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Abstract: In this contribution, a hybrid multi-contextual Markov model for unsupervised 

near real-time flood detection in multi-temporal X-band synthetic aperture radar (SAR) 

data is presented. It incorporates scale-dependent, as well as spatio-temporal contextual 

information, into the classification scheme, by combining hierarchical marginal posterior 

mode (HMPM) estimation on directed graphs with noncausal Markov image modeling 

related to planar Markov random fields (MRFs). In order to increase computational 

performance, marginal posterior-based entropies are used for restricting the iterative  

bi-directional exchange of spatio-temporal information between consecutive images of a 

time sequence to objects exhibiting a low probability, to be classified correctly according to 

the HMPM estimation. The Markov models, originally developed for inference on regular 

graph structures of quadtrees and planar lattices, are adapted to the variable nature of 

irregular graphs, which are related to information driven image segmentation. Entropy 

based confidence maps, combined with spatio-temporal relationships of potentially 

inundated bright scattering vegetation to open water areas, are used for the quantification of 

the uncertainty in the labeling of each image element in flood possibility masks. With 

respect to accuracy and computational effort, experiments performed on a bi-temporal 

TerraSAR-X ScanSAR data-set from the Caprivi region of Namibia during flooding in 

2009 and 2010 confirm the effectiveness of integrating hierarchical as well as  

spatio-temporal context into the labeling process, and of adapting the models to irregular 

graph structures. 
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1. Introduction 

Spaceborne synthetic aperture radar (SAR) remote sensing is currently the most effective 

technology for a regular observation of the Earth’s surface. By analyzing multi-date images, it is 

possible to get a synoptic view of temporal land-cover/land-use behavior. This is of particular 

importance in disaster management for the detection of abrupt changes caused by natural catastrophes 

like earthquakes, hurricanes and tsunamis, as well as for the monitoring of events characterized by a 

longer temporal evolution such as flooding and forest fires. SAR plays a particularly important role in 

flood mapping, due to its near all-weather/day-night capabilities and its effectiveness to detect 

inundation beneath different kinds of vegetation canopies [1-3]. 

A large portion of the activations (~46%, current as of August 19, 2010) of the International Charter 

of Space and Major Disasters (http://www.disasterscharter.org) are related to flood situations. At the 

same time, the number of SAR sensors that allow monitoring inundations with a high temporal and 

spatial resolution has strongly increased. For this reason, automatic methods are necessary to generate 

detailed flood maps on a near real-time basis to support decision makers as well as humanitarian relief 

organizations during disaster management. It can further be useful to create maps, which show the 

probability of correctness related to the classification results. This supplementary information source 

may be important for performance evaluations of hydrodynamic models. 

Many techniques have been presented to identify change areas in remote sensing data [4,5]. The two 

most common image change detection algorithms are labeling of feature maps (e.g., difference 

images [6], normalized difference images [7], ratio data [8], and log ratio data [9]) and comparison of 

individual classification maps [10], usually called Post-Classification Comparison (PCC). In contrast 

to the classification of feature maps, PCC can provide a complete matrix of change directions. 

However, its performance naturally depends on the accuracy of each single classification map. It is 

therefore of great importance to integrate the temporal dimension into the classification process in 

order to improve results in terms of accuracy and reliability [11,12]. 

Markov random fields (MRFs) [13,14] represent an effective and theoretically well established 

probabilistic model for integrating different types of contextual information (e.g., spatial, hierarchical, 

and temporal) into the image labeling process. MRFs have also been adopted for an improved 

extraction of changes in remote sensing data. Spatial Markov modeling is applied to feature maps in 

several studies (e.g., [9,15,16]). A Markovian model considering spatial as well as hierarchical 

contextual information is presented by [7]. Several methods are proposed to integrate only 

temporal [12,17], as well as spatio-temporal [11,18,19], information into the Markov model for 

classification improvement. 
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The application of MRFs in image analysis is predominantly accomplished by using noncausal 

(e.g., [9,11,16,19-24]) and planar causal models (e.g., [15,23,25]) on regular planar lattice-based 

graphs. These models have the disadvantage that they must be applied to all pixels in the image. This 

results in an enormous computational complexity, which is more pronounced using noncausal MRFs 

due to their iterative nature of inference, in contrast to the non-iterative character of planar causal 

models. In addition, only a small neighborhood is considered in the labeling process.  

In contrast to noncausal or planar causal models, hierarchical causal Markov models have the 

capacity to capture the intrinsic hierarchical nature of remote sensing data. These models can be 

applied in a non-iterative way on simple regular structures of quadtrees [26-31] or on more complex, 

however still regular, trees which try to overcome the blockiness of the classification result that is 

related to the nonstationarity of MRFs on quadtrees [26,32].  

