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Abstract 8 

The estimation of the soil organic carbon (SOC) content plays an important role for carbon 9 

sequestration in the context of climate change, food security and soil degradation. Reflectance 10 

spectroscopy has proven to be a promising technique for SOC quantification in the laboratory 11 

and increasingly from air- and spaceborne platforms, where hyperspectral imagery provides 12 

great potential for mapping SOC on larger scales with regular updates. When applied on larger 13 

scales, soil prediction accuracy decreases due to the inhomogeneity of samples. In this paper, 14 

we examined if spectral clustering of the LUCAS EU-wide topsoil database is successful 15 

without using other covariates than the spectral database and can improve SOC model 16 

performance compared to a reference model that was calibrated on the whole database without 17 

clustering. Different clustering methodologies were tested, including a k-means clustering 18 

based on principal component analyses or based on spectral feature variables, combined with 19 

partial least squares regression (PLSR) models, and a clustering based on a local PLSR 20 

approach which builds a different multivariate model for each sample to be predicted. 21 

Furthermore, in order to allow for subsequent application to hyperspectral remote sensing data, 22 

atmospheric water wavelengths were removed from the analyses. The local PLSR approach 23 

achieved best results and was additionally applied to LUCAS spectra resampled to the 24 

upcoming hyperspectral EnMAP sensor which led to good results: R2 = 0.66, RMSEP = 5.78 g 25 

kg-1 and RPIQ = 1.93. The k-means clustering approach showed slightly better results than the 26 

reference model. Overall, our results showed similar performances for SOC prediction models 27 
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compared to other approaches using PLSR with a larger spectral range and other soil parameters 28 

as covariates. This study shows that (i) it is possible to transfer the local PLSR approach onto 29 

a wavelengths reduced spectral library and to predict estimations of SOC at low-cost with 30 

reasonable accuracy based on large scale soil databases; and (ii) that the local regression 31 

approach is a valuable tool for SOC prediction models based solely on spectral data without the 32 

use of other soil covariates.  33 

Keywords: soil organic carbon, reflectance spectroscopy, cluster analysis, soil spectral 34 
library, Europe 35 

Abbreviations: 36 

AF   Absorption feature 37 

CF   Curve feature 38 

CR   Continuum removal 39 

EnMAP  Environmental Mapping and Analysis Programme 40 

HF   Hull feature 41 

LUCAS  Land Use/Land Cover Area Frame Survey 42 

LV   Latent variables of PLSR  43 

PCs   Principal components of a PCA 44 

PCA   Principal component analysis 45 

PLSR   Partial least squares regression 46 

SAM   Spectral angle mapper 47 

SFV   Spectral feature variables 48 

SOC   Soil organic carbon 49 

SWIR   Shortwave infrared 50 

VNIR    Visible and near-infrared 51 

 52 

 53 
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Highlights 54 

• Reduced need for ground truth data by large-scale spectral clustering and modelling 55 

• Adapting existing approaches in preparation for future spaceborne SOC estimation 56 

• Comparison of clustering approaches with reference models on complete LUCAS data 57 

• Local PLSR outperforms other approaches and reference model in SOC quantification 58 

1. Introduction 59 

Soils provide essential ecosystem services such as food production, flood prevention and carbon 60 

sequestration (Kibblewhite et al., 2012). With regard to carbon sequestration, soils generally 61 

hold the potential of intensified carbon uptake to partially offset fossil fuel emissions and 62 

thereby attenuating climate change (e.g. Conant et al., 2011; Lal, 2004). This potential is 63 

especially high on degraded soils where improved agricultural management practices can 64 

additionally lead to increased crop yields and thus enhanced food security (Denton et al., 2014; 65 

Lal, 2004). A key parameter to determine the state of soils is the soil organic carbon (SOC) 66 

content (Sanchez et al., 2009). In order to mitigate the risks of degrading soils and thus 67 

threatened appropriation of ecosystem services, a monitoring of SOC content and other soil 68 

parameters is essential. However, due to high costs and the time consuming nature of 69 

conventional soil sampling and analysis this can hardly be achieved on larger scales (Araújo et 70 

al., 2014; Conant et al., 2011; Sanchez et al., 2009).  71 

Therefore, diffuse reflectance spectroscopy of soils in the visible and near- infrared (VNIR) to 72 

the shortwave infrared (SWIR) (400-2500 nm) provides a good alternative for the quantification 73 

of soil properties (Islam et al., 2003). The spectral properties of soils can be measured in a cheap 74 

and rapid way and thus provide a trade-off between costs and accuracy (Bellon-Maurel and 75 

McBratney, 2011; O’Rourke and Holden, 2011; Viscarra Rossel and Behrens, 2010). Soil 76 

spectroscopy is based on the assumption that the concentration of a specific soil property is 77 
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linearly related to a combination of absorption features within the spectrum (Bellon-Maurel and 78 

McBratney, 2011; Ben-Dor et al., 1999). These absorption features are induced by overtones 79 

and combination bands of fundamental vibrations of some of the molecules’ functional groups, 80 

e.g. the hydroxyl group (OH). As each functional group’s overtones and combination bands are 81 

located at specific wavelengths of the spectrum, different materials can be identified (Ben-Dor 82 

et al., 1999; Davies, 2005). Absorption features in the visible range (400-700 nm) may also be 83 

caused by electron transitions (Ben-Dor et al., 1999).  84 

Soil reflectance spectra consist of broad and weak absorption features that are partly 85 

superimposing each other (Stenberg et al., 2010). To extract quantitative information of 86 

potentially small amounts of soil constituents, different mathematical modelling approaches are 87 

applied (comparisons e.g. in Stevens et al., 2013; Viscarra Rossel and Behrens, 2010). One of 88 

the most commonly used techniques is partial least squares regression (PLSR) which accepts a 89 

large number of predictor variables with high collinearity (Stenberg et al., 2010) which is the 90 

case with diffuse reflectance spectroscopy. 91 

Diffuse reflectance spectroscopy in the VNIR-SWIR range has been applied in soil science for 92 

more than 20 years (Bellon-Maurel and McBratney, 2011; Stenberg et al., 2010). It is most 93 

often used in the laboratory but in-situ as well as airborne applications are increasingly utilized 94 

(Ben-Dor et al., 2009). A large number of studies have been conducted in the laboratory that 95 

prove successful estimation of soil properties on local and regional scales with high accuracies 96 

(overview in Viscarra Rossel et al., 2016). Numerous models have been calibrated out of many 97 

local spectral soil libraries with different measurement protocols leading to a large number of 98 

independent small scale models (Stevens et al., 2013). More recently there is the tendency to 99 

develop national and international or even global soil spectral databases and to build global 100 

prediction models (e.g. Araújo et al., 2014; Brown et al., 2006; Tóth et al., 2013; Viscarra 101 

