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Abstract

Motivation: Several recent studies showed that the application of deep neural networks advanced the
state-of-the-art in named entity recognition (NER), including biomedical NER. However, the impact on
performance and the robustness of improvements crucially depends on the availability of sufficiently large
training corpora, which is a problem in our field with its often rather small gold standard corpora.
Results: We evaluate different methods for alleviating the data sparsity problem by pre-training a
deep neural network (LSTM-CRF), followed by a rather short fine-tuning phase focusing on a particular
corpus. Experiments were performed using 34 different corpora covering five different biomedical entity
types, yielding an average increase in F1-score of 2.5% compared to learning without pre-training. We
experimented both with supervised and semi-supervised pre-training, leading to interesting insights into the
precision/recall trade-off. Based on our results, we created the stand-alone NER tool HUNER incorporating
fully trained models for five entity types. On the independent CRAFT corpus, which was not used for
creating HUNER, it outperforms the state-of-the-art tools GNormPlus and tmChem by 5%-10% on the
entity types chemicals, species, and genes.
Availability: HUNER is freely available at https://hu-ner.github.io. HUNER comes in containers,
making it easy to install and use, and it can be applied off-the-shelf to arbitrary texts. We also provide an
integrated tool for obtaining and converting all 34 corpora used in our evaluation, including fixed training,
development and test splits to enable fair comparisons in the future.
Contact: weberple@hu-berlin.de, munchmej@informatik.hu-berlin.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Named entity recognition in the biomedical domain (BioNER) is a central
task for information extraction to better cope with the vast amount of
biomedical literature. The current state of the art in BioNER are LSTM-
CRFs, a method originally proposed by (Lample et al., 2016). This
architecture combines a recurrent neural network with a long short term
memory (Hochreiter and Schmidhuber, 1997) for learning (possibly long-
ranging) correlations of features over the input texts and a CRF (Lafferty

et al., 2001) for predicting the tag sequence which identifies the entities.
Unfortunately, training such deep architectures requires large amounts of
annotated gold standard data. This poses a problem to applications in
biomedicine, where corpora sometimes contain less than 500 sentences
and rarely exceed a few thousands (see Table 1).

One approach to mitigate this problem is transfer learning. The general
idea is to include prior knowledge into a model using data which has
similarities to the actual target data but cannot be considered as gold
standard (Pan et al., 2010). The recently very popular word embeddings
can be seen as a form of transfer learning, as the knowledge on statistical
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co-occurrences of words derived from arbitrary unlabeled texts (sharing the
same language) is given to the model as prior knowledge (Mikolov et al.,
2013); we recently showed that this approach can significantly improve
the performance of BioNER (Habibi et al., 2017).

Another form of transfer learning, which is very prominent especially
for neural network models and which we study in the present work,
is pre-training the entire model (and not only the word vectors). Here,
the typical random model initialization is replaced by a phase where
model parameters are learned using corpora other but similar to the
target corpus. Pre-training of language models has shown to yield major
improvements in various tasks of natural language processing, including
sentence and text classification (Dai and Le, 2015; Howard and Ruder,
2018), sequence-to-sequence learning (Ramachandran et al., 2016), and
question answering (Min et al., 2017). Giorgi and Bader applied this
principle to a LSTM-CRF architecture for BioNER (Giorgi and Bader,
2018) and report improvements in F1-score (compared to Habibi et al.
(2017)) between 0.13% and 2.81% for four different entity types using 23
corpora. This work uses pre-training on a silver standard corpus sampled
from the CALBC-SSC-III-Small corpus (Kafkas et al., 2012), which was
created by unifying the output of several biomedical NER tools.

