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S U M M A R Y
In Magnetotellurics (MT) natural electromagnetic field variations are recorded to study the
electrical conductivity structure of the subsurface. Thereby long time-series of electromagnetic
data are subdivided into smaller segments, which are Fourier transformed and typically aver-
aged in a statistically robust manner to obtain MT transfer functions. Unfortunately, nowadays
the presence of man-made electromagnetic noise sources often deteriorates a significant frac-
tion of the recorded time-series by overprinting the desired natural field variations. Available
approaches to obtain undisturbed and high quality MT results include, for example robust
statistics, remote reference or multi-station analyses which aim at the removal of outliers or
uncorrelated noise. However, we have observed that intermittent noise often affects a certain
time span resulting in a second cluster of transfer functions in addition to the expected true
MT distribution. In this paper, we present a novel criterion for the detection and pre-selection
of EM noise in form of outliers or additional clusters based on a distance measure of each
data segment with regard to the centre of the data distribution. For this purpose, we utilize the
Mahalanobis distance (MD) which computes the distance between two multivariate points con-
sidering the covariance matrix of the data that quantifies the shape and the size of multivariate
data distributions. As the MD considers the covariance matrix, it corrects not only for different
variances but also for any correlation between the data. The computation of both, the mean
value and covariance matrix, is susceptible to ouliers (e.g. noise) and requires a statistically
robust estimation. We tested several robust estimators, for example median absolute deviation
or minimum covariance determinant algorithm and finally implemented an automatic criterion
using a deterministic minimum covariance determinant algorithm. We will present results
using MT data from various field experiments all over the world, which illustrate successfull
data improvement. This approach is able to remove scattered data points as well as to reject
complete data cluster originating from noise sources. However, like all purely statistical algo-
rithms the criterion is limited to cases where the majority of the recorded data is well-behaved,
that is noise content is below 50 per cent. If the majority of data points originates from noise
sources, the new criterion will fail if used in an automatic way. In these cases, additional input
by the user either manually or in an automated fashion can be utilized. We therefore suggest
to use an add-on criterion to back the MD selection and subsequent robust stacking in form
of a physically motivated constraint based on the magnetic incidence direction. This property
indicates whether the magnetic field originates from various sources in the far field or from a
strong and well defined source in the near field.
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1 I N T RO D U C T I O N

The Magnetotelluric (MT) method senses the electrical conductivity
structure of the subsurface through measurements of orthogonal

components of natural magnetic and electric field variations at the
Earth’s surface. In the frequency domain, we can mathematically
describe the linear relationship between horizontal magnetic and
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electric field components by the impedance tensor Z:(
Ex

Ey

)
=

(
Zxx Zxy

Z yx Z yy

)
·
(

Bx

By

)
(1)

with E being the electric field [V m–1], B the magnetic field [T] and
Zi j (i ; j = x ; y) the components of the impedance tensor Z [m s–1].
The complex valued impedance tensor carries the information about
the Earth’s electrical conductivity structure and if not used in a
monitoring application, this quantity is treated as time independent.
However, if we use eq. (1) within a statistical model, we have to con-
sider an additional error term. Within the course of estimating the
components of Z, time-series are often divided into shorter time seg-
ments that are treated as individual and independent ’measurements’
and subsequently transformed into frequency domain. Spectral val-
ues of these different segments are used to calculate the impedance
tensor elements. To solve eq. (1), least-squares (LSQ) methods can
be applied and give unbiased results if noise affects only the output
channels of the equation system (Ex, Ey for the impedance in eq. 1):
In addition, they are statistically optimal and/or unbiased if noise
is independent and Gaussian distributed (Weckmann et al. 2005).
Unfortunately, in many regions we observe a growing number of
industrial sites and advanced electric infrastructure which results in
strong man-made electromagnetic (EM) noise. This noise contribu-
tion is superimposed on the desired natural MT signal and needs
to be addressed by advanced data processing approaches as it has
long been known that simple single-station ordinary LSQ methods
cannot be used to calculate a meaningful impedance Z (e.g. Sims
et al. 1971) as a significant portion of the time segments distorts
the calculated mean value. The introduction of robust statistics and
the remote reference method significantly improved the estimation
of the transfer functions. Nowadays several robust statistical algo-
rithms (e.g. Egbert & Booker 1986; Chave et al. 1987; Chave &
Thomson 1989, 2004 ; Ritter et al. 1998; Smirnov 2003), mainly re-
lying on data-adaptive weighting schemes, are in use to decrease the
influence of outliers. The remote reference method involves simulta-
neously recorded EM fields from at least two sites that are composed
of highly correlated signal and uncorrelated noise (Goubau et al.
1978; Gamble et al. 1979); in addition, accurate time is a prereq-
uisite. The most promising results are achieved with a combination
of both methods: a robust remote reference processing (e.g Larsen
1989; Oettinger et al. 2001; Chave & Thomson 2004). In compari-
son to a single-station approach, remote reference processing uses
an errors-in-variables model and therefore accommodates for noise
in all channels (Chave & Jones 2012); as a consequence remote
reference results have commonly been accepted as superior to the
simple single-site approach (e.g. Jones et al. 1989; Larsen et al.
1996; Egbert 1997). Although, field experiments are almost always
designed to record one or several remote stations simultaneously, it
is often difficult to identify a suitable reference site as cultural noise
signals can be widespread and coherent over large areas. If both
local and reference sites are affected by the same noise, the remote
reference method can give misleading processing results (e.g. Ped-
ersen et al. 1992; Ritter et al. 1998). Using data from a local station
array, Ritter et al. (1998) showed that in some frequency bands up
to 99 per cent of the measured time-series were contaminated with
correlated noise.

The multi-station processing presented by Egbert (1997) is based
on a multivariate model, which uses all available data from many
simultaneously recording stations to improve the signal-to-noise
(S/N) ratio. Egbert’s approach (1997) is a robust version of an un-

derlying principal component analysis; he proposed to weight the
different channels according to their uncorrelated noise. Although
it is desirable to use simultaneous recordings from different MT
stations with some of the above mentioned processing approaches,
we often face the problem of correlated EM noise over large dis-
tances or sometimes insufficient time accuracy. As a result, remote
reference and multi-station approaches cannot be used for data pro-
cessing and the practitioner is set back to single-site processing.

While outliers are in general satisfactorily handled through the
robust statistic approach, intermittent EM noise contributions, for
example originating from near-field noise sources and/or the vi-
olation of the plane-wave assumption, often form a own cluster
of transfer functions overlying the MT signal distribution. In this
case, robust processing schemes can be succoured through a fre-
quency domain pre-selection approach that reduces the amount of
EM noise to a level robust statistics can deal with. Travassos &
Beamish (1988) and Weckmann et al. (2005) suggested interactive
selection algorithms that are based on physical criteria to eliminate
disturbed parts of the MT recordings. For their data pre-selection,
Weckmann et al. (2005) examined physical properties such as spec-
tral power densities, coherences or polarization directions of MT
data and observed that these quantities calculated for each subse-
quent event exhibit temporal variations within the recording time.
Such a pattern indicates noise sources that are switched on temporar-
ily or are coupled with production periods. In heavily industrialized
or populated areas, night-time recordings are often regarded as less
noise affected as during daytime. To overcome this obstacle, noisy
parts of the time-series can be truncated based purely on time (e.g.
only night-time recordings). But the practitioner might pay dearly
for omitting all daytime recordings with an excessive reduction of
the length of the time-series. Furthermore, these data pre-selection
approaches are often very tedious and time consuming and require
experienced users.

Therefore, we introduce an automated approach to improve the
S/N ratio prior to the final and robust stacking of the MT transfer
functions. On one hand side, we try to classify the distribution of
MT transfer functions of sequenced events through their distance
to the mean value of the distribution and their variance. Distances
are traditionally computed using the Euclidean distance, but for
MT data (either cross- and autospectra or impedance tensor compo-
nents) the usage of the Mahalanobis distance (MD) might be more
expedient.