In just a few works in image analysis, Markov modeling is related to irregular graphs, whose 

elements have a strong correlation with real objects or areas of the Earth’s surface: Feitosa et al. [12] 

use planar graphs for multi-temporal classification based on fuzzy Markov chains. In [33], hierarchical 

marginal posterior mode (HMPM) estimation is applied to a Multiscale Region Adjacency Tree, 

however without consideration of the altering relationship between parent and child nodes in the graph 

architecture. This is taken into account by [7], who adapt hierarchical maximum a posteriori (HMAP) 

estimation to irregular graphs. This work also presents a framework for the supplementary integration 

of spatial context into the labeling process in a time-efficient manner. This is accomplished by using 

noncausal Markov modeling on a restricted region of the finest tree-level specified by confidence maps 

derived from the HMAP labeling result. Even if the integration of spatial context results in an increase 

in accuracy, the applied noncausal Markov model is not adapted to the irregular nature of the 

planar graph. 

This paper presents an unsupervised method for improved near real-time flood and change detection 

in multi-temporal TerraSAR-X data using a hybrid generative Markov model (Figure 1). The specific 

objectives are: (1) the combination of automatically initialized causal and noncausal Markov image 

models for integrating hierarchical as well as spatio-temporal context into the labeling process of the 

classes “Water”, “No water” and “Potentially flooded vegetation”; (2) the adaption of these models to 

irregular hierarchical as well as planar graphs; (3) the use of entropy-based confidence maps, derived in 

conjunction with hierarchical marginal posterior mode (HMPM) estimation, to restrict the noncausal 

Markov modeling step to regions that have been probably misclassified by the causal Markov model, 

and to generate flood possibility (FP) maps. 
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Figure 1. Block scheme of the proposed workflow. 

 

2. Methodology 

2.1. Automatic Graph Construction 

The multi-level representation of an image Y can be represented as a connected graph ΨL with L 

levels composed of a set of nodes S, where each node s apart from the root r has a unique parent 

node s
-
 (Figure 2(a)). A descendant node originating from s is denoted as node t. The set of nodes can 

be partitioned into different scale levels, S = S
1
  S

2
 … S

L
. The level decomposed by the lowest 

homogeneity parameter is S
1
, and the coarsest level consists of only one node S

l 
= {r, l = L} (Figure 2(a)). 

Several differences can be determined between the regular structure of quadtrees and irregular 

hierarchical graphs: in contrast to the predefined architecture of quadtrees, which are represented by 

four equally sized child objects per parent object, the number and size of child objects per irregular 

parent object vary as a result of an information-driven segmentation. Therefore, the number of nodes of 

the whole graph cannot be estimated before image segmentation is accomplished. This is related to 

problems of over- or under-segmentation. Considering the intra-scale dependencies, it can be stated 

that, in contrast to regular planar lattices, the size and number of the elements vary, as well as the 

border length between the center and the adjacent objects in a spatial neighborhood system of an 

irregular planar graph. These characteristics must be taken into account when generating the irregular 

graph and when applying the Markov models to this tree structure. 
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Figure 2. (a) Three-level independency graph corresponding to an irregular tree-structure. 

Left circles represent labeling of classes “Water”, “No water” and “Potentially flooded 

vegetation” (PFV), right circles represent the observations at each node s. (b) Irregular 

planar graphs of Yt1 and Yt2 with spatial Vsp and temporal Vtp neighborhood systems of 

center node s and its spatially and temporally adjacent objects q at t2. 
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For the automatic generation of the hierarchical graph according to user demands, the procedure 

described in [7] is adopted: First, several subsets of the SAR image are automatically selected to 

describe the heterogeneity of the SAR data. In the next step, a pre-segmentation of the subsets is 

performed by the fractal net evolution approach [34]. The homogeneity parameter is estimated, which 

leads to a decomposition of the entire image with average object sizes of the segments at each level, 

which come close to those intended by the user. This is accomplished by generating a database, which 

contains models describing the relationship between homogeneity parameter and object size according 

to data of different SAR sensor types and image contents. Finally, this model is selected for creating 

the whole graph which best fits to the pre-segmentation result. 

2.2. Markov Image Modeling 

Context is an essential information source for the analysis of remotely sensed data. Its necessity 

gains in importance with increasing spatial resolution of the data. The use of context means that each 

image element is not treated in isolation but as part of a spatial pattern. MRFs have been found to be 

useful tools for integrating different types of context into the classification process. In the following, 

two different Markov models are described: A causal model using a hierarchical marginal posterior 

mode (HMPM) estimation on two separated irregular hierarchical graphs, and a noncausal model 

leading to a bi-directional exchange of spatio-temporal information between multi-temporal planar 

graphs, represented by the finest levels of the hierarchical tree. Additionally, a hybrid model is 

proposed, which combines the HMPM estimation with the noncausal model for integrating hierarchical 

as well as spatio-temporal context into the labeling process in a time efficient manner using 

confidence maps. 



