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Abstract Current algorithms for the real-time prediction of the Kp index use a combination of models
empirically driven by solar wind measurements at the L1 Lagrange point and historical values of the index.
In this study, we explore the limitations of this approach, examining the forecast for short and long lead
times using measurements at L1 and Kp time series as input to artificial neural networks. We explore the
relative efficiency of the solar wind-based predictions, predictions based on recurrence, and predictions
based on persistence. Our modeling results show that for short-term forecasts of approximately half a day,
the addition of the historical values of Kp to the measured solar wind values provides a barely noticeable
improvement. For a longer-term forecast of more than 2 days, predictions can be made using recurrence
only, while solar wind measurements provide very little improvement for a forecast with long horizon
times. We also examine predictions for disturbed and quiet geomagnetic activity conditions. Our results
show that the paucity of historical measurements of the solar wind for high Kp results in a lower accuracy
of predictions during disturbed conditions. Rebalancing of input data can help tailor the predictions for
more disturbed conditions.

1. Introduction
Machine learning (ML) tools have become widely used in recent decades and are now extensively applied
for a number of applications in the industry and academia. ML is a complex term that describes various
methods and tools that allow computer systems to improve performance or “learn” from data and based on
this “learning” process create systems targeted at various problems. The most common problems for ML are
classification, clustering, and regression. Classification is a problem of ML when the output is restricted to
a specific set of values. An example of classification may be the identification of different subsets of data or
discrimination of photos according to the type of objects being photographed. Clustering is referred to as the
problem where only input data are provided, and there are no preset or desired outputs, but the data need
to be divided into a number of different subsets with common properties.

Regression is a process of estimating the relationship between input and output variables. The simplest
method of regression is a linear regression but a number of nonlinear methods also exist and need to be used
to describe complex dependences. In this study, we focus on the regression problem.

Regression algorithms often create nonlinear models based on training data that allow to predict the desired
variables—such as in this study the Kp index—from the input data, such as in our case the historical solar
wind data and historical observations of Kp. In this study, we focus on relating historical inputs with the
current value of Kp and values of Kp in the future. The lead time for the prediction is usually referred to as
“horizon”, and the input variables as “features”.

A number of ML methods have been recently applied for the prediction of the geomagnetic index Kp. The Kp
index (Bartels, 1949; Mayaud, 1980) is one of the most commonly used measures of geomagnetic activity. Its
long and continuous record makes this index most useful for climatological studies and for the comparison
with historical values.

The analysis of the global geomagnetic disturbances for each individual station is complicated by the fact
that variations during storms or substorms depend on the magnetic local time (MLT) and also show seasonal
variability. To normalize the measurements, the first step in inferring local K indices is to subtract a quiet
daily curve variation in the northward (H) and eastward (D) components of the magnetic field. There are a
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number of standard practices that are used to retrieve such a curve (see, e.g., Mayaud, 1980). Each observa-
tory can choose their own method to infer a quiet curve, but most of the official Kp observatories now use
automated tools. The most popular method is the one from FMI in Finland. A detailed review of how Kp is
derived is also provided in Takahashi et al. (2001).

To calculate Kp, first deviations from quiet daily curve are normalized by assigning them to one of the preset
semilogarithmic bins to obtain a local K index. The 28 bins are chosen to run as (0, 0+, 1−, 1, 1+, … , 9−,
9). The average value of all local K values for all Kp stations is referred to as Kp. A detailed review of the
derivation of the Kp index is given in Rostoker (1972).

The Space Weather Prediction Center of the National Oceanic and Atmospheric Administration (NOAA)
and the U.K. Met Office use data products similar to Kp for operations, to define strong geomagnetic activity
and to issue warnings to power grid operators. Satellite operators also often refer to it in order to identify
anomalies that are caused by internal or surface charging (Hastings & Garrett, 2004).

The Kp index is also used for a wide range of scientific applications. For instance, in the ionospheric com-
munity, it is employed for parameterizing ionospheric ion outflow (Welling et al., 2015; Yau et al., 2011) and
auroral particle precipitation (Emery et al., 2008). In magnetospheric physics, Kp is well correlated with a
number of parameters such as cold-plasma density in the plasmasphere (Goldstein et al., 2014; Maynard &
Chen, 1975; Pierrard et al., 2009), hot-plasma particle density (Denton et al., 2016; Korth et al., 1999), and
the location of the plasmapause (Carpenter & Anderson, 1992). Some empirical models of the Earth's exter-
nal magnetic field use Kp as their only input (Tsyganenko, 1989). Kp is also widely used to parameterize
very low frequency (VLF) waves (Agapitov et al., 2015; Orlova et al., 2016; 2014; Shprits et al., 2007; Spaso-
jevic et al., 2015) and ultra low frequency (ULF) wave amplitudes (Brautigam & Albert, 2000; Ozeke et al.,
2014). For a detailed discussion on the use of Kp for identifying various phenomena in space, see Borovsky
and Shprits (2017).