Rossel et al., 2016). On larger areas, the prediction accuracies tend to decrease, which is mainly 102 
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caused by different, non-linear relationships between soil properties and spectra as well as 103 

increasing variances of soil properties that lead to larger prediction errors (Nocita et al., 2014; 104 

Stenberg et al., 2010; Stevens et al., 2013). 105 

With current, e.g., PRISMA (Loizzo et al., 2018), and upcoming hyperspectral spaceborne 106 

missions, e.g., EnMAP (Guanter et al., 2015) and SHALOM (Feingersh and Ben-Dor., 2015), 107 

the quantification of soil properties on larger scales comes into reach. These satellites will have 108 

the potential to periodically update existing SOC maps in bare soil areas that currently can be 109 

surveyed only with low spectral resolution satellites or where SOC estimations are often based 110 

on outdated point-wise information (Sanchez et al., 2009). In preparation for these upcoming 111 

new data from spaceborne sensors, currently SOC modelling approaches are looking at the 112 

potential of large-scale soil spectral libraries to be used as an alternative to local ground 113 

databases. The overall aim of these new approaches is to build soil prediction models that can 114 

be applied universally on large scales to become more independent of local ground truth data 115 

that are currently needed for model calibration. Therefore, we use the European LUCAS topsoil 116 

database (Land Use/Land Cover Area Frame Survey) (Tóth et al., 2013) as a basis to develop 117 

general, robust prediction models for the quantification of SOC. Previous work done by Stevens 118 

et al. (2013) which was based on the LUCAS database to develop SOC prediction models using 119 

PLSR modelling and dividing the database according to land cover types, obtained a good 120 

prediction accuracy (RMSE of 4.9 g kg-1). Similarly, Nocita et al. (2014) used a local PLSR 121 

approach with the LUCAS database, so that locally the relationship between a soil property and 122 

spectral data can be stable, allowing for linear modelling (Ramirez-Lopez et al., 2013). 123 

In this paper, we intend to adapt and expand existing approaches in preparation for future SOC 124 

estimation from spaceborne sensors. For this, we investigate the accuracy of SOC predictions 125 

using the LUCAS soil spectral database and considering a remote sensing adapted approach 126 

where (i) the LUCAS database is spectrally reduced to the wavelengths that can be used from 127 
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spaceborne sensors, cutting out the larger atmospheric water bands, (ii) the LUCAS database is 128 

clustered solely based on spectral data avoiding the use of any geochemical soil information, 129 

and (iii) the model input for SOC predictions also consists of spectral data only without using 130 

other soil properties as covariates. Our analyses focus on the comparison of different spectral 131 

clustering approaches in combination with PLSR modelling. The objective is to investigate 132 

whether spectral clustering has the potential to group the large soil spectral database LUCAS 133 

in such a way that the links between SOC and spectral data become approximately linear, and 134 

would therefore improve prediction accuracies compared to models that were built based on the 135 

non-clustered database.   136 

2. Material and Methods 137 

2.1 LUCAS soil database 138 

This study is based on the pan-European Land Use/Land Cover Area Frame Survey (LUCAS) 139 

topsoil database which is managed by EUROSTAT together with the European Commission’s 140 

Directorates-General for Environment and the Joint Research Centre at Ispra, Italy (Orgiazzi et 141 

al., 2017; Tóth et al., 2013). LUCAS is the first attempt to build a consistent soil database to 142 

support policy making. The sampling for this survey took place in 2009 in 25 Member States 143 

of the European Union and includes 19,967 top-soil samples (0-20 cm) collected on different 144 

land use types. The database consists of 12 different soil properties, including SOC as well as 145 

spectral measurements in the VNIR-SWIR range. A particular advantage of the LUCAS 146 

database is that all physical and chemical as well as spectral measurements have been conducted 147 

using harmonized standards and protocols (Tóth et al., 2013). The SOC content has been 148 

measured by dry combustion using a vario Max CN Analyzer (Elementar Analysensysteme 149 

GmbH, Germany). Before taking spectral measurements, the samples were dried at 40°C, 150 

crushed and sieved (< 2 mm). The absorbance spectra were measured using a FOSS XDS Rapid 151 
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Content Analyzer within a range of 400.0-2499.5 nm with a spectral resolution of 0.5 nm, 152 

resulting in 4200 wavelengths (Tóth et al., 2013).  153 

To exclude the ranges of strong atmospheric attenuation that are not useful in remote sensing 154 

analyses, we excluded the spectral ranges of strong water absorptions around 1400 nm and 155 

1900 nm, precisely we excluded 1350-1500 nm and 1800-1950 nm. Furthermore, as observed 156 

by Stevens et al. (2013), the spectral range 400-500 nm shows instrumental artefacts and was 157 

removed from further analyses. 158 

Also, we subset the LUCAS database to agricultural areas based on land use and land cover 159 

classes provided within the database. We focused on agricultural areas as these areas are 160 

temporarily free of vegetation and can therefore be used for subsequent mapping of soil 161 

properties from air- and spaceborne platforms.  162 

2.2 Database pre-processing 163 

In several studies the 1st derivative led to best modelling results (e.g. Araújo et al., 2014; Nocita 164 

et al., 2014; Stevens et al., 2013). Thus, we used the 1st derivative of the absorbance spectra 165 

after applying a Savitzky-Golay smoothing (Savitzky and Golay, 1964) filter using a 2nd order 166 

polynomial and a window size of 41 bands which corresponds to 20.5 nm. 167 

The distribution of the SOC content in the agricultural subset is highly skewed 168 

(skewness = 4.64), so we transformed it to approximately normally distributed values using the 169 

natural logarithm (new skewness = 0.12). Subsequently, the dataset was divided into subsets 170 

for calibration (70%) and validation (30%) using the Kennard-Stone algorithm (Kennard and 171 

Stone, 1969). This algorithm chooses samples based on a distance measure to produce 172 

representative subsets. Clustering and model calibration is solely based on the calibration 173 

subset, and the validation subset is only used to assess clustering and model quality. 174 

 175 
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2.3 Methodological overview 176 

In this study, we tested two different clustering-modelling approaches (Fig. 1): (i) the k-means 177 

algorithm was used based on either a Principal Component Analyses (PCA; Fig. 1, B1) or 178 

Spectral Feature Variables (SFV; Fig. 1, B2), then SOC predictions were performed on each 179 

spectral cluster using PLSR; (ii) a local PLSR approach (Fig.1, C) was used where for each 180 

validation sample a separate PLSR model was calibrated on the basis of a set of most similar 181 

calibration samples that was selected based on distance metrics. Afterwards, we compared the 182 