Remote Sensing 2010, 2             

 

2245 

2.2.1. Causal Markov Modeling on Irregular Graphs 

Problem Definition and Statistical Modeling 

For the set of nodes of an irregular hierarchical graph, two sets of random variables X = (Xs)sS, 

Y = (Ys)sS, called “random fields” are considered. Each Xs takes its values in a finite set of M classes 

Ω = {ω1, ωi,…, ωM} and each Ys takes its values in .  As common in Bayesian modeling, the labeling 

problem is then to estimate the “best” unobserved realization X = x given the observed realization 

Y = y, where y = (ys)sS is the observed image element. 

Assuming a first-order Markov chain on a directed independence graph, where the conditioning for 

each node in S
l
(l ≠ R) reduces to a dependence on its parent node in S

l+1
, as well as a standard site-wise 

factorization for the observation model P(y|x), the joint distribution factorizes as a product of local 

functions [27]: 





rs

ssr xxPxPyxP )()(),( 
Ss

ss xyP )(   
(1)  

where P(xr) are the root prior probability, {P(xs|xs-)}s≠r are the parent-child transition probabilities and 

{P(ys|xs)}sS are the data conditional likelihoods. 

Model Parameters 

For the definition of the prior model P(Xs│Xs-) on the graph, the Potts-like distribution is used 

in [26], which favors likeliness of the labeling at s and s
-
. In this work, the computation of an  

inter-scale transition probability matrix is proposed. This matrix contains the transition probability of 

each class combination between levels S
l
 and S

l+1
 (l ≠ R-1) as the ratio of the area assigned to class ωj 

at S
l
 and ωi at S

l+1
 among the area of all elements assigned to class ωj at S

l
. At root r, a uniform prior 

probability with a value of 1/M is chosen. 

The conditional likelihoods P(ys|xs) of each node are modeled as Gaussian mixtures, defined by the 

scale dependent parameter vector θi
l
 = (μi

l
, σi

l
), with mean μi

l
 and standard deviation σi

l
 of class i at 

level l. For the estimation of the initial class statistics, an automatic parametric tile-based thresholding 

procedure [7,35] under the generalized Gaussian assumption is used to estimate threshold values τ1 

between the classes “Water” and “No water” as well as τ2 between the classes “No water” and 

“Potentially flooded vegetation (PFV)” in large-size SAR data with small class a priori probabilities in 

a time efficient manner. The threshold computation is accomplished by using a generalized Gaussian 

Kittler and Illingworth (GG-KI) thresholding algorithm [36,37] on a small number of tiles of the entire 

image Y selected according to the probability of the tiles to contain a bi-modal mixture distribution of 

the classes to be separated. The computed values of τ1 and τ2 are then applied to each level of the graph 

to derive θi
l
.  

Inference 

One of the most interesting aspects of this model lies in the possibility to reach exact inference of 

the labels by computing the maximum a posteriori (MAP) P(x|y) and marginal posterior mode (MPM) 
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probabilities P(xs|y) using an extension of the Viterbi algorithm [38] as well as the Baum algorithm [39] 

on Markov chains in scales [27,28]. The cost function associated to the MAP criterion is 

   ',ˆ1',ˆ xxxxC   (2)  

with estimated and true class label x̂  and 'x , and the Kronecker delta function δ. Equation (2) 

penalizes the discrepancies between configurations without considering how different these 

configurations are. The cost function  

    


Ss s s
xxxxC ',ˆ',ˆ   (3)  

accounts for this aspect and leads to the following Bayesian MPM estimator, which associates the most 

probable class given all the data to each node (Table 1): 

Table 1. HMPM estimation on irregular hierarchical graphs. 

Preliminary pass: At this downward recursion, the marginal priors P(xs) are computed for each s: 
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Top-down sweep: The complete marginal posteriors are reassembled from the partial marginals 

computed at the bottom-up sweep: 

Initialization (r): 
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The weighting factor υHMPM takes into account the proportion of the spatial extent of a child node s 

to its predecessor s
-
 during the computation of the site-wise partial marginal posteriors P(xs|yd(s)) within 

the bottom-up pass.  
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2.2.2 Noncausal Markov Modeling on Bi-Temporal Planar Graphs 

Spatio-Temporal Markov Model 

Noncausal Markov models are, in contrast to hierarchical approaches, able to incorporate  

intra-spatial context between adjacent nodes of an undirected graph as well as temporal information 

into the labeling process. In the following, the pixel-based spatio-temporal Markov model proposed 

in [11] is reformulated and adapted to irregular planar graphs. In contrast to a uni-directed “cascade” 

approach [40] analyzing a sequence of images in chronological order, this model accomplishes an 

iterative mutual exchange of information between a sequence of multi-temporal images. 