In this work, we significantly extend the work from Giorgi and Bader.
First, we explore different pre-training schemes, namely a silver-standard
and a gold-standard approach. The former is very similar to the setup
in Giorgi and Bader (2018). However, in contrast to using a publicly
available corpus, we create a silver standard by (1) training a CRF on
the union of available gold standard corpora for a given entity type, (2)
applying this model on all PubMed abstracts published until 2015, (3) and
filtering out all tagged entities for which recognition probability of the
CRF model is below a given threshold. This setup allows us to control
the trade off between diversity in the pre-training data and the number
of falsely tagged entities, as a higher threshold during entity filtering
leads to only high-quality training instances but with limited diversity.
In contrast, a lower threshold increases the number of falsely tagged
entities but increases diversity. We compare the performance of this semi-
supervised approach to pre-training with a strictly supervised one, where
pre-training is performed directly on other gold standard corpora for the
same entity type, leading to a cross-corpus setup (Tikk et al., 2010).
Second, we include in our evaluation all five entity types used in Habibi
et al. (2017) and extend the number of corpora to 34. Third, we also
perform evaluations without fine-tuning, i.e., we use the pre-trained model
directly as NER tool. Clearly, such an approach has problems whenever
the annotation styles of the pre-training corpora differ strongly from those
of the target corpus. On the other hand, it is the only realistic setup for
applying NER to unseen texts in novel applications, where no specific
training data is available nor specific annotation guidelines have to be
obeyed. To our surprise, we found this model without fine-tuning to
work astonishingly well. Hence, we bundled the gold-standard pre-trained
model into an easy-to-use stand alone tool, called HUNER, which is able
to perform off-the-shelf NER for five different biomedical entity types. On
the CRAFT corpus, HUNER outperforms tmChem (Leaman et al., 2015)
and GNormPlus (Wei et al., 2015), state-of-the-art biomedical NER tools
that also don’t require re-training, by a considerable margin.

HUNER and scripts for downloading, transforming, and splitting
all corpora used in this evaluation are freely available at https://
github.com/hu-ner/huner.

2 Methods

2.1 Corpora and Pre-Processing

Following (Habibi et al., 2017), we conduct experiments on 34 corpora
spanning the five different entity types chemicals, cell lines, diseases,
genes, and species, as well as the two different text genres of patent
documents and scientific articles, including both abstracts and full-
texts. To ensure that follow-up work can be fairly compared to the
proposed approach, we built a fully scripted pre-processing pipeline which
downloads all corpora, converts them from their specific source format
into the standard CoNLL2003 format (Tjong Kim Sang and De Meulder,
2003), and performs unified pre-processing using a custom NLP pipeline.
This pipeline employs the maximum entropy models for OpenNLP 1.5.01

together with OpenNLP 1.9.02 to split texts into sentences and to annotate
them with Part-of-Speech tags.

Subsequently, each resulting data set is split into train, development
and test sets on a document level. This splitting is carried out in a
deterministic way, to ensure that follow-up work can use the same splits
as used in this work. The ratios between training, development and test set
are 60:10:30. Where possible, splits were chosen to be identical to those
used in Habibi et al. (2017). To avoid knowledge leaks in the gold standard
settings, we adjusted the splits in such a way that any sentence appearing in
a train set does not appear in a development or test set for any other corpus
of the same entity type. This is especially important, as some corpora are
based on the same documents. Statistics on the resulting set of corpora can
be found in Table 1.

2.2 BioNER using Pre-Training

We use the LSTM-CRF architecture and implementation of Lample et al.
(2016). An extensive description of this architecture can be found in Habibi
et al. (2017). We also follow Habibi et al. (2017) in the choice of hyper-
parameters. That is, we use vanilla Stochastic Gradient Descent with a
learning rate of 0.005, a dropout rate of 0.3, a bidirectional character
LSTM with 25 units for each direction and a bidirectional word LSTM
with 100 units for each direction. For fine-tuning, we lower the learning
rate to 0.0005. We employ 200-dimensional pre-trained word embeddings
from Pyysalo et al. (2013), trained on a combination of PubMed abstracts3

(nearly 23 million abstracts), PMC articles4 (nearly 700,000 full texts)
and English Wikipedia articles5 (approximately 4 million articles). This
configuration was shown to achieve good performance in BioNER (Habibi
et al., 2017).