SOC prediction accuracies obtained by the different approaches with a reference model (Fig. 1, 183 

A) which was calibrated based on the complete database without previous clustering. The 184 

reference model was used to investigate the performances of the clustering approaches in 185 

improving the model accuracy. For reasons of comparability all models were calibrated and 186 

validated on exactly the same LUCAS subsets. The detailed workflow for each of the two 187 

clustering-modelling approaches is given in Fig. 2. 188 

 189 

Fig. 1: Overview of general processing structure. 190 
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 191 

Fig. 2: Detailed processing overview of the two clustering-modelling approaches: 1) k-means 192 

clustering based either on a) PCA or b) SFV and PLSR (left), and 2) local PLSR (right). 193 

2.4 Reference model without clustering using PLSR 194 

As initial stage, a reference SOC prediction model was built based on our whole agricultural 195 

and spectrally-reduced LUCAS dataset, using PLSR (Fig. 1, A). We applied the R package pls 196 

(Mevik et al., 2016) for PLSR analyses. PLSR is suitable for data that consist of a matrix of 197 

many highly collinear predictor variables X that are used to predict the response variable(s) Y. 198 

Both X and Y are projected into a new dataspace in such a way that the covariance between X 199 

and Y is maximized. A few orthogonal regression coefficients, called latent variables (LV) are 200 

then used as predictors for Y. The number of LV is unknown and needs to be determined (Wold 201 

et al., 2001). Here we chose a combination of three common methods to achieve good model 202 

accuracies without over-fitting the models to the data. The results of the three methods were 203 

averaged to automatically select the best number of latent variables which leads to better 204 

validation accuracies than just using one of the methods. (i) We used a 10-fold cross-validation 205 
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to estimate the root mean squared error (RMSE) for different numbers of LV and chose the 206 

minimal number of LV within one standard deviation of the minimal RMSE (comparable to 207 

Stevens et al. (2013)). (ii) We used the commonly applied adjusted coefficient of determination 208 

(adj. R2, see Eq. (1)) which takes into account the number of components used in a model. (iii) 209 

We used the adjusted Wold’s R with a threshold of > 0.95 (following Li et al., 2002). It is based 210 

on the ratio of the predicted error sum of squares of the PLSR LV m+1 and the LV m, with m 211 

as the number of LV. The additional LV m+1 will only be included in the PLSR model if it 212 

provides significantly better predictions.  213 

𝑎𝑎𝑎𝑎𝑎𝑎.𝑅𝑅2 = 1 − (1 − 𝑅𝑅2)(𝑛𝑛 − 1)/(𝑛𝑛 − 𝑘𝑘 − 1)          (1) 214 

with n as the number of samples and k as the number model components. 215 

2.5 Method 1: k-means clustering and PLSR 216 

In the first spectral clustering approach (Fig. 1, B1 & B2 and Fig. 2, left), we used the k-means 217 

algorithm to cluster the data prior to applying the PLSR algorithm to each spectral cluster. K-218 

means starts with randomly selected initial cluster centres and assigns the closest samples to 219 

these centres. Based on these clusters it calculates new cluster centres and reassigns all samples. 220 

This step is repeated until the algorithm converges (Hartigan, 1975). To remove noise, reduce 221 

collinearity and to increase the computational speed, we tested the performance of k-means 222 

clustering for two independent spectral reduction methods: (a) based on spectral variance using 223 

Principal Component Analysis (PCA) and; (b) based on the direct analyses of spectral features 224 

using a set of Spectral Feature Variables (SFV) following Bayer et al. (2012). The spectral 225 

reduction methods are used for the clustering processes only, whereas the PLSR models are 226 

calibrated on the pre-processed spectra. The k-means algorithm demands the number of clusters 227 

as an input and here we based this choice on the best PLSR model validation results. Therefore, 228 

we tested different numbers of clusters between 2 and 15.  229 
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The PCA method focuses on the reduction of spectral variance in the data based on the 230 

projection of the dataspace in the principal component bands ordered in terms of decreasing 231 

variance. The SFV method focuses on the physical analyses of spectral shape and characteristic 232 

absorption bands directly linked to soil chromophores (e.g. Ben-Dor et al., 2009). Although less 233 

commonly used as spectral reduction, the SFV method presents the advantage that it is based 234 

solely on the direct analyses of spectral features related to soil properties, and carries different 235 

information than spectral variance.  236 

The following procedure was adopted for both sets of clusters independently: for each cluster a 237 

separate PLSR model was calibrated based on the calibration dataset of the pre-processed 238 

spectra. As the clustering process was based solely on the calibration subset, each validation 239 

sample had to be assigned to one of those clusters. This was conducted using the shortest 240 

distance to the cluster centres in the multidimensional PCA- resp. SFV-dataspace. Therefore, it 241 

was necessary to also calculate the Principal Components (PCs) of the PCA resp. SFV for the 242 

validation samples. As the PCA was solely calculated based on the calibration subset, the PCs 243 

for the validation samples were predicted using the same dataspace transformation. To validate 244 

this clustering-modelling approach, for each validation sample the PLSR model was applied, 245 

that is corresponding to the cluster to which the sample had previously been assigned. 246 

For the PCA, we used the first 20 PCs that explained more than 99.5% of the spectral variance. 247 

For the SFV approach, we used an expanded selection of SFV following Bayer et al. (2012), 248 

focusing on spectral features associated with main soil chromophores such as SOC, clay, iron 249 

oxides, carbonates and gypsum. Three types of SFV are considered, as shown in Fig. 3: 250 

absorption features (AF), curve features (CF), and hull features (HF), associated with diagnostic 251 

spectral absorptions, spectral shapes, and spectral continuum. We adapted the approach of 252 

Bayer et al. (2012) and used five AF, one CF and two HF.  253 
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 254 

Fig. 3: Overview of SFV used in this study. a absorption features (AF), b curve feature (CF) 255 

and c hull features (HF) shown at the example of a mean spectrum of the LUCAS database; 256 

variables potentially used in the analysis are marked in red; modified after Bayer et al. (2012).  257 

 258 

As AF we calculated the maximum depth of the absorption feature (dmax) and the corresponding 259 

wavelength (λdmax), the width between the shoulders of the feature (w), the area of the feature 260 

(A = Aleft + Aright) and the asymmetry of the feature (AS = Aleft / Aright ; AS is not shown in 261 

Fig. 3a). Therefore, we calculated the continuum removal (CR) of each feature’s spectral range 262 