For the sake of simplicity, a bi-temporal sequence is considered consisting of two registered images 

Yt1 and Yt2, which are acquired at times t1 and t2, respectively. Each image is represented by an 

irregular hierarchical graph and labeled according to the HMPM estimation. For the application of the 

spatio-temporal model, the lowest levels of both graphs are synchronized by intersecting the two 

segmentations in order to retrieve equal object borders at t1 and t2 (Figure 2(b)). 

The sets of possible labels for the related planar graphs are Λ = {λ1, λi,…, λN} at t1 and 

Ω = {ω1, ωi,…, ωM} at t2. In the following, the labeling of Yt2, given Yt1 and Λ is considered. The 

optimal labeling of all image elements according to the MAP decision criterion is characterized by an 

enormous computational complexity. The processing demand can be substantially reduced by modeling 

the conditional prior probability of image elements within a local neighborhood associated with a 

clique system, which is a subset of adjacent image elements in a neighborhood system. According to 

the Hammersly-Clifford theorem [41], describing MRFs-Gibbs equivalence, the combination of the 

MAP estimation with MRFs makes the classification task equivalent to the minimization of the Gibbs 

energy function U expressed in the following relation: 

 tpspss XXyxU

tpspss ZXXyxP
,,,1 exp),,(

  (4)  

where Z is a normalizing factor called the partition function and Xsp and Xtp are subsets of the labels of 

the respective images in predefined spatial Vsp and temporal Vtp neighborhood systems. The Iterated 

Conditional Modes (ICM) algorithm [42] represents a computationally moderate solution of the 

MRF-MAP estimates, converging to a local, but usually sufficient minimum of Equation (4). 

Assuming that the contribution of spatial and temporal context is separable and additive, the Gibbs 

energy function to be minimized for node s by the ICM algorithm can be formulated as 

  )()()(,,, 
tptpspspdatatpspss

UUUXXyxU   (5)  

where γsp and γtp control the influence of spatial and temporal context into the flood detection process, 

respectively. Assuming conditional independence of y given x, the data term Udata can be formulated as: 

  isssssisdata XyYPyYXU   ln),(  (6)  

The single-time posterior probabilities are modeled as Gaussian mixtures using class statistics 

derived from the HMPM estimation on the irregular graph. The spatial Usp and temporal Utp energy 

functions can be expressed as: 
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Index δ is the Kronecker delta function, which is, according to a pair-wise clique system (s-q) 

between center node s and a spatially or temporally adjacent object q (Figure 2(b)), equal to 1 if ωi = ωj 

or ωi = λi, respectively, and zero otherwise. Due to the fact that, in contrast to lattice-based graphs, the 

number of neighbors in Vsp and Vtp varies on irregular planar graphs, the amount of the spatial and 

temporal energy may vary significantly in relation to the spectral term. To equalize the influence of the 

spectral and temporal terms in the ICM estimation over the whole planar graph, an n
th

-order spatial 

neighborhood system Vsp-sim is simulated, so that for example a first-order system contains four 

elements q. The temporal neighborhood system Vtp-sim is identical to Vsp-sim. However, since it considers 

the central object, it contains one additional element (Figure 2(b)). 

In order to account for the varying size of the objects in the irregular neighborhood system Vtp, the 

weighting factor υtp is integrated, considering the spatial proportion of the respective classes in Vtp: 

    
tptpitp

VAXA ,   (9)  

In addition, the weighting of the spatial energy function by υsp accounts for the varying border 

length between object s and q in the irregular neighborhood system Vsp: 

      2,
ispspisp

bVAXA


   with  
i

i q sbqsbb


 ,  (10)  

where bωi describes the ratio of the shared border length of objects labeled to class ωi with an adjacent 

object q to the total border length bs of s. The greater the size of an object q and the higher the common 

border to s, the more weight is given to this object at the computation of Usp. 

The same formulations of the MRF related to Equations (6–10) can be generated for image Yt1. The 

mutual approach couples the two MRFs of the bi-temporal data-set using the ICM algorithm. Starting 

from an initial labeling produced by the HMPM step, the preceding classification of one image is 

exploited to update the labeling of the other image at each iteration, and vice versa, until convergence. 