We evaluated two pre-training schemes. Both schemes employ a two
step training process (see Figure 1). In the first step, the pre-training step,
we train a LSTM-CRF on a large pre-training corpus (details below). In the
second step, we use the model weights obtained to initialize a LSTM-CRF
which is then fine-tuned during a second training specific for the target
corpus at hand. Pre-training in general is intended to increase the models
ability to generalize from the training examples to unseen test examples.
While the joint corpus does not capture the full characteristics of the target
corpus, it offers a larger training set. Therefore, more characteristics of the
entity type and the language can potentially be learned. The fine-tuning
step then only needs to adapt to the characteristics of the target corpus and
not the general task of finding entities.

1 http://opennlp.sourceforge.net/models-1.5/
2 https://opennlp.apache.org
3 See https://www.ncbi.nlm.nih.gov/pubmed/
4 See https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
5 See https://dumps.wikimedia.org/
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Table 1. Corpus statistics for the gold standard corpora. We abbreviate patents (Pat.), Scientific articles (Art.), abstracts (A) and full-texts (F).

Corpora Text Genre Text Type Entity Type # Sentences # Tokens # Unique Tokens # Annotations # Unique Annotations

CHEMDNER patent
Krallinger et al. (2015b,a)

Pat. A
Chemicals 49402 1465776 62379 63761 21305

Genes/proteins 49429 1465776 62379 12615 5909

CHEBIa Pat. F Chemicals 13791 313713 24358 16248 4961

BioSemantics Akhondi et al. (2014) Pat. F
Chemicals 345520 5678380 207053 327299 67716

Disease 347213 5684374 207336 19574 4438

CHEMDNER Krallinger et al. (2015a) Art. A Chemicals 88934 2236229 114837 79329 24640

CDR Li et al. (2016) Art. A
Chemicals 14228 323281 23068 15411 3629
Diseases 14247 323281 23068 12630 3466

BioCreative II GM Smith et al. (2008) Art. A Genes/proteins 20000 508257 50864 22838 16509

JNLPBA Kim et al. (2004) Art. A
Genes/proteins 18546 492551 22056 29447 9203

Cell Lines 18546 492551 22056 10480 4270

CellFinder Neves et al. (2012) Art. F
Genes/proteins 2176 65031 7977 1348 615

Species 2177 65031 7977 433 51
Cell Lines 2177 65031 7977 354 71

OSIRIS Furlong et al. (2008) Art. A Genes/proteins 1043 28697 4669 768 275

DECA Wang et al. (2010) Art. A Genes/proteins 5470 138034 14515 5973 2375

Variome Verspoor et al. (2013) Art. F
Genes/proteins 8288 172409 12649 4382 610

Diseases 8287 172409 12649 5508 637
Species 8288 172409 12649 182 8

FSU-PRGE Hahn et al. (2010) Art. A Genes/proteins 36216 960436 44559 58595 13075

IEPA Ding et al. (2001) Art. A Genes/proteins 486 15174 2923 1089 211

BioInfer Pyysalo et al. (2007) Art. A Genes/proteins 1100 33858 5200 4327 1501

miRNA Bagewadi et al. (2014) Art. A
Genes/proteins 2644 65998 7821 1004 410

Diseases 2644 65998 7821 2109 671
Species 2644 65998 7821 726 47

NCBI Disease Doğan et al. (2014) Art. A Diseases 7140 172717 12836 6768 2322

Arizona Disease Leaman et al. (2009) Art. A Diseasesb 2783 73773 8302 3036 1323

SCAI Diseases Gurulingappa et al. (2010) Art. A Diseases 5173 112340 11049 2240 1002

SCAI Chemicals Kolárik et al. (2008) Art. A Chemicals 1170 30567 5125 1204 797

S800 Pafilis et al. (2013) Art. A Species 7857 195197 20526 3613 1582

LocText Goldberg et al. (2015) Art. A
Genes/proteins 952 22550 4371 1839 761

Species 952 22550 4371 273 39

Linneaus Gerner et al. (2010) Art. F Species 21997 480813 34761 2782 406

CLL Kaewphan et al. (2015) Art. A, F Cell Lines 402 7764 2411 341 308

Gellus Kaewphan et al. (2015) Art. A, F Cell Lines 11809 312584 20118 650 210

a http://chebi.cvs.sourceforge.net/viewvc/chebi/chapati/
b Excluded from evaluation, as the corpora is nearly completely contained in other corpora

2.3 Creating Pre-Training Corpora

We evaluated two different ways of creating such a joint pre-training
corpus.

