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1 | INTRODUCTION

Subsurface stormflow (SSF) can be a dominant run‐off generation pro-

cess in humid mountainous catchments (e.g., Bachmair &Weiler, 2011;

Blume & van Meerveld, 2015; Chifflard, Didszun, & Zepp, 2008).

Generally, SSF develops in structured soils where bedrock or a less per-

meable soil layer is overlaid by amore permeable soil layer and vertically

percolating water is deflected, at least partially, in a lateral downslope

direction due to the slope inclination. SSF can also occur when ground-

water levels rise into more permeable soil layers and water flows later-

ally through the more permeable layers to the stream (“transmissivity

feedback mechanism”; Bishop, Grip, & O'Neill, 1990). The different

existing terms for SSF in the hydrological literature such as shallow

subsurface run‐off, interflow, lateral flow, or soil water flow reflects
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the different underlying process concepts developed in various experi-

mental studies in different environments by using different experimen-

tal approaches at different spatial and temporal scales (Weiler,

McDonnell, Tromp‐van Meerveld, & Uchida, 2005). Intersite compari-

sons and the extraction of general rules for SSF generation and its con-

trolling factors are still lacking, which hampers the development of

appropriate approaches for modelling SSF. But appropriate prediction

of SSF is essential due to its clear influence on run‐off generation at

the catchment scale (e.g., Chifflard et al., 2010; Zillgens, Merz,

Kirnbauer, & Tilch, 2005), on the formation of floods (e.g., Markart

et al., 2013, 2015) and on the transport of nutrients or pollutants from

the hillslopes into surface water bodies (Zhao, Tang, Zhao, Wang, &

Tang, 2013). However, a precise simulation of SSF in models requires

an accurate process understanding including, knowledge about water
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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FIGURE 1 Caricature of the investigation

and simulation of subsurface stormflow (SSF)
(Illustration: Edoardo Martini)
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pathways, residence times, magnitude of water fluxes, or the spatial ori-

gin of SSFwithin a given catchment because such factors determine the

transport of subsurface water and solutes to the stream. But due to its

occurrence in the subsurface and its spatial and temporal variability,

determining and quantifying the processes generating SSF is a challeng-

ing task as they cannot be observed directly. Therefore, it is logical to

ask whether we can really model SSF correctly if we cannot measure

it well enough on the scale of interest (Figure 1).

This commentary reflects critically on whether current experimen-

tal concepts and modelling approaches are sufficient to predict the

contribution of SSF to the run‐off at the catchment scale. This applies

in particular to the underlying processes, controlling factors, modelling

approaches, research gaps, and innovative strategies to trace SSF

across different scales.
2 | WHAT HAVE WE LEARNED FROM ALL
THE EXPERIMENTAL STUDIES ABOUT SSF
CARRIED OUT IN VARIOUS CATCHMENTS AT
DIFFERENT SPATIAL AND TEMPORAL
SCALES?

Experimental studies on SSF generation have been carried out in dif-

ferent mountainous catchments with steep, well drained soils (e.g.,

Maimai, New Zealand [e.g., McGlynn & McDonnell, 2003]), shallow

soils with bedrock outcrops (Panola, United States [e.g., van Meerveld,

Seibert, & peters, 2015], and Fudoji, Japan [e.g., Uchida, Asano,

Mizuyama, & McDonnell, 2004]), or catchments with periglacial drift

deposits (Bohlmicke, Germany [e.g., Chifflard et al., 2008], and Ore

Mountains, Germany [e.g., Heller & Kleber, 2016]). These studies have

resulted in comprehensive process knowledge about SSF, which was

synthesized in several reviews (e.g., Ghasemizade & Schirmer, 2013)
and have led to the identification of controlling factors of SSF like ini-

tial soil moisture content (e.g., Blume, Zehe, & Bronstert, 2009;

Chifflard & Zepp, 2008; Martini et al., 2015), water table development

at the soil–bedrock interface (e.g., Anderson, Weiler, Alila, & Hudson,

2010; Jost, Schume, Hager, Markart, & Kohl, 2012), preferential flow

paths (e.g., Laine‐Kaulio, Backnäs, Karvonen, Koivusalo, & McDonnell,

2014; Sidle, Noguchi, Tsuboyama, & Laursen, 2001; Uchida, Kosugi, &

Mizuyama, 2001), hillslope characteristics (e.g., Bachmair & Weiler,

2012), drainable porosity (e.g., Weiler & McDonnell, 2006), precipita-

tion thresholds (e.g., Hopp, McDonnell, & Condon, 2011; Kienzler &

Naef, 2008a, 2008b; Peralta‐Tapia, Sponseller, Tetzlaff, Soulsby, &

Laudon, 2014), soil properties (e.g., Bachmair, Weiler, & Nützmann,

2009; Hopp & McDonnell, 2009), soil depth (e.g., Tromp‐Van

Meerveld & McDonnell, 2006a, 2006b), or bedrock topography (e.g.,

Freer et al., 2002). Nevertheless, little of this understanding has been

incorporated into current hydrological models. As catchment hydrolo-

gists, we are particularly interested in run‐off generation at the catch-

ment scale that seems more controlled by the interplay of processes

than the details of individual ones. In other words, landscape hetero-

geneity and process complexity at the small scale can lead to typical

emergent response behaviour at the catchment scale (McDonnell

et al., 2007). From this, it follows that landscape structure can inform

us about the dominant run‐off generation mechanisms that are most

often hidden in the subsurface and therefore so difficult to observe

across the entire catchment. For instance, generation of SSF on low

mountain ranges in middle Europe is strongly influenced by the wide-

spread periglacial cover beds, which are a typical example for stratified

soils (Hübner, Günther, Heller, Noell, & Kleber, 2016; Hübner, Heller,

Günther, & Kleber, 2015; Kleber & Terhorst, 2013; Moldenhauer,

Heller, Chifflard, Hübner, & Kleber, 2013). Although in soil science

the Substrate‐Oriented‐Soil‐Evolution‐Model (Lorz, Heller, & Kleber,

2011) underlines the importance of stratified soils and lithological
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discontinuities as a key element controlling ecological processes, in

