82 , 2981-2987.
743	
744	Kishida, T., Kayen, R., Ktenidou, O. J., Silva, W., Darragh, R., Watson-Lamprey, J. (2014). PEER
745	Arizona strong motion database and GMPEs evaluation, Pacific Earthquake Engineering Research
746	Center, PEER Report 2014/09, 170 pages, Berkeley, California.
747	
748	Konno, K., Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio
749	between horizontal and vertical components of microtremor. Bulletin of the Seismological Society
750	of America, 88 , 228-241.
751	
752	Ktenidou, O. J., Cotton, F., Abrahamson, N. A., Anderson, J. G. (2014). Taxonomy of κ: A review
753	of definitions and estimation approaches targeted to applications. Seismological Research Letters,
754	85 , 135-146.
755	

756	Ktenidou, O. J., Abrahamson, N. A., Drouet, S., Cotton, F. (2015). Understanding the physics of
757	kappa (κ): Insights from a downhole array. <i>Geophysical Journal International</i> , 203 , 678-691.
758	
759	Ktenidou, O. J., Abrahamson, N., Drouet, S., Cotton, F. (2016). Understanding the physics of kappa
760	(κ0): Insights from the euroseistest network. Bulletin of the Geological Society of Greece, 50, 1515-
761	1524.
762	
763	Kumar, R., Gupta, S. C., Singh, S. P., Kumar, A. (2016). The attenuation of high-frequency Seismic
764	waves in the Lower Siang Region of Arunachal Himalaya: Qa, Qβ, Qc, Qi, and Qs. Bulletin of the
765	Seismological Society of America, 106, 1407-1422.
766	
767	Lai T. S., Mittal H., Chao W. A., Wu Y. M. (2016) A study on Kappa value in Taiwan using
768	borehole and surface seismic array. Bulletin of the Seismological Society of America, 106, 1509-
769	1517.
770	
771	Laurendeau, A., Cotton, F., Ktenidou, O. J., Bonilla, L. F., Hollender, F. (2013). Rock and stiff-
772	soil site amplification: Dependency on Vs30 and kappa (κ0). Bulletin of the Seismological Society
773	<i>of America</i> , 103 , 3131-3148.
774	
775	Laurendeau, A., Bard, P. Y., Hollender, F., Ktenidou, O. J., Foundotos, L., Hernandez, B., Perron,
776	V. (2017). Towards the definition of reference motions ($1000 \le Vs \le 3000 \text{ m/s}$): Analysis of the
777	KiK-net data and correction of the local site effects. Proceedings of the Sixteenth World Conference
778	on Earthquake Engineering, paper 4936, Santiago, Chile.

780	Lee, V. W., Trifunac, M. D. (2010). Should average shear-wave velocity in the top 30 m of soil be
781	used to describe seismic amplification? Soil Dynamics and Earthquake Engineering, 30, 1250-
782	1258.

Lermo, J., Chávez-García, F. J. (1993). Site effect evaluation using spectral ratios with only one
station. *Bulletin of the Seismological Society of America*, 83, 1574-1594.

786

Madariaga, R. (1976). Dynamics of an expanding circular fault. *Bulletin of the Seismological Society of America*, 66, 639-666.

789

Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K., Zeng, Y. (1992). A comparative study of
scattering, intrinsic, and coda Q-1 for Hawaii, Long Valley, and central California between 1.5
and 15.0 Hz. *Journal of Geophysical Research*, 97, 6643-6659.

793

Mayor, J., Margerin, L., Calvet, M. (2014). Sensitivity of coda waves to spatial variations of
absorption and scattering: radiative transfer theory and 2-D examples. *Geophysical Journal International*, 197, 1117-1137.

797

Mayor, J., Calvet, M., Margerin, L., Vanderhaeghe, O., Traversa, P. (2016). Crustal structure of
the Alps as seen by attenuation tomography. *Earth and Planetary Science Letters*, 439, 71-80.

800

Mayor, J., Bora, S. S., Cotton, F. (2018a). Capturing regional variations of hard-rock κ0 from Coda
analysis. *Bulletin of the Seismological Society of America*, **108**, 399-408.

804	Mayor, J., Traversa, P., Calvet, M., & Margerin, L. (2018b). Tomography of crustal seismic
805	attenuation in Metropolitan France: implications for seismicity analysis. Bulletin of Earthquake
806	Engineering, 16 , 2195-2210.
807	
808	Moran, P. A. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society.

809 *Series B (Methodological)*, **10**, 243-251.

810

Morasca, P., Malagnini, L., Akinci, A., Spallarossa, D., Herrmann, R. B. (2006). Ground-motion
scaling in the western Alps. *Journal of Seismology*, 10, 315-333.

813

- Mucciarelli, M., Gallipoli, M. R. (2006). Comparison between Vs30 and other estimates of site
 amplification in Italy. *Proceedings of the First European Conference on Earthquake Engineering and Seismology*, Paper 270, Geneva, Switzerland.
- 817
- Parolai, S. (2018). k0: Origin and Usability. *Bulletin of the Seismological Society of America*, 108,
 3446-3456.

820

Parolai, S., Bindi, D., Pilz, M. (2015). k0: The role of intrinsic and scattering attenuation. *Bulletin of the Seismological Society of America*, **105**, 1049-1052.

823

Parolai, S., Bindi, D. (2004). Influence of soil-layer properties on k evaluation. *Bulletin of the Seismological Society of America*, 94, 349-356.

Perron, V., Laurendeau, A., Hollender, F., Bard, P. Y., Gélis, C., Traversa, P., Drouet, S. (2017).
Selecting time windows of seismic phases and noise for engineering seismology applications: A
versatile methodology and algorithm. *Bulletin of Earthquake Engineering*, doi: 10.1007/s10518017-0131-9.

831

Petersen, M., Frankel, A., Harmsen, S., Mueller, C., Haller, K., Wheeler, R., Wesson, R., Zeng, Y.,
Boyd, O., Perkins, D., Luco, N., Field, E., Wills, C., Rukstales, K. (2008). Documentation for the
2008 update of the United States national seismic hazard maps , U.S. Geological Survey Open-File
Report 2008-1128.

836

Pilz, M., & Fäh, D. (2017). The contribution of scattering to near-surface attenuation. *Journal of Seismology*, 21, 837-855.

839

Poggi, V., Edwards, B., Fäh, D. (2011). Derivation of a reference shear-wave velocity model from
empirical site amplification. *Bulletin of the Seismological Society of America*, 101, 258-274.

842

Purvance, M. D., Anderson, J. G. (2003). A comprehensive study of the observed spectral decay
in strong-motion accelerations recorded in Guerrero, Mexico. *Bulletin of the Seismological Society of America*, 93, 600-611.

846

Rautian, T. G., Khalturin, V. I. (1978). The use of the coda for determination of the earthquake
source spectrum. *Bulletin of the Seismological Society of America*, 68, 923-948.

- Richards, P. G., Menke, W. (1983). The apparent attenuation of a scattering medium. *Bulletin of the Seismological Society of America*, 73, 1005-1021.
- 852

853 Rodriguez-Marek, A., Rathje, E. M., Bommer, J. J., Scherbaum, F., Stafford, P. J. (2014).

Application of single-station sigma and site-response characterization in a probabilistic seismic-

- hazard analysis for a new nuclear site. *Bulletin of the Seismological Society of America*, **104**, 16011619.
- 857
- Rodriguez-Marek, A., Kruiver, P. P., Meijers, P., Bommer, J. J., Dost, B., van Elk, J., Doornhof,
 D. (2017). A regional site-response model for the Groningen Gas Field. *Bulletin of the Seismological Society of America*, 107, 2067-2077.
- 861
- Roecker, S. W., Tucker, B., King, J., Hatzfeld, D. (1982). Estimates of Q in Central Asia as a
 function of frequency and depth using the coda of locally recorded earthquakes. *Bulletin of the Seismological Society of America*, 72, 129-149.
- 865
- Sato, H., Fehler, M. (1998). Scattering and attenuation of seismic waves in heterogeneous Earth.
 332 pages, Springer Verlag, New York.
- 868
- Scherbaum, F., Schmedes, J., Cotton, F. (2004). On the conversion of source-to-site distance
 measures for extended earthquake source models. *Bulletin of the Seismological Society of America*,
 94, 1053-1069.
- 872

873	Schneider, J. F., Silva, W. J., Stark, C. (1993). Ground motion model for the 1989 M 6.9 Loma
874	Prieta earthquake including effects of source, path, and site. Earthquake Spectra, 9, 251-287.
875	

876 Shapiro, N. M., Campillo, M., Margerin, L., Singh, S. K., Kostoglodov, V., Pacheco, J. (2000).

The energy partitioning and the diffusive character of the seismic coda. *Bulletin of the Seismological Society of America*, **90**, 655-665.

879

Silva, W. J., Abrahamson, N., Toro, G., Costantino, C. (1997). Description and validation of the
stochastic ground motion model, Final Report, Brookhaven National Laboratory, Associated
Universities, Inc. Upton, New York

883

Silva, W. J., Wong, I. G., Darragh, R. B., Rogers, A. M., Walsh, T. J., Kochelman, W. J., Priest,
G. R. (1998). Engineering characterization of earthquake strong ground motions in the Pacific
Northwest. *Assessing Earthquake Hazards and Reducing Risk in the Pacific Northwest*, 1560, 313324.