(Table 1) and searched for the minimum to determine dmax and λdmax. To detect the left / right 263 

shoulder of each feature, we searched for the last / first wavelength left / right of the maximum 264 

absorption (λdmax) which lies on the convex hull (CR = 1). The SFV width w is the difference 265 

in wavelengths between the two shoulders. To calculate the left and right area of the feature 266 

Aleft / Aright, the area under the curve (function auc from R package flux (Jurasinski et al., 2014)) 267 

is subtracted from the total area of the corresponding side of the feature. The total area is the 268 

sum of the area below and above the curve within zero and one and within the wavelengths of 269 

the corresponding shoulder and the maximum absorption. 270 

The CF was calculated based on a line fit of the reflectance values within the spectral range 271 

under study. This line fit was used to derive the mean slope (s). 272 
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For the calculation of the HF, we used the continuum removal of the reflectance spectra. Based 273 

on a line fit of the convex hull within the spectral range under study, the mean slope (s) and 274 

mean reflectance (r) were calculated. The line fit was based on the reflectance values of those 275 

points lying on the convex hull (CR = 1) within the spectral range. Additionally, the range of 276 

points used to calculate the line fit was extended to the first points on the left and right side of 277 

the spectral range if possible, to account for changes at the margins of the spectral range. Based 278 

on this line fit the reflectance values of the two bordering wavelengths of the spectral range 279 

were predicted and used as a basis to calculate the two SFV. Thereby, the mean slope is the 280 

difference in reflectance of the two bordering wavelengths divided by the difference in 281 

wavelengths, and the mean reflectance is the mean value of the two bordering wavelengths.  282 

The SFV were calculated for each significant spectral range separately which were taken from 283 

the literature. We included spectral absorption features of several spectrally important soil 284 

properties in our calculations of SFV as they have primary correlations to spectral absorptions 285 

(Stenberg et al., 2010). As some of the spectral absorptions used by Bayer et al. (2012) are very 286 

similar, we selected the more unique ones (see Table 1). Prior to usage, we normalized the SFV 287 

by subtracting the mean and dividing by the standard deviation. We also checked the SFV for 288 

constant values (standard deviation divided by mean < 0.001), redundant variables and 289 

variables very highly correlated to other variables (r > 0.9), and removed them.  290 

 291 

 292 

 293 

 294 
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Table 1: Spectral absorptions based on spectrally active soil properties which are initially used 295 

to calculate SFV. *Numbers in brackets are the original values from (Bayer et al., 2012) which 296 

are adapted due to removed wavelengths at water bands and at 400-500 nm. 297 

Name Type Range * Associated 
soil property 

References 

SFV1 AF 1600, 1799.5 
(1815)  

SOC (e.g. Ben-Dor et al., 1997; Viscarra Rossel 
and Behrens, 2010) 

SFV2 AF 2240, 2410 SOC, clay (e.g. Ben-Dor et al., 1997; Viscarra Rossel 
and Behrens, 2010) 

SFV3 HF (450) 500, 740 SOC, clay, 
iron 

(e.g. Bartholomeus et al., 2008; 
Baumgardner et al., 1986; Hill and Schütt, 
2000) 

SFV4 HF (1460) 1500, 
1750 

SOC, clay (e.g. Bartholomeus et al., 2008; 
Baumgardner et al., 1986; Hill and Schütt, 
2000) 

SFV5 AF (450) 500, 680 iron (e.g. Grove et al., 1992; Hunt, 1970; 
Viscarra Rossel and Behrens, 2010) 

SFV6 AF 580, 800 iron (e.g. Grove et al., 1992; Viscarra Rossel 
and Behrens, 2010) 

SFV7 AF 750, 1300 iron (e.g. Ben-Dor and Banin, 1994; Clark, 
1999; Viscarra Rossel and Behrens, 2010) 

SFV8 CF 550, 590 iron (e.g. Clark, 1999) 
SFV9 AF 2100, 2290 clay (e.g. Chabrillat et al., 2002; Viscarra 

Rossel and Behrens, 2010) 
SFV10 AF 2300, 2400 carbonate (e.g. Gaffey, 1987) 
SFV11 AF 1690, 1800 gypsum (e.g. Milewski et al., 2018)  

 298 

2.6 Method 2: local PLSR 299 

Locally weighted PLSR models belong to the memory-based learning approaches which can 300 

outperform machine learning algorithms such as artificial neural networks and decision trees 301 

(Ramirez-Lopez et al., 2013). Basically, the local PLSR approach (Fig. 1, C and Fig. 2, right) 302 

selects a set of samples (nearest neighbours) out of a calibration database which are spectrally 303 

most similar to a new sample, and this set of nearest neighbours is then used to calibrate a 304 

prediction model for the new sample (Ramirez-Lopez et al., 2013). The process is repeated for 305 

each validation sample. This approach can be thought of as a kind of adaptive clustering because 306 

it creates tailor-made calibration sets for each new sample. It has not been applied in soil 307 

spectroscopy very often (Ramirez-Lopez et al., 2013) but recently Nocita et al. (2014) used it 308 
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for SOC estimations in the LUCAS database and showed that it is a promising approach. This 309 

is consistent with the observation that in the past the PLSR approach has shown to be very 310 

promising and delivering high performance models in the soil spectroscopy and remote sensing 311 

community for the prediction of SOC content when it was applied on local scale, which is often 312 

associated with spectrally similar signatures. Nocita et al. (2014) first divided their cropland 313 

database in mineral and organic soils, based on chemical data, and obtained the best results for 314 

the mineral soils using the 250 nearest neighbours with the pls distance as spectral distance 315 

measure. The pls distance is based on the Euclidean distance of the scores of the PLSR which 316 

are relating SOC content and the spectra and therefore requires prior knowledge not only of the 317 

spectra but additionally of the SOC content. Furthermore, they used sand content as auxiliary 318 

distance measure as it was improving the results.  319 

We adapted this approach to fit our study by testing other spectral distance measures and 320 

avoiding the use of auxiliary variables as we aim to develop an approach that is based on 321 

spectral data only. Also, a pre-clustering based on chemical data is thus not applied. As we have 322 

removed the water bands from the spectra and therefore have a differing spectral coverage, we 323 

also tested a sequence of fixed numbers of nearest neighbours. Additionally, we investigated if 324 

applying a sequence of thresholds within the distance measure instead of using a fixed number 325 

of nearest neighbours can improve the results.  326 

In order to find a suitable distance measure as a basis for the local PLSR approach, we tested 327 

four different measures. The pls distance (plsDist), as used by Nocita et al. (2014) is not suitable 328 

for the basic idea of our study which is to use spectral information as input only. It additionally 329 

requires knowledge of the SOC content, but is applied here for reasons of comparability. The 330 

correlation distance (corDist) is based on the correlation coefficient between two spectra which 331 

is subtracted from 1. Here we used the corDist function available in the MKmisc package in R 332 