The MD is used in multivariate statistics for outlier detection
(e.g. de Maesschalck et al. 2000; Filzmoser et al. 2005; Srini-
vasaraghavan & Allada 2006; Friebel et al. 2010; Brereton 2015)
or in discriminant analysis (e.g. Kleinschmidt et al. 1994; Wu et al.
1997; Hayashi et al. 2001; Srinivasaraghavan & Allada 2006) in
a wide spectrum of fields reaching from biology and chemistry to
lean manufacturing; however, it has not been applied as a selection
criterion prior to robust stacking. Furthermore, the squared Maha-
lanobis distance is part of the density function of the multivariate
Gaussian distribution. Since outliers have a strong influence on the
empirically estimated mean value and covariance matrix, a robust
estimation of the data centre and the covariance matrix is essential
for an effective MD calculation. Several methods have been used
for this purpose, for example the median absolute deviation from
the median (Gnanadesikan & Kettenring 1972; Huber 1981; Falk
1997; Friebel et al. 2010) or more complex algorithms like, for ex-
ample the minimum volume ellipsoid or the minimum covariance
determinant method (Rousseeuw 1984, 1985). We tested different
robust approaches with MT data and decided upon a deterministic
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minimum covariance determinant (MCD) algorithm, which also al-
lows that nearly half of the data can either be outliers or belong to
a second data cluster. We implemented the approach as a confine-
ment and pre-selection criterion into the robust EMERALD process-
ing (Ritter et al. 1998; Weckmann et al. 2005; Krings 2007). We
will show improved processing results from various MT stations
(South Africa, Germany, Tajikistan and Venezuela, respectively;
Muñoz et al. 2010; Korolevski et al. 2014; Schmitz et al. 2013;
Platz 2018). However, like all purely statistical algorithms this first
criterion is limited to cases where the majority of the recorded data
is well-behaved, that is noise content is below 50 per cent. If the
majority of data points originates from noise sources, this criterion
will fail if used in an automatic way. In these cases, several options
can be applied: (i) usage of a remote station, (ii) additional input by
the user either manually or (iii) in an automated fashion. We there-
fore suggest to use an add-on criterion to back the MD selection
and subsequent robust stacking in form of a physically motivated
constraint based on the magnetic incidence direction. This second
criterion was originally designed as an add-on for the MD criterion,
but it can also be successfully applied without the MD criterion
and has the advantage that it does not require any user input. Al-
though we will mainly show advances and limitations of two novel
criteria for single-site processing to estimate the impedance tensor,
these tools can also be applied to the vertical magnetic transfer and
inter-station transfer functions, as well as for remote reference or
multi-station processing.

2 E L E C T RO M A G N E T I C N O I S E I N M T
DATA

We will first focus on the characterization of intermittent EM noise
and its removal, as it is not the purpose of this paper to compare
different MT processing approaches.

Although the MT results obtained from the EMERALD processing
(Fig. 1a) for an exemplary station from South Africa allows to
perceive the true curve of apparent resistivity and phase, some
scatter can be observed in the period range >1 s. A slightly improved
result is obtained by using the processing approach based on Egbert
& Booker (1986, fig. 1a). Both processing algorithms exhibit some
inherent differences and since the main work flow of the EMERALD

software package is not widely known, we will briefly summarize it
below. Eq. (1) or similar equations for remote reference processing
or the vertical magnetic or inter-station transfer functions are solved
by a bivariate linear regression, thereby:

(i) Bandpass filtered time-series are divided into short, contigu-
ous time windows or segments of fixed length, for example 128
samples.

(ii) Tapered segments are Fourier transformed and corrected for
instruments responses (= events).

(iii) For each target period and event, auto- and crossspectra es-
timates are computed from the calibrated Fourier coefficients (e.g.
[Ex B∗

x ]i ) and averaged into logarithmically distributed target pe-
riods (cf. Schmucker & Weidelt 1975) which subsequently con-
tribute to the calculation of the impedance tensor components (e.g.

Zxy = 〈Ex B∗
y〉〈Bx B∗

x 〉−〈Ex B∗
x 〉〈Bx B∗

y〉
〈Bx B∗

x 〉〈By B∗
y〉−〈Bx B∗

y〉〈By B∗
x 〉 ).

The bracketed terms represent stacked auto- and cross-spectra,
with for example,

〈
Ex B∗

x

〉 = ∑N
i=1 wi

[
Ex B∗

x

]
i

with the asterisk de-
noting the complex conjugate. The weights wi are calculated by
stacking the smoothed spectra from many events with an itera-
tive robust weighting algorithm described in the appendix of Ritter

et al. (1998). The robust algorithm to address the regression prob-
lem (Junge 1990, 1992, 1994) combines two main parts: the χ 2

and the consistency criterion. The χ 2 criterion examines whether
a single event spectrum fits into the majority of all data. Subse-
quently, the influence of this single event spectrum is increased or
decreased by a robust weighting scheme using a combination of
Huber and Tukey weights. This means that single event spectra data
are declared as outliers, if they have large errors based on single
event transfer functions. The consistency criterion reduces in a sec-
ond step non-stationary contributions in the transfer functions by
iteratively replacing a certain amount of noisy data with predicted
data. In view of recent papers by Chave (2014) and Chave (2017),
the underlying Gaussian model within EMERALD might not be ade-
quate for MT data and might require modifications; however, in this
paper we focus on two pre-stacking selection tools whereby at least
the second tool is independent on the assumed underlying Gaussian
distribution.

In addition, optionally a coherence threshold can be applied prior
to the robust stacking to remove single events. However, if MT
stations are affected by a high amount of EM noise, the MT trans-
fer function estimates from this automatic robust data processing
scheme might still be insufficient (Fig. 1a). A comparison with pro-
cessing algorithms based on Egbert & Booker (1986) and Egbert
(1997) reveals partly improved apparent resistivity and phase curves
for periods <2 s, however, for longer periods scattered data points
indicate that the influence of EM noise becomes more severe and
beyond of being manageable by robust statistics. The multivariate
processing is applied to single-site data with coherent noise in the
channels; however since we only use five channels of one station,
significantly improved results cannot be expected as this approach
can play to its potential primarily by using one or more additional
stations.

To apply additional filters or approaches to reduce the scatter
observed in the MT curves, it is necessary to look at scatterplots or
histograms of real and imaginary parts of the single event transfer
functions from which the final estimates are calculated in a statis-
tically robust manner (Figs 1c and d). These plots illustrate that
the single event transfer functions are separated into two different
distributions; one caused by the natural signal and the second one
presumably by noise. This distribution combined of two clusters is
a nightmare for each statistical approach.

Often quantile–quantile (q–q) plots are suggested to check
whether the assumed model for the robust approach is valid (Chave
2014). The residual q–q plot for T = 1 s (Fig. 1b) indicates that
the residuals are systematically long tailed compared to an assumed
Gaussian distribution which would result in a straight line. How-
ever, they do not give additional insight into the actual problem of
two clusters.

Since this sort of EM noise is often present in MT data and avail-
able processing algorithms that (partly) rely on statistics are at their
limits, we suggest to use additional automatic confinement criteria
to remove both, outliers and additional and unwanted distributions
within the MT recordings.

3 DATA C O N F I N E M E N T B A S E D O N T H E
M A H A L A N O B I S D I S TA N C E

The basic idea of this criterion is to confine the data to an ideally
noise-free or noise reduced subset that is subsequently used in the
regression problem. Outliers and events belonging to noise, for
example in the tail of the distribution (as in Fig. 1d) or forming a
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ρ
φ
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(c) (d)
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Figure 1. (a) Processing results of station SA-4 for the Zxy component using the robust EMERALD (Ritter et al. 1998; Weckmann et al. 2005) as well as
processing algorithms after Egbert & Booker (1986) and Egbert (1997) showing scattered apparent resistivity and phase curves for very short periods and
periods >1 s due to EM noise. The multivariate processing is applied here only to single-site data with coherent noise in the channels; therefore significantly
improved results cannot be expected as this approach is aimed primarily for the use of multiple stations. Whereas the robust processing after Egbert & Booker
(1986) results in mostly smooth curves for periods <2 s, severely disturbed results exist for longer periods. (b) The corresponding q-q plot of the residual
magnitude versus the Rayleigh distribution quantiles for the period of T = 1 s indicates that the residuals are systematically long tailed; the existence of two
distributions as seen in (c) and (d) is concealed. (c) The Argand diagram of the real and imaginary part of the Zxy component of each event of the entire
time-series reveals two distributions. (d) Histograms of the real and imaginary part of all single event transfer functions Zxy for T = 1 s indicate that one larger
cluster and one smaller cluster are merged.

separate noise distribution in the data space, are assumed to have a
larger distance to the desired MT data distribution. Therefore, only
events with a distance value smaller or equal to a critical distance are
considered further. The statistically motivated confinement criterion
will be applied after a coherence sorting, but prior to the actual
regression (see Fig. 2).

The Mahalanobis distance (MD; Mahalanobis 1936) is an im-
portant distance measure for multivariate data. It represents a gen-
eralization of the well-known Euclidean distance (ED) and allows
for correlated data by taking the inverse of the covariance matrix
C−1

x into account. The distance MDi between the ith observation of
a multivariate measurement xi (expressed in a row vector) and the
data centre μ of a distribution is calculated by

M Di =
√

(xi − μ)C−1
x (xi − μ)T (2)

(Mahalanobis 1936; Lehmann 2012; Lohninger 2012; Brereton
2015). For our purpose, the row vectors xi can be summarized
into a n × p data matrix X with n and p as the number of obser-
vations and variables, respectively. The MD describes the distance
between a multivariate point xi and the data centre of the distribu-
tion in terms of multiples of standard deviations. Furthermore, the
MD is affine invariant and unitless. The MD is commonly used for
outlier detection in a wide range of science and technology appli-
cations or the production and quality control in manufactures (e.g.
de Maesschalck et al. 2000; Dickhaus 2003; Filzmoser et al. 2005;

Srinivasaraghavan & Allada 2006; Friebel et al. 2010; Brereton
2015). In all of these cases, the examined variables have different
metrics/units, and therefore show different variability. In MT, the
Fourier coefficients and the cross- and autospectra also exhibit such
a behaviour as they originate from electric and magnetic fields,
which have different units. Furthermore, it is possible that the real
and imaginary parts of the used variables (either cross- and au-
tospectra or transfer functions) have different standard deviations.
As the ED does not account for this, the variable with the largest
range would dominate the results. Therefore the variables have to
be scaled before calculating the ED or an alternative measure as the
MD have to be used. We prefer the MD, as it also corrects for any
correlations between the variables, which is not possible with the
ED.