888

Stanko, D., Markušić, S., Ivančić, I., Mario, G., Gülerce, Z. (2017). Preliminary estimation of
Kappa parameter in Croatia. *IOP Conference Series: Earth and Environmental Science*, 95, paper
032014, IOP Publishing, Bristol, United Kingdom.

892

893 Trifunac, M. D., Brady, A. G. (1975). A study on the duration of strong earthquake ground motion.
894 *Bulletin of the Seismological Society of America*, **65**, 581-626.

- Tsai, C. C. P., Chen, K. C. (2000). A model for the high-cut process of strong-motion accelerations
 in terms of distance, magnitude, and site condition: An example from the SMART 1 array, Lotung,
 Taiwan. *Bulletin of the Seismological Society of America*, **90**, 1535-1542.
- 899
- 900 Van Houtte, C., Drouet, S., Cotton, F. (2011). Analysis of the origins of κ (kappa) to compute hard
- 901 rock to rock adjustment factors for GMPEs. *Bulletin of the Seismological Society of America*, 101,
 902 2926-2941.
- 903
- 904 Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G.,
- 905 Arvidsson, R., Basili, R., Demirciogli, M. B., Hiemer, S., Meletti, C., Musson, R. W., Rovida, A.
- N., Sesetyan, K., Stucchi, M. (2015). The 2013 European seismic hazard model: Key components
 and results. *Bulletin of Earthquake Engineering*, 13, 3553-3596.
- 908
- Zaccarelli, R., Bindi, D., Strollo, A., Quinteros, J., Cotton, F. (2019). Stream2segment: an open
 source tool for downloading, processing and visualizing massive event-based seismic waveform
 datasets, *Seismological Research Letters*, under review.
- 912
- 913 Zeng, Y. (1991). Compact solutions for multiple-scattered wave energy in time domain. *Bulletin*914 of the Seismological Society of America, 81, 1022-1029.
- 915
- 216 Zhao, J. X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P. G., Asano, A., Ohno, Y., Oouchi,
- 917 T., Takahashi, T., Ogawa, H. (2006). An empirical site-classification method for strong-motion
- 918 stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of
- 919 *America*, **96**, 914-925.

920	Full mailing addresses of the authors
921	
922	
923	Marco Pilz, Fabrice Cotton, Riccardo Zaccarelli, Dino Bindi
924	Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences
925	Telegrafenberg
926	14467 Potsdam
927	Germany
928	
929	
930	
931	
932	
933	
934	
935	
936	
937	
938	
939	
940	
941	
942	
943	

Figure 1: East-west component of a recording of the 22 January 2014 M 4.2 recording at station Morigerati MGR in Italy. The onset of P, S and coda waves are indicated. The grey bands indicate the time windows for pre-event noise (A), S waves (B) and coda waves (C). Figure 2: Example for the calculation of k at site MGR using the event shown in Figure 1. The thin black line represents the Fourier acceleration spectrum while the grey line indicates the smoothened spectrum. The colored bands define the two frequency windows in which f_1 and f_2 are selected. Between these two bounds, all of the combinations of the slope of linear regression are tested. The straight colored lines represent minimum and maximum values of κ . The dotted line indicates the best in terms of the residuals of the regression (see text for further details). The color version of this figure is available only in the electronic edition. Figure 3: Left: Location map of the 1384 seismic stations used in this study represented by colored triangles. Right: Magnitude-distance distribution. The color version of this figure is available only in the electronic edition.

968	Figure 4: κ_0^{coda} of all stations as a function of coda window length for different choices of the coda
969	onset for $T_{\text{coda}} = 20$ s (left), $T_{\text{coda}} = 40$ s (middle) and $T_{\text{coda}} = 2.3(T_S - T_P) + T_S$ (right, black lines)
970	after the origin time of the earthquake. Epicentral distances range between 5 and 120 km. The red
971	line represents the mean plus/minus one standard deviation. The color version of this figure is
972	available only in the electronic edition.
973	
974	
975	
976	Figure 5: Interpolated map of κ_0^{coda} . Stations are indicated as black dots. The color version of this
977	figure is available only in the electronic edition.
978	
979	
980	
981	Figure 6: Comparison of H/V spectral ratios of all sites considered being reference sites (black
982	lines). The red line represents the mean plus/minus one standard deviation. The dashed lines
983	indicate the frequency range for which the H/V spectral ratios have to be below a threshold of 2.5.
984	The color version of this figure is available only in the electronic edition.
985	
986	
987	Figure 7: Estimates of κ_0^{AH} against κ_0^{coda} at reference sites (left) and non-reference sites (right).
988	
989	
505	
990	Figure 8: κ_0^{coda} against magnitude bins (bin width 0.5 units). The mean of each magnitude bin is

992	
993	
994	Figure 9: Scatter plot of interpolated κ_0^{coda} at reference sites from Figure 5 against measured κ_0^{AH}
995	at reference sites for the computation of the correlation coefficient.
996	
997	
998	
999	
1000	
1001	
1002	
1003	
1004	
1005	
1006	
1007	
1008	
1009	
1010	
1011	
1012	

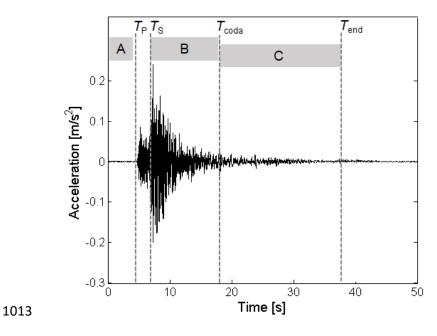
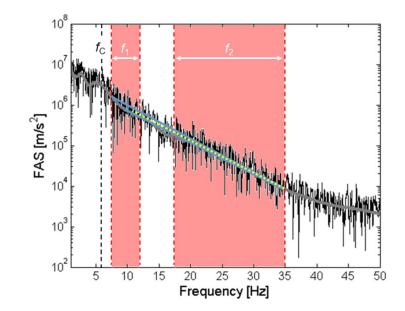



Figure 1: East-west component of a recording of the 22 January 2014 M 4.2 recording at station
Morigerati MGR in Italy. The onset of P, S and coda waves are indicated. The grey bands indicate
the time windows for pre-event noise (A), S waves (B) and coda waves (C).

1021

Figure 2: Example for the calculation of κ at site MGR using the event shown in Figure 1. The thin black line represents the Fourier acceleration spectrum while the grey line indicates the smoothened spectrum. The colored bands define the two frequency windows in which f_1 and f_2 are selected. Between these two bounds, all of the combinations of the slope of linear regression are tested. The straight colored lines represent minimum and maximum values of κ . The dotted line indicates the best in terms of the residuals of the regression (see text for further details). The color version of this figure is available only in the electronic edition.

1030

1031

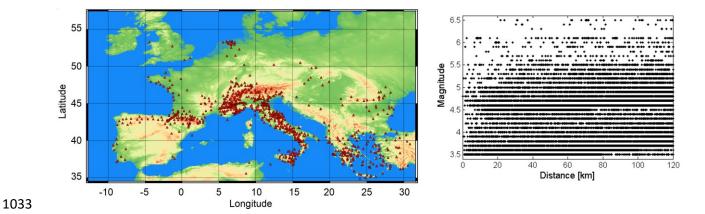


Figure 3: Left: Location map of the 1384 seismic stations used in this study represented by colored
triangles. Right: Magnitude-distance distribution. The color version of this figure is available only
in the electronic edition.

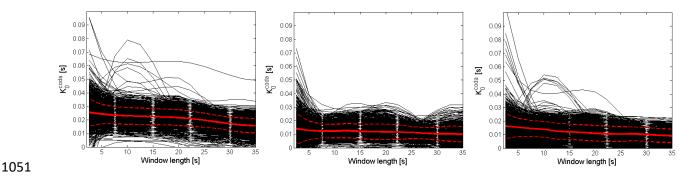


Figure 4: κ_0^{coda} of all stations as a function of coda window length for different choices of the coda onset for $T_{\text{coda}} = 20$ s (left), $T_{\text{coda}} = 40$ s (middle) and $T_{\text{coda}} = 2.3(T_S - T_P) + T_S$ (right, black lines) after the origin time of the earthquake. Epicentral distances range between 5 and 120 km. The red line represents the mean plus/minus one standard deviation. The color version of this figure is available only in the electronic edition.