In the gold standard pre-training (GSPT), we create aggregated training
and development sets by combining all training and development sets of all
corpora for each entity type. This guarantees that the annotation quality of
the original corpora is preserved, meaning that we add no false positives
or false negatives compared to the original corpora. On the other hand
the resulting corpus does not follow a consistent annotation guideline and
has only limited size, bounded by the available gold standard corpora.
The resulting corpora vary in size between 19,853 sentences for cell lines
and 281,883 sentences for chemicals. The number of entity mentions vary
between 4,772 for species and 287,972 for chemicals (see Table 2). For
the final evaluation, we use these corpora as input for a entity-specific
LSTM-CRF fine-tuned for 100 epochs. As final model, we selected the
one achieving the best score on the development set.

To overcome the size limitations of GSPT, we also evaluated a semi-
supervised (silver standard) pre-training scheme (SSPT). We created one
joint silver standard corpus for all entity types. For each entity type we
used the pre-training corpus from the gold standard scheme, consisting of
the union of all training sets for that entity type, to train a CRF model6.

6 Using CRFSuite, see http://www.chokkan.org/software/crfsuite/

With these models we annotated all abstracts indexed by PubMed up to
the year 2015 (as pre-processed and provided by Hakala et al. (2016)),
and removed all sentences with a confidence lower than a given threshold.
If a token was annotated as belonging to more than one entity type, we
only kept the conflicting entity type with highest confidence. We added a
similar number of negative sentences to the corpus, for which we chose the
sentences with the highest confidence scores for not containing an entity
of any type. This procedure yielded a silver standard corpus consisting
of 4,292,383 sentences, containing 1,402,866 annotations for chemicals,
803,292 annotations for diseases, 23,644 annotations for genes, 26,536
annotations for cell lines and 258,313 annotations for species (see Table
2). Again, we use this corpus as input for entity-specific LSTM-CRF fine-
tuning on the target-corpus for five epochs and keep the best-performing
model for evaluation.

A schematic overview comparing the pre-training schemes is given
in Figure 1. In contrast to GSPT, SSPT does not offer guarantees on
the correctness of the contained annotations. In addition, we expect the
resulting corpus to contain few hard cases, as those probably have low
confidence scores in the CRF-classification and are thus discarded. On
the other hand, SSPT yields a far bigger pre-training corpus. We thus
expect that the SSPT corpus captures a wider variety of language possibly
allowing the model to generalize better to unseen sentences at test time, but
possibly a lower variety of entities. Note that the confidence threshold in
the filtering step allows to regulate the size and quality of the pre-training
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Table 2. Statistics of the pre-training corpora for gold (GSPT) and silver standard pre-training (SSPT). For SSPT only sentences containing at least one entity have
been counted.

Gold standard Silver standard

Entity type Sentences Mentions of annotated entities Unique entities Sentences Mentions of annotated entities Unique entities

Chemicals 281,883 287,972 70,370 1,174,573 1,402,866 59,090
Diseases 205,042 29,929 4,799 755,768 803,292 15,663
Species 26,357 4,772 1,141 252,404 258,313 3,612

Gene/Protein 88,863 87,015 19,985 21,446 23,644 2,979
Cell line 19,853 7,000 2,105 25,666 26,536 3,284

All Corpora

Pretrained
model

Final model

Gold standard
training set

Silver standard
corpus

Pubmed

CRF classifier

T
ra

in

Annotate and extract
high confidence

predictions

T
rain

Train

U
ni

on

Silver standard 
pretraining

Target corpus

Finetune  

Gold standard 
pretraining

Fig. 1. Schematic overview of the two pre-training schemes. The components exclusive to
silver and gold standard pre-training are highlighted. Corpora are encoded as green boxes
and models as light red ones.

corpus. While a high threshold should result in high precision at lower
recall and a comparably small training set, a low threshold should yield
lower precision at higher recall and a larger training set.