The idea of using a covariance matrix in MT data processing is
not new. Modern processing approaches based on multivariate re-
gression (e.g. Egbert 1997; Smirnov & Egbert 2012) calculate the
sample covariance matrix (called spectral density matrix) as part
of their robust estimation scheme. In contrast to these flavours of
MT data processing, the EMERALD processing suite (Ritter et al.
1998; Weckmann et al. 2005) is based on a bivariate regression.
Weckmann et al. (2005) showed that solving each electric field
component (row of the equation system 1) individually often re-
sults in smoother transfer functions in case of EM noise affecting
only one component. For our criterion, we use the covariance ma-
trix to explicitly calculate a distance value for each single event
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Figure 2. Work flow of the final stacking routine within the EMERALD processing (see Section 2) using smoothed auto- and cross-spectra for each event as
input data. Optional data selection criteria, for example using a coherence threshold or statistical approaches as the MD criterion can be applied prior to the
actual robust stacking algorithm.
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and to confine data for the subsequent regression problem to re-
move outliers and noise clusters prior to the actual robust stacking
algorithm.

We expect that single event transfer functions caused by the natu-
ral signal form one cluster in the complex plane (Argand diagram).
Therefore, we use the real and imaginary parts of all single event
transfer functions calculated from the smoothed auto- and cross-
spectra for each event as input data for the data matrix X; when
using the EMERALD processing to solve eq. (1) for each electric
field component individually, this results in p = 4 variables for
our data matrix (e.g. real and imaginary parts of Zxx and Zxy). The
number of observations n is given by the number of events for the
examined period and varies for broadband MT data between sev-
eral tens (for the longest periods) and several hundred thousand of
events (for the shortest periods).

3.1 Robust estimation of the Mahalanobis distance

Unfortunately, the computation of the MD in eq. (2) has at least two
shortcomings:

(i) The calculation of the covariance matrix requires that n >

p, that is that we need more samples or events than variables (de
Maesschalck et al. 2000; Brereton 2015). Since we use the real
and imaginary parts of the single event transfer functions for each
direction of the electric field E (rows in eq. 1) as variables, we need
at least five events per period. Due to the large number of events for
most of the target periods, this restriction is negligible.

(ii) More important is the robust calculation of the MDi values,
that is the data centre μ and the covariance matrix Cx. A straightfor-
ward calculation of these two quantities by the arithmetic mean and
the sample covariance matrix will strongly depend on the outliers
within the data set and is therefore not advisable, as the MDi values
will be distorted (Rousseeuw & van Driessen 1999; Filzmoser et al.
2005; Hubert & Debruyne 2010; Lehmann 2012).

Several robust estimators of location and scale can be found in
relevant literature, for example the data centre and the covariance.
The simplest class of these estimators is based on the median and
the median absolute deviation (from the median, e.g. Huber 1981;
Falk 1997; Friebel et al. 2010). However, the obtained covariance
matrices do not necessarily have to be positive (semi-) definite re-
sulting in negative squared MD values. Our tests on a variety of
stations with different noise contaminations suggest that these es-
timators worked quite well for many stations and a broad period
range, however, we occasionally observe non-positive (semi-) defi-
nite covariance matrices for long period data with very few events
and for severely disturbed periods, for example. around the funda-
mental frequency of power grids. Therefore, we refrain from using
these estimators with MT data as we aim to have positive (semi-)
definite covariance matrices to ensure positive squared MD values.

We finally opt for a minimum covariance determinant (MCD)
algorithm (Rousseeuw 1984, 1985; Rousseeuw & van Driessen
1999). The basic idea of the MCD algorithm is to use only an ide-
ally noise-free subset of the entire data set to calculate data centre
and covariance. The qualification of a chosen subset is assessed
through the determinant of the covariance matrix. Broadly speak-
ing this measure describes the volume of a distribution (Basu &
Ho 2006), that is the absolute value of the determinant is the vol-
ume of a parallelepiped spanned by a set of real vectors. The larger
the determinant, the more dispersed the data points. The applica-
tion of the MCD algorithm has been rapidly increased over the last

decades, particularly since Rousseeuw & van Driessen (1999) pub-
lished a computationally fast algorithm. Smirnov & Egbert (2012)
mentioned the MCD algorithm as a promising alternative to the
affinely invariant covariance estimator.

The robust MD calculation for our data confinement criterion
is mainly based on the deterministic MCD algorithm from Hubert
et al. (2012) which is a slight modification of the original MCD
algorithm from Rousseeuw & van Driessen (1999). It was originally
implemented in Matlab and is part of LIBRA, the Matlab Library for
Robust Analysis (Verboven & Hubert 2010). We programmed the
main parts of this routine into our own software package EMERALD

written in C++ and adopted the algorithm to better serve our needs
by adding a seventh initial estimator.

3.1.1 The modified deterministic MCD algorithm

The MD algorithm implemented in our processing requires the data
matrix X that contains n rows representing the observations (i.e.
number of events for a given period) and p columns representing
the variables (i.e. real and imaginary parts of the transfer functions
within chosen bivariate equation). The deterministic MCD algo-
rithm first applies a column-wise standardization (studentization)
of the data matrix X:

Y = X − μ

σ
(3)

with the coordinate-wise median μ and the robust scale estimator
σ . Hubert et al. (2012) used two different robust scale estimators
depending on the size of the data matrix: the Qn scale estimator of
Rousseeuw & Croux (1993) for n < 1000 or the τ -scale of Yohai &
Zamar (1988) for n ≥ 1000.

The next step of the MCD algorithm is the selection of various
initial subsets H of size h, with h = [ n+p+1

2 , n
]
. The sensible selec-

tion of the initial subsets is important, because otherwise the final
result of the MCD algorithm might not represent the global mini-
mum. While the original MCD algorithm from Rousseeuw & van
Driessen (1999) solved this problem by taking many (by default
500) randomly chosen subsets, the deterministic MCD algorithm
from Hubert et al. (2012) only utilizes six well-chosen subsets de-
termined by different estimators. We used the same six estimators
for our modified deterministic MCD algorithm, which are listed in
appendix A. Each of these six estimators calculates a preliminary
estimate of the correlation matrix Sk of Y with k = 1, ..., 6. The
following three steps are applied to each of the six correlation ma-
trices Sk individually to calculate initial estimates μ̂k(Y) and Ĉk(Y)
for data centre and covariance matrix:

(i) Computation of the matrix E containing the eigenvectors of
Sk and calculation of B = YE.

(ii) Estimation of the covariance of Y by Ĉk(Y) = ELET with
L = diag(σ 2(B1), . . . , σ 2(Bp)).

(iii) Calculation of the data centre estimate μ̂k(Y) =
Ĉ

1/2

k (median(YĈ−1/2

k )).

Each of the six estimates (μ̂k(Y), Ĉk(Y)) are then used to compute
a distance MDik for each event i and to form the k initial subsets by
using the h observations with the smallest distance.

Tests of the starting values for data centre and covariance esti-
mates obtained by these estimators revealed that they are suitable for
MT data; however, the initial data centre estimates are often close to
the final estimated value and therefore exhibit only small variability
at start. Since we might fail to find the global minimum of the MCD
objective function, it is important to start from initial, significantly

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/3/1853/5482079 by G

eoforschungszentrum
 Potsdam

 user on 12 August 2019



The Mahalanobis distance 1859

(a)

ρ
 [Ω

m
]

xy
,a

-210

110

410

φ
 [°

]
xy

15

45

75

co
un

ts

2000

1000

0

EMERALD/ EMERALD+MD 
processing results for Zxy Histograms for T=1/22.63s

ρ
 [Ω

m
]

xy
,a

-210

110

410

φ
 [°

]
xy

15

45

75

co
un

ts

2000

1000

0

N
o 

M
D

 c
rit

er
io

n
M

D
 c

rit
er

io
n 

w
ith

 d
iff

er
en

t h
 

ρ
 [Ω

m
]

xy
,a

-310 010 310
-210

110

410

φ
 [°

]
xy

15

45

75

T [s]
-310 010 310 0 300

Real (Z )xy

co
un

ts

2000

1000

0 150
Imag (Z )xy

0 150 300
T [s]

(b)

(c)

h=0.75n

h=(n+p+1)/2

Figure 3. Processing results of station SA-1 for different processing parameters using an additional coherence threshold of 0.9. Columns from left- to right-hand
side: (1) Apparent resistivity and (2) phase curves of Zxy over period; histograms of the (3) real and (4) imaginary part of Zxy for all events for 1/22.63 s. (a) To
illustrate the effect of an inappropriate choice of the size of the subset, we focus on the apparent resistivity curve based on the standard EMERALD processing,
which exhibits minor wobbles for periods around 1/22.63 s. Histograms reveal that the data distribution is separated into two clusters. Based on results calculated
for the adjacent period of 1/16 s (red asterisks) we can classify the left cluster as noise-related. (b) The EMERALD+MD processing with h is 0.75n which is the
default value of the LIBRA routines cannot improve the processing result for the selected period , as the underlying assumption of the total noise content is
violated. The single event distribution (blue) in the histograms show the remaining events used for subsequent robust stacking. (c) Using a size of the subset
h of n+p+1

2 , representing the smallest possible subset H leads to the desired smooth apparent resistivity curve. Please note that for better readability extreme
outliers are not displayed.