(Kohl, 2018). The Mahalanobis distance (MDist) and the spectral angle mapper (SAM), which 333 
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is the angle between vectors in the hyperspectral space, were calculated using the fDiss function 334 

in the resemble package in R (Ramirez-Lopez and Stevens, 2016). For all spectral measures, 335 

besides the pls distance, we used the first 20 PCs of a PCA based on pre-processed spectra as 336 

input to remove noise, reduce collinearity and to increase the computational speed. The pls 337 

distance was calculated directly on pre-processed spectra.  338 

2.7 Application to simulated EnMAP spectra 339 

Simulated EnMAP spectra were produced based on the LUCAS database. Therefore, the 340 

agricultural subset of LUCAS spectra was resampled to EnMAP’s spectral resolution using the 341 

spectralResampling function in the hsdar package in R (Lehnert et al., 2017). EnMAP is 342 

designed to measure in the 420-2450 nm range with more than 240 bands. It consists of two 343 

spectrometers that have a spectral overlap between 900 and 1000 nm (Segl et al., 2010). Here 344 

we excluded the bands of the first spectrometer within the overlapping range. The same pre-345 

processing and processing steps were performed as for the original LUCAS resolution. The 346 

following water bands were removed: 1358.50-1499.40 nm and 1803.50-1951.00 nm and 347 

16 PCs explaining more than 99% of the spectral variance were used. The best modelling 348 

approach found in this study was applied to the simulated EnMAP spectra. 349 

2.8 Model assessments 350 

To assess the model accuracy, the ln-transformed SOC values (measured and predicted) were 351 

used for dimensionless measures, whereas for measures with units (g kg-1) original SOC values 352 

and back-transformed predicted values were used. As performance indicators, we calculated 353 

the coefficient of determination (R2) (Eq. 2), the root mean squared error of prediction (RMSEP, 354 

Eq. 3), the relative RMSEP (rRMSEP) (Eq. 4), the ratio of performance to deviation (RPD) 355 

(Eq. 5), the ratio of performance to interquartile range (RPIQ, Eq. 6) and the bias (Eq. 7), 356 

(following e.g. Nocita et al., 2014; Steinberg et al., 2016; Stevens et al., 2013): 357 
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𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 /∑ (𝑦𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦���)2𝑛𝑛

𝑖𝑖=1                (2) 358 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (∑ (𝑦𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖)2/𝑛𝑛 𝑛𝑛
𝑖𝑖=1 )1/2            (3) 359 

𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 100 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅/𝑦𝑦𝑦𝑦���        (4) 360 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑠𝑠𝑎𝑎(𝑦𝑦𝑦𝑦)/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅         (5) 361 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅(𝑦𝑦𝑦𝑦)/𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅         (6) 362 

𝑏𝑏𝑏𝑏𝑎𝑎𝑠𝑠 = 1/𝑛𝑛 ∗ ∑ (𝑦𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1          (7) 363 

with yoi being the observed SOC value of sample i and ypi being the predicted SOC value of 364 

sample i. 𝑦𝑦𝑦𝑦��� is the mean of the observed SOC values, n is the number of samples, sd is the 365 

standard deviation and IQ is the interquartile range. The rRMSEP, RPD and RPIQ are ways to 366 

standardize the RMSEP to be able to compare datasets and clusters with different ranges and 367 

variances (Nocita et al., 2014). 368 

3. Results 369 

3.1 LUCAS database and pre-processing 370 

We subset the LUCAS database to agricultural areas which reduced the number of samples to 371 

8294. This subset contains mainly mineral soils as well as 41 samples classified as organic soils. 372 

Within the selected LUCAS subset, the SOC content ranges between 0 – 193.9 g kg-1 with a 373 

mean value of 17.5 g kg-1. The percentage of clay goes up to 79% with 22% on average. The 374 

CaCO3 content varies between 0 – 882 g kg-1 with a mean of 85 g kg-1. The spectra show a 375 

large variation in absorbance due to the influence of SOC content and mineralogical 376 

composition (Fig. 4).  377 

The PLSR reference model without clustering, which was calculated to assess the potential of 378 

improvement of the clustering approaches, led to an R2 of 0.59, RPIQ of 1.76 and RMSEP of 379 

7.37 g kg-1. 380 
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 381 

Fig. 4: Spectral variability in the LUCAS agricultural areas subset showing mean and 382 

standard deviation, as well as the darkest and the brightest spectrum. 383 

3.2 k-means clustering and PLSR 384 

All validation results for the two clustering approaches are shown in Table 2. The k-means PCA 385 

approach resulted in seven clusters with calibration sizes ranging from 249 to 1391 samples. In 386 

addition, there was one very small cluster with 23 calibration samples and as only two validation 387 

samples were assigned to this cluster it was not included in the final assessment. Very variable 388 

results depending on the spectral clusters were achieved, ranging from very poor (R2 = 0.32, 389 

pca6) to very good (R2 = 0.84, pca2). Except for these two spectral clusters and another one 390 

with poor performance (R2 = 0.45, pca1), in general a medium performance is achieved with 391 

R² between 0.54-0.64 in all five other spectral clusters. The RPD values underline this statement 392 

with values above 1.4 for the aforementioned five clusters and below 1.4 for the two models 393 

with a poor performance. All clusters, except the excluded small one, showed a highly skewed 394 

SOC distribution with skewness values above one reaching to a maximum of 5.8. This 395 

underlines the need for SOC normalization prior to modelling which was done here. 396 

For the k-means SFV approach some of the SFV were removed due to high correlations (r > 0.9) 397 

which led to a basis of 33 SFV. All SFV11 variables were removed as they showed high 398 

correlations to the SFV1 variables. The AF variable A was always highly correlated to dmax 399 
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and was therefore excluded from all spectral ranges except for the SFV10 range. Here dmax 400 

was removed instead of A, as dmax of SFV10 was highly correlated to dmax of SFV2.  401 

The best results for the k-means SFV approach were achieved for four clusters with calibration 402 

cluster sizes ranging from 218 to 2526 samples. In addition, there was again a very small cluster 403 

of 22 calibration samples with only two assigned validation samples which was excluded. The 404 

rest of the samples was distributed mainly to two large clusters (sfv3, sfv5). The R2 values of 405 

most clusters show a medium prediction performance of above 0.5 with one exception showing 406 

a good accuracy with a R² of 0.7 (sfv1). This cluster with the best performance also concerning 407 