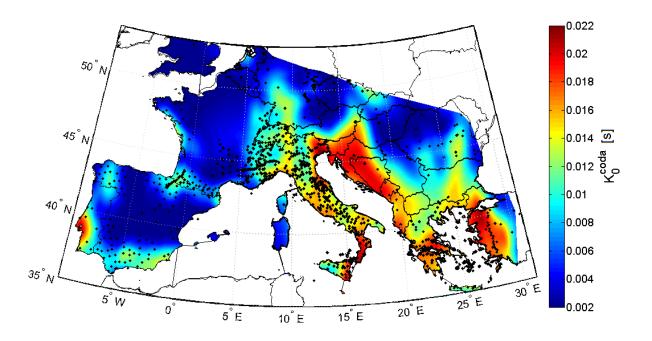
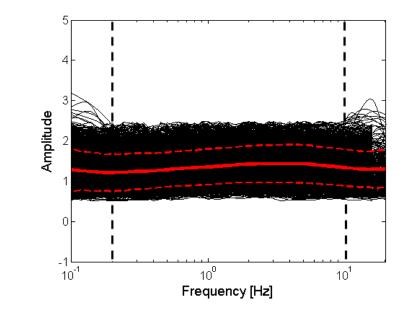
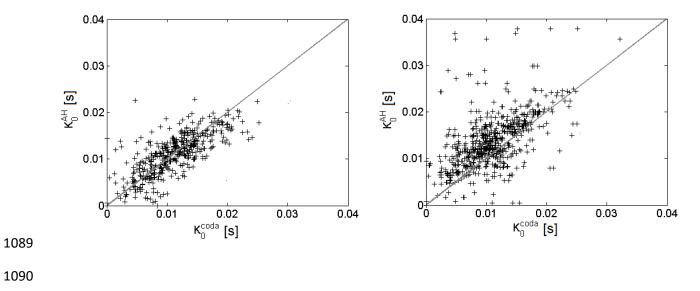
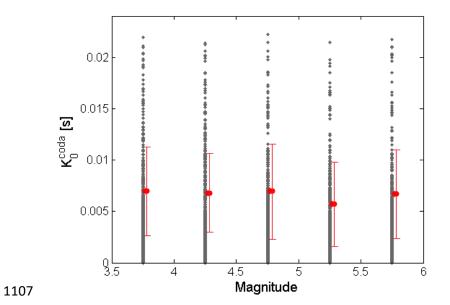
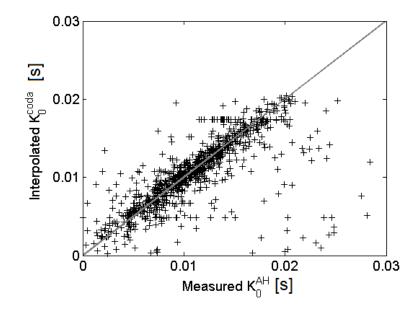


Figure 5: Interpolated map of κ_0^{coda} . Stations are indicated as black dots. The color version of this figure is available only in the electronic edition.


Figure 6: Comparison of H/V spectral ratios of all sites considered being reference sites (black
lines). The red line represents the mean plus/minus one standard deviation. The dashed lines
indicate the frequency range for which the H/V spectral ratios have to be below a threshold of 2.5.
The color version of this figure is available only in the electronic edition.

1091 Figure 7: Estimates of κ_0^{AH} against κ_0^{coda} at reference sites (left) and non-reference sites (right).

1108 Figure 8: κ_0^{coda} against magnitude bins (bin width 0.5 magnitude units). The mean of each 1109 magnitude bin is indicated as circles with plus/minus one standard deviation.

1116 Figure 9: Scatter plot of interpolated κ_0^{coda} at reference sites from Figure 5 against measured κ_0^{AH} 1117 at reference sites for the computation of the correlation coefficient.

1131 Appendix A1

1132

1133 List of 717 stations indicated as reference sites.

Station	Network	Lat [°]	Lon [°]	Start	End	κ_0^{coda} [S]
ABSI	SI	46.7285 N	11.3205 E	2006		0.0078
ACER	IV	40.7867 N	15.9427 E	2007		0.0096
ACOM	NI / OX	46.5480 N	13.5137 E	2005		0.0063
AGG	HT	39.0211 N	22.3360 E	2007		0.0135
AGRP	CL	38.3959 N	21.7228 E	2012		0.0111
AIGLE	СН	46.3418 N	6.9530 E	1998		0.0100
AIO	MN / IV	37.9712 N	15.2330 E	2012		0.0110
ALJA	IV	37.7490 N	13.7537 E	2008		0.0089
ALN	HT	40.8850 N	26.0460 E	2007		0.0098
AMGA	HL	36.8316 N	25.8938 E	2012		0.0096
AMUR	IV	40.9071 N	16.6041 E	2005		0.0120
ANKY	HL	35.8670 N	23.3012 E	2010		0.0099
ANTF	FR	43.5644 N	7.1234 E	2003	2013	0.0062
AOI	IV	43.5502 N	13.6020 E	2004		0.0116
AOS	HT	39.1654 N	23.8639 E	2008	2018	0.0120
APE	GE / HL	37.0727 N	25.5230 E	2000		0.0097
AQU	MN / IV	42.3540 N	13.4050 E	1988		0.0101
ARG	HL	36.2136 N	28.1212 E	2003		0.0111
ARVD	IV	43.4981 N	12.9415 E	2003		0.0138
ASQU	IV	43.7967 N	11.7893 E	2007		0.0098
ASSB	IV	43.0426 N	12.6587 E	2008		0.0109
ASTA	HL	36.5455 N	26.3530 E	2011		0.0109
ATCA	IV	43.5659 N	12.2661 E	2010	2013	0.0124
ATE	FR	43.0858 N	0.7003 W	1995		0.0060
ATFO	IV	43.3666 N	12.5715 E	2009		0.0120
ATHU	HA	37.9665 N	23.7845 E	2007		0.0114
ATLO	IV	43.3152 N	12.4073 E	2009		0.0111
ATMI	IV	43.3342 N	12.2680 E	2009		0.0116
ATPC	IV	43.4807 N	12.4570 E	2009		0.0121
ATTE	IV	43.1979 N	12.3536 E	2009		0.0130
ATVO	IV	43.3821 N	12.4066 E	2009		0.0150
AVR	MT	44.9558 N	5.6531 E	2007		0.0044

BAG8	IV	45.8228 N	10.4664 E	2010		0.0056
BALST	СН	47.3358 N	7.6950 E	2000		0.0061
BDI	IV	44.0628 N	10.5956 E	2003		0.0087
BERGE	СН	47.8716 N	8.1780 E	2012		0.0061
BERNI	СН	46.4136 N	10.0231 E	1998		0.0136
BIBA	СН	46.3025 N	7.9304 E	2009		0.0076
BNALP	СН	46.8703 N	8.4249 E	1998		0.0116
BNI	MN	45.0520 N	6.6780 E	1988		0.0069
BOB	IV	44.7679 N	9.4478 E	2003		0.0102
BOBI	СН	47.5463 N	8.3398 E	2013		0.0065
BOTT	IV	45.5494 N	10.3095 E	2009	2014	0.0077
BOURR	СН	47.3936 N	7.2301 E	1998		0.0061
BRANT	СН	46.9380 N	6.4730 E	2002		0.0061
BSSO	IV	41.5461 N	14.5938 E	2005		0.0085
BSTF	FR	43.8009 N	5.6433 E	2010		0.0028
BUD	HU	47.4831 N	19.0201 E	2004		0.0085
CADA	IV	43.1942 N	13.7614 E	2010		0.0087
CAFE	IV	41.0280 N	15.2366 E	2005		0.0094
CAFI	IV	43.3292 N	11.9663 E	2007		0.0110
CAFR	IV	42.2273 N	14.3470 E	2005	2017	0.0062
CAGR	IV	37.6220 N	14.4999 E	2010		0.0102
CALF	FR	43.7528 N	6.9218 E	1995		0.0064
CANF	LC	42.7637 N	0.5175 W	2011		0.0047
CASP	IV	42.7908 N	10.8652 E	2007		0.0092
CBRU	CA	42.2855 N	2.1803 E	2000		0.0035
CDRU	IV	40.4896 N	15.3046 E	2005		0.0145
CEL	MN	38.2603 N	15.8939 E	2003		0.0157
CELI	IV	39.4027 N	16.5088 E	2011		0.0130
CERA	IV	41.5978 N	14.0183 E	2006		0.0097
CERT	IV	41.9490 N	12.9818 E	2003		0.0134
CESX	IV	42.6085 N	12.5868 E	2008		0.0079
CET2	IV	39.5288 N	15.9546 E	2011		0.0129
CHIF	FR	46.1335 N	0.4077 W	2000		0.0021
CHMF	FR	47.2484 N	6.6517 E	2009		0.0062
CHOS	HT	38.3869 N	26.0506 E	2006		0.0163
CIGN	IV	41.6542 N	14.9050 E	2003		0.0088
CIMA	IV	43.3053 N		2010		0.0138
CING	IV	43.3756 N	13.1954 E	2003		0.0121
CIRO	GU	45.6019 N	7.5682 E	2010		0.0088
CLTA	IV	37.1580 N	13.9620 E	2012		0.0077
CMPR	IV	40.3181 N	15.3030 E	2005		0.0092