The availability of continuous observations of the solar wind from the upstream Lagrange point (L1) allowed
for the development of tools for real-time nowcasting of the Kp index. Costello (1997) and Boberg et al.
(2000) developed data-driven models based on artificial neural networks or simply neural networks that are
now becoming increasingly popular for a variety of scientific and commercial applications (Bishop, 2006;
Goodfellow et al., 2016). Wing et al. (2005) presented and tested different models that utilized both L1 solar
wind and nowcasting of Kp, tested them for 1- and 4-hr predictions, and compared them to previously used
methods, including neural networks and Nonlinear AutoRegressive Moving Average model with eXogenous
inputs NARMAX (Balikhin et al., 2001; Boaghe et al., 2001). They also showed how the performance of the
method can be improved by using the near-real-time values of the Kp index derived from near-real-time
ground observations. The application of various ML tools has been the subject of a number of recent studies
(Ayala Solares et al., 2016; Bala & Reiff, 2012; Ji et al., 2013; Tan et al., 2017; Wang et al., 2015; Wintoft et al.,
2017).

While previous studies show that solar wind-driven models can provide accurate short-term predictions that
can be further improved by using recent measurements and recurrence in Kp and solar wind, how much
each of these methods can contribute to forecast accuracy and how prediction accuracy depends on the hori-
zon time remain relatively unexplored. Understanding of the efficiency and limitations of the predictions
based on different types of inputs can help develop independent algorithms for predictions. Combinations of
such models, depending on the availability of data, may be used in an optimal way to produce an even more
accurate forecast. As the probability distribution function is skewed toward smaller values, we also explore
in this study how forecasts can be tailored to predict large values of Kp that are usually underrepresented in
the available data sets.

The paper is organized as follows: In section 2, we describe the different data sources and processing proce-
dures used to build the input data sets for our Kp forecast. In section 3, we describe the ML model used, the
metric employed for evaluation, and the validation schemes. In section 4, we show the results of our study,
that is, validated average errors for various forecast horizons, solar cycle dependence errors, and present
methods to correct for a skewed distribution of the probability distribution function and tailor predictions
to high Kp values.

2. Model Inputs
In this section, we describe the inputs and their combinations used to perform the short- and long-term Kp
forecast as well as our data processing framework. These inputs are built out of two main sources of data:
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Figure 1. Linear cross correlation between Kp and 1-hr averaged solar
wind variables and the interplanetary magnetic field (IMF), as well as the
Kp time autocorrelation. The correlations decay fast in the first few hours,
showing the lack of predictability of Kp by those variables for a large time
horizon. A peak appears, though, at around 25-26-27 days, and it is caused
by recurrent effects due to the solar rotation. The peak has its maximum at
slightly different delay times for different variables.

the first source is the historical, definitive Kp index, provided by the
World Data Center (http://wdc.org.ua/) and the German Research Centre
for Geosciences (GFZ) (ftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/
wdc/). The second source of input is 1-min high-resolution propagated
solar wind data from the OMNI website (ftp://spdf.gsfc.nasa.gov/pub/
data/omni/high_res_omni/). Propagation of the solar wind data allows
to predict the values of the solar wind at the bow shock with a lead time
that is equal to the propagation time of the solar wind from L1 to the bow
shock. For this study, we consider the period between 1 January 2000 and
31 December 2017, spanning almost two solar cycles, for which continu-
ous solar wind observations are available. The physical variables used are
the solar wind speed (V), the proton density (n), the vertical component
of the magnetic field (Bz) in the GSM frame of reference, and the total
magnetic field amplitude (B).

Due to the high cadence of the input solar wind variables, following
Wintoft et al. (2017) and Tan et al. (2017), we extract statistical informa-
tion out of these variables before using them as inputs. Specifically, we
consider 3-hr windows of measurements for which we calculate average
values as well as minimum and maximum values. We denote the average
value of the variable x taken during the time interval [−3, 0] by ⟨x[−3;0]⟩.
In a similar way, we define minimum and maximum values of a variable
x as min{x[−3;0]} and max{x[−3;0]}.