3 Results

3.1 Precision of the CRF

We first analyzed the precision of the CRF classifier used to generate
the silver standard corpus to be able to explore the trade-off between the
expected quality of the pre-training data and its size and diversity in terms
of different entity names. Figure 2 shows the precision of the classifier on
the test sets of all corpora of the respective entity type for different cutoff
values. In all but one case precision approaches a value between 95%
and 100% when the cutoff approaches 1. For genes it reaches only about
85%. As expected, higher precision comes at the cost of reduced corpus
size, which shrinks nearly linearly with the cutoff for most entity types
(diseases, chemicals, cell lines). For species names, the number of low
confidence prediction is relatively low, leading to a considerable lower
drop in number. The opposite can be observed for genes, where high
confidence predictions are rare, which corresponds to the overall lower
quality of gene name recognition.

Based on these results, we used a common cutoff value 0.95 for
all entity types to generate our silver standard corpus for all subsequent
experiments, as this value represents a reasonable trade off between corpus
size and precision. This implies that we obtain a comparably small pre-
training corpus for genes, while obtaining a comparably big one for species.

Fig. 2. Precision of the CRF classifier and number of sentences containing the entity types
for the five entity types at different cutoff values. Precision is shown as solid lines, number
of sentences as dashed lines of corresponding color.

As the pre-training step is computationally extremely expensive (one run
takes on average about 8 days on an NVIDIA GTX 1080 GPU), we did
not conduct further investigations on the influence of this cutoff on the
performance of SSPT.

3.2 Comparison of SSPT with GSPT

We used the SSPT and GSPT schemes to pre-train entity-specific LSTM-
CRF models, which were then fine tuned on the training sets of the different
evaluation corpora. The final models were then evaluated on the respective
test sets. We used the LSTM-CRF without pre-training as a baseline.
Macro averaged results of both approaches can be found in Table 3, while
results for individual corpora are listed in SM 1. In addition results are
shown in Figure 3. For all five entity types, both pre-training schemes
increase the average F1 score, with improvements ranging from 1.20 to
3.96 percentage points depending on the entity type. For four entity types,
both schemes improve both precision and recall; the exception are cell lines
where pre-training improves only recall. In general, gains in recall are more
pronounced than in precision. Only for one corpus (Variome Disease), both
pre-training methods lead to lower F1 scores than random initialization,
with a decrease of 0.4 pp for GSPT and of 1.1 pp for SSPT. Very high
gains in F1 can be achieved, for instance, on the CellFinder corpus for cell
lines (+9.61pp / +9.2pp for GSPT / SSPT), the SCAI corpus for chemicals
(+8.88pp / + 7.04pp), or the miRNA corpus for genes (+9.31pp / +8.42pp).

The overall and entity-type specific differences between SSPT and
GSPT are small. GSPT tends to give higher improvements in terms of
recall, whereas SSPT achieves higher gains in precision. GSPT leads to an
increase in F1 score on 26 of the 34 corpora and SSPT on 30 of 34. This is
an interesting observation, as it means that pre-training can safely re-use
the biomedical corpora which are already available; taking the extra effort
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Table 3. Macro averaged precision-, recall-, and F1-scores per entity type for no pre-training (Base), GSPT, and SSPT.

Precision (%) Recall (%) F1-score (%)

Base GSPT SSPT Base GSPT SSPT Base GSPT SSPT
Chemicals 82.26 84.39 83.51 82.30 85.09 85.67 82.22 84.68 84.56
Diseases 81.07 82.09 81.77 79.48 81.88 81.30 80.23 81.89 81.43
Species 82.46 83.29 85.30 82.60 87.22 86.08 82.15 84.98 85.60

Gene/protein 80.30 80.60 80.61 77.88 82.42 82.03 78.86 81.37 81.24

Cell lines 83.64 82.02 82.48 69.77 75.20 76.56 75.09 77.96 79.04
Average 81.56 82.18 82.38 78.82 82.79 82.62 79.83 82.28 82.37

Fig. 3. F1 score for different pre-training schemes grouped by entity type for baseline (B),
SSPT (S) and GSPT (G). Results for the same corpus are connected by lines. Mean values
per entity type are shown in black.

to create a silver standard corpus does not seem to pay-off. On a single
GTX 1080 GPU, one epoch of GSPT takes between 12 minutes (for cell
lines) and 3 hours (for chemicals), while an epoch of SSPT takes around
40.5 hours. Creating the SSPT corpus took around a week on a machine
with four Intel Xeon E7-4870 CPUs and a total of 80 threads.