COR1	IV	43.6318 N	13.0003 E	2011		0.0092
CORL	IV		13.3038 E	2006		0.0117
CRE	IV	43.6189 N		2003		0.0098
CRMI	IV	43.7956 N		2006		0.0111
CSA1	4A	39.8403 N		2012	2014	0.0147
CSA2	4A	39.8422 N	15.9276 E	2012	2014	0.0148
CSA3	4A	39.8396 N	15.9265 E	2012	2014	0.0110
CSA4	4A	39.8403 N	15.9254 E	2012	2014	0.0111
CSA5	4A	39.8420 N	15.9262 E	2012	2014	0.0085
CSB	4A	39.8153 N	16.1677 E	2012	2014	0.0114
CSB	Y4	39.8153 N	16.1678 E	2014	2015	0.0114
CSC	4A	40.0083 N	15.9762 E	2012	2014	0.0082
CT07	YP	44.4105 N	5.5170 E	2012	2013	0.0024
CT08	YP	44.4119 N	5.6051 E	2012	2013	0.0028
CT09	YP	44.4295 N	5.7144 E	2012	2013	0.0033
CT12	YP	44.4751 N	5.9826 E	2012	2013	0.0050
CT13	YP	44.4596 N	6.0559 E	2012	2013	0.0050
CT14	YP	44.4609 N	6.1375 E	2012	2013	0.0055
CT15	YP	44.4693 N	6.2362 E	2012	2013	0.0064
CT16	YP	44.4771 N	6.3140 E	2012	2013	0.0062
CT17	YP	44.5041 N	6.3576 E	2012	2013	0.0065
CT18	YP	44.5006 N	6.4555 E	2012	2013	0.0069
CT19	YP	44.5409 N	6.5198 E	2012	2013	0.0095
CT22	YP	44.6663 N	6.6248 E	2012	2013	0.0077
CT23	YP	44.6642 N	6.6848 E	2012	2013	0.0074
CT24	YP	44.7288 N	6.7449 E	2012	2013	0.0073
CT25	YP	44.7255 N	6.7705 E	2012	2013	0.0073
CT26	YP	44.7650 N	6.8042 E	2012	2013	0.0091
CT27	YP	44.7662 N	6.8799 E	2012	2013	0.0073
CT28	YP	44.7954 N	6.9237 E	2012	2013	0.0072
CT30	YP	44.7732 N	7.0393 E	2012	2013	0.0074
CT31	YP	44.7982 N	7.0814 E	2012	2013	0.0073
CT32	YP	44.8091 N	7.1301 E	2012	2013	0.0073
CT33	YP	44.8250 N	7.2010 E	2012	2013	0.0073
CT38	YP	45.0186 N	7.7484 E	2012	2013	0.0064
CT40	YP	45.0693 N	7.9170 E	2012	2013	0.0061
CT41	YP	45.0866 N	8.0426 E	2012	2013	0.0061
CT42	YP	45.0990 N	8.1729 E	2012	2013	0.0063
CT44	YP	45.0657 N	8.4265 E	2012	2013	0.0070
CT45	YP	45.0441 N	8.5425 E	2012	2013	0.0072
CT46	YP	44.9890 N	8.6687 E	2012	2013	0.0078

CT47	YP	43.9285 N	5 1865 E	2012	2013	0.0019
CT49	YP	44.1803 N		2012	2013	
CT49 CT50	YP	44.1803 N 44.5620 N		2012	2013	0.0067 0.0083
CT52	YP	45.0359 N		2012	2013	0.0069
CTRE	CA	42.3242 N	0.7736 E	2006	2035	0.0033
	MN	39.9938 N		2003	2000	0.0117
DAGMA	СН	47.2309 N	8.0125 E	2013		0.0067
DAVOX	СН	46.7805 N	9.8795 E	2002		0.0110
DID	HP	37.5063 N	23.2368 E	2007		0.0143
DID	XY	37.5063 N	23.2368 E	2008	2009	0.0143
DIX	СН	46.0811 N		1976		0.0055
DOI	IV	44.5042 N	7.2466 E	2003	2015	0.0084
DRO	HP	37.9520 N	21.7100 E	2010		0.0159
DSF	HP	38.4112 N	22.5271 E	2008		0.0126
E018	IB	37.9803 N	5.9548 W	2007	2009	0.0018
E025	IB	37.7016 N	3.4657 W	2007	2009	0.0042
E030	IB	38.4684 N	5.6264 W	2007	2009	0.0013
E034	IB	38.2298 N	2.1918 W	2008	2009	0.0057
E041	IB	38.6500 N	3.6572 W	2009	2010	0.0032
E051	IB	38.9925 N	3.6714 W	2009	2010	0.0024
E056	IB	39.1320 N	0.6447 W	2009	2010	0.0012
E060	IB	39.7615 N	4.6337 W	2009	2010	0.0085
E062	IB	39.6400 N	2.5312 W	2009	2011	0.0009
E064	IB	39.6554 N	1.4590 W	2009	2010	0.0085
E074	IB	40.1312 N	2.4199 W	2009	2011	0.0085
E085	IB	40.4993 N	1.9736 W	2009	2011	0.0085
E086	IB	40.5569 N	1.0970 W	2009	2010	0.0085
E138	IB	42.8515 N	7.9689 W	2010	2013	0.0057
E139	IB	42.9373 N	7.5104 W	2011	2013	0.0051
E140	IB	42.9504 N	6.8722 W	2010	2013	0.0031
E143	IB	42.9062 N	4.6081 W	2010	2014	0.0066
E145	IB	42.7966 N	3.2075 W	2011	2014	0.0063
E149	IB	42.7637 N	0.5175 W	2011	2013	0.0048
E153	IB	43.2292 N	5.7227 W	2011	2014	0.0025
E154	IB	43.3519 N		2011	2014	0.0048
E155	IB	43.2448 N		2010	2014	0.0052
E157	IB	43.1707 N		2011	2013	0.0022
E158	IB	42.6608 N	0.1906 E	2011	2012	0.0045
ECH	G	48.2163 N		1990		0.0061
ECHE	IB	39.5896 N		2009	2010	0.0085
ECNV	IV	37.5956 N	14.7125 E	2007	2017	0.0115

EDMD	GB	54.8312 N	1.9636 W	2011		0.0017
EFSA	HL	39.5401 N	24.9886 E	2010		0.0088
EILF	FR	43.5479 N	7.1312 E	2011		0.0058
EJON	ES	42.4487 N	2.8886 E	2000		0.0065
ELOJ	IB	37.1464 N	4.1540 W	2007	2009	0.0046
EMBD	СН	46.2165 N	7.8322 E	2009		0.0049
EMING	СН	47.8952 N	8.8468 E	2013		0.0073
EMMET	СН	47.4376 N	8.0136 E	2012		0.0064
EMV	СН	46.0632 N	6.8988 E	1981	2012	0.0063
ENR	GU	44.2267 N	7.4203 E	2011		0.0092
EOSO	ES	28.0718 N	15.552 W	2000		0.0090
EPID	HA	37.6144 N	23.1189 E	2011		0.0138
EQUI	GU	44.1660 N	10.1530 E	2012		0.0081
EREA	HA	38.4199 N	23.9318 E	2010		0.0107
ESCA	FR	43.8310 N	7.3744 E	2003		0.0081
ESLN	IV	37.6934 N	14.9744 E	2005		0.0100
EVGI	HT	38.6210 N	20.6560 E	2012		0.0124
EVO	G	38.5320 N	8.0130 W	1996	2000	0.0085
EVO	WM	38.5294 N	8.0167 W	2006		0.0085
EVR	HL	38.9166 N	21.8105 E	2010		0.0112
EVRN	IV	37.6892 N	15.1356 E	2010		0.0140
EWZT0	СН	47.3668 N	8.4968 E	2009		0.0068
EZAM	IB	42.1482 N	8.6968 W	2010	2012	0.0039
FAGN	IV	42.2657 N	13.5838 E	2004		0.0082
FAVR	IV	37.2671 N	13.6670 E	2003		0.0063
FDMO	IV	43.0365 N	13.0873 E	2008		0.0088
FEMA	IV	42.9621 N	13.0498 E	2009		0.0104
FIAM	IV	42.2680 N	13.1172 E	2004		0.0139
FIESA	СН	46.4352 N	8.1105 E	2009		0.0080
FILT	YX	38.4493 N	21.9656 E	2002	2002	0.0150
FIR	IV	43.7744 N	11.2551 E	2009		0.0079
FIR	Y4	44.7936 N	6.0022 E	2004	2007	0.0043
FIU1	IV	43.1886 N	12.9316 E	2011		0.0114
FIVI	GU	44.2393 N	10.1273 E	2008		0.0136
FNVD	IV	44.1678 N	11.1229 E	2003		0.0108
FODE	GE	35.3797 N	24.9576 E	2000	2003	0.0098
FOEL	GB	52.8879 N	3.2012 W	2008		0.0027
FRE8	IV	46.0150 N	12.3552 E	2011		0.0141
FRES	IV	41.9735 N	14.6693 E	2004		0.0090
FROS	IV	43.2097 N	11.1562 E	2010		0.0122
FSK	HP	38.4593 N	20.5623 E	2012		0.0130