To study the dependence of Kp on the solar wind parameters and previous Kp values, we first consider the
linear time-lagged correlation between Kp and different input variables. Figure 1 shows the time lag linear
correlation between Kp and 1-hr averaged solar wind variables, as well as the Kp autocorrelation for a time
lag of up to 30 days.

The correlation decreases very fast with increasing prediction lead time. A relatively big increase in the
correlations occurs for horizons of approximately one solar rotation (i.e., 27 days). This correlation is par-
ticularly high during the declining phase of the solar cycle which is dominated by the recurrent activity due
to high solar wind streams. Coronal mass ejection (CME)-induced storms cannot be accurately predicted
from the consideration of the recurrence alone and may not significantly contribute to the correlation with
previous solar cycle parameters.

Below, we describe various inputs for the prediction of Kp that will be considered in this study. We henceforth
refer to these input variables as “data sets.” We first consider two data sets that will be used as baseline
predictions to estimate the relative efficiency of the predictions.

Persistence. In order to compare the performance of several model inputs, we introduce here the first baseline
model, that is, the Kp Persistence model. This model assumes that the Kp forecast is given by the last available
value of Kp

Kp(t0 + h) = Kp(t0 − 3) (1)

where t0 is the beginning of an interval of the Kp bin and h is the horizon time. For real-time operations,
if Kp(t0 − 3) is not known, it must be substituted either with the previous value or with a nowcasted value
obtained with another prediction system.

Kp Average. The second baseline model is the Kp Average model. This model estimates Kp at a later time by
an average value of Kp over a long-term time interval for which the index is available, from 1932 until now

Kp(t0 + h) = ⟨Kp⟩ (2)

SC Average. To account for the solar cycle dependence, we introduce a third baseline model, that is, the Solar
Cycle Average (SC Average) model. Such a model could be used by an operator when model inputs, such as
Kp time series and solar wind, are not available or reliable. This model is constructed by taking the Kp data
set from 1932 to 2004 and calculating the average Kp for each day of the solar cycle counted from the epoch
time, that is, the maximum of the sunspot number. Static models may also be used for planning, such as an
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estimation of the orbital decay of future or ongoing missions. We do not perform any normalization of the
solar cycle as the length of the solar cycles cannot be inferred ahead of time.

Solar Wind. This data set uses past solar wind measurements close to the current time t0. The structure of
the functional dependence that we will determine can be presented as

Kp(t0 + h) = 𝑓

(
max

(
x(i)[t0−3(n+1);t0−3∗n]

)
,min

(
x(i)[t0−3(n+1);t0−3∗n]

)
,

⟨
x(i)[t0−3(n+1);t0−3∗n]

⟩
...

)
(3)

where n = 0, 1, 2, Kp(t0 + h) refers to the value of Kp during the time interval [t0, t0 + h] and the x(i) refer to
different solar wind variables, that is, proton density, total speed, magnetic field amplitude, and magnetic
field z component, taken within fixed 3-hr intervals prior to the current moment. In total, we therefore
have 36 input features, 4 variables, 3 statistical functions (minimum, maximum, and average), and 3 time
windows.

Kp Historical. This data set uses three values of Kp data close to the current time to forecast Kp at a later time.

Kp(t0 + h) = 𝑓
(

Kp(t0 − 3),Kp(t0 − 6),Kp(t0 − 9)
)

(4)

We exclude the dependence on Kp(t0), because in the context of real-time operations, this value may not be
available or not accurate enough at the forecast time. Kp is a 3-hr index and in general cannot be calculated
for the current 3-hr time interval, as the entire evolution of the fluctuation of the magnetic field is not avail-
able until the end of the current 3-hr interval. For this model we only consider three time intervals prior
to the current time. The addition of earlier time periods did not result in a significant improvement of the
forecast model.