3.3 Effects of Fine-tuning

To investigate the effects of fine-tuning on the target corpus, we also tested
to directly use the SSPT and the GSPT models as NER tools, omitting the
fine-tuning step. Aggregated results per entity type are presented in Table 4,
while results for individual corpora can be found in SM 1. In most cases,
pure SSPT leads to a model that is precise but has a low recall. This matches
our expectation, as our usage of only high confidence predictions reduces
diversity. Thus, the model is not good at identifying difficult entities but
offers very good performance in reducing false positives. In contrast, GSPT
yields a model with fairly balanced precision and recall.

It is very instructive to compare the results of GSPT with that of the
traditional approach to NER (no pre-training, only learning on the target
corpus; see column "no" in Table 3 and column "GSPT" in Table 4). In
12 cases, GSPT without any adaptation to the target corpus achieves a
result that is within 3pp of the corpus-specific models. For 5 corpora,
GSPT actually outperfoms the corpus-specific model (SCAI chemicals,
CellFinder species, s800 species, LocText species, and Linneaus species).
On the other hand, GSPT sometimes is drastically worse, with extreme
cases being LocText genes (-33pp) and OSIRIS genes (-20pp) and DECA
genes (-20pp). Performance on genes is generally much lower than corpus-
specific training, which corresponds to the lower quality of the GSPT
corpus itself (see above).

3.4 HUNER: An off-the-shelf biomedical NER tool

Overall, we found the results for using GSPT without fine tuning highly
encouraging. Note that in applications, users often do not have specific
training data at hand but require ready-to-use NER tools. Clearly, the
previous section showed that the expected performance is lower than when
using specifically annotated training data, but creating such resources is
costly and time-consuming. Furthermore, there are many applications for
NER being applied on all available texts to create a global view on the
current state-of-knowledge on specific entity. Examples of such tools are
PubTator (Wei et al., 2013) or GeneView (Thomas et al., 2012). Such
applications depend on NER tools that should be as much unbiased as
possible, e.g. should not depend on any specific gold standard.

To support such applications, we created HUNER, a stand-along
biomedical NER tool for five different entity types. HUNER wraps the
entity-specific GSPT models into easy-to-install and easy-to-use Docker
containers. These containers incorporate all software dependencies of
HUNER and provide a REST API that allows tagging of arbitrary sentences
with the pre-trained models. Additionally, we make a Python and a
command-line client for the tagging server available. To illustrate the
simplicity of using HUNER, the following recipe shows the five steps
necessary to apply it.

1. Install Docker
2. Download code and models from https://github.com/

hu-ner/huner

3. Start the annotation server for a given entity type:./start_server.sh
MODEL_NAME

4. Annotate the text:python tagger.py text.txt text.conll

—-name MODEL_NAME

HUNER expects the input file to contain one document per line and
outputs the tagged text as a file in CoNLL2003 format. Pre-tokenized or
Pre-sentence-split input is also supported using flags.

To further investigate the performance of HUNER, we run it on the
CRAFT corpus (Bada et al., 2012)7 and compared its performance to that
of GNormPlus (Wei et al., 2015) and tmChem (Leaman et al., 2015),
the tools used to provide PubTator. We compare on all present entity
types, namely chemicals, species and genes/proteins. Results are shown
in Table5. HUNER achieves a considerable higher precision for chemicals
and species and a considerable higher recall and F1 score on all three
entity types. Differences are particularly high for F1 (+9.58pp) on genes,
caused by the much improved recall (+21.78pp). HUNER is also very
fast; on comparable machines (both tools are single-threaded), HUNER
requires 11ms (11ms) for detecting genes (species) per sentence, whereas
GNormPlus requires 390ms (50ms). In contrast, tmChem is almost four
times faster than HUNER for chemicals (3ms versus 11ms per sentence).