Table 1. α-quantiles for a χ2-distribution with four degrees of freedom from Morrison (1967) and the derived thresholds MDcrit (square root from xα) for
standard single-station processing with four variables representing real and imaginary parts of the two transfer functions components in each row of eq. (1).

α 0.500 0.750 0.900 0.950 0.9750 0.990 0.995
xα 3.36 5.39 7.78 9.49 11.14 13.28 14.86
MDcrit �√

xα 1.83 2.32 2.79 3.08 3.33 3.64 3.85

different subsets. Therefore, we included a seventh estimator. Our
supplementary estimator uses the final data centre and covariance
matrix estimates μT − 1 and CT −1 from a previously processed, ad-
jacent period in eq. (2) to calculate a MDi value for all events of the
currently examined period and selects the h events with the smallest
MD value to form the seventh initial subset H7. The reasoning is
based on the physics of induction processes by which MT transfer
functions vary only smoothly with period, as the induction space
of adjacent periods increases only marginally. This supplementary
estimator is (i) significantly different from the other six (statistical
motivated) estimators and therefore yields significantly different
data centre and covariance estimates, (ii) warrants to be composed
of a different subset of data and (iii) utilizes a physical relationship
inherent to MT data. If the result of the adjacent period was biased,
this seventh estimator does not automatically result in a wrong result
for the currently processed period. The remaining six estimators are
able to prevail against the seventh starting subset, if the majority
of the data points of the current examined period do not confirm
the previously derived solution. Therefore, the algorithm will get
rid of false initial estimates during the iterative process. However,
thorough tests confirmed that if undisturbed results of an adjacent
period exist, our novel seventh estimator often represents the best
solution of all seven initial subsets. If no previously processed, ad-
jacent period is available (e.g. for the first period processed), only

the six estimators of the original deterministic MCD algorithm will
be used.

After the selection of the initial subsets, the kernel routine of the
MCD algorithm is iteratively applied to each subset individually
(concentration steps / C-step) to obtain an improved approxima-
tion to the MCD. Rousseeuw & van Driessen (1999) proved the
convergence of the C-steps in a finite number of iterations.

Each C-step j is divided into several steps:

(i) Computation of the distances MDi for i = 1, . . . , n using μ̂ j−1

and Ĉ j−1 from the previous iteration step in eq. (2). For the first
iteration (j = 1), μ̂0 and Ĉ0 are calculated from the initial subsets.

(ii) Sorting of the distances MDi in ascending order and yield-
ing a permutation π for which MD(π (1)) ≤ MD(π (2)) ≤ . . . ≤
MD(π (n)).

(iii) Formation of a new subset H with H = {π (1), π (2), . . . ,
π (h)}.

(iv) Computation of new data centre and covariance estimates
with μ̂ j = 1

h

∑
i∈H yi and Ĉ j = 1

h−1

∑
i∈H (yi − μ̂ j )(yi − μ̂ j )T .

The C-steps are repeated until convergence is reached. Finally,
the subset with the smallest determinant of the covariance matrix
is selected and the corresponding μ̂raw and Ĉraw are called raw
solution of the deterministic MCD algorithm calculated by all ob-
servations within this subset. The final μ̂ and Ĉx estimates are, in
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Figure 4. Processing results of station SA-2 with different thresholds for the MD criterion. Columns from left- to right-hand side: (1) Apparent resistivity and
(2) phase curves for the Zxy component; (3) Scatterplot for a period of 1/1448 s (red arrow), each single event is colour-coded with its smoothed likelihood (red
=̂ high, blue =̂ low likelihood). All processing results use an additional coherence threshold of 0.9. (a) Standard EMERALD processing reveals good results
for a wide period range, however, short period data show scatter. The scatterplot indicates that a significant fraction of the single events scatter around the
distribution. EMERALD+MD processing results with a threshold of (b) 4, (c) 2.8 and (d) 1.5 and their corresponding scatterplots exhibit lesser outliers with
decreased threshold values.

contrast to the raw solution, then obtained as weighted mean and
covariance matrix with the weights

wi =
{

1 if M Di ≤
√

χ 2
p,0.975

0 otherwise
(4)

following the deterministic MCD approach from Hubert et al.
(2012) and the original fast MCD algorithm from Rousseeuw & van
Driessen (1999). We compared processing results obtained by using
the raw- and reweighted solutions for many stations with different
noise content. In general, the processing results using the reweighted
MCD solution are slightly superior, and result in smoother apparent
resistivity and phase curves. However, in many cases the difference
is negligible.

3.2 Important parameters for the MD criterion

The MCD algorithm requires an initial choice of the key parameters
h, which is the size of the subset H, with n+p+1

2 ≤ h ≤ n, and
the maximum number of allowed C-steps; furthermore, we have
to define a threshold or critical distance of a single event to the
centre. The first two parameters are hard-wired programmed to
ensure a high breakdown point and a fast computation. A sensible
threshold depends on the EM noise characteristics in the MT data

and therefore has to be chosen by the user. For a more detailed
description of the deterministic MCD algorithm, we refer to Hubert
et al. (2012).

3.2.1 Size of the subset H

The smallest possible size of a subset h = n+p+1
2 describes the case

where the algorithm has its highest possible breakdown value. The
breakdown point is defined as the limiting fraction of outliers a ro-
bust algorithm can handle. It normally cannot exceed 50 per cent;
meaning that the majority of the data has to be well-behaved (Huber
1981; Hampel 1986). For h = n, the results of the MCD algorithm
correspond to the normal arithmetic mean and the sample covari-
ance matrix. The default value of h in the routines DetMCD (Hubert
et al. 2012) and the FASTMCD (Rousseeuw & van Driessen 1999)
of the Matlab library LIBRA (Verboven & Hubert 2010) is set to
h = 0.75n as this value represents a compromise between retain-
ing a high breakdown point and having a good statistical efficiency
(Rousseeuw & van Driessen 1999; Hubert et al. 2008, 2012; Hu-
bert & Debruyne 2010; Verboven & Hubert 2010). However, with
h = 0.75n we assume that the data are contaminated by less than
25 per cent noise. We tested three different h values for a variety
of MT stations with h = ( n+p+1

2 , 0.6n, 0.75n). For stations with
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T7 = 1/11.31 s and (b) T8 = 1/256 s. (a) Left-hand panel: this period is not affected by coherent noise; the polarization directions of the magnetic field for single
events are equally distributed between −90 and 90◦. Right-hand panel: each single event is colour-coded with its polarization angle for the magnetic field
showing a rather random scatter. (b) Left-hand panel: graph of the polarization directions of the magnetic field exhibit two dominant polarization directions
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medium to acceptable data quality, the differences are usually small,
but for those with a large amount of EM noise we observe significant
differences. The best results in these cases were observed for the
lower limit of h due to the higher robustness of the data centre and

covariance matrix estimates against outliers and additional distri-
butions. Therefore, we fixed h to n+p+1

2 to ensure a high breakdown
point. To illustrate the effect of different h-values we have chosen
a station with acceptable apparent resistivity and phase values for
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Figure 7. Histograms of the real and imaginary parts of Zxy (station SA-2) obtained by different processing approaches with and without coherence sorting
for T1 = 1/2048 s (upper panel) and T2 = 1/4096 s (lower panel). The black asterisks represent the final processing result. Due to the extremely long tails (not
shown here, as the histograms focus on the main part of the distribution) the black asterisks are located far away from the data centre. (a) The grey-coloured
distributions represent single events that are used to calculate the final transfer function using the robust EMERALD processing. Both values of real and imaginary
parts lie close to −1000. (b) The grey-coloured distributions of (a) are overlaid with the distribution that in addition fulfil a coherence threshold of 0.9 (blue
colour). (c) EMERALD+MD processing selects a subset of data with MD values ≤ 1.9 (blue) which resembles the shape of the original distribution and thus
leads to values for real and imaginary parts that are comparable to solution (a). (d) A combination of Emerald+MD and a coherence threshold of 0.9 yield
values of real and imaginary parts that result in a smooth transfer function (see Fig. 6d). The combination of both criteria removes about 80 per cent and
90 per cent of all events for T1 and T2, respectively. However, for both periods we still have more than 45,000 and 15,000 events for the subsequent stacking
process which exhibit a high coherence value as well as a small distance to the assumed desired MT distribution due to pre-selection.

