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ABSTRACT
When continents rift, magmatism can produce large volumes of melt 

that migrate upwards from deep below the Earth’s surface. To under-
stand how magmatism impacts rifting, it is critical to understand how 
much melt is generated and how it transits the crust. Estimating melt 
volumes and pathways is difficult, however, particularly in the lower crust 
where the resolution of geophysical techniques is limited. New broadband 
seismic reflection data allow us to image the three-dimensional (3-D) 
geometry of magma crystallized in the lower crust (17.5–22 km depth) 
of the northern North Sea, in an area previously considered a magma-
poor rift. The subhorizontal igneous sill is ~97 km long (north-south), 
~62 km wide (east-west), and 180 ± 40 m thick. We estimate that 472 ± 
161 km3 of magma was emplaced within this intrusion, suggesting that 
the northern North Sea contains a higher volume of igneous intrusions 
than previously thought. The significant areal extent of the intrusion 
(~2700 km2), as well as the presence of intrusive steps, indicate that sills 
can facilitate widespread lateral magma transport in the lower crust.

INTRODUCTION
The style of continental rifting critically depends on the strength of the 

lower crust (e.g., Huismans and Beaumont, 2011), which may be changed by 
magmatic processes including melting, magma migration, and crystallization. 
To study the effects of magmatism on rifting, we need to understand the distri-
bution and volume of magma emplaced in the crust in three dimensions (e.g., 
White et al., 2008). While the current paradigm for magma plumbing-system 
structure broadly advocates that vertically stacked sills accumulate and store 
melt within the lower crust (e.g., Annen et al., 2005, 2015; Cashman et al., 
2017; Edmonds et al., 2019), the lateral extent of these intrusion networks 
remains poorly understood. Three-dimensional (3-D) seismic reflection data 
showing acoustic images of the subsurface have revolutionized our under-
standing of magma plumbing systems in the upper crust (e.g., Trude et al., 
2003; Planke et al., 2005). In contrast, in the lower crust, seismic studies have 
long been limited by data coverage and resolution, providing an incomplete 
picture of the geometry and distribution of lower-crustal intrusions (e.g., 
Cartwright and Hansen, 2006; Abdelmalak et al., 2017).

Using one of the largest 3-D seismic reflection surveys ever acquired 
(courtesy of CGG Worldwide, https:// www .cgg .com), covering 35,410 
km2 of the northern North Sea rift and imaging down to depths of 22 km 
(see Texts DR1 and DR2 in the GSA Data Repository1), we are able to 

analyze lower-crustal structures at a resolution of a few tens of meters 
over thousands of square kilometers. This analysis allows us to critically 
examine and develop hypotheses for the origin of a lower-crustal reflection 
(LCR) that has previously been identified in sparse two-dimensional (2-D) 
seismic profiles (Christiansson et al., 2000; Fichler et al., 2011) but that 
we here are able to map in 3-D. Combining a series of detailed seismic 
(e.g., amplitude, polarity, continuity) and geometric observations (e.g., 
lobes, saucers, intrusive steps), we conclude that the LCR originates from 
an extensive igneous sill (~2700 km2), which previously stored significant 
volumes of magma (472 ± 161 km3) deep in the lower crust (17.5–22 km).

GEOLOGICAL SETTING
The study area is located in the northern North Sea (Fig. 1), where 

continental crust consists of 10–30-km-thick crystalline basement overlain 
by as much as 12 km of sedimentary strata deposited during, after, and 
possibly even before periods of late Permian–Early Triassic and Middle 
Jurassic–Early Cretaceous rifting (e.g., Bell et al., 2014; Maystrenko et al., 
2017). The crystalline basement formed by terrane accretion during the 
Sveconorwegian (1140–900 Ma) and Caledonian (460–400 Ma) orog-
enies (Bingen et al., 2008). During the Caledonian orogeny, subduction 
of continental crust subjected some of these basement rocks to high- and 
ultrahigh-pressure metamorphic conditions sufficient for partial eclogitiza-
tion (Austrheim, 1987). A LCR identified in older 2-D seismic reflection 
data imaging our study area is characterized by a high-amplitude and 
positive polarity, and has previously been suggested to mark the top of a 
kilometer-thick volume of eclogitized rocks (Christiansson et al., 2000). 
In contrast, based on 2-D gravity and magnetic modeling, Fichler et al. 
(2011) inferred that the LCR defines the boundary between overlying 
continental crust and an underlying, high-magnetic-susceptibility, ser-
pentinized mantle wedge. Testing these existing hypotheses for the origin 
of the LCR in the context of the geodynamic evolution of the northern 
North Sea using 3-D seismic reflection data is the focus of this study.