7 See SM 4 for some particularities of this corpus. Note that this corpus
was not used for any other experiment and has no overlap with the other
corpora used in this work.
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Fig. 4. Trajectories of F1-score on the test set over training time. While the randomly initialized network (No) needs at least a few epochs to reach near-optimal performance, both the
models pre-trained with gold standard (Gold) and Silver Standard pre-training do so almost instantly. Note that the y-axes differ between the two diagrams.

Table 4. Macro averaged precision-, recall-, and F1-scores per entity type without fine-tuning on target corpus. The results after fine-tuning are provided in
parentheses for convenience.

Precision (%) Recall (%) F1-score (%)
GSPT SSPT GSPT SSPT GSPT SSPT

Chemicals 83.34 (84.39) 80.63 (83.51) 80.26 (85.09) 70.26 (85.67) 81.71 (84.68) 74.98 (84.56)

Diseases 75.01 (82.09) 79.41 (81.77) 77.71 (81.88) 65.10 (81.30) 76.20 (81.89) 71.26 (81.43)

Species 85.37 (83.29) 90.01 (85.30) 79.98 (87.22) 60.29 (86.08) 82.59 (84.98) 71.33 (85.60)

Gene/protein 75.01 (80.60) 61.72 (80.61) 79.16 (82.42) 13.30 (82.03) 76.81 (81.37) 20.84 (81.24)

Cell lines 65.09 (82.02) 64.26 (82.48) 67.69 (75.20) 38.16 (76.56) 66.08 (77.96) 47.34 (79.04)

Average 79.84 (82.18) 67.8 (82.38) 74.86 (82.79) 52.46 (82.62) 73.33 (82.28) 57.75 (82.37)

Note that we only compare the performance in entity recognition,
as HUNER only performs this step, whereas GNormPlus and tmChem
also perform entity normalization. This important difference of course
also must be taken into account when selecting a tool for large-scale
biomedical NER. In any application where recognized genes are used
for down-stream analysis where their appearances must be combined with
other gene-specific values (e.g. expression data, sequence data etc.), entity
normalization is mandatory and therefore HUNER in its present form is
inapplicable.

4 Discussion

4.1 Effect of Pre-training

For all five entity types we evaluated, both pre-training schemes on
average improved recall and F1 score when compared to a pure corpus-
specific training. Also precision was improved for all entity types but cell
lines. Improvements are also visible at the corpus level. Especially recall
improved in most cases for both schemes, and often by a large margin.
We attribute this observation mostly to the small size of most corpora.
A major problem with small corpora is that (a) entities present in the
test set often are not present in the training set, and (b) the number of
examples in the training set is too small to learn robust abstractions. By
considering additional, though not perfect, data, the pre-training schemes
SSPT and GSPT see more and more diverse examples, which (a) reduces
the probability of unseen entities in the test set and (b) helps to learn more
general models. In contrast, pure corpus-specific training often achieves

a higher precision, which is to be expected as corpus-specific guidelines
play a much higher role in this setting.

4.2 Precision degradation for cell lines

We performed an in-depth analysis regarding the inferior precision of pre-
training on cell lines. A first observation is that cell lines is the entity
type with by far the smallest amount of data. This is equally true for
number of corpora, the number of sentences, and the number of annotated
entities. Furthermore, more then half of the total number of sentences
are from the JNLPBA corpus, whereas CLL and CellFinder are rather
small. There are also strong differences in the annotation density: The
average number of entities per sentence is around 1.7 for CLL, 0.56 for
JNLPBA, 0.17 for CellFinder and only 0.06 for Gellus, i.e., cell lines are
highly enriched in CLL and underrepresented in Gellus (compared to the
other corpora). In addition, the average length of annotated tokens varies
considerably. Although only 50% of sentences are from JNLPBA, this
corpus accounts for 92% of all tokens annotated as cell line mention.
Accordingly, the pre-training data of both schemes is heavily dominated
by the JNLPBA corpus, and precision on Gellus and, especially, CellFinder
is much inferior with pre-training than without. This dominance also leads
to a catastrophic performance of SSPT without fine-tuning for this entity
type for all corpora except JNLPBA, with average F1-scores around 2.5%.
Overall, we conclude the diversity and size of corpora for cell lines are not
yet large enough to out-weight the dominance of the JNLPBA corpus and
guidelines.
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Table 5. Performance of HUNER and off-the-shelf state of the art tools on the CRAFT corpus