For an extension of this bi-directional approach to a sequence of more than two images, the reader is 

referred to [11]. 

Estimation of Temporal Transition Probabilities 

The only term that considers correlation between data in (8) is P(ωi│λi). It represents the transition 

probability from class λi at t1 to class ωi at t2. It is an element of the so-called transition probability 

matrix (TPM), which can be calibrated from expert’s knowledge using ground truth or historic data [11] 

or estimated directly from the image data using for example the “compound classification rule” [43,44]. 

This method involves finding the optimal pair of classes (ωi, λi) for each pair of image elements based 

on the Bayes rule for minimum error. In this work, the method of [44] is used, which replaces the TPM 

by a joint probability matrix (JPM), and is adapted to an irregular graph structure. The method uses an 
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iterative fixed-point EM (Expectation-Maximization) -like algorithm [45] for estimating the temporal 

correlation of multi-date images represented by joint class probabilities P(ωi, λi). The elements of the 

related JPM of size N x M are computed recursively for k iterations until convergence is reached 

according to: 
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P0(ωi, λi) is initialized by (N x M)
-1

 and O is the number of objects of the planar graph. The a priori 

probabilities P(ωi) and P(λi) are derived by computing the relative occurrence of each class according 

to the respective HMPM estimation. The factor υjpm = As/Acard(s) considers the irregular nature of the 

planar graph by weighting the influence of each object according to its relative spatial extent in relation 

to the entire scene. The following normalization generates values of the JPM, summing up to 1: 
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2.2.3. Hybrid Multi-Contextual Markov Model 

The knowledge of marginal posteriors P(xs|y) allows to access the degree of confidence for each 

node s by computing the marginal posterior entropy Es [28]: 

     yxPyxPyxE is

M

isss

i




 


log  (13)  

Based on this formulation, a confidence map can be computed for the whole graph. Higher entropy 

values are indicators of misclassifications of s [46]. These confidence maps are used for the 

combination of the hierarchical causal and the spatio-temporal noncausal Markov model by restricting 

the ICM algorithm presented in (4) to values of Es greater than a defined threshold TE. This decreases 

the computational effort since the spatio-temporal context is only integrated for the label estimation of 

a limited number of elements of the sub-area S
1

sub-1. After the first iteration, this number can be further 

reduced by restricting the ICM algorithm to objects sS
1

sub-1 with a common border to other elements 

greater TE. 

2.3. Generation of Flood Probability Maps 

A quantification of uncertainty in the labeling of each image element can be valuable for flood disaster 

management and performance evaluation of hydrodynamic models. Recently, Schumann et al. [47] used 

inundation possibilities derived from multi-algorithm ensembles for calibrating flood models. In this 

work, entropy-based confidence maps are used created from the final labeling result of ωWater and ωPFV 

for the generation of a five-class flood possibility (FP) map. Fuzzy theory is used to transform the 

entropy values to fuzzy memberships in the interval [0,...,1] (Figure 3). Full weight (FP1) is given to 

nodes s  ωWater and s  ωPFV with Es lower than the mean entropy Ēωi of ωWater and ωPFV, respectively. 

Objects with entropies between Ēωi and the maximum entropy Ėωi are assigned to four different 
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possibility classes (FP2-5) according to a linearly decreasing fuzzy membership function. The fuzzy set 

of ωPFV is combined with additional membership values taking into account spatial as well as temporal 

relationships of s  ωPFV from the final classification; e.g. full weight is given to objects with Es ≤ ĒPFV, 

labeled to a different class at Δt and neighboring elements s ω Water. In contrast, elements without 

contact with other flood objects and exhibiting no class change over time are given a lower degree of 

membership, since these objects exhibit a reduced likelihood of being inundated (Figure 3). 

Figure 3. Fuzzy sets for the generation of FP maps using MPM entropies and 

spatio-temporal labeling information. 
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3. Experimental Results 

3.1. Data-set Description 

In order to carry out an experimental analysis aimed at assessing the performance of the proposed 

approach for a real test case, a bi-temporal data-set consisting of two TerraSAR-X ScanSAR scenes 

with 8.25 m pixel spacing in range and azimuth direction is used (Figure 4(a,b)). The study area of this 

work is the Zambezi floodplain situated in the Caprivi Strip in north-eastern Namibia, which is 

regularly affected by flooding related to heavy seasonal rainfalls. Both images, which were acquired on 

April 11, 2009 and April 20, 2010, show large scale inundations with a higher flood level in 2009. 

Since both data-sets were acquired in an identical orbit with similar ordering options (HH-polarization, 

incidence angle range of 27.1°–36.6°), no major system-related differences are present.  