FSSB	IV	43.6931 N	12.7771 E	2003		0.0111
FULLY	СН	46.1563 N		2018		0.0071
FUORN	СН	46.6203 N	10.2636 E	2000		0.0098
FUSIO	СН	46.4548 N	8.6629 E	1999		0.0068
FVI	IV	46.5966 N	12.7804 E	2003		0.0141
GALF	IV	37.7107 N	14.5665 E	2006		0.0071
GATE	IV	41.5131 N	14.9102 E	2009		0.0113
GBAS	SL	45.9348 N	14.4434 E	2008		0.0130
GBRS	SL	45.5311 N	14.8101 E	2007		0.0138
GCIS	SL	45.8672 N	15.6275 E	2003		0.0138
GEC2	GR	48.8443 N	13.7006 E	1997		0.0085
GIB	IV	37.9901 N	14.0260 E	2003		0.0091
GIMEL	СН	46.5336 N	6.2655 E	1999		0.0058
GIUL	IV	41.5583 N	13.2546 E	2003		0.0136
GRC1	GR	48.9962 N	11.5214 E	1978		0.0020
GRC2	GR	48.8676 N	11.3755 E	1978		0.0020
GRC3	GR	48.8902 N	11.5858 E	1978		0.0014
GRC4	GR	49.0867 N	11.5263 E	1978		0.0019
GRFO	IU	49.6909 N	11.2203 E	1994		0.0027
GRG	HT	40.9570 N	22.4010 E	2008		0.0082
GRIMS	СН	46.5781 N	8.3189 E	2011		0.0079
GROG	IV	43.4262 N	9.8920 E	2005	2018	0.0095
GROS	SL	46.4610 N	15.5018 E	2002		0.0128
GRYON	СН	46.2505 N	7.1111 E	2002		0.0072
GRZ1	TH	50.6908 N	12.2196 E	2012		0.0027
GTTG	GR	51.5464 N	9.9642 E	2003		0.0013
GUAR	IV	41.7945 N	13.3123 E	2003		0.0078
GUNZ	SX	50.3635 N	12.3316 E	2003		0.0031
GUT	СН	48.0707 N	9.1153 E	1997	2009	0.0080
GVD	GE	34.8392 N	24.0873 E	1999	2003	0.0055
GVD	GE	34.8391 N	24.0874 E	2003		0.0055
GVD	HL	34.8391 N	24.0874 E	2010		0.0055
HAGA	IV	37.2850 N	15.1550 E	2006		0.0121
HAMIK	СН	47.2451 N	8.2706 E	2013		0.0067
HASLI	СН	46.7568 N	8.1512 E	1999		0.0074
HAVL	IV	36.9596 N	15.1220 E	2005	2017	0.0154
HBSP	IV	37.1270 N	14.4920 E	2012	2018	0.0114
HCRL	IV	37.2831 N	15.0325 E	2008	2017	0.0171
HLNI	IV	37.3485 N	14.8720 E	2009		0.0131
HMDC	IV	36.9590 N	14.7831 E	2005		0.0185
HORT	HT	40.5978 N	23.0996 E	2008		0.0071

HSKC	7E	50.6073 N	13.4315 E	2006	2008	0.0085
HSKC	CZ			2014		0.0085
HVZN	IV	37.1783 N	14.7155 E	2005		0.0148
IACL	IV	38.5330 N	14.3550 E	2007		0.0115
IACM	HL	35.3058 N	25.0709 E	2010		0.0127
IDI	HL	35.2880 N	24.8900 E	2010		0.0088
IDI	MN	35.2880 N	24.8900 E	1994		0.0088
IFIL	IV	38.5642 N	14.5753 E	2005		0.0120
IGT	HT	39.5315 N	20.3299 E	2008		0.0108
IKRA	HL	37.6112 N	26.2928 E	2010		0.0098
ILLEZ	СН	46.2193 N	6.9404 E	2017		0.0068
ILLI	IV	38.4457 N	14.9483 E	2005		0.0120
IMMV	GE	35.4606 N	23.9811 E	2010		0.0084
IMMV	HL	35.4606 N	23.9811 E	2010		0.0084
IMTC	IV	40.7209 N	13.8758 E	1988		0.0102
INTR	IV	42.0115 N	13.9046 E	2003		0.0122
IOAT	YX	38.3459 N	22.2729 E	2002	2002	0.0126
IOCA	IV	40.7458 N	13.9008 E	1988		0.0102
ISO	FR	44.1840 N	7.0500 E	1995		0.0073
ISO	ZO	46.1450 N	12.0780 E	2002	2003	0.0128
IST3	IV	38.7992 N	15.2304 E	2012		0.0148
JAN	HL	39.6562 N	20.8487 E	2010		0.0134
JAUN	СН	46.6340 N	7.2910 E	2018		0.0073
JOPP	IV	38.6068 N	15.8856 E	2006		0.0207
KALE	HA	38.3911 N	22.1398 E	2007		0.0155
KARP	GE	35.5471 N	27.1611 E	2009		0.0106
KARP	HL	35.5471 N	27.1611 E	2003		0.0106
KASA	HL	39.7463 N	19.9354 E	2010		0.0133
KAVA	HT	40.9967 N	24.5137 E	2008		0.0091
KEK	HL	39.7127 N	19.7962 E	2003		0.0136
KEK	MN	39.7127 N	19.7962 E	2000		0.0136
KOSI	SI	46.4630 N	11.3778 E	2006		0.0085
KOSI	Z3	36.7449 N	26.9517 E	2005	2007	0.0130
KSL	HL	36.1503 N	29.5856 E	2010		0.0055
LAUCH	СН	46.4155 N	7.7717 E	2010		0.0079
LAVEY	СН	46.2000 N	7.0228 E	2017		0.0070
LIENZ	СН	47.2946 N	9.4927 E	2004		0.0118
LIT	HT	40.1033 N	22.4892 E	2006		0.0097
LKBD	СН	46.3870 N	7.6271 E	1999	2017	0.0074
LKBD2	СН	46.3746 N	7.6443 E	2001		0.0080
LKD	HT	38.7072 N	20.6506 E	2006	2008	0.0122

LKD2	HT	38.7889 N	20.6578 E	2008		0.0107
LKR	HL	38.6496 N		2010		0.0185
LKR	XY	38.6500 N	23.0000 E	2007	2009	0.0185
LLS	СН	46.8468 N		1978		0.0067
LMK	GB	53.4573 N	0.3274 W	2009		0.0085
LNSS	IV	42.6029 N	13.0403 E	2004		0.0132
LOUT	HA	37.9879 N	22.9743 E	2010		0.0125
LPEL	IV	42.0468 N	14.1832 E	2008		0.0094
LRVF	FR	44.9478 N	0.3100 W	2011		0.0024
LSD	GU	45.4595 N	7.1343 E	2007		0.0070
LTK	HP	38.0228 N	22.9673 E	2006		0.0112
LTRZ	IV	40.6032 N	16.8191 E	2003		0.0106
LUSI	SI	45.9595 N	10.9436 E	2012		0.0059
MA9	IV	41.7698 N	12.6591 E	2008		0.0115
MABI	IV	46.0549 N	10.5140 E	2003		0.0070
MACI	IU	28.2502 N	16.508 W	2008		0.0091
MAGA	IV	45.7753 N	10.6286 E	2006		0.0064
MAKT	YX	38.4331 N	22.1248 E	2002	2002	0.0131
MAON	IV	42.4283 N	11.1309 E	2003		0.0108
MATE	GE	40.6491 N	16.7044 E	2007		0.0119
MCH1	GB	51.9973 N	2.9983 W	2004		0.0028
MCIV	IV	42.7786 N	11.6765 E	2010		0.0150
MCPD	IV	38.1199 N	14.7310 E	2012	2018	0.0118
MCRV	IV	40.7826 N	15.1684 E	2005		0.0107
MCSR	IV	38.0646 N	15.2301 E	2010	2017	0.0105
MDAR	IV	43.1927 N	13.1427 E	2008		0.0082
MDI	IV	45.7697 N	9.7160 E	2004		0.0141
ME12	IV	38.6315 N	15.0700 E	2007	2010	0.0123
MEF	HE	60.2172 N	24.3958 E	2006		0.0021
MELA	IV	41.7059 N	15.1270 E	2008		0.0126
MERA	IV	45.7054 N	9.4291 E	2009		0.0094
MESG	IV	40.5894 N	17.8504 E	2009		0.0076
MESJ	LX	37.8395 N	8.2199 W	2007		0.0085
METMA	СН	47.7122 N	8.2526 E	2013		0.0063
MFSFA	СН	46.5004 N	8.8080 E	2005	2011	0.0082
MFSFB	СН	46.5055 N	8.8045 E	2006	2009	0.0082
MGAB	IV	42.9126 N	12.1121 E	2008		0.0109
MGNA	HL	38.6561 N	20.7912 E	2010		0.0125
MGR	IV	40.1376 N	15.5535 E	2003		0.0102
MHLA	HL	36.7450 N	24.4219 E	2011	2015	0.0091
MHLO	HL	36.6898 N	24.4017 E	2010		0.0091

MIDA	IV	41.6419 N	14.2540 E	2004		0.0120
MIGL	IV	40.6044 N		2006		0.0105
MIL	7E	50.5403 N	13.9357 E	2006	2008	0.0085
MIL	XY	36.7083 N	24.5322 E	2007	2009	0.0096
MILE	ZZ	36.7320 N	24.4990 E	2002	2003	0.0083
MILN	IV	45.4803 N	9.2321 E	2012		0.0088
MILN	ZZ	36.7580 N	24.4230 E	2002	2003	0.0088
MILO	ZZ	36.6900 N	24.4020 E	2002	2003	0.0091
MILS	ZZ	36.6930 N	24.5030 E	2002	2003	0.0094
MLS	FR	42.9560 N	1.0950 E	1995		0.0052
MLYF	FR	43.9880 N	5.7675 E	2010		0.0032
MMK	СН	46.0507 N	7.9641 E	1981		0.0067
MMME	IV	37.9352 N	15.2539 E	2004	2012	0.0133
MMN	IV	39.8910 N	15.9904 E	2009		0.0178
MMUR	IV	43.4418 N	12.9973 E	2008		0.0087
MNS	IV	42.3855 N	12.6811 E	2003	2013	0.0105
MNT3	IX	40.8370 N	15.0067 E	2006		0.0088
MNTP	IV	43.1374 N	13.4693 E	2012		0.0100
MNVA	HL	36.6871 N	23.0373 E	2010		0.0084
MOCO	IV	41.3700 N	15.1580 E	2005		0.0070
MONC	IV	45.0739 N	7.9271 E	2005		0.0072
MORC	CZ	49.7766 N	17.5428 E	1993		0.0067
MORC	GE	49.7766 N	17.5428 E	1993		0.0067
MORC	M1	49.7768 N	17.5425 E	2012		0.0067
MOSI	SI	46.6164 N	10.5495 E	2006		0.0060
MPAG	IV	43.6292 N	12.7595 E	2009		0.0125
MPNC	IV	38.1465 N	15.3528 E	2010		0.0210
MRB1	IV	41.1227 N	14.9682 E	2003		0.0089
MRKA	HA	38.7047 N	23.5847 E	2008		0.0129
MRVN	IV	41.0609 N	16.1958 E	2007		0.0106
MSCL	IV	38.2320 N	15.7900 E	2007		0.0199
MSFR	IV	38.0339 N	14.5916 E	2011		0.0110
MSRU	IV		15.5083 E	2004		0.0196
MSSA	IV	44.3162 N	9.5174 E	2008		0.0111
MTCE	IV	42.0228 N	12.7422 E	2003		0.0106
MTI01	СН	47.3791 N		2014		0.0063
MTI02	СН	47.3793 N		2014		0.0063
MTIA1	СН	47.3798 N	7.1648 E	2014		0.0063
MTIA2	СН	47.3718 N		2014		0.0063
MTIA3	СН	47.3703 N		2015		0.0064
MTIA4	CH	47.3850 N	7.2004 E	2015		0.0062