OBSERVATIONS
The LCR appears as a high-amplitude, positive-polarity seismic reflec-

tion in the lower crust at depths of 17.5–22 km depth (Figs. 2 and 3; Fig. DR1 
in the Data Repository), and can be mapped continuously over ~2700 km2 
(Fig. 4; Fig. DR2). The LCR is ~97 km long (north-south) and ~62 km wide 
(east-west), consisting of several irregular “lobes” that laterally extend as 
much as ~20 km outwards from its center (Figs. 3B and 4; Animation DR1 
in the Data Repository). These irregular lobes consist of several smaller, 

1GSA Data Repository item 2019261, Text DR1 (seismic acquisition), Text DR2 (seismic processing), Text DR3 (lower crustal velocities), Text DR4 (tuning thick-
ness), Figure DR1 (uninterpreted version of main Figure 2), Figure DR2 (uninterpreted and interpreted seismic section of main Figure 3E), and Animation DR1 (3-D 
animation of lower crustal intrusion), is available online at http:// www .geosociety .org /datarepository /2019/, or on request from editing@ geosociety .org.
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laterally connected “saucer” geometries (i.e., a flat inner surface that passes 
laterally into an inclined limb) (Figs. 3B and 4). These saucers are also the 
deepest parts of the LCR, extending down to a depth of 22 km, whereas the 
central part of the LCR is much shallower (17.5 km). The center of the LCR 
displays a series of elongated, 100–300-m-high vertical steps that cross-cut 
discontinuous, medium- to low-amplitude “background” reflections (Figs. 
3A and 4). We observe several elongate high-amplitude anomalies aligned 
along these vertical steps in the horizontal plane (Figs. 3C and 4).

In general, the LCR shows: (1) high amplitudes, (2) a peak-trough wave-
let, and (3) approximately equal peak and trough amplitudes, features that 
are typical of tuning effects (e.g., Widess, 1973; Robertson and Nogami, 
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Figure 2. A: North-south seismic section showing lower-crustal reflection (LCR) in northern North Sea with closeup of seismic trace indicat-
ing peak-trough wavelet similar to tuning wedge (see C) and with frequency-amplitude spectrum showing dominant frequencies of 10 ± 2 Hz 
around LCR. See Figure 1 for seismic section location. B: East-west seismic section. See Figure 1 for location. C: Tuning wedge model based 
on acoustic impedance increase with depth. D: Thickness versus amplitude cross-plot of LCR with thicknesses calculated from time differ-
ence between top and bottom reflection using interval velocity of 7 km/s (Rosso, 2007). Note consistency of thickness estimates (180 ± 40 m) 
between C and D. Seismic data courtesy of CGG Worldwide (https:// www .cgg .com). TWT—two-way traveltime.

Figure 1. Location map of North Sea showing area covered by three-
dimensional (3-D) seismic survey (courtesy of CGG Worldwide, https:// 
www .cgg .com) with lower-crustal reflection (LCR; white outline), mag-
matic dikes (red lines), tectonic faults (black lines), and volcanic rocks 
(red polygons) emplaced between late Carboniferous (ca. 300 Ma) and 
Late Triassic (ca. 220 Ma) as part of Skagerrak-centered large igneous 
province (Fossen and Dunlap, 1999; Bingen and Solli, 2009; Fazlikhani 
et al., 2017). Offshore, distribution of volcanic rocks is constrained by 
well and seismic data (Heeremans and Faleide, 2004; Torsvik et al., 
2008; Phillips et al., 2017). Topography and bathymetry are from ESRI’s 
World Elevation Service (Weatherall et al., 2015).
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1984; Sheriff and Geldart, 1995) (Figs. 2 and 3D). Tuning occurs when 
seismic waves originating from the top and base of a thin body interfere on 
their return to the surface (e.g., Brown, 2011). We can estimate the thickness 
of a body where constructive interference from top and base produces a 
single tuned response rather than two separate seismic reflections. Based on 
observed dominant frequencies of 10 ± 2 Hz (Fig. 2A) and seismic velocities 
of 6.9 ± 0.1 km/s for these basement rocks, derived from a recent wide-angle 
2-D seismic survey (Rosso, 2007), we estimate that the LCR originates from 
a ≤180 ± 40–m–thick body (Fig. 2C); this tuning thickness is consistent with 
an independent estimate based on an amplitude-versus-thickness cross-plot 
(Connolly, 2005; Francis, 2015) (Fig. 2D) (see Text DR4).