higher frequencies (Fig. 3). The highlighted period of T = 1/22.63 s
obtained through standard EMERALD processing (Fig. 3a) with an
additional coherence threshold of 0.9 shows only small deviations
from an ideally smooth apparent resistivity curve and almost no
sign of noise contamination in the phases. Obviously, our process-
ing together with a coherence sorting reveals two different clusters
of transfer functions which differ in size. Based on the robustly es-
timated results for the adjacent period of T = 1/16 s (red asterisk in
Fig. 3a) we conclude that the cluster to the right belongs to natural
MT excitation. Luckily the largest cluster belongs to the desired
signal so that the applied robust statistics is almost able to deal with

it. However, the MD criterion prior to the EMERALD robust statis-
tics, modifies the data set in such way that the amount of events of
both clusters is almost equal (blue histograms in Fig. 3b). Due to the
underlying, obviously wrong assumption that only 25 per cent of the
data set contains noise, the effect is counterproductive, as now the
robust stacking finds disadvantageous conditions and thus results
in worse estimates of apparent resistivities. By choosing a much
higher breakdown value (Fig. 3c), almost no events are taken from
the noise cluster and finally even the small wobbles in the apparent
resistivities are gone.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/3/1853/5482079 by G

eoforschungszentrum
 Potsdam

 user on 12 August 2019



The Mahalanobis distance 1863

8 7

(a)

ρ
 [Ω

m
]

xy
,a

-210

110

410

EMERALD processing

SA
-3

φ
 [°

]
xy

15

45

75

15

45

75

ρ
 [Ω

m
]

xy
,a

-210

110

410
ρ

 [Ω
m

]
xy

,a

-210

110

410

(b)

(c)

φ
 [°

]
xy

φ
 [°

]
xy

SA
-4

G
-1

ρ
 [ Ω

m
]

xy
,a

-210

110

410

ρ
 [Ω

m
]

xy
,a

-210

110

410

(d)

(e)

φ
 [°

]
xyV-

1
V-

2

φ
 [°

]
xy

-310 010 310

9

78

T [s] T [s]
-310 010 310

15

45

75

9

7

8

ρ
 [Ω

m
]

xy
,a

-210

110

410

φ
 [°

]
xy

15

45

75

15

45

75

ρ
 [Ω

m
]

xy
,a

-210

110

410

φ
 [°

]
xy

ρ
 [Ω

m
]

xy
,a

-210

110

410

φ
 [°

]
xy

ρ
 [Ω

m
]

xy
,a

-210

110

410

φ
 [°

]
xy

ρ
 [Ω

m
]

xy
,a

-210

110

410

φ
 [°

]
xy

7
9

-310 010 310
T [s]

8

9

T [s]
-310 010 310

15

45

75 7

8

EMERALD+MD processing

1
1 1 1

15

45

75

15

45

75

3

2 2

3

2

3
2

3

4 15

45

75

15

45

75

below 0°
4

4 below 0°
4

1

5

6

5

6

6

5 5

6

Figure 8. Apparent resistivities and phases of one impedance tensor component of five different MT stations after using standard EMERALD (two columns to
the left) and EMERALD+MD (two columns to the right) processing: Please note that we did not apply any additional notch or delay line filter to remove, for
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Figure 9. Scatterplots of station SA-3 for T1 = 1/1448 s comparing accepted
events for standard EMERALD and EMERALD+MD processing (Fig. 8a). The
distribution of all events (grey dots) in the complex plane is overlain by
those events with the highest possible weight (w = 1) in the robust stacking
process of the standard EMERALD processing (blue) and those events below
a certain MD value (EMERALD+MD), respectively. Application of the MD
criterion leads to a more focused subset of data and rejection of scattered
data points. Please note that for the final stacking result within Emerald we
use weights between 0 and 1 and thus much more events can be integrated
into the final result with weights slightly lower than 1.

3.2.2 Maximum number of C-steps

Preferably, C-steps are applied until convergence is reached. In the
interest of computational time and in particular for large data sets,

Rousseeuw & van Driessen (1999) proposed to use a limited number
of C-steps. Hubert et al. (2012) fixed this maximum number of C-
steps in their algorithm to 100. Tests with different MT stations
and data qualities suggest that the MCD algorithm always needs
fewer C-steps so that this limit seems to be more than sufficient. A
moderate increase of applied C-steps is observed for short periods
in comparison to long periods, which is caused by the larger number
of events.

3.2.3 Critical distance

Noise affected data in form of outliers in the tail of a distribution
or additional clusters from a separate noise distribution in the data
space usually have a certain, but larger distance to the data centre.
A critical distance (threshold) MDcrit for the largest allowed MDi

value is often defined by a certain quantile of the χ 2-distribution,
because for multivariate normal distributed data the squared MDs
are approximately central χ 2-distributed with p degrees of freedom.
A value xα is called α-quantile of a probability distribution P, when
it divides the distribution into two intervals so that

P ((−∞, xα]) ≥ α and P ([xα, +∞)) ≥ 1 − α (5)
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holds with α ∈ (0, 1). Typical values for the α-quantiles and the
derived critical distances, that is the square root of xα , are given in
Table 1 for a χ 2-distribution with four degrees of freedom.

If we assume that our data are noise-free, that is with no outliers
or second distributions, the squared MDi values with a probability
α lie in the interval [0, xα]. This means that only events with MDi

≤ MDcrit are accepted and used in the subsequent robust stack-
ing algorithm. As the EMERALD processing assumes an underlying
Gaussian model, we use quantiles of the χ 2 distribution to deter-
mine a suitable range of thresholds. Typically, we use thresholds
MDcrit < 4 following the values in Table 1.

Apparent resistivity and phase curves for periods < 10−3 s ob-
tained through standard EMERALD processing (Fig. 4a) show scat-
tered data points. Scatterplots of the affected period 1/1448 s exhibit
several large outliers around the desired distribution which hamper
the estimation of the transfer functions. In Figs 4(b)–(d) the MD
criterion prior to standard EMERALD processing is applied with de-
creasing thresholds. Outliers are successively removed by the MD
criterion. Transfer functions calculated from these confined clusters
result in data improvement. The smaller the MD threshold, the more
events are rejected. However, the most effective threshold differs for
each data set and depends on data quality. If the chosen threshold is
too small, the transfer function becomes unstable due to an insuffi-
cient amount of accepted events. On the other side, if the threshold
is chosen too large, the MD criterion is not able to remove an ad-
equate amount of outliers and therefore cannot decrease the effect
of EM noise on the obtained transfer functions. Here the user has
to find a good compromise between these two end members.

4 T H E M A G N E T I C P O L A R I Z AT I O N
D I R E C T I O N ( M P D )

Station V-2 (cf. Fig. 8e) is a typical example for which the MD cri-
terion fails - at least if applied in an automated way. Many periods
are heavily affected by coherent noise sources so that only a minor
part of the data originates from the natural MT signal. To improve
the processing results interactive selection algorithms can be used,
which provide additional information on e.g power spectra, polar-
ization directions of electric and magnetic field or coherence values.
A promising property to distinguish between near-field noise and
MT excitation is the magnetic field polarization direction (Fowler
et al. 1967) which was already discussed in Weckmann et al. (2005).
Given the different sources of the natural magnetic field (e.g. light-
ning and ionospheric current systems) we expect to see the full range
of incidence directions ([0◦−360◦]; cf. Fig. 5a, left-hand panel). This
assumption is supported by the colour-coded scatterplots of real and
imaginary parts of all events (Fig. 5a, right-hand panel). However, if
the magnetic field is generated by a nearby noise source we observe
one or several distinct polarization directions (cf. Fig. 5b, left-hand
panel). However, there is a small part around event number 8000
which shows the desired evenly distributed polarization directions
for the magnetic field. Colour-coded single events indicate that two
noise sources from two different directions are active (cf. Fig. 5b,
right-hand panel). Therefore, we implemented a physically moti-
vated data selection criterion based on the polarization (incidence)
direction of the magnetic field (MPD) as an add-on to the statisti-
cally based MD criterion. In contrast to Weckmann et al. (2005), the
MPD criterion presented in this paper works in a fully automated
manner and does not require any user input. Although we mainly
applied the MPD criterion together with the MD approach, it can
be used separately.

4.1 Implementation of the MPD criterion

The MPD criterion is based on the detection of confined magnetic
polarization directions, which means that within a certain time span
an exceptionally large number of events have the same incidence
direction. For this purpose, the incidence direction (or magnetic
polarization direction angle) αB is calculated for all events of the
considered target period using the smoothed single event cross- and
autospectra:

αB,i = arctan
2 ∗ Real([Bx B∗

y ]i )

[Bx B∗
x ]i − [By B∗

y ]i
(6)

Depending on the definition of the arctan routine, obtained values
of αB, i reside in the codomain of [ − 90◦, 90◦] or [0◦, 180◦]. To
identify events with incidence angles accumulating at certain an-
gles, all incidence directions αB of the current period are organized
into a histogram of 180 bins with a bin width of 1◦. To decide which
amount of events per class is considered as exceptionally large,
the actual number of events in a class is compared with a uniform
distribution. Thereby the expected value Ek = Number of events

180 is the
same for each bin. A suitable threshold within the MPD criterion
was found empirically after testing many stations with different
polarization patterns and the total number of events is essential
(cf. Table B1 in the appendix). The chosen limits are selected in a
conservative manner to assure that only events corresponding to a
distinct polarization direction are removed. For stations that do not
show any preferred polarization direction for a particular period,
these conservative thresholds ensure that all events are accepted.
As a consequence of these conservative limits, the automatic MPD
criterion sometimes does not remove all events which would be
identified by visual inspection and removed subsequently, in par-
ticular for stations which suffer from strong and complicated noise
sources and thus show complex polarization pattern.