In both data-sets, in comparison to the surrounding dry land, open water areas appear dark due to 

specular reflection of the incident radar signal. In contrast, flooded vegetation causes very distinct and 

bright signatures. Indeed, X-band SAR has a strongly reduced ability to detect inundation beneath 

dense vegetation such as forest due to increased canopy attenuation and volume scattering in 

comparison to the longer C-, and L-band signals (e.g., [48]). In this study area, however, the emergent 

vegetation is mainly composed of foliated shrubs and grassland, whose structure admits a  

multiple-bounce effect, in which the penetrated radar pulse is backscattered from the water surface and 

lower sections of the vegetation. This causes a high signal return [49]. For simplicity, most flood 
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mapping algorithms only consider open water areas. This, however, results in an underestimation of 

the flood extent if the flood plain is interspersed with emergent vegetation. Digital elevation models 

(DEMs) have been used effectively for detecting flooding beneath vegetation [35,50]. However, since 

the study area is characterized by a low topographic variability, and a high resolution DEM was not at 

our disposal within this study, no such information could be used to optimize classification results. 

For validation purposes of the water extent in each SAR scene, two optical images from the 

RapidEye satellite of April 14, 2009 and April 22, 2010, with a spatial resolution of 5 m, were 

available. The time-offset relative to the SAR data was three days and two days, respectively. 

However, due to the stable flood conditions, no critical change in the flood extents was observable 

between the SAR and optical data-sets. For this reason, the RapidEye scenes were used to create a 

reference map for each date for a small sub-area (256 × 256 pixel) of the eastern part of Lake Liambezi 

by visual interpretation and manual digitalization of the open water and flooded vegetation areas. High 

resolution optical images of historic flood events were available in Google Earth for cross-checking the 

validation mask.  

3.2. Results and Discussion 

In this section, the effectiveness of the proposed multi-contextual hybrid Markov model is evaluated 

by investigating the influence of (1) using irregular graphs, (2) adapting the Markov models to these 

irregular structures, and (3) combining hierarchical causal with noncausal Markov modeling on 

irregular graphs. Additionally, the results of the HMPM and HMAP estimation are compared.  

For this purpose, several classification results were generated for the chosen reference areas of Yt1 

and Yt2 by applying different models to regular and irregular graphs (Table 2). R-T-ICM considers the 

pixel-based integration of only spatio-temporal information into the labeling process. The sole 

integration of hierarchical context is accomplished by R-HMAP and R-HMPM on a quadtree as well as 

by I-HMAP and I-HMPM on an irregular graph, without considering the weighting of the child objects in 

relation to their parent nodes. The non-weighted hybrid Markov model is represented by R-HMAP-ICM 

and R-HMPM-ICM on a quadtree as well as I-HMAP-ICM and I-HMPM-ICM on an irregular graph. 

In contrast, I-HMAP-ICM-w and I-HMPM-ICM-w consider the variable structure of hierarchical and 

spatio-temporal neighborhood systems of irregular graphs.  

Identical threshold values of τ1 = 50.7 and τ2 = 50.0 for Yt1 as well as τ1 = 134.1 and τ2 = 163.2 for 

Yt2 derived by the automatic thresholding approach mentioned in Section 2.2.1 are used for the 

initialization of each model. The regularization parameters γsp and γtp are fixed to 1 during the 

experiment. A real (regular graph) and simulated (irregular graph) first-order neighborhood system is 

used in the noncausal Markov model, which is only applied to objects with an entropy value greater 

than the average entropy Ē of Yt1 and Yt2, respectively. The hierarchical model at times t1 and t2 is 

accomplished on graphs with eight levels. Therefore, on a quadtree, the smallest objects are defined on 

S
1
 by 2 × 2 pixels. Accordingly, S

1
 is partitioned into 16,384 nodes. Due to the fixed decrease of 25% 

of the object number between adjacent scales, the total number of nodes of the tree is 21,845. The 

irregular graphs are built with a relative object number of ~50% between S
l+1 

and S
l
. The finest levels 

of Yt1 and Yt2 are partitioned into ~2,000 homogeneous segments. This results in a total object number 
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of the respective graphs of ~4,300. After synchronizing the segmentations of the two planar graphs, 

both levels S
1
 are represented by ~12,000 nodes. 

In order to assess the performance of the different classifiers, the “Overall Accuracy” (OA) measure 

is used, which is the percentage of correctly classified pixels in relation to the total number of pixels 

(Table 2).  