Precision (%) Recall (%) F1-score (%)

Entity type HUNER GNormPlus tmChem HUNER GNormPlus tmChem HUNER GNormPlus tmChem

Chemicals 53.56 – 49.74 35.85 – 31.43 42.95 – 38.52
Species 98.51 87.03 – 73.83 69.51 – 84.40 77.29 –

Gene/Protein 56.67 65.03 – 62.33 40.55 – 59.37 49.95 –

4.3 Effects on Convergence

A side-effect of pre-training is that it considerably improve the convergence
behavior of training. Exemplary trajectories of the test set performance
of two corpora are displayed in Figure 4. The pre-trained models reach
near-optimal performance almost instantly, while it takes the randomly
initialized models a good number of epochs to converge. The plots also
shows the different level at which the models converge. Variance over time
is lower for the pre-trained models than for the randomly initialized ones,
which is advantageous as it makes the final result less dependent of the
particular choice of epochs to use.

4.4 Impact of corpus size on performance without
fine-tuning

We analyzed the effect of relative corpus size on the performance in GSPT
without fine-tuning. We defined the relative corpus size as the percentage
of train sentences from a given corpus in the GSPT train corpus. The results
are shown in Figure SM 5. In contrast to our intuition we did not observe a
significant connection between relative corpus size and GSPT performance
without fine-tuning. We suspect multiple reasons for this behaviour. First
the relative corpus size is not the optimal measure, as corpora might
have similar annotation guidelines, leading to good performance on small
corpora. Second different corpora might be intrinsically differently hard to
annotate due to their annotation guidelines. Third results on small corpora
underlie a high variance, making the observations less precise.

4.5 Comparison to previous works

As mentioned in the introduction, Giorgi and Bader (2018) also reported
results for pre-training a LSTM-CRF model for a subset of the corpora
presented here. As this work used a different pre-training corpus, it is
interesting to compare the overall results with that of our GSPT and SSPT
schemes; see SM 2. Overall, the improvements are fairly consistent. They
achieve notably (more than 3pp difference) better F1-scores compared to
our silver-standard pre-training for Variome-diseases, CellFinder-genes,
BioInfer-genes, miRNA-genes, and miRNA-species, but lower results for
miRNA-diseases, Variome-genes, and LocText-genes. However, we note
that Georgi and Bader used a different train/dev/test splits; to the best of our
knowledge, these are not published. We discuss the differences between
our baseline and our previous results from Habibi et al. (2017) in SM 3.

5 Conclusion
We propose two different pre-training schemes for BioNER and evaluate
their effect on predictive performance across 34 corpora. We find that
both pre-training schemes lead to improvements in average F1-score for
all entity types. Furthermore, we found that the model pre-trained with
GSPT shows good performance even without fine-tuning and strongly
outperforms the state-of-the-art BioNER tools GNormPlus and tmChem
on an held-out corpus. Therefore, we make the pre-trained models publicly
available as HUNER, an easy-to-use of the shelf BioNER tool.

As this paper analyzed only basic variants of pre-training, there are
plenty of options for future research. Especially more refined techniques
for transfer learning could be applied. Examples would be neural

adversarial domain adaptation as in (Rios et al., 2018) or universal
language model fine-tuning as in (Howard and Ruder, 2018). One could
also try incorporating already available pre-trained representations of
language like ELMO (Peters et al., 2018), InferSent (Conneau et al., 2017)
or BERT (Devlin et al., 2018).

Furthermore, we do not address the problem of Named Entity
Normalization (NEN), which is an integral part of many biomedical
text mining pipelines like PubTator (Wei et al., 2013). It would be
worthwhile to investigate whether the proposed pre-training techniques
lead to improvements in NEN.
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