Recurrence. This data set uses Kp data measured at approximately one and two solar rotations earlier in time
with respect to the forecast time. We consider Kp during the 3 days one and two solar rotations prior to the
current time. With this model we test to what extent the Kp index can be predicted using the information
about Kp itself one and two solar rotations before. We use in total 54 input features defined as follows:

Ki = s(Kp[tc−3∗d,tc+3∗d]) (5)

where s is a statistical function (minimum, maximum, and average) taken over a window of time of different
amplitudes (d = 1, 2, 4, i.e., 6, 12 and 24 hrs), while tc = 26, 27, 28, 53, 54, 55 days. Then Kp is given by f(Ki),
where i = 1, … , 54 is the index of the feature used. It should be noted that similar results can be obtained by
using the recurrence of the solar wind and taking inputs for the previous two solar rotations. In this study,
the Recurrence model uses Kp only and does not use solar wind inputs. Our sensitivity simulations showed
that the addition of the solar wind recurrence to the Kp recurrence does not significantly improve the results
of the modeling.

Full. The last data set that we consider is composed of all input variables that were used in the previous
dynamic models, that is, solar wind and Kp data close to the current time and recurrence of solar wind and
Kp data up to two solar rotations in the past. This model blends together the information contained in all
the inputs and represents the most accurate forecast that can be achieved with these variables for a given
empirical method. The operational disadvantage of such a model is that it can only be used when all of the
inputs are available, which is unfortunately not always the case for real-time operations.

3. Methodology: ML and Model Validation
The processed data sets described in the previous section can now be used as input for data-driven models to
provide an estimate for the Kp forecast at later times. Each data set is first normalized such that each input
feature has values within the [0, 1] interval. Normalization constants are saved to be used in the subsequent
testing/operational phases.

In this study, we use feed-forward neural networks with one hidden layer. The addition of more layers does
not improve the forecast but only leads to a longer training time. The number of neurons in the hidden
layer is the only hyperparameter of the network that we explored systematically. This number, fixed to 20,
was selected based on grid search hyper-parameter exploration, showing that a higher or lower number of
neurons does not significantly change the results. Sigmoid functions have been used as activation functions
for hidden layer neurons, while the final layer has only one neuron, which outputs the Kp forecast using
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Figure 2. Cross-validation errors for all considered models as a function of the forecast horizon measured in hours.
The solar wind-based model performs better for short-term forecasts, while the recurrence model dominates for long
time horizons. The full model nicely interpolates between these two regimes, thus performing better than the other
models in both cases. RMSE = root-mean-square error.

a linear activation function. The training phase is performed using the second-order Levenberg-Marquardt
algorithm available from the ML Matlab Toolbox (https://de.mathworks.com/solutions/machine-learning.
html), since it provides faster convergence and slightly better results than first-order methods. We use default
Matlab parameters as a criterion for stopping the training. We have tested the sensitivity to the assumed
maximum number of epochs and maximum validation failures, and the results are relatively insensitive as
the minimum error is reached with only a few training cycles. To compare the performance of the models
based on different inputs, we use the root-mean-square error (RMSE). The RMSE is defined as

RMSE =

√√√√√√
N∑

i=1

(
𝑦i − �̂�i

)2

N
(6)

where the sum is performed over the samples of a validation test set. The RMSE represents the square mean
average of the residuals, where the residual is the difference between the predicted and observed values.

We use data from the period between the years 2000 and 2017. To avoid creating a bias for a particular phase
of the solar cycle, the following validation scheme is used: First, we divide the data set into 11 yearly chunks
selected between 2005 and 2016. We then perform a k-fold cross validation with k = 11. Each iteration of
the cross validation utilizes one selected year for validation, and the rest of the data are used for training.
The whole procedure, repeated 11 times, provides 11 training errors and 11 validation errors.

The forecast model performance is defined by the average of the 11 validation errors obtained as described
above. This cross-validation RMSE is interpreted as the average performance error of the system for a given
input data set and given forecast horizon. Moreover, it is built to be unbiased with respect to the solar
cycle, since validation is performed on data from 11 consecutive years, the approximate length of a solar
activity cycle.

4. Results
Figure 2 shows the RMSE error for the Kp forecast using the data sets described above. An increase in the
lead time of prediction decreases the accuracy of all models except for the Recurrence model and the Average
model, which remain constant with forecast horizon time. Figure 2 shows the accuracy of the forecast as
a function of the prediction lead time. For the purpose of nowcasting, predictions driven by the solar wind
provide the highest accuracy with an RMSE of ∼0.55 for the 0h horizon and ∼0.7 for the 3h horizon.