5 A P P L I C AT I O N O F T H E M D A N D T H E
M P D C R I T E R I A T O D I F F E R E N T DATA
S E T S

We tested the MD criterion on several MT data sets collected world-
wide which include a broad range of different noise contaminations.
During the respective field experiments, we were also able to obtain
a good overview on the specific noise sources active in the area.
In this section, we show advances of the MD data confinement cri-
terion and at the same time assess and discuss limitations of this
approach. Furthermore, we apply the MPD criterion as a physically
based constraint. In combination, our suggested approach is able
to deal with noise contents far more than 50 per cent as long as the
noise exhibits distinct magnetic polarization directions.

5.1 Combination of the MD criterion with the coherence
criterion

The MD criterion as a purely statistical criterion cannot distinguish
between physically reasonable MT data and near-field EM noise
contributions. Instead, it will always focus on the cluster/distribution
which consists of the majority of events. Therefore it is often advis-
able to use coherence sorting as a physically based data selection
criterion prior to the application of any MT processing algorithm
and in particular the MD criterion to remove data points with a
small coherence. Thereby, the user makes sure that the amount of
events caused by incoherent or noisy data is reduced so that the ro-
bust processing can work effectively. It often improves the transfer
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function estimation significantly (see e.g. comparison in Figs 6a and
b), however, subsequent standard robust processing will fail since
near-field EM noise is also characterized by high coherence val-
ues. Therefore, the use of the coherence sorting has to be carefully
examined for each station separately and it should not be applied
systematically without any verification. The coherence and the MD
thresholds presented in this paper were carefully selected for each
station by testing many different values and evaluating the result
by visual inspection of the transfer functions. The grey-coloured
graphs in Fig. 7 represent the distributions of the real and imag-
inary parts of all single events corresponding to the highlighted
periods T1 = 1/2048 s and T2 = 1/4096 s in Fig. 6. Although no second
cluster originating from, for example coherent noise sources is visi-
ble in the histograms, the depicted distributions cover a wide range.
The blue-coloured graphs in Fig. 7(b) mark events, which have a
bivariate quadratic coherence value greater than 0.9. Especially for
T2, the majority of the original events is removed by the coherence
criterion.

The MD criterion can be applied independent of the coherence
criterion (see Fig. 6c). It improves the processing results for periods
where the majority of all events are caused by the natural signal. But
it fails if the majority of all events is caused by noise, for example
events with a low coherence value (Fig. 7c). The MD criterion as a
purely statistical approach will concentrate on the majority of data
without recognizing that these points do not represent physically
meaningful MT data. In the worst case, the data points originating
from natural MT signal can be almost completely removed (Fig. 7c
for T2). The combination of both criteria (Fig. 6d) leads to the best
results in this case. It can be recognized that removing some of
these points that do not behave according to our linear relationship
of electric and magnetic fields (i.e. data with low bivariate coher-
ence values) in a first step, can be essential to achieve good results.
Histogram plots (Figs 7c and d) substantiate this finding, as most
single events in Fig. 7(c) with small coherences yield poor results in
Fig. 6(c). Single events (Fig. 7d) with at least a coherence value of
0.9 lead to removal of the majority of low quality data. This example
demonstrates impressively that the MD criterion as a purely statis-
tical method will always focus on distributions with the majority
of the data regardless of which points represent physically reason-
able MT data. Therefore we recommend to use the MD criterion in
combination with physically based data selection criteria.

5.2 Application of the MD criterion to data sets with
different noise contaminations

The MT stations discussed here suffer from different noise contam-
inations and are suitable to illustrate advances and limitations of the
new criterion as well as to demonstrate under which circumstances
improved results can be obtained for selected periods. We compare
apparent resistivities and phases obtained by the standard EMERALD

processing (left-hand columns in Fig. 8) with apparent resistivities
and phases achieved by the EMERALD+MD processing (right-hand
columns). For all these examples, we applied a coherence threshold
of 0.9.

These examples illustrate that the application of the MD criterion
can in general improve MT impedances independent of the period
range; however, for longer periods it is more difficult because of the
small number of available events.

A detailed analysis will be helpful to understand under which
circumstances and for which type of distorted data the MD criterion
will work well.

5.2.1 One distribution plus scattered noise

Although station SA-3 (South Africa) has an overall good data qual-
ity, standard EMERALD processing results are only acceptable for
some periods in the ranges between 10−3 − 10−2 s and 1/32 − 1 s
(left-hand columns in Fig. 8a). The application of the MD crite-
rion significantly improves the processing results and yields much
smoother apparent resistivity and phase curves (right-hand columns
in Fig. 8a). For the highlighted period (T1 = 1/1448 s), scatterplots
of both processing approaches indicate that the events are arranged
in one cluster/distribution (Fig. 9). However, a minor fraction of
data scatters around this cluster. Some of these scattered events
have the highest possible weight of 1 in the standard EMERALD pro-
cessing and therefore have a large influence on the final processing
result which hampers the transfer function estimation. The appli-
cation of the MD criterion prior to the stacking procedure removes
these events as they have a larger distance to the actual data centre.
This results in more focused clusters and consequently in smoother
transfer functions.

This example demonstrates that the MD criterion is capable of
improving processing results of stations affected by noise which is
expressed as scatter around the true MT distribution by confining
the data to a focused subset.

5.2.2 Two data clusters

Histograms of the real and imaginary part as well as scatterplots of
station SA-4 (South Africa) for a) T2 = 1 s and b) T3 = 1/22.63 s are
shown in Fig. 10.

Obviously, the data of SA-4 are distributed into two clusters for
T2 = 1 s (upper panel in Fig. 10a). To identify the cluster originat-
ing from the natural MT signal, we use the processing results of
an undisturbed adjacent period, which constitutes one of the ini-
tial subsets during the robust calculation of the MD. The real and
imaginary parts of this estimate are indicated by the red asterisks. A
scatterplot of imaginary versus real parts shows much clearer that
we deal with two different distributions (upper panel in Fig. 10a).
In this case the smaller cluster (consisting of less events) to the
right is caused by coherent noise sources and the majority of the
events originates from the natural MT signal. Again the red ellipse
indicates the distribution of the undisturbed adjacent period and
allows to differentiate noise and data cluster. Since the majority of
events belongs to the desired MT signal, the essential criterion for a
successful application of the MD approach is met and all events of
the noise distribution are removed. In contrast, the standard EMER-
ALD processing fails for this period as events from both clusters
achieve the highest possible weight. For the period T3 = 1/22.63 s we
observe only one larger although elongated cluster (Fig. 10b). Close
inspection suggests that there a second distribution is merged with
the main distribution (tail towards higher values of the real part of
Zxy). Again, from the adjacent period we know where the cluster of
the “true” MT transfer function is located (red asterisk and ellipse
in Fig. 10). Application of the MD criterion removes events with a
large distance to the majority of all points and therefore uses only
points which are much more focused towards the left, that is smaller
values of the real part of Zxy. The subsequent EMERALD processing
is able to remove outliers with regard to the confined subset of data.
In comparison, the standard EMERALD processing (rightmost col-
umn) of the entire data set is not able to completely down-weight
events, which originate from this tail.

These examples underline that the MD criterion can (completely)
remove a separate noise distribution in the data space in two cases:
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Figure 10. Histograms and scatterplots for the Zxy component (station SA-4 in Fig. 8b) for a period of (a) T2 = 1 s and (b) T3 = 1/22.63 s. Grey bars or dots
indicate the data distribution which was used for the standard EMERALD processing, blue colour highlights those events after application of our confinement
approach. The red asterisks and ellipses (covariance matrix) indicate the result of an undisturbed adjacent period. (a) For a period of T2 = 1 s the real and
imaginary part of Zxy show two overlapping distributions. The MD criterion is able to focus on the blue data subset. The third column depicts the same
distribution in an Argand plot with two neighbouring clusters of Zxy. The covariance of the undistorted, adjacent period characterizes the cluster to the right
as EM noise. The fourth column shows those events which obtain the highest weight within the standard robust algorithm of EMERALD. As events from both
clusters are used for computation of the final stacked transfer function, the robust processing still uses events from the cluster associated with EM noise and
yields distorted transfer functions. (b) Analogue figures to (a) now for a period of T3 = 1/22.63 s. Here, two distributions have a significant overlap so that they
almost merge into one cluster (see e.g. tail to the right in the histogram of the real part). The MD criterion focuses on the left part of the distribution, whereas
the standard robust processing uses events from the entire cluster including distorted ones.

(i) The noise distribution consists of the minority of all events and
is spatially separated from the desired distribution of natural signal
(Fig. 10a); (ii) The noise distribution is merged with the desired MT
distribution, but consists of significantly less events (Fig. 10b).