The experimental results show a nearly identical mean OA of 79.5% for Yt1 and 80.1% for Yt2, 

averaged over all algorithms (Table 2). The non-hierarchical R-T-ICM method provides OA similar to 

these average values and significantly outperforms the HMAP, HMPM and HMAP-ICM estimation on 

the quadtree as well as the HMAP-w estimation on the irregular graph. However, the R-T-ICM method 

is accompanied by a strong computational demand, since it is iteratively applied to every pixel in the 

images within six iterations until convergence is reached. 

Table 2. Overall accuracy of different models according to graph structure chosen. Index 

“w” marks methods which consider a weighting in the classification according to the 

irregular nature of the graphs. 

Time 
Regular (R-) Irregular (I-) 

 
Planar  Quadtree Hierarchical  

 T-ICM HMAP HMPM 
HMAP-

ICM 

HMPM-

ICM 

HMAP-

w 

HMPM-

w 

HMAP-ICM-

w 

HMPM-ICM-

w 

HMAP-

ICM 

HMPM-

ICM 
Mean 

t1 79.90 77.08 78.50 77.62 80.30 77.80 79.67 80.39 82.97 78.63 81.78 79.5 

t2 79.77 73.80 76.97 78.11 81.04 76.23 80.86 82.48 86.33 80.07 85.20 80.1 

It can clearly be seen that the results established with the HMPM estimates show higher OAs than 

methods that are related to the HMAP approach. The difference is ~1.4% to 2.7% for Yt1 and more 

distinct for Yt2 with values between ~2.6% and 5.1%. Among the two hierarchical estimators, the 

HMPM estimator is more time consuming due to the higher computational complexity in the top-down 

pass. However, it offers the possibility to compute confidence maps based on MPM entropies. 

In comparison to the hierarchical modeling results, the OA is consistently higher when taking into 

account the bi-directional exchange of spatio-temporal information within the ICM algorithm. The 

increase in accuracy is in the range of ~1.0% to ~2.5% for Yt1 and significantly higher for Yt2 with 

values of 3.3% to 6.8%.  

If one considers the graph structure in the multi-contextual hybrid Markov modeling result, it is 

notable that the non-weighted models I-HMAP-ICM and I-HMPM-ICM are more efficient for Yt2 with 

OAs ~2.0% and ~4.2% higher than the quadtree-based models R-HMAP-ICM and R-HMPM-ICM. In 

contrast, for Yt1, the respective OAs are only increased by ~1.0% and ~1.5%. By adapting the hybrid 

models (I-HMAP-ICM-w and I-HMPM-ICM-w) to the irregular graph structures, a further increase in 

accuracy can be stated for both images compared to the non-weighted models I-HMAP-ICM and  

I-HMPM-ICM. Highest OAs of ~83.0% for Yt1 and ~86.3% for Yt2 are both related to the proposed 

method HMPM-ICM-w, which offers an accuracy increase of ~2.7% and ~5.3%, respectively, 

compared to the quadtree-based model R-HMPM-ICM. This can be explained by reduced 

discrepancies in the labeling process using homogeneous irregular objects instead of quadratic 

segments, which are characterized by a higher probability to contain mixtures of different classes. 
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Additionally, in contrast to noncausal Markov modeling on a regular planar lattice, spatially larger 

neighborhood systems can be considered. This is associated with a fast convergence of the ICM 

algorithm within four iterations. Besides the increased accuracy, the computational demand of the 

hierarchical models on irregular graphs is reduced by a factor of about five in comparison to quadtrees 

due to the lower number of nodes (~4,000 vs. ~21,845). Likewise, the application of the ICM algorithm 

is characterized by less computational complexity on irregular planar graphs due to the reduced number 

of nodes at S
1
 (~12,000 nodes) in comparison to the finest levels (16,384 nodes) of the quadtrees, 

despite the fact that additional weighting parameters must be computed. 

When applied to the sub-area of Yt1 and Yt2, the proposed multi-contextual Markov model takes 

35 s of processing time on two irregular hierarchical graphs with eight levels and a total number of 

respectively ~4,300 nodes (CPU details: Intel Xeon 5460 Core Duo @ 3.16-GHz processor with a  

3-GB RAM). The generation of the hierarchical graph and the HMPM estimation account for ~45%, 

the estimation of the temporal transition probabilities and the application of the ICM estimator require 

~55% of this time. The execution of the proposed method on irregular hierarchical graphs is ~60% 

faster than on quadtrees with eight levels, even if the generation of the irregular graph is more time 

consuming and a weighting of the nodes must be taken into account. 

The incorporation of contextual information has a smoothing effect on the final classification 

results, by screening out isolated segments of a certain class in homogeneous regions (Figure 4(c,d)). 

Errors mainly occur due to an underrepresentation of the open water area at the land-water boundaries. 