RPIQ values includes comparably more samples with higher SOC values which also shows in 408 

a higher standard deviation. All RPD values are above 1.4 which indicates fair models or above 409 

1.8 which indicates good models. The original SOC values of all clusters were highly skewed 410 

with a maximum skewness of 4.3. 411 

Fig. 5 shows the mean reflectance and SOC range for each spectral cluster. The mean spectra 412 

of the SFV clusters are more spectrally differentiated than when based on PCA. They show 413 

differences in albedo and in absorption features, with the smallest cluster sfv4 showing the 414 

brightest mean spectrum and cluster sfv1 the darkest, related to the highest SOC values within 415 

this cluster. For the PCA clustering, that is based on spectral variance and less focused on 416 

spectral features, there are only marginal differences in spectra and SOC content between the 417 

clusters. For the SFV clusters the geographical distribution reveals spatial patterns (map not 418 

shown): the two largest clusters sfv3 and sfv5 have a tendency to be located towards the north 419 

resp. south of Europe. The cluster including high SOC contents (sfv1) is mainly located in 420 

northern Germany and Denmark, and the very small cluster (sfv4) is spatially restricted to 421 

Spain. For the PCA clusters no spatial patterns were visible (map not shown). 422 

 423 
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Table 2: Validation results for the k-means clustering approaches combined with PLSR; Nval 424 

(= number of validation samples in cluster), Ncal (= number of calibration samples in cluster), 425 

and LV (= latent variables) 426 

* validation results using combined predicted values from all clusters but pca3, resp. sfv4; for 427 

the column LV the mean values are calculated 428 

 Model performance Model data 

 R2 RMSEP 
[g kg-1] rRMSEP RPD RPIQ Bias LV Nval Ncal SD   

[g kg-1] 

SOC 
range 

[g kg-1] 
PCA* 0.60 8.48 52.9 1.60 1.80 -0.42 12.1 2488 5806 13.4 0-193.9 

pca1 0.44 5.80 37.6 1.34 2.00 0.28 9 336 934 11.4 0-121.5 

pca2 0.84 17.76 50.6 2.52 3.25 -2.95 17 110 881 26.0 3.8-
193.9 

pca3 NA NA NA NA NA NA 3 2 23 6.0 2.5-
28.2 

pca4 0.61 3.50 24.5 1.61 1.93 -0.64 14 685 1131 6.6 0-55.3 

pca5 0.57 12.09 71.1 1.53 1.85 0.03 19 735 1391 9.9 0-113.4 

pca6 0.32 5.68 52.1 1.22 1.23 -0.64 9 97 249 9.2 0-65.6 

pca7 0.64 4.55 32.8 1.67 2.06 -0.44 16 156 520 6.9 2.5-
62.2 

pca8 0.54 5.41 37.1 1.47 1.96 -0.70 10 367 677 10.1 0-84.2 

SFV* 0.63 6.68 41.6 1.64 1.85 -0.58 11.6 2488 5806 13.4 0-193.9 

sfv1 0.70 25.27 56.49 1.85 3.03 -4.26 12 87 633 29.7 5.6-
193.9 

sfv2 0.54 5.04 32.05 1.49 1.45 -0.31 9 72 218 10.4 2.9-
121.4 

sfv3 0.58 5.21 31.89 1.54 2.04 -0.36 19 1051 2526 9.8 2.3-
93.6 

sfv4 NA NA NA NA NA NA 2 2 22 6.1 2.5-
28.2 

sfv5 0.56 4.41 31.85 1.51 1.69 -0.50 16 1276 2407 7.2 0-66.3 
 

 429 
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 430 

Fig. 5: Mean spectra of the clusters (top) showing the PCA based (left) and the SFV based 431 

(right) approaches. For clarity these spectra are shown in reflectance. Numbers in brackets are 432 

number of samples within each cluster including calibration and validation samples. Boxplots 433 

showing the SOC distribution (bottom) within the whole LUCAS subset (all) and within the 434 

clusters of the PCA approach (left) and the SFV approach (right). The SOC content is shown 435 

on a logarithmic scale. 436 

3.3 Local PLSR 437 

Fig. 6 is an illustration of the local PLSR approach showing two examples for the validation 438 

samples. Sample 10261 contains more SOC (37.7 g kg-1), clay (36%) and CaCO3 (431 g kg-1) 439 

compared to sample 13274 (SOC: 13.1 g kg-1, clay: 6%, CaCO3: 36 g kg-1. We compared four 440 

different distance measures that could potentially be used as a basis for the local PLSR 441 

approach: correlation distance (corDist), Mahalanobis distance (MDist), pls distance (plsDist), 442 
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spectral angle mapper (SAM). For each validation sample a fixed number of calibration samples 443 

was used to calibrate the model. To determine the best fixed number of calibration samples we 444 

selected 30% of the calibration dataset as test validation set, using the Kennard-Stone algorithm 445 

(Kennard and Stone, 1969), and iteratively tested different numbers. We chose the same number 446 

for all distance measures to have a fair comparison. The best compromise was 450 samples. All 447 

distance measures led to test results in a comparable range as shown in Fig. 7. The MDist attains 448 

the lowest RMSEP and the lowest bias, whereas the plsDist reaches the highest R2 and RPIQ 449 

values. As plsDist does not fit to the basic ideas of this study, MDist was chosen as adequate 450 

distance measure.  451 

In a next step we tested if the usage of a threshold within the distance measure to define the 452 

calibration datasets could improve the results. The advantage of this approach is that we abstain 453 

from using the same fixed number of calibration samples for each validation sample but allow 454 

for a larger number of samples in the calibration subsets. We used a minimum size of calibration 455 

samples of 200 to ensure that enough samples were used for model calibration. Here we tested 456 

different sequences of thresholds and again chose the threshold which led to the best results 457 

within the test set. For the MDist a threshold of 0.19 could improve the test results for R² and 458 

RPIQ (Fig. 7). Applying the local PLSR approach using MDist with threshold to the validation 459 

dataset we were able to calibrate good prediction models with R2 = 0.67, RMSEP = 5.16 g kg-460 

1, RPD = 1.74, RPIQ = 1.96 and a low bias = 0.1. 461 
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 462 

Fig. 6: Two examples of the local PLSR approach showing two validation samples (val) and 463 

their calibration samples (cal): reflectance spectra (left) and geographical distribution (right). 464 

 465 

Fig. 7: Barplots comparing the model quality of different distance measures tested in the local 466 

PLSR approach based on an independent test set: correlation distance (corDist), Mahalanobis 467 

distance (MDist), pls distance (plsDist), spectral angle mapper (SAM). Distance measures are 468 

based on a fixed number of calibration samples (light grey), and on a threshold in the distance 469 

measure of the MDist result (MDist_t, dark grey). 470 
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3.4 Overall results 471 