5.2.3 Application to remote reference processing and inter-station
transfer functions

Several tests with different stations suggest that the robust single-
site EMERALD+MD processing can lead to similarly good or even
better results than using the robust remote reference processing as
long as the noise content represents the minority of all data. This
is a remarkable result as often a reference station either does not
have sufficiently clean data or has experienced some kind of tech-
nical problems so that we finally cannot rely on the robust remote
reference processing to obtain acceptable data quality. However, the
existence of a true remote reference station is still preferable and
essential in many cases to improve processing results as shown in
the following example. Although the MD criterion was designed
for single-site processing, especially for cases without an adequate
remote station, it can also be applied as an add-on prior to the ro-
bust remote reference processing. The comparison (Fig. 11) using
an exemplary MT station from Tajikistan shows results from ro-
bust single-site and robust remote reference processing (separation
33 km) with and without the application of the MD criterion. The
period range around 10 s exhibits the influence of EM noise in the
dead band (see red ellipses in Fig. 11a) that can be slightly im-
proved by the remote reference processing (Fig. 11c); in contrast, a
more pronounced improvement is observed for the EMERALD+MD
processing (Fig. 11b). The outliers for T = 8 s and T = 16 s for
the remote reference processing remain independent of the cho-
sen coherence threshold. The best result for this period range is
obtained by using the MD criterion as add-on prior to the remote
reference processing. Furthermore, additional scatter in the data is

discernible for periods > 1/500s. The period T1 = 1/1024 s was cho-
sen to illustrate under which circumstances EMERALD+MD single-
site processing (Fig. 11b) fails to improve the transfer function in
contrast to EMERALD remote reference processing (Fig. 11c). This
happens (Figs 11b and 12a) if the amount of noise is relatively
large or two distributions are merged to a large extent. Here, a true
remote station is essential to distinguish between near-field noise
and desired MT signal (Figs 11c and 12b). The MD criterion results
in a subset of MT data which represents both data clusters (blue
distribution in Fig. 12a) and as a consequence is not able to obtain
undisturbed transfer functions. In contrast, the remote reference
processing can distinguish between desired MT signal and near-
field noise as indicated by the unimodal distributions of all events
(Fig. 12b). The period of T2 = 8 s represents an example for which
the EMERALD+MD single-site processing (Fig. 11b) is superior to
the simple remote reference processing (Fig. 11c), although the best
result for this period (as for the entire period range) is obtained by
using a combination of remote reference processing and the MD
criterion (Fig. 11d). For both processing approaches, single-site and
remote reference processing, the events scatter broadly (upper scat-
terplots in Figs 12c and d). Due to the small number of available
events, the robust weighting scheme fails for these scattered dis-
tributions. In contrast, the MD criterion focus only of a subset of
events in the centre of the distributions (∼26 per cent of all single-
site events using a threshold of 1.4 and ∼19 per cent of all remote
reference events using a threshold of 5.3), which finally lead to
an improved transfer function. For remote reference processing, a
higher MD threshold is sufficient, indicating that the data quality
is already improved by the use of a remote station in contrast to
the single-site processing. In general, this example illustrates that
remote reference is an essential tool to improve the transfer func-
tion estimation, but in some cases it can still be further improved
by using it in combination with the MD criterion.

Although we mainly focus on the estimation of MT impedances
in this paper, the MD criterion can be used in the same way for the
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Figure 11. Apparent resistivity and phase curves of the Zyx component of station T-420 for (a and b) single-site and (c and d) remote reference processing
comparing standard EMERALD and EMERALD+MD processing. Single-site as well as remote reference data are processed using a coherence threshold of 0.9.
(a) Single-site processing exhibits problems around 10 s and for very short periods <0.001 s. (b) EMERALD+MD processing yields significant improvement
around the period of 10 s. (c) Robust remote reference processing is (as expected) superior to single-site processing, but cannot recover smooth curves around
the period of 10 s. (d) Using the EMERALD+MD approach prior to robust remote reference processing results in less disturbed data points.
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Figure 12. Histograms of the real and imaginary parts of Zyx for the remote reference example in Fig. 11 for T1 = 1/1024 s (a + b) and scatterplots for T2 = 8 s
(c + d). (a) The grey-coloured distribution of the real and imaginary parts of all events used in the single-site processing indicate two distributions that are
merged to a large extent. In this case, the application of the MD criterion fails as events of both distributions are selected (blue-coloured subset). (b) In contrast,
the remote reference processing can distinguish between desired MT signal and near-field noise as indicated by the unimodal distributions of all events. (c
and d) The scatterplots show that all events (blue and grey colours) for single-site (see Fig. 11a) as well as for remote reference processing (see Fig. 11c)
scatter broadly. Therefore both processing approaches fail. In contrast, the subsequent application of the MD criterion selects only events in the centre of these
distributions (blue colours in lower panel of c and d) for the robust stacking and results in improved estimates.

estimation of other transfer functions such as inter-station (Fig. 13)
or the vertical magnetic transfer functions.

5.2.4 Limitations in presence of two data clusters

Station G-1 from Germany exhibits only small improvements af-
ter the application of the MD criterion (Fig. 8c). A scatterplot for
T4 = 1/32 s reveals the existence of two spatially separated clusters
(Fig. 14). As we often observe that noise only affects a certain,
relatively narrow period range, we select an adjacent period which
shows reasonable processing results (red asterisks for the undis-
turbed adjacent period of T = 1/22.63 s). Under the assumption that

the processing results of this period are correct, the smaller upper
cluster can be identified as desired MT signal. Within the algorithm
the result of the adjacent period is used as the seventh MCD estima-
tor. In this example, the EM noise cluster consists of the majority
of data, therefore the MD criterion as well as the original robust
stacking algorithm fail, although the seventh estimator hints at the
correct solution. The entire desired MT signal is removed by the
MD criterion and only events from noise sources are accepted. This
example represents the worst case: Although we have nicely sep-
arated clusters, the majority of all events emanate from EM noise
and consequently an automated statistical confinement criterion fo-
cuses on the majority of data. In this case, interactive selection

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/218/3/1853/5482079 by G

eoforschungszentrum
 Potsdam

 user on 12 August 2019



1868 A. Platz and U. Weckmann

M
xx

M
xy

(a) (b)

1.0

T [s]
-310 010 310

EMERALD 
processing

EMERALD+MD 
processing

010 010-310 -310310 310
T [s] T [s]

-310 010
T [s]

310

M  & Mxx xy M  & Myx yy

1

2 2

1
0

-1.0

1.0

0

-1.0

real
imag

M
yx

M
yy

1.0

0

-1.0

1.0

0

-1.0

 

EMERALD 
processing

EMERALD+MD 
processing

Figure 13. Inter-station transfer functions of station SA-6 with SA-7 comparing standard EMERALD and EMERALD+MD processing for (a) Mxx and Mxy and
(b) Myx and Myy shown as real (dots) and imaginary (triangles) parts. The results of the MD criterion are superior and lead to smoother transfer functions for
most periods.

im
ag

(Z
)

xy

100

standard EMERALD EMERALD+MD

0

-100
-100 0 100

real(Z )xy real(Z )xy

0

weights=1

-100 100

MD<=1.2

Figure 14. The scatterplots of station G-1 for a period of T4 = 1/32 s
show two spatially separated distributions. Obviously, EMERALD as well
as theEMERALD+MD will fail if the majority of all events is caused by
noise. The red asterisks represent the processing results of the undisturbed
adjacent period of T = 1/22.63 s indicating the distributions of the desired
MT signal, which unfortunately consist of the minority of all events (smaller
cluster). As the majority of all events (larger clusters) is caused by EM noise,
the MD criterion consequently fails although 74 per cent of the entire events
are removed. This chunk however also included the desired MT signal.

algorithms (e.g. from Weckmann et al. 2005) or information of an
undisturbed adjacent period have to be used to manually remove
events corresponding to the EM noise cluster.

Similarly challenging is the existence of a second cluster (origi-
nating from noise) with a moderate number of events that overlays
the true distribution to a large extent. In this case, the ellipsoids
derived from the MD criterion are distorted so that the noise dis-
tribution remains unnoticed and data points originating from the
noise cluster do not necessarily have a high MD value with regards
to our desired MT data centre. In Fig. 15(a), histograms of real and
imaginary part as well as the corresponding scatterplot are shown
for T5 = 1/181 s of the exemplary station V1 (Venezuela). This pe-
riod is affected only by a small amount of EM noise that forms a
smaller second cluster visible as a long tail in the histograms - sim-
ilar to station SA-4 (Fig. 10b). Events of this noise cluster can be
completely removed by the MD criterion analogue to the example
from station SA-4. However, a nearby period of T6 = 1/512 s reveals
a different distribution, where the EM noise cluster dominates and
thus the application of EMERALD and EMERALD +MD fails.

5.3 Application example of the MPD criterion to remove
distinct polarization bands

Because the amount of noise within the data of station SA-5
(Fig. 16a) exceeds 50 per cent, the standard EMERALD processing
results in poor MT curves especially in the period range between
0.1 s and 1 s. The application of the MD criterion (Fig. 16b) was
able to improve the short periods, but fails in the period range be-
tween 0.4 s and 1 s, which seems to suffer from noise with preferred
magnetic polarization directions (see exemplary periods in Fig. 17).
For the period of T10 = 0.5 s, a polarization band between −72◦ and
−64◦ (left-hand column in Fig. 17a) can be observed. In contrast,
the second exemplary period of T11 = 1.4 s exhibits two separate
polarization bands between −72◦ and −64◦ and between −84◦ and
−76◦ (left-hand column in 17b). In both cases, the bands are not
continuous over the entire recording time, but are interrupted by
some undistorted time spans. The additional use of the MPD cri-
terion prior to the MD criterion removes most of the events in
the disturbed segments (right-hand columns in Fig. 17) and further
improves the result (Fig. 16c) to finally obtain almost completely
smooth apparent resistivity and phase curves. A quantitative analy-
sis exhibits that the MPD criterion removed more than 50 per cent
of the events.