MTRZ	IV	44.3128 N	11.4248 E	2007		0.0076
MTSN	IV		15.7515 E	2006		0.0114
MTTG	IV	38.0031 N		2003		0.0131
MUCR	IV	38.0430 N	14.8739 E	2011		0.0183
MUGIO	СН	45.9219 N	9.0417 E	2001		0.0076
MUO	СН	46.9676 N	8.6371 E	1981		0.0083
NALPS	СН	46.5951 N	8.7483 E	2011		0.0083
NARO	IV	43.6108 N	12.5806 E	2011		0.0161
NEO	HL	39.3057 N	23.2219 E	2010		0.0139
NOV	IV	38.0278 N	15.1367 E	2007		0.0159
NPS	HL	35.2613 N	25.6104 E	2010		0.0097
NSC3	IX	40.8468 N	15.1222 E	2012		0.0090
NVR	HL	41.3485 N	23.8652 E	2010		0.0089
OFFI	IV	42.9350 N	13.6857 E	2006		0.0112
OG02	FR	46.1542 N	6.2202 E	2011		0.0059
OG35	FR	46.0448 N	5.5718 E	2010		0.0032
OGAG	FR	44.7878 N	6.5397 E	1995		0.0088
OGDI	FR	44.1093 N	6.2253 E	1995		0.0054
OGGM	FR	45.2057 N	6.1167 E	1995		0.0059
OGMO	FR	45.2086 N	6.6831 E	1996		0.0076
OGS2	FR	45.0648 N	5.8020 E	2012		0.0035
OGSM	FR	45.6093 N	5.6972 E	2011		0.0048
OKC	CZ	49.8346 N	18.1400 E	1998		0.0114
OSSC	IV	43.5236 N	11.2458 E	2011		0.0092
OTER1	СН	47.5778 N	7.6039 E	2006		0.0055
OUR	HT	40.3325 N	23.9791 E	2008		0.0104
PANIX	СН	46.8257 N		2011		0.0095
PARC	IV	43.6486 N	12.2386 E	2008		0.0117
PATC	HL	38.2693 N	21.7600 E	2010		0.0124
PCP	GU	44.5413 N	8.5452 E	2006		0.0136
PE03	X7	42.6379 N	1.2492 E	2011	2012	0.0042
PE03	Z3	37.3784 N	21.7722 E	2005	2007	0.0157
PE05	X7	42.5758 N		2011	2012	0.0043
PE05	Z3	37.5128 N	22.4553 E	2005	2007	0.0099
PE06	X7	42.5350 N		2011	2012	0.0042
PE06	Z3	37.1787 N		2005	2007	0.0116
PE16	X7	42.1536 N	0.9534 E	2011	2012	0.0028
PESA	IV	43.9410 N	12.8402 E	2003		0.0197
PF01	X7	42.7589 N	1.1883 E	2011	2012	0.0044
PF04	X7	42.9023 N	1.2103 E	2011	2012	0.0044
PF05	X7	42.9255 N	1.2361 E	2011	2012	0.0042

PF07	X7	43.0089 N	1.2683 E	2011	2012	0.0040
PF08	X7	43.0583 N		2011	2012	0.0037
PF09	X7	43.0972 N	1.3070 E	2011	2012	0.0033
PFVI	PM	37.1328 N	8.8268 W	2008		0.0085
PIEI	IV	43.5357 N	12.5350 E	2003		0.0156
PIGN	IV	41.2000 N	14.1799 E	2011		0.0100
PIO1	IV	43.1782 N	12.9838 E	2011		0.0114
PIPA	IV	39.4851 N	16.8158 E	2008		0.0156
PLAC	IV	38.4494 N	16.4383 E	2005		0.0117
PLONS	СН	47.0492 N	9.3808 E	2002		0.0116
POFI	IV	41.7174 N	13.7120 E	2007		0.0139
POPM	GU	44.0450 N	10.7570 E	2010		0.0083
PP04	7E	51.2548 N	12.6450 E	2006	2006	0.0085
PR01	IV	43.8481 N	12.0606 E	2011	2011	0.0162
PR02	IV	43.8586 N	12.1569 E	2011	2011	0.0115
PR03	7E	51.5962 N	11.9545 E	2006	2008	0.0085
PRI	Y4	44.7164 N	4.5669 E	2004	2006	0.0085
PRK	HL	39.2456 N	26.2650 E	2010		0.0140
PRK	XY	39.2460 N	26.2720 E	2007	2009	0.0140
PSAT	YX	38.3332 N	22.1751 E	2002	2002	0.0151
PSB1	IV	41.2234 N	14.8108 E	2003		0.0112
PST3	IX	40.5609 N	15.2433 E	2009		0.0097
PSZ	GE	47.9184 N	19.8944 E	1995		0.0015
PSZ	HU	47.9182 N	19.8934 E	1995		0.0015
PTCC	IV	46.4075 N	13.3540 E	2003		0.0141
PTL	HL	38.0473 N	23.8638 E	2010		0.0115
PTMD	IV	36.7885 N	11.9934 E	2010	2018	0.0018
PTQR	IV	42.0219 N	13.4006 E	2003		0.0156
PTRJ	IV	41.3641 N	14.5290 E	2007		0.0094
PURA	NI	46.4258 N	12.7419 E	2007		0.0127
PVAQ	PM	37.4037 N	7.7173 W	2006		0.0085
PVO	HP	38.6160 N	21.5250 E	2011		0.0115
PW03	8A	41.6880 N	7.4962 W	2010	2012	0.0018
PW03	X7	43.7754 N	0.5632 W	2012	2013	0.0028
PW05	8A	41.4208 N	6.4807 W	2010	2012	0.0011
PW05	X7	43.6334 N	0.6075 W	2012	2013	0.0033
PW06	8A	40.9958 N	8.2701 W	2011	2012	0.0022
PW06	X7	43.5653 N	0.6613 W	2012	2013	0.0035
PW07	8A	40.9447 N	7.4988 W	2010	2012	0.0018
PW07	X7	43.5090 N	0.7364 W	2012	2013	0.0035
PW08	8A	40.6647 N	6.9899 W	2010	2012	0.0015

	V7	42 4022 N	0.9642.W	2012	2012	0.0022
PW08	X7	43.4933 N		2012	2013	0.0032
PW12	8A	40.1971 N		2010	2011	0.0021
PW12	X7	43.3125 N	1.0373 W	2012	2013	0.0033
PW13	8A	39.7665 N	8.9167 W	2010	2012	0.0019
PW13	X7	43.2265 N	1.1191 W	2012	2013	0.0033
PW14	8A	39.6180 N		2010	2012	0.0014
PW14	X7	43.1845 N	1.1643 W	2012	2013	0.0034
PW16	8A	39.7682 N		2010	2012	0.0010
PW16	X7	43.1518 N	1.2559 W	2012	2013	0.0032
PW17	8A	39.3500 N	9.2866 W	2010	2011	0.0023
PW17	X7	43.1086 N	1.2797 W	2012	2013	0.0033
PW18	8A	39.4583 N	7.8858 W	2010	2012	0.0011
PW18	X7	43.0684 N	1.3905 W	2012	2013	0.0048
PW21	X7	42.9481 N	1.5386 W	2012	2013	0.0037
PW27	X7	42.6702 N	1.8539 W	2012	2013	0.0037
PW28	X7	42.6066 N	1.9186 W	2012	2013	0.0036
PW29	X7	42.6014 N		2012	2013	0.0035
PY05	X7	42.8513 N	0.6161 E	2010	2013	0.0051
PY06	X7	42.7703 N	1.5203 E	2010	2013	0.0038
PY07	X7	42.5602 N		2011	2012	0.0041
PY43	X7	46.6860 N	1.8690 W	2011	2013	0.0011
PY46	X7	47.7460 N	3.4920 W	2011	2014	0.0012
PYL	HP	36.8955 N	21.7420 E	2007		0.0096
PZUN	BA	40.6458 N	15.8070 E	2008	2018	0.0108
PZUN	IV	40.6458 N	15.8070 E	2018		0.0108
PZZ	GU	44.5068 N	7.1160 E	2007		0.0083
QLNO	IV	44.3242 N		2003		0.0110
RAFF	IV		14.3624 E	2005		0.0117
RDP	IV	41.7604 N	12.7103 E	2005		0.0100
REAL	IB	36.4852 N	5.2078 W	2007	2008	0.0030
RESU	IV	37.6468 N	14.0568 E	2008		0.0094
RETH	GR	52.7379 N	9.3610 E	2012		0.0085
RETH	Z3	35.2934 N	24.4948 E	2005	2006	0.0098
REVF	FR	43.7390 N	7.3662 E	2003		0.0095
RIOA	HL	38.2958 N	21.7912 E	2010		0.0124
RISI	SI	46.9480 N	12.0787 E	2006		0.0088
RLS	HL	38.0559 N	21.4648 E	2010		0.0094
RMP	IV	41.8111 N	12.7022 E	2009		0.0113
ROMAN	СН	47.5643 N	9.3360 E	2015		0.0095
RORO	GU	44.1122 N	8.0662 E	2008		0.0149
ROTHE	СН	47.4761 N	7.9209 E	2013		0.0063