DISCUSSION
We observe that the LCR shows typical effects of tuning (e.g., equal 

peak and trough amplitudes; Fig. 3D), which implies that it originates 
from a thin layer rather than the top of a several-kilometers-thick rock 
volume (cf. Christiansson et al., 2000; Fichler et al., 2011). Furthermore, 
the suggested eclogitization (Christiansson et al., 2000) and serpentiniza-
tion origins for the LCR (Fichler et al., 2011) are at odds with observed 
velocities and the polarity of the LCR. For example, while eclogitization 
was initially postulated based on inferred seismic velocities of >8 km/s in 
the region of the LCR (Christiansson et al., 2000), recent wide-angle 2-D 
reflection and refraction data reveal normal velocities of 6.9 ± 0.1 km/s 
(Rosso, 2007) (see Text DR3 for more details). In contrast, serpentiniza-
tion reduces seismic velocities (Christensen, 2004), which would result 
in a downward decrease in acoustic impedance and a negative polarity 
reflection, rather than the normal polarity we observe for the LCR (e.g., 
Figs. 2 and 3).

After examining previous interpretations of the LCR, we now discuss 
other explanations for lower-crustal reflections. Reflections from highly 
strained rocks within a shear zone could explain the tuning effects, but 
shear zones are usually several kilometers thick in the lower crust and 
typically imaged as multiple, subparallel seismic reflections (Clerc et al., 
2015; Fazlikhani et al., 2017). As such, it is difficult to explain the isolated, 
subhorizontal reflection we observe (e.g., Fig. 2) in terms of a ductile, 
lower-crustal shear zone.

Instead, we observe that the LCR shows the characteristic features 
of igneous intrusions observed in the field, seismic reflection data, and 
numerical models.

(1) The LCR cross-cuts numerous inclined, discontinuous “back-
ground” reflections that originate from the host stratigraphy (Fig. 3A). 
Discordance between igneous intrusions and the host stratigraphy is com-
monly observed in seismic images from sedimentary basins and develops 
when magma cross-cuts existing strata without offsetting it (e.g., Cart-
wright and Hansen, 2006; Magee et al., 2016; Eide et al., 2017).

(2) The LCR shows irregular lobes extending outward from its central 
axis (Fig. 3B). Similar lobes are commonly observed in igneous sills (i.e., 
tabular sheet intrusions) imaged by 3-D seismic reflection data, as well 
as those observed in field exposures, and form by incremental emplace-
ment of discrete magma injections (e.g., Smallwood and Maresh, 2002; 
Schofield et al., 2012a; Magee et al., 2016).

(3) These lobes themselves comprise a series of saucers consisting of 
a flat inner surface that passes laterally into an inclined limb (Fig. 3B). 
Numerous sills observed in the field and in seismic reflection data and 
produced in numerical and analogue models display saucer-shaped mor-
phologies, formed when a relatively flat sill develops transgressive inclined 
limbs in response to stress perturbations and/or host-rock deformation at 
its lateral tips (e.g., Malthe-Sørenssen et al., 2004; Polteau et al., 2008; 
Haug et al., 2018; Schmiedel et al., 2019).

(4) The LCR contains several elongated, linear, vertical steps (Fig. 3C), 
which appear similar to intrusive steps formed during sheet propagation 
and are a record of magma flow (e.g., Hansen et al., 2004; Magee et al., 
2016, 2018; McBride et al., 2018).

(5) The LCR displays laterally elongated amplitude anomalies (Fig. 3C), 
which likely relate to subtle, local variations in intrusion thickness and may 
correspond to magma flow channels (cf. Holness and Humphreys, 2003).

(6) The tuning effects displayed by the LCR are indicative of reflec-
tions emanating from a thin body (Figs. 2C and 3D), consistent with the 
seismic expression of relatively thin sills observed in real and synthetic 
seismic reflection data (<300 m; Magee et al., 2016).

(7) The LCR is continuous over a large area (~2700 km2) (Fig. 3E), 
a common feature of sills, which can extend over several hundreds of 
kilometers (e.g., Magee et al., 2016).