5.3.1 Application of the MPD criterion to complex polarization
pattern

As shown in Fig. 5(b), station V-2 is highly affected by EM noise that
shows a distinct polarization direction. The additional application
of the MPD criterion can improve the exemplary period T8 = 1/256 s
(see Fig. 18a) by removing large parts of the polarization band
(Fig. 18b) which results in rejection of approximately 80 per cent
of all events. This high amount of noise explains why a statistical
approach will never succeed. However, in contrast to the depicted
examples that are characterized by more or less distinct polarization
bands, EM noise can also exhibit a complex polarization pattern
(Fig. 18c). Such complicated polarization patterns are difficult to
remove with an automatic criterion and require manual editing by an
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Figure 16. Apparent resistivities and phases of one impedance tensor com-
ponent of station SA-5. (a) Processing results of the standard EMERALD

processing using a coherence threshold of 0.9. The additional application
of the MD criterion in (b) improves the result for several periods. However,
some periods suffer from noise, which exhibits preferred magnetic polar-
ization directions and can only be improved by using the MPD criterion
together with the MD criterion (c). Two of these periods (T10 = 0.5 s and
T11 = 1.4 s) are highlighted and their incidence directions over the entire
recording time are shown in Fig. 17.

experienced user. The success of the MPD criterion in these cases
can therefore not be guaranteed. However, sometimes the MPD
criterion is able to remove enough distorted events of these patterns
to obtain improved processing results as for T9 = 1/32 s for station
V-2 (see Figs 18a and c). In this case more than 85 per cent of all
events were removed by the MPD criterion.

Although the MPD criterion is presented here as a physically
based add-on for the MD criterion, it can also be applied without
the MD criterion. However, best results are normally obtained by
using the combination of both criteria.

6 C O N C LU S I O N S

To obtain the MT impedance tensor, we use smoothed cross- and
autospectra of contiguous time windows, called events, which are
averaged by a statistically robust approach. Especially in populated
and industrialized areas, robust processing approaches often fail to
estimate physically meaningful MT results as the desired natural
MT signal is superimposed by man-made EM noise signals. While
remote reference and multi-station processing are powerful tools to
tackle this problem, we often face the problem that remote stations
still suffer from correlated EM noise over large distances or some-
times insufficient time accuracy. In these cases, the practitioner is
set back to single-site processing. We observe that intermittent EM
noise contributions often form their own distribution of transfer
functions overlying the desired MT signal distribution. Therefore
we introduce a pre-stack data confinement criterion based on the
Mahalanobis distance to classify the distribution of MT transfer
functions through their distance. This criterion can be used for
single-site as well as an add-on for the remote reference processing.
Outliers and events belonging to an intermittent EM noise distribu-
tion are assumed to have a larger distance to the desired MT data
distribution than events caused by this distribution of natural signal.
The basic idea of this criterion is to confine the data to an ideally
noise-free or noise reduced subset, to improve the conditions for the
subsequently applied robust statistics in the regression problem. The
MD is a commonly used measure to detect outliers in many fields
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Figure 17. Plots of the incidence directions of the magnetic wave field αB of all events before and after the application of the MPD criterion for (a) T10 = 0.5 s
and (b) T11 = 1.4 s in an interval of [ − 90◦, 90◦]. Most of the events belonging to a distinct polarization band are removed by the MPD criterion. In both cases
more than 50 per cent of all events were removed.
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Figure 18. Application of the MPD criterion as add-on for the statistical MD criterion for station V-2. (a) Apparent resistivity and phase curve using MD
and MPD criterion in addition to the standard EMERALD processing. Both exemplary periods can be improved (see also Fig. 8e). Incidence directions of the
magnetic wave field αB before and after the application of the MPD criterion for (b) T8 = 1/256 s and (b) T9 = 1/32 s show that large parts of the polarization
band as well as the complex polarization pattern are removed.

of science and economy. Here, we used the MD as an additional
measure in MT data processing to classify potential outliers and ad-
ditional noise clusters and to improve the signal-to-noise ratio prior
to the robust stacking process. To calculate the MD for each single
event, we need the data centre and covariance matrix. Although the
MD seems superior at first glance, its properties are also very much
dependent on a robust estimation of data centre and covariance. A
deterministic approach is required that results in various initial sub-
sets of data and computation of different correlation matrices for the
estimation of MD properties. Since all of these different estimators
are based on statistical approaches, we have added a ’physical’ esti-
mator to this set which reflects a direct consequence of the inductive
processes in MT. We therefore assume that induction spheres for EM
field variations of adjacent periods do not change abruptly resulting
in smoothly varying apparent resistivity and phase curves. Accord-
ingly we consider the data centre and covariance of a previously
estimated adjacent period as an additional estimator. To implement
the MD as a measure to detect and remove outliers into the data pro-
cessing suite EMERALD, we used real and imaginary parts of the MT

impedance tensor components as input data. Single events which
have a high distance to the estimated data centre are rejected from
the further processing. Events that have passed the MD criterion
are subsequently stacked in a robust manner within the standard
EMERALD processing scheme. This pre-stack criterion was tested
for various MT data sets from different regions and suffering from
different noise contaminations. A comparison of processing results
with and without the MD criterion reveals that for stations with less
than 50 per cent noise contamination, data quality of apparent re-
sistivity and phase curves could be improved over the entire period
range, even in the so-called dead band. Since EM noise often forms
a completely independent cluster of transfer functions, the MD cri-
terion is able to remove such clusters as well as to reduce scatter
around the desired cluster of MT transfer functions. A necessary
prerequisite is that events of the desired natural MT data dominate
over the amount of events contaminated by EM noise. Many MT
stations fulfil the requirement that noise does not outweigh natural
MT signal and thus this criterion is a useful measure to improve the
estimation of transfer functions in an automated way, in particular
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when no other methods like remote reference can be applied. How-
ever, the MD is a purely statistical measure and therefore cannot
distinguish between physically reasonable MT data and EM noise
signal. For stations affected by a high amount of noise (i.e. higher
than 50 per cent) or in cases where the transfer function distribution
of EM noise overlaps with the MT transfer function distribution,
the automated MD criterion can result in either totally misleading
transfer functions or does not show any improvement. In these cases,
an adequate remote station or manual rejection of noisy events, for
example by physically based data selection criteria or other a priori
information are necessary to ensure that the majority of all events
is well-behaved for the estimation of correct and undisturbed MT
transfer functions. For such cases, we also introduced a physically
motivated data selection criterion based on the magnetic polariza-
tion (incidence) direction and showed its successful application as
an add-on for the statistical MD criterion. We observe that based
on the removal of strongly polarized magnetic fields, even more
than 80 per cent of the entire events creates optimal conditions for
the successful application of the MD criterion or if used separately
without MD for the subsequent robust stacking.
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A P P E N D I X A : I N I T I A L E S T I M AT O R S
F O R T H E D E T E R M I N I S T I C M C D
A L G O R I T H M

The first six estimators of our modified deterministic MCD algo-
rithm are the same as in the original deterministic MCD algorithm
from Hubert et al. (2012), which represent different types of corre-
lation matrices:

(i) S1 = corr (W) with Wj = tanh(Yj) for j = 1, . . . , p
(ii) S2 = corr (R) with Rj being the ranks of the column Yj

(iii) S3 = corr (T) with Tj = �−1((Rj − 1/3)/(n + 1/3)) and the
normal cumulative distribution function �

(iv) S4 = (1/n)
∑n

i=1 ki kT
i with ki = yi/‖yi‖

(v) S5 is based on the first steps of the BACON algorithm (Billor
et al. 2000)

(vi) S6 is based on the raw orthogonalized Gnanadesikan–
Kettenring estimator from Maronna & Zamar (2002)

A P P E N D I X B : T H R E S H O L D F O R
I N C I D E N C E A N G L E S O F T H E
M A G N E T I C F I E L D S

With 180 bins for values of the incidence angle between −90◦ and
90◦, the expected amount of events in one bin Ek = Number of events

180
depends on the total number of events. Empirical thresholds for
treating an incidence angle as part of a strongly polarized mag-
netic fields are given in Table B1. All these values are found by
trial and error after testing many stations with different polar-
ization patterns. The chosen limits are selected in a conservative
manner to assure that only events corresponding to a distinct po-
larization direction are removed and to ensure that all events are
accepted for stations that do not show any preferred polarization
direction.

Table B1. Threshold for flagging a bin as caused by strongly polarized magnetic field.

Period with no. of events ≤90 ≤180 ≤900 >900
No. of events in bin >10 · Ek >10 · Ek >11 · Ek >4 · Ek & consecutive events
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