ROTM	GU	44.8493 N	8.3527 E	2011		0.0075
RRL	GU	44.9208 N		2010		0.0066
RSL	FR	45.6882 N	6.6245 E	2010		0.0048
RSM2	IV	43.9377 N	12.4451 E	2012		0.0127
RSP	GU	45.1482 N	7.2653 E	2006		0.0072
RUSF	FR	43.9412 N	5.4837 E	2000		0.0024
SAARA	СН	47.3861 N	8.0438 E	2018		0.0065
SABO	NI	45.9875 N	13.6336 E	2005	2015	0.0133
SABO	OX	45.9875 N	13.6336 E	2016		0.0133
SACR	IV	41.3974 N	14.7057 E	2004		0.0084
SAIG	СН	46.3172 N	6.9666 E	2012		0.0070
SAIRA	СН	47.3027 N	7.0864 E	2011		0.0064
SALAN	СН	46.1442 N	6.9730 E	2001		0.0068
SALB	СН	46.9422 N	8.2745 E	1997	2009	0.0094
SALB	IV	39.8772 N	16.3459 E	2009		0.0094
SALI	IX	40.9300 N	15.1800 E	2009		0.0093
SALO	IV	45.6183 N	10.5243 E	2005		0.0071
SALS	СН	47.2259 N	9.4864 E	1998	2012	0.0094
SALT	СН	46.2173 N	7.3645 E	1992	2005	0.0077
SANT	GE	36.3710 N	25.4590 E	1997	2007	0.0178
SANT	GE	36.3705 N	25.4593 E	2007		0.0178
SANT	HL	36.3705 N	25.4593 E	2010		0.0178
SANT	ZD	36.3710 N	25.4590 E	1996	1997	0.0178
SAOF	FR	43.9860 N	7.5532 E	1995		0.0098
SAPK	СН	47.3305 N	9.4043 E	2015		0.0094
SARC	СН	46.2098 N	7.2564 E	2018		0.0074
SARD	СН	46.7766 N	10.2049 E	2015		0.0079
SARE	СН	47.5149 N	9.4302 E	2014		0.0094
SARG	СН	46.8992 N	8.2510 E	1992	2012	0.0079
SATI	GU	45.8753 N	7.8685 E	2010		0.0063
SAUR	СН	47.5339 N	7.7228 E	2005		0.0058
SAYF	СН	46.2880 N	7.4171 E	1992	2011	0.0079
SAYF2	СН	46.2880 N	7.4170 E	2015		0.0079
SBAE	СН	47.5744 N	7.6107 E	1997	2007	0.0056
SBAF	СН	47.5838 N	7.5920 E	2005		0.0055
SBAH	СН	47.0683 N	9.5084 E	1993	2001	0.0097
SBAJ	СН	47.5669 N	7.5829 E	1998	2009	0.0056
SBAJ2	СН	47.5670 N	7.5824 E	2013		0.0056
SBAK	СН	47.5718 N	7.5928 E	2014		0.0056
SBAM	СН	47.5558 N	7.5916 E	1998	2007	0.0056
SBAM2	СН	47.5557 N	7.5923 E	2014		0.0056

SBAP	СН	47.5724 N	7.5644 E	2005		0.0056
SBAS	СН	47.1938 N	8.5170 E	2014		0.0070
SBAT	СН	47.5586 N	7.5817 E	2005		0.0056
SBAV	СН	47.5633 N	7.6079 E	2013		0.0056
SBAW	СН	47.5476 N	7.6038 E	2013		0.0056
SBEA	СН	47.6984 N	8.5961 E	1992	2012	0.0068
SBET	СН	46.5931 N	9.7612 E	1993	2009	0.0097
SBGN	СН	46.6282 N	9.7484 E	2015		0.0097
SBIF	СН	47.5543 N	7.6285 E	1992	2009	0.0057
SBIK	СН	47.1344 N	7.2470 E	2014		0.0065
SBIS2	СН	47.5411 N	7.5835 E	2008		0.0056
SBRG	СН	46.3110 N	7.9763 E	1992	2017	0.0077
SBRS	СН	46.3169 N	7.9814 E	2012		0.0077
SBUA	СН	47.1590 N	9.4685 E	1992	2009	0.0096
SBUA2	СН	47.1591 N	9.4710 E	2011		0.0096
SBUG	СН	47.1735 N	9.4811 E	1992	2009	0.0096
SBUH	СН	47.1726 N	9.4740 E	2012		0.0096
SBUL	СН	46.6264 N	7.0529 E	2018		0.0069
SBUM	СН	47.1460 N	9.4340 E	1992	2009	0.0096
SBUW	СН	47.1662 N	9.4654 E	1992	1992	0.0096
SCAS	СН	46.1554 N	8.6160 E	1994	2012	0.0067
SCAS2	СН	46.1552 N	8.6148 E	2016		0.0067
SCEL	СН	46.5074 N	9.8554 E	2009		0.0095
SCEM	СН	46.5058 N	9.8411 E	1997	2009	0.0095
SCHAT	СН	46.8315 N	6.8353 E	2017		0.0068
SCHC	СН	47.5325 N	7.6677 E	1992	2012	0.0057
SCHE	СН	47.7117 N	8.6526 E	2001	2009	0.0070
SCHF	SX	50.6772 N	12.4031 E	2002		0.0024
SCHK	СН	46.7889 N	9.5363 E	2015		0.0099
SCHT	СН	47.7116 N	8.6538 E	1992	2001	0.0070
SCOD	СН	46.4705 N	7.1287 E	2016		0.0073
SCOU	СН	46.8540 N	7.1037 E	2008		0.0068
SCTE	IV	40.0724 N	18.4675 E	2006		0.0120
SCUC	СН	46.7980 N	10.3038 E	2005		0.0075
SCUG	СН	46.8561 N	9.5238 E	2011		0.0099
SCUT	СН	46.8597 N	9.5261 E	1992	2008	0.0098
SDAK	СН	46.8005 N	9.8320 E	2015		0.0093
SDAS	СН	46.8020 N	9.8287 E	1992	2003	0.0093
SDES	СН	47.3685 N	7.3399 E	2016		0.0060
SDIF	СН	46.0841 N	7.4018 E	1992	2015	0.0075
SEF1	IV	43.1468 N	12.9476 E	2011		0.0112

SEFS	СН	46.8187 N	8.6485 E	2017		0.0085
SEML	СН	47.6696 N		1996	2004	0.0088
SEMOS	СН	46.0677 N	6.9350 E	2013		0.0066
SENGL	СН	46.8216 N	8.4105 E	2018		0.0080
SENIN	СН	46.3633 N	7.2994 E	2002		0.0077
SERG	HP	38.4133 N	22.0566 E	2010		0.0169
SERI	HA	37.1609 N	24.4853 E	2010		0.0122
SERI	Z3	37.1610 N	24.4853 E	2005	2007	0.0122
SERI	ZZ	37.1610 N	24.4850 E	2002	2004	0.0122
SERS	IV	39.0359 N	16.6886 E	2005		0.0127
SFEA	СН	46.8458 N	9.4718 E	1992	2017	0.0099
SFEL	СН	47.5326 N	8.2309 E	2016		0.0065
SFI	IV	43.9048 N	11.8470 E	2003		0.0091
SFRA	СН	47.5036 N	7.7091 E	2007		0.0059
SFRS	СН	46.5823 N	7.6563 E	2018		0.0078
SFRU	СН	46.7913 N	7.1579 E	2016		0.0069
SGAG	СН	47.2107 N	9.4493 E	1992	2009	0.0095
SGAK	СН	46.3153 N	7.7414 E	2016		0.0078
SGAS	СН	47.2071 N	9.4706 E	1996	2009	0.0095
SGEM	СН	46.1930 N	6.1300 E	1992	2004	0.0057
SGG	IV	41.3867 N	14.3792 E	2005		0.0093
SGLK	СН	47.0450 N	9.0661 E	2017		0.0092
SGRA	СН	46.1936 N	7.8356 E	2010		0.0074
SGT00	СН	47.4240 N	9.3103 E	2012		0.0094
SGT01	СН	47.4317 N	9.3185 E	2012	2014	0.0124
SGT02	СН	47.5133 N	9.2479 E	2012	2014	0.0089
SGT03	СН	47.3656 N	9.1994 E	2012	2015	0.0093
SGT04	СН	47.3484 N	9.3490 E	2012		0.0132
SGT05	СН	47.4419 N	9.4560 E	2012		0.0124
SGT18	СН	47.4672 N	9.2442 E	2018		0.0094
SGTA	IV	41.1350 N	15.3650 E	2006		0.0097
SHEK	СН	47.4157 N	9.6280 E	2015		0.0092
SHER	СН	46.1853 N	7.3959 E	2017		0.0077
SIEB	СН	46.2954 N	7.5351 E	2012		0.0080
SIES	СН	46.2877 N	7.5485 E	1997	2011	0.0080
SIGR	HT	39.2114 N	25.8553 E	2008		0.0119
SIMPL	СН	46.2396 N	8.0196 E	2009		0.0075
SINS	СН	46.6869 N	7.8641 E	2012		0.0079
SIOE	СН	46.2245 N	7.3842 E	1997	1998	0.0077
SIOP	СН	46.2278 N	7.3483 E	1997	1998	0.0078
SIVA	GE	35.0175 N	24.8100 E	2004	2011	0.0061