The short-term solar wind-based prediction is much more accurate than the forecast using the recurrence
and persistence models or employing recent values of Kp. Surprisingly enough, the model based on the
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Figure 3. Example of a Kp forecast for a 3-hr horizon for the Solar Wind model (solid red line), the Recurrence model
(dashed blue line), and the Average model (dotted green line). The definitive Kp is shown by the solid black line. RMSE
= root-mean-square error.

combination of these methods leads to only a modest improvement of the results over the model driven only
by the solar wind. The most likely explanation for such close performance of the models is that the prediction
is already very accurate. The accuracy of the solar wind-based model significantly degrades with increasing
forecast horizon and becomes comparable to the recurrence forecast for an approximately 1-day horizon
time. For longer horizon times, recurrence provides a more accurate forecast than the forecast based on the
solar wind and the forecast based on the average Kp over the entire data set of Kp. Interestingly enough, the
SC Average model gives very similar results to a simple Average model. Most likely, the similarity between
these two models is due to the fact that different solar cycles might have very different characteristics.

An example of a Kp forecast based on the Solar Wind, Recurrence, and Average data sets is shown in Figure 3.
This example clearly illustrates that the solar wind-based model is capable of rather accurately reconstruct-
ing the values of the measured definitive Kp index. While the recurrence-based model is significantly less

Figure 4. Performance of models using different input data sets, averaged during different phases of the solar cycle: (a) the declining phase 2002–2005 and
2017, (b) the ascending phase 2011–2013, (c) the solar minimum 2006–2010, and (d) solar maxima 2000–2001 and 2014–2016. RMSE = root-mean-square error.
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Figure 5. Variability of yearly validation errors for the Recurrence model (red line) and the Solar Wind model (blue
line), shown for (a) horizon 0 and (b) horizon 48 hr. RMSE = root-mean-square error.

accurate than the solar wind-based model, it provides significant improvement over a simple model that
continuously predicts a constant value of Kp.

4.1. Solar Cycle Dependence
In this section, we study the accuracy of the forecast as a function of the solar cycle phase. As currently
continuous solar wind observations are provided only for a period of less than two solar cycles, we do not
have sufficient data to check how the forecast accuracy changes from one solar cycle to another.

Figure 4 shows the results of the predictions for four different phases of the solar cycle. The highest accuracy
is achieved during the solar minimum, while all the other three phases of the solar cycle show higher but
rather similar values of RMSE. The small values of the RMSE during the minimum are related to small
values of Kp observed during that part of the solar cycle. The fact that the declining phase does not have a
lower RMSE for the Recurrence model is due to the fact that the declining phase has the highest average
values of Kp, which leads to higher errors. The normalized RMSE (See supporting information Figure S2)
shows lower values of RMSE for the Recurrence prediction during the declining and solar maximum phases
of the solar cycle due to higher average values of Kp.

To compare the short- and long-term predictions during different phases of the solar cycle, Figure 5 shows
the dependence of cross-validation errors for the Recurrence and Solar Wind models, during the time
period between 2000 and 2017. The Solar Wind prediction clearly outperforms the Recurrence model for
the zero horizon but performs worse than the Recurrence for the 2-day lead time prediction. The solar cycle
dependence of the RMSE is also clear for these two models and given lead times.

4.2. Kp Distribution Rebalancing
Due to the skewness of the Kp distribution, low Kp values corresponding to quiet times significantly out-
number the high values of Kp during disturbed conditions. Depending on the application, stakeholders
and scientists may be interested in forecasting the occurrence of only high values of Kp. Predictions of dis-
turbed conditions may be the most important for predicting events which pose a threat of Geomagnetically
Induced Currents (GIC) events, since warnings of GIC events are issued only for the strongest geomagnetic

Figure 6. (a) Cross-validation RMSE for all available models as a function of forecast horizon for quiet and moderate
conditions (Kp ≤ 4) and (b) for disturbed conditions Kp > 4. RMSE = root-mean-square error.

SHPRITS ET AL. 1225



Space Weather 10.1029/2018SW002141

Figure 7. (a) Normalized Kp distribution in the period 2000–2017. (b) Effect of rebalancing over the Kp distribution.

conditions. For modeling of the ring current and radiation belts, high Kp values will play the most important
role as most of the dangerous intensifications of the space environment conditions will occur during storms
and substorms. Disturbed geomagnetic conditions may also play a dominant role for the orbital decay of
satellites.

Figure 6 has a similar format to Figure 2, but the validation is performed for quiet (Kp ≤ 4) and disturbed
(Kp > 4) geomagnetic conditions. Data imbalance affects the performance, with high values of Kp being
affected by much larger errors and in some cases leading to unreliable predictions.