The overall results in Table 3 show that the two k-means clustering approaches could slightly 472 

improve the model accuracy in terms of R2 and RPD compared to the reference model. The k-473 

means SFV approach could also improve the RMSEP compared to the PLSR reference. The 474 

overall best results were achieved by the local PLSR approach. It was able to improve the 475 

prediction accuracy visible in all model parameters, e.g. the RMSEP could be reduced by more 476 

than 2 g kg-1 compared to the reference. Regarding Fig. 8 and corresponding to the previous 477 

results, the best fit is achieved by the local PLSR approach which shows the highest correlation 478 

of 0.9 between observed and predicted SOC values. 479 

Table 3: Overall validation results for the reference model and the clustering approaches (k-480 

means and local PLSR). LV = latent variables, Nval = number of validation samples, Ncal = 481 

number of calibration samples. For the k-means approaches the model performance parameters 482 

are the validation results using combined predicted values from all clusters but pca3, resp. sfv4 483 

and the LV are averages. 484 

 Model performance Model data 

 R2 RMSEP 
[g kg-1 ] rRMSEP RPD RPIQ Bias LV Nval Ncal 

PLSR 
reference 0.59 7.37 45.9 1.56 1.76 -0.70 19 2488 5806 

k-means PCA 0.60 8.48 52.9 1.60 1.80 -0.42 12.1 2488 5806 
k-means SFV 0.63 6.68 41.6 1.64 1.85 -0.58 11.6 2488 5806 

Local PLSR 0.67 5.16 32.2 1.74 1.96 0.10 12.8 2488 5806 
 485 
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 486 

Fig. 8: Observed vs. predicted SOC values of the validation samples for the PLSR reference 487 

(a) and the clustering approaches (b-d). The colours in b and d represent the seven 488 

respectively four k-means clusters. Pearson’s correlation coefficient r is given.  Notice: outlier 489 

are not shown in b (183/263, 20.7/299), c (183/222) and d (183/232). 490 

3.5 Simulated EnMAP spectra 491 

Best results were delivered by the local PLSR and consequently this approach was applied to 492 

the simulated EnMAP dataset using the best configurations investigated in the previous steps, 493 

using the threshold in the Mahalanobis distance. The results in Table 4 and Fig. 9 show that the 494 

validation results using the simulated EnMAP spectra decrease only slightly compared to the 495 

full spectral LUCAS resolution. 496 

 497 
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Table 4: Validation results for the local PLSR applied to simulated EnMAP spectra. LV = latent 498 

variables, Nval = number of validation samples, Ncal = number of calibration samples 499 

 Model performance Model data 

 R2 RMSEP 
[g kg-1 ] rRMSEP RPD RPIQ Bias LV Nval Ncal 

Local PLSR 0.66 5.78 36.0 1.71 1.93 -0.20 11.9 2488 5806 
 500 

 501 

Fig. 9: Observed vs. predicted SOC values of the validation samples for the local PLSR 502 

approach applied to simulated EnMAP spectra. 503 

4. Discussion 504 

4.1 K-means clustering and PLSR 505 

We applied different clustering techniques to investigate whether they were suitable to improve 506 

the prediction accuracy of a reference model that was based on the whole non-clustered dataset. 507 

The k-means clustering approach was tested for two different versions. Both of them could 508 

improve the overall model accuracy compared to the reference. Araújo et al. (2014) come to 509 

the conclusion that a k-means clustering is able to increase the organic matter (OM) prediction 510 

results compared to a reference PLSR model as the former can cope with non-linearity in large 511 

and heterogeneous datasets. In their study they compared the clustering results with boosted 512 
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regression trees and support vector machines as reference models and found out that they 513 

performed in the same range. Thus, a k-means clustering combined with separate PLSR models 514 

seems to be able to improve a PLSR reference model similar to our observation. In our study, 515 

especially using a set of SFV for the basis of the k-means clustering could improve the 516 

modelling results. A preliminary set of SFV was selected based on the approach of Bayer et al. 517 

(2012) focusing on SOC, clay and iron contents. In the LUCAS database, a much higher 518 

heterogeneity in the spectral database is observed compared to the spectral heterogeneity of the 519 

spectral data from Bayer et al. (2012), and therefore, we added SFV based on the features of 520 

carbonates and gypsum.  521 

The first SFV cluster showed the highest RMSEP of 25.3 g kg-1 and a very high bias although 522 

it shows the best modelling performance with the highest R2, RPD and RPIQ values (Table 2). 523 

This cluster has a very high mean SOC value of 35.4 g kg-1 (the second highest mean SOC 524 

value is 17.9 g kg-1 in SFV cluster 3) and a high standard deviation. This result is conform to 525 

Stenberg et al. (2010) who stated that the prediction errors of spectroscopic models increase 526 

with increasing standard deviation of the predicted soil property. Therefore, it is important to 527 

consider the distribution of SOC values when comparing the RMSEP of different study sites or 528 

clusters. The RPD, RPIQ or the rRMSEP are better suited as they account for different ranges 529 

and variances. 530 

The k-means clustering based on SFV resulted in more differentiated clusters compared to the 531 

PCA approach. The SFV clusters showed differences between their mean spectra in terms of 532 

albedo and spectral features (Fig. 5). The SOC distributions including mean values differ 533 

between the SFV clusters (Fig. 5) and the SOC standard deviation decreased for most of the 534 

SFV clusters compared to the LUCAS dataset, which is conform to the findings by Araújo et 535 

al. (2014) who also observed this behaviour for many of their clusters. Additionally, there are 536 

slight patterns visible in the spatial distribution of the SFV clusters which is confirming Stevens 537 
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et al. (2013) who stated that the link between soil properties and their spectra can be very 538 

complex and that it can vary in space. 539 

The number of LV in a PLSR model is an essential component leading to very different model 540 

results. We advise to include the number of LV in the results of future studies using PLSR to 541 

make results more comparable and transparent. 542 

4.2 Local PLSR 543 

We show in this paper that the local PLSR approach significantly improved the SOC modelling 544 

results compared to the reference PLSR model. It showed an increase in model accuracy relative 545 

to the reference PLSR of +14% R2, -30% RMSEP, +11% RPIQ, and the largest improvement 546 

with -86% was the bias. The Mahalanobis distance was an adequate alternative for the pls 547 

distance which was used in the local PLSR approach in the study by Nocita et al. (2014). 548 