SIVA	HL	35.0178 N	24.8120 E	2010		0.0061
SIZS	СН	46.7724 N		2016		0.0097
SKAF	СН	47.5384 N	7.7199 E	2006		0.0058
SKEH	СН	46.9029 N	8.2715 E	1992	2012	0.0079
SKIA	HA	39.1665 N	23.4661 E	2008		0.0132
SKLW	СН	47.4630 N	8.5674 E	2015		0.0069
SKRK	СН	47.6481 N	9.1806 E	2015		0.0092
SKY	HL	38.8831 N	24.5482 E	2011		0.0134
SKY	XY	38.8831 N	24.5481 E	2007	2009	0.0134
SLAE	СН	46.8996 N	7.2410 E	1992	2016	0.0069
SLCF	СН	47.0830 N	6.7924 E	2016		0.0067
SLCN	IV	40.3900 N	15.6328 E	2003		0.0103
SLE	СН	47.7645 N	8.4924 E	1980		0.0064
SLOP	СН	46.1638 N	8.7906 E	2013		0.0072
SLTM	СН	46.9253 N	9.0003 E	1996	2013	0.0092
SLTM2	СН	46.9236 N	9.0009 E	2011		0.0092
SLUK	СН	47.0479 N	8.3083 E	2014		0.0074
SM0F	СН	46.0021 N	7.3431 E	1992	2005	0.0072
SMAF	СН	46.0567 N	7.9546 E	1992	2014	0.0067
SMAO	СН	46.0989 N	7.0748 E	2012		0.0069
SMAR	СН	46.2079 N	6.9949 E	1992	2017	0.0070
SMAV	СН	46.1002 N	7.0878 E	1992	2008	0.0070
SMELS	СН	47.0465 N	9.4272 E	2018		0.0097
SMFL	СН	47.2100 N	9.5463 E	2014		0.0095
SMG	HL	37.7043 N	26.8377 E	2010		0.0121
SMOE	СН	46.6718 N	6.8011 E	2015		0.0066
SMTH	HL	40.4709 N	25.5304 E	2010		0.0099
SMTK	СН	47.3352 N	9.5896 E	1996	2009	0.0093
SMUK	СН	46.2863 N	6.9406 E	2005		0.0070
SMZA	СН	47.5417 N	7.6583 E	1998	2012	0.0057
SMZW	СН	47.5474 N	7.6471 E	2005		0.0057
SNAL	IV	40.9254 N	15.2091 E	2004		0.0070
SNES	СН	47.0002 N	6.9529 E	1989	2005	0.0068
SNES2	СН	47.0000 N	6.9531 E	2014		0.0068
SNEW	СН	47.1999 N	9.5429 E	1993	2009	0.0095
SNIB	СН	46.1771 N	7.8024 E	2010		0.0074
SNTG	IV	43.2550 N	12.9406 E	2003		0.0101
SNTZ	СН	46.3239 N	7.9883 E	2017		0.0077
SOH	HT	40.8217 N	23.3539 E	2006		0.0085
SOLB	СН	47.2068 N	7.5171 E	2011		0.0064
SPGF	CH	46.6249 N	10.2001 E	1992	2006	0.0082

SRER	СН	47.5116 N	7.5979 E	2011		0.0057
SRFW	СН	47.5532 N		2017		0.0060
SRHB	CH	47.5713 N	7.6244 E	1996		0.0056
SRHE	СН	47.5856 N	7.6494 E	2013		0.0056
SRHH	СН	47.5798 N	7.6538 E	2013		0.0056
SRNR	СН	47.5110 N	7.6032 E	1997	2007	0.0057
SRS	HT	41.1087 N	23.5950 E	2008		0.0117
SRUG	СН	47.2441 N	9.5258 E	1993	2000	0.0094
SSCN	СН	47.5316 N	7.6697 E	2014		0.0057
SSM1	IV	43.2288 N	13.1770 E	2011		0.0114
SSTS	СН	46.9610 N	8.3568 E	2015		0.0078
SSY	IV	37.1577 N	15.0737 E	2004		0.0142
STAF	СН	46.8052 N	7.2161 E	2008		0.0069
STAM	СН	46.2288 N	7.8625 E	1992	2010	0.0075
STHK	СН	46.7437 N	7.6295 E	2015		0.0076
STIEG	СН	47.4978 N	8.6540 E	2012		0.0073
STRW	СН	47.1165 N	9.5502 E	2014		0.0096
STSP	СН	46.6264 N	10.3332 E	2006		0.0075
STSW	СН	46.3451 N	7.4325 E	1993	2008	0.0080
STSW2	СН	46.3452 N	7.4338 E	2016		0.0080
STV	GU	44.2455 N	7.3260 E	2006		0.0091
SULZ	СН	47.5275 N	8.1115 E	2000		0.0049
SURF	FR	44.4809 N	6.8117 E	2010		0.0111
SUSI	СН	46.0104 N	8.9587 E	2017		0.0073
SVAM	CH	46.6934 N	9.5261 E	1991		0.0099
SVEJ	СН	46.4598 N	6.8394 E	2016		0.0068
SVIL	СН	46.2922 N	7.8865 E	2010		0.0077
SVIO	СН	46.2908 N	7.8803 E	2010		0.0077
SVIP	СН	46.3002 N	7.8636 E	1997	2003	0.0077
SVISP	СН	46.3004 N	7.8775 E	2015		0.0077
SVIT	СН	46.2897 N	7.8850 E	2010		0.0077
SWAS	СН	47.1220 N	9.3088 E	2016		0.0096
SWIK	СН	47.4596 N	9.0346 E	2015		0.0090
SWIS	СН	47.5064 N	8.7300 E	2015		0.0077
SWYZ	СН	47.0238 N	8.6526 E	2018		0.0081
SYVJ	СН	46.7771 N	6.6375 E	2001	2010	0.0064
SZEK	СН	46.0196 N	7.7474 E	2016		0.0068
SZEM	СН	46.6997 N	10.1008 E	1992	2008	0.0085
SZER	СН	46.6975 N	10.0977 E	2006		0.0085
SZUD	СН	47.3693 N	8.5800 E	1992	2005	0.0071
SZUF	CH	47.4662 N	8.5541 E	1998	2009	0.0069

SZWD	СН	46.5528 N	7 3706 E	1993	2017	0.0076
SZWD SZWD2	СН	46.5512 N	7.3700 E	2017	2017	0.0076
TIP	MN	39.1794 N		2003		0.0076
TORNY	CH					
		46.7736 N	6.9587 E	2000		0.0085
	IV	43.1148 N		2010		0.0093
	IV	41.7666 N	14.5502 E	2005		0.0064
TRTR	IV	42.8081 N		2005		0.0085
TRULL	СН	47.6487 N	8.6816 E	2003		0.0073
TUE	MN	46.4722 N		2001		0.0133
VAGA	IV	41.4154 N	14.2342 E	2005		0.0118
VAM	HL	35.4070 N	24.1997 E	2010		0.0081
VANNI	СН	46.2101 N	7.5968 E	2009		0.0093
VDL	СН	46.4832 N	9.4496 E	1983		0.0089
VILL	HA	38.1642 N	23.3122 E	2009		0.0128
VLC	MN	44.1594 N	10.3864 E	2001		0.0133
VLI	HL	36.7180 N	22.9469 E	2010		0.0115
VLX	HP	37.3703 N	22.3793 E	2010		0.0114
VLY	HL	37.8524 N	23.7942 E	2010		0.0075
VULT	IV	40.9549 N	15.6163 E	2005		0.0091
VVLD	IV	41.8696 N	13.6232 E	2003		0.0138
WALHA	СН	47.7528 N	9.1231 E	2013		0.0087
WIMIS	СН	46.6649 N	7.6242 E	2000		0.0101
WOLEN	СН	46.9978 N	7.3688 E	2015		0.0069
XOR	HT	39.3660 N	23.1918 E	2008		0.0117
ZCCA	IV	44.3508 N	10.9765 E	2003		0.0058
ZKR	GE	35.1147 N	26.2170 E	2003	2011	0.0080
ZKR	HL / GE	35.1147 N	26.2169 E	2003		0.0080
ZOVE	IV	45.4536 N	11.4876 E	2011		0.0079
ZUR	СН	47.3692 N	8.5809 E	1998		0.0071