This is due to the coarser resolution of the ScanSAR data in contrast to the RapidEye reference data 

and the high sensibility of the radar signal to protruding cyperaceous vegetation at the river-banks, 

which prohibits the perceptibility of a distinct waterline. As is shown in Table 3, this effect is more 

pronounced at Yt1 (UA: 78.9%) than at Yt2 (UA: 93.2%), where smaller water areas are present. 

However, producer accuracy (PA) reaches more than 93% for both dates. Highest errors are related to 

the misclassification of image elements of class “PFV” to “No water”. These errors are mainly caused 

by flooded vegetation areas with a dense canopy, which prohibits multiple-bounce effects. This results 

in an attenuated signal return and an underestimation of the class “PFV”. This effect is more 

pronounced at t2 with an UA of class “PFV” of ~50.0% which is ~20.0% lower compared to that at t2. 

If one combines the classes “Water” and “PFV” to one single class “Flood”, the supplementary 

consideration of bright scatterers into the labeling process enhances flood mapping accuracy (UA) 

from 33.9% to 73.8% at t1 and from 62.2% to 78.9% at t2. The large difference of the UA of class 

“Flood” between both dates results from the fact that the proportion of open water areas is significantly 

higher at t2 due to a higher flood level. This causes a complete submersion of protruding vegetation 

areas which act as strong scatterers at t1. The main flood areas exhibit a high probability to be classified 

correctly according to the FP maps (Figure 4(e,f)). Smaller, more isolated open water areas are marked 

by a higher classification uncertainty given the HMPM estimation. 

Presumably, the application of the proposed method to C- or L-band SAR data would result in a 

higher detectability of flooding beneath vegetation. However, as the contrast between open water and 

land areas is most distinct in X-band SAR data, a lower classification accuracy of the class “Water” 

may be expected using SAR systems of greater wavelength. 
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Figure 4. TerraSAR-X data-sets for Caprivi/Namibia (center coordinate: 17°56′44″S, 

24°22′34″E) on (a) April 11, 2009 and (b) April 20, 2010; Classification results derived by 

using the IR-HMPM-ICM-w model (c, d); FP maps (e, f). 

 

Table 3. Accuracy matrices for the labeling result of HMPM-ICM-w on an irregular graph 

at t1 and t2 (PA = Producer Accuracy, UA = User Accuracy). 

  Reference 

Date Classified Water No water PFV  UA [%] 

T1 Water 11129 2857 115 14101 78.92 

 No water 541 30261 1895 32697 92.54 

 PFV 236 5511 12991 18738 69.32 

  11906 38629 15001 65536  

 PA [%] 93.47 78.33 86.60 OA [%] 82.97 

     Khat [%] 71.69 

 

T2 Water 21240 1486 61 22787 93.21 

 No water 145 29673 1546 31364 94.61 

 PFV 744 4976 5665 11385 49.67 

  21610 38038 5888 65536  

 PA [%] 95.98 82.18 77.90 OA [%] 86.33 

     Khat [%] 77.20 
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4. Conclusion 

In this work, the problem of unsupervised flood detection in SAR data using a hybrid  

multi-contextual Markov image model on irregular hierarchical graphs is addressed. Experimental 

results obtained on a bi-temporal TerraSAR-X ScanSAR data-set for Caprivi/Namibia confirm the 

effectiveness of combining automatically initialized causal hierarchical with noncausal spatio-temporal 

Markov models with respect to accuracy and computational performance.  

The incorporation of hierarchical context into the labeling process is accomplished by a hierarchical 

marginal posterior mode (HMPM) estimation using Markov chains in scale. The supplementary 

integration of spatio-temporal context is applied by an iterative bi-directional information exchange 

between elements of two consecutive planar graphs of a time sequence. This processing step is 

restricted to elements which offer a certain probability to be wrongly classified according to marginal 

posterior-based entropies. 

It is shown that the application of this hybrid model on irregular graphs helps to reduce 

classification errors and computational demands in comparison to modeling on the regular graph 

structure of quadtrees. The adaption of this model to the variable nature of irregular hierarchical and 

spatio-temporal neighborhood systems leads to a further increase in accuracy. Furthermore, it is 

demonstrated that HMPM estimation outperforms results generated by hierarchical maximum 

a posteriori (HMAP) estimation. 

The incorporation of inundated bright scattering vegetation areas into the classification scheme 

results in a significant enhancement of flood mapping results. Entropy-based confidence maps 

combined with spatio-temporal relationships of potentially flooded vegetation to open water areas are 

used for the quantification of the uncertainty in the labeling of each image element in flood 

possibility masks.  

For future work, additional information such as digital elevation models (DEMs) could be used to 

extend the fuzzy sets describing flood probabilities in areas with terrain of sufficient variability. 
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