Additionally, we could slightly improve the performance of the local PLSR approach by using 549 

a threshold to derive the calibration dataset, instead of a fixed number of samples. This allowed 550 

more samples to be selected for the individual calibration datasets for some validation samples. 551 

Clearly, the local PLSR approach outperformed the k-means approaches which were combined 552 

with classic SOC prediction models based on PLSR for each cluster. Thus, the local PLSR 553 

approach that is based on spectral distance is better able to perform spectral clustering linked 554 

to SOC modelling than the k-means classification algorithms based on statistical multivariate 555 

(PCA) or spectral feature based (SFV) methods. A major difference between k-means and local 556 

PLSR is that for the k-means methods a comparably small number of clusters is formed (5 resp. 557 

8 in this study) whereas with the local PLSR approach one model is computed per validation 558 

sample which leads to ~2,500 different calibration subsets which can be seen as clusters.  559 

Comparing the results in our study to the study by Nocita et al. (2014) who also applied the 560 

local PLSR approach on the LUCAS database, a slight reduction in model performance is 561 
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observed. This can be explained as we modified some important parameters of the approach to 562 

make it more generic and to be applicable for remote sensing. First, the removal of the water 563 

bands excluded information from the spectra which could not be used for model calibration and 564 

validation any more, thus, reducing the prediction accuracy. Second, we did not apply a pre-565 

discrimination between mineral and organic soils as our study is based on the sole use of the 566 

spectral data. For organic soils Nocita et al. (2014) already demonstrated that for these soils the 567 

model performance was much lower than for mineral soils. They had derived a very much 568 

higher RMSEP (51.1 g kg-1) with their local PLSR approach on the organic soils, which are 569 

included in our study. Additionally, Nocita et al. (2014) modified the local regression procedure 570 

by including other covariates (geographical and texture information) in the computation of the 571 

distance between samples. We considered solely the spectral data, reducing the input 572 

information for the modelling. 573 

Our results in general compare well to other studies using large soil spectral libraries for the 574 

prediction of soil properties (e.g. Araújo et al., 2014; Stevens et al., 2013; Viscarra Rossel et 575 

al., 2016), although with slightly reduced accuracy. In the literature comparable studies are for 576 

laboratory purposes and based on the whole spectral database, including the water bands. In our 577 

case, removing the water bands that are important predictors for soil properties accordingly 578 

seems to slightly reduce the prediction accuracy which has to be expected for large scale SOC 579 

modelling. As such, the prediction errors in our study are comparatively large due to the higher 580 

standard deviation in the large scale LUCAS database in comparison to local studies (Nocita et 581 

al., 2014). Nevertheless, the prediction errors are still in an accepted reasonable range when 582 

applied for remote sensing purposes. 583 

Another issue is that underestimation of higher SOC values as shown in Fig. 8 is a well-known 584 

issue in PLSR modelling as shown in the results for the reference model and the k-means 585 

approaches. Reasons are the under-representation of higher SOC values in the calibration set 586 
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(Brown et al., 2005) caused by the skewed distribution of the SOC content and changes in the 587 

relationship between SOC and spectra for higher SOC values due to a saturation of the SOC 588 

spectral response (Nocita et al., 2014). Nevertheless, the local approach as shown in Fig. 8 589 

seems to be able to deal with the prediction of high SOC values, which would show that spectral 590 

distance can cope well with higher amount of SOC content to group high-SOC content samples 591 

and perform a PLSR SOC prediction model with reasonable accuracy, also for these samples. 592 

The LUCAS dataset used in this study and also most of the clusters in both k-means approaches 593 

have highly skewed SOC distributions. Therefore, it is important to transform the SOC values 594 

to approximately normal distribution. The transformation improved the model accuracies for 595 

all approaches. Nevertheless, so far only few studies transform skewed SOC contents before 596 

spectral predictions (e.g. Viscarra Rossel et al., 2016). 597 

4.3 Simulated EnMAP spectra 598 

Using the local PLSR approach on a LUCAS database that was spectrally reduced to match 599 

EnMAP’s spectral characteristics only leads to a slight decrease of model accuracy compared 600 

to using the full spectral range of LUCAS. The validation results are still significantly better 601 

than those of the PLSR reference and the k-means approaches.  602 

5. Conclusion 603 

The objective of this study was to investigate (i) the potential of large soil spectral libraries for 604 

the modelling of SOC adapted to remote sensing applications, using the LUCAS EU-wide 605 

topsoil database and (ii) if spectral clustering of the large inhomogeneous spectral database 606 

helps to improve the quantification of SOC compared to SOC predictions based on the whole 607 

non-clustered database, by testing different clustering methodologies.  608 

We tested a k-means clustering and explored two approaches that were either based on a PCA 609 

of the spectra or based on SFV. The SFV approach delivered better results, and both methods 610 
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could slightly improve the results of the PLSR reference model. Secondly, we tested a local 611 

PLSR approach which selected for each validation sample a set of most similar samples out of 612 

the pool of calibration samples that were used for model calibration. This approach achieved 613 

the overall best results and could clearly improve the SOC prediction accuracy compared to the 614 

reference model. We used the Mahalanobis distance as distance measure and a threshold instead 615 

of a fixed number of samples which further improved the results. The local PLSR, as the best 616 

model in our study, was applied to simulated EnMAP data based on the LUCAS database and 617 

model accuracy was almost as good as for the original LUCAS spectral resolution.  618 

We noted that the number of LV in a PLSR model is very crucial for the accuracy and should 619 

therefore be specified in future work to encourage discussions on reasonable numbers of LV. 620 

Additionally, the highly skewed SOC content should be transformed into an approximately 621 

normal distribution prior to model calibration.  622 

With this study we make a step towards the adaption of spectral soil models to the needs of air- 623 

and spaceborne SOC quantification. Our results are in the same range as other studies using 624 

large scale databases, with a slight reduction in accuracy considering a spectrally-reduced data 625 

set, not applying pre-clustering of the database, and conducting all analyses based on spectral 626 

information only without any prior knowledge of the SOC content or other soil covariates as in 627 

other studies. This study indicates that it is possible to improve the prediction accuracy of SOC 628 

by portioning the database into smaller groups. But it also shows that overlapping, individual 629 

groups are preferred over fixed ones. We demonstrate that the local PLSR approach is a 630 

valuable tool for SOC prediction based on large soil spectral databases that can be used without 631 

additional covariates than the spectral data. The usage of simulated hyperspectral data based on 632 

LUCAS led to good results which is very promising for current and future hyperspectral 633 

missions and ought to be tested on imagery spectral data for an area-wide quantification of 634 
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SOC. To do so, some challenges need to be faced like bridging the gap between laboratory and 635 

field resp. image spectra. 636 
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