The combination of these observations supports our interpretation that 
the LCR originates from an igneous sill.
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Figure 3. Seismic features of lower-crustal reflection (LCR) indicative 
of igneous intrusion in northern North Sea. A: Comparison between 
uninterpreted and interpreted seismic section showing discordance 
between LCR and host strata (cf. Cartwright and Hansen, 2006; Magee 
et al., 2016). B: “Lobe” geometries extending outwards from LCR (cf. 
Smallwood and Maresh, 2002; Magee et al., 2016) and “saucer” geom-
etries showing flat inner sill that passes laterally into inclined limb (cf. 
Polteau et al., 2008; Haug et al., 2018; Infante-Paez and Marfurt, 2018; 
Schmiedel et al., 2019). C: Intrusive steps, i.e., laterally elongated ver-
tical steps (cf. Hansen et al., 2004; Magee et al., 2016; McBride et al., 
2018) with elongated amplitude anomalies (cf. Smallwood and Maresh, 
2002). D: Tuning effects due to interference of waves originating from 
top and base of thin body. E: Lateral continuity of LCR over large area 
(~2700 km2) (cf. Magee et al., 2016) shown by three-dimensional surface 
and two-dimensional seismic section (see Fig. DR2 [see footnote 1]). 
Surfaces in B, C, and E show depth of LCR (in kilometers below sea-
floor) overlain by amplitude envelope extracted along surface. Seismic 
data courtesy of CGG Worldwide (https:// www .cgg .com).
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IMPLICATIONS
We estimate a magma volume of 472 ± 161 km3 for the LCR by multi-

plying the surface area (~2700 km2) with the inferred tuning thickness 
(180 ± 40 m). While the LCR intrusion is less voluminous than the largest 
exposed or seismically imaged sills (e.g., sills in the Ferrar sill complex of 
Antarctica of up to 105 km3), it is still more extensive than most sills in the 
Karoo (South Africa) or Franklin (Canada) sill complexes (Cruden et al., 
2017). The LCR intrusion volume is of the same order of magnitude as 
layered mafic intrusions emplaced in sedimentary rocks (see Cruden et al., 
2017, their figure 1b) as well as stacked lower-crustal intrusions mapped in 
2-D seismic reflection data from the North Atlantic margin (540–600 km3; 

White et al., 2008). Constraining the composition of this intrusion is not 
possible given the uncertainty in measured velocity measurements (6.9 ± 
0.1 km/s; Rosso, 2007) and the insensitivity of seismic velocities to com-
positional variations in igneous rocks (Behn and Kelemen, 2003; Bartetzko 
et al., 2005). In addition to our volume estimates, we constrain magma 
flow patterns within the LCR using intrusive steps (Fig. 3C) and amplitude 
anomalies (Figs. 3C and 4). Intrusive steps form because propagating sheets 
are commonly segmented, with individual segments intruding at slightly 
different structural levels (e.g., Schofield et al., 2012b; Magee et al., 2018). 
As magma intrusion continues and the segments inflate, they coalesce to 
form a throughgoing sill that contains vertical steps marking segment 
boundaries, with the long axes of steps and segments reflecting the initial 
sheet propagation direction (e.g., Schofield et al., 2012b; Magee et al., 
2018). This process results in thickness variations, which translate into 
amplitude anomalies due to tuning effects (Magee et al., 2015). We observe 
these elongated amplitude anomalies on the LCR in map view (Fig. 4). 
The presence of steps and amplitude anomalies as long as 20 km, which 
may represent magma channels within the LCR, implies that emplacement 
occurred primarily through lateral flow, rather than by amalgamation of 
many small sills fed by dikes. While magma plumbing systems are typi-
cally depicted as dike dominated, with sills forming vertically stacked stor-
age reservoirs in the lower or upper crust (e.g.,  Annen et al., 2005, 2015; 
Cashman et al., 2017; Edmonds et al., 2019), our observations highlight 
significant horizontal transport in the lower crust.

CONCLUSIONS
This study reveals a lower-crustal igneous intrusion in a continental rift 

(northern North Sea), which has long been considered magma poor. This 
sill is ~97 km long in the north-south and ~62 km wide in the east-west 
direction, showing evidence for significant lateral transport (as much as 
20 km) of large volumes of magma (472 ± 161 km3). This study shows 
how advanced 3-D seismic imaging can help us understand magmatic 
processes occurring deep within the crust.
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Figure 4. Three-dimensional (3-D) geometry of lower-crustal reflection 
(LCR) originating from igneous sill in northern North Sea. Evidence 
for LCR being igneous intrusion includes: (1) significant lateral con-
tinuity (~2700 km2) (cf. Magee et al., 2016); (2) irregular lobes extend-
ing outwards (cf. Smallwood and Maresh, 2002; Magee et al., 2016), 
(3) saucer-shaped geometries forming parts of these lobes (see B) 
(cf. Polteau et al., 2008; Haug et al., 2018; Infante-Paez and Marfurt, 
2018; Schmiedel et al., 2019); (4) intrusive steps (cf. Hansen et al., 2004; 
Magee et al., 2016; McBride et al., 2018); and (5) elongated amplitude 
anomalies (cf. Smallwood and Maresh, 2002). Magma flow lines (white 
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