A number of different attempts have been proposed previously to mitigate the imbalance in the Kp prob-
ability distribution function. For instance, Tan et al. (2017) built two different models for high and low
activities, and a third model was used to choose which of the models to employ for forecasts. Another pos-
sible approach is to use a target-dependent cost function during the training of the neural network or any
other ML algorithm. According to this method, larger errors are assigned to errors committed on high Kp
estimates with respect to the ones made for low Kp values.

In this study, we use Random Oversampling to balance the Kp distribution. Randomly chosen high Kp values
are added to the data set until the distribution becomes independent of Kp. The procedure is illustrated in
Figure 7. For the skewed Kp distribution, we randomly add values for all bins, except for the most probable
Kp bin. For each Kp bin resampling continues until the number of values in each bin becomes equal to the
number of points in the bin with the highest occurrence in the original distribution.

Figure 8. Comparison between Solar Wind models trained with balanced (dashed lines) and unbalanced (solid lines)
data sets. The red lines show the performance for the disturbed condition data set (Kp > 4), while the blue lines
illustrate this for quiet times (Kp ≤ 4). RMSE = root-mean-square error.
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Figure 9. Comparison between the forecast results for a time horizon of 6 hr using the SOLAR WIND (solid blue line)
and oversampled data (dashed red line). The definitive Kp index is provided as well (solid black line).

Figure 8 shows the results of the Resampled data sets for the Solar Wind model. We present predictions with
the solar wind model using balanced data by the dashed lines and original data input by the solid lines. Bal-
ancing significantly increases the accuracy of predictions during disturbed geomagnetic conditions as the
balanced network had a significantly higher number of high Kp points in the training data set. However,
the rebalanced model performs worse on average as quiet geomagnetic conditions occur more often than
disturbed ones, and the rebalanced network is more tailored for disturbed conditions. Figure 9 shows an
example of the predictions of a storm in November 2003 using the original and rebalanced data sets. Dur-
ing disturbed conditions, the predictions made with the original data set systematically underestimate the
definitive Kp values (see also supporting information), while the rebalanced predictions do not show such a
strong bias. We have also tested a more sophisticated resampling method (Synthetic Minority Over-sampling
Technique (Chawla et al., 2002), not shown in this manuscript), which gave a similar result.

5. Conclusions and Discussion
In this study, we perform a systematic analysis of the Kp prediction using empirical models for different types
of inputs and prediction horizons. In particular, we study the performance of models based on recurrence,
persistence, historical solar wind observations, and recent observations of Kp, as well as measurements of
the solar wind. The results show that rather accurate predictions with RMSE less than 1 can be achieved
only for horizon times of 6 to 20 hr depending on the phase of the solar cycle. The best performing model for
short-term predictions is based on the solar wind parameters, and the addition of other input data provides
only a very small improvement of the results.

For longer horizons of over approximately 2 days, recurrence, which is independent of horizon time, pro-
vides the best predictions. The accuracy is still rather low, but such a model is much more accurate than
predictions based on an average value of Kp or solar wind conditions.

The predominance of low values of Kp in the probability distribution function presents another compli-
cation for the predictions of the periods of disturbed activity. Forecasts based on the original Kp data set
systematically underestimate Kp during disturbed conditions, and methods more tailored for high Kp can
be used for the forecasts that require the prediction of Kp above a certain level. We show that resampling
can significantly improve the model results for disturbed conditions while only moderately decreasing the
performance for quiet conditions.

Our results demonstrate that while predictions based on the in situ measurements of the solar wind
and previously recorded values of Kp can provide reasonably accurate values for geomagnetic conditions,
longer-term predictions require new input information or new approaches. Longer-term deterministic pre-
dictions such as 2- or 3-day predictions cannot be provided by models based on real-time input from only
solar wind and Kp. Further improvements in long-term modeling should include global physics-based
or empirical modeling driven by observations of the Sun, which can give longer-term predictions. Such
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long-term predictions from global models of the heliosphere can be used to augment real-time data sets
obtained from the L1 point or from ground-based observations. Another approach that can be used for the
prediction of events above certain thresholds is to provide not just deterministic predictions but also a pre-
diction of the probability of such events. Such an approach provides longer horizon predictions and can help
stakeholders to estimate probabilities and risks and should therefore be the subject of future studies.
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