hydrologic research, less attention has been paid to the stratification

of soils as a major trigger of lateral water paths (e.g., Reinhardt‐Imjela,

Maerker, Schulte, & Kleber, 2018, Reiss & Chifflard, 2015, Zhang, Lin,

& Doolittle, 2014). The existence of a non‐linear and threshold‐type

response of SSF to precipitation (e.g., Ali et al., 2015; Graham, Woods,

& McDonnell, 2010) adds to the challenge of both measuring and

modelling this process. Indeed, the detection of these thresholds helps

to classify behaviours of different hillslopes; however, the controlling

factors and processes responsible for these thresholds are not yet fully

clear. Therefore, it is also still unclear if these thresholds are transfer-

able to other sites (Zhao et al., 2013).

One possible way forward would be a comprehensive site inter-

comparison and an innovative strategy to compare and combine all

the obtained first‐order controls to assess the SSF generation. Previ-

ous attempts have provided very informative results (Bachmair,

Weiler, & Troch, 2012; Uchida, Tromp‐van Meerveld, & McDonnell,

2005). But on the other hand, we should ask ourselves whether it is

expedient to compare all these various experimental studies investi-

gating SSF generation carried out in different hydroclimatic regimes,

at different scales or by using different experimental approaches. A

better way forward might be the development of a systematic

method‐orientated measurement program, which combines a mixture

of appropriate methods specifically targeted to the identification and

characterization of SSF generation and which will be applied across

well‐instrumented catchments covering different spatial scales within

similar environments. The experimental investigation can then focus

on understanding process heterogeneity and complexity in connection

with controlling factors and landscape structure. Thus, it is indispens-

able to develop a method‐orientated research approach, which is spe-

cifically targeted to SSF generation, covers standard as well as

innovative methods, and can be applied across different catchments

within similar environments. This kind of standardized and systematic

protocol to capture and characterize SSF will help to improve the rep-

resentation of subsurface processes in spatially distributed hydrologi-

cal models.
3 | ARE THE EXISTING HYDROLOGICAL
WATERSHED MODEL CONCEPTS
REFLECTING SSF ADEQUATELY?

The simulation of catchment‐scale run‐off generation and the associ-

ated water balance in the unsaturated zone, including SSF, strongly

varies with respect to the model concept and spatial scale of predic-

tion. Methods range from detailed physically based approaches such

as the Richards' equation (Beven & German, 2013) or the kinematic

wave method (e.g. Flügel & Smith, 1999) to less complex conceptual

models such as the Soil Conservation Service Curve Number methods.

The conceptual models do not require detailed process knowledge,

but we make the claim that for the development of process‐based

hydrological models, a good understanding of the generation of SSF

and the incorporation of process knowledge is essential (e.g.,
Bachmair, Weiler, & Nützmann, 2010; McGuire, Weiler, & McDonnell,

2007; Zhu & Lin, 2009). However, parametrizing the experimentally

identified and quantified SSF knowledge at the catchment scale is a

problem, as at this scale, the spatial heterogeneity of soil properties

and the spatial organization of the specific pathways in the subsurface

are largely undeterminable (Lin & Zhou, 2008). And even if information

on all model parameters was available at the catchment scale, the

question posed by Tromp‐van Meerveld and Weiler (2008, p. 25)

“How much model complexity is needed to explain the observed sub-

surface flow response […]?” still remains unsolved. Indeed, it could be

that the process complexity (e.g., matrix and preferential flow) and the

natural variability of environmental properties (e.g., soil properties)

collapse to a relatively simple functional relationship between a func-

tional trait (e.g., soil moisture patterns) and catchment‐scale run‐off

response (McDonnell et al., 2007).

Hydrogeophysical methods may have the potential to identify

subsurface flow paths (e.g., Angermann et al., 2017; Binley et al.,

2015) or, at least, soil heterogeneity (Martini et al., 2017), but their

use is mostly limited to the hillslope scale (Vereecken et al., 2015).

Here, subsurface flow paths are more likely to be connected over

shorter rather than longer distances, which leads to higher effective

flow velocities (e.g., Anderson, Weiler, Alila, & Hudson, 2009;

Wienhöfer & Zehe, 2014). Preferential flow processes should be taken

into account when calculating SSF in rainfall–run‐off models at the

catchment scale, but the representation of preferential flow is a partic-

ular challenge for all model concepts (e.g., Gerke, Germann, & Nieber,

2010; Hartmann, 2016). It would require model parameters (such as

macropore density) at high temporal and spatial resolution, something

that we can only determine at the scale of a soil column or a plot (e.g.

Rinderer & Seibert, 2012). In addition, the spatial discretization (e.g.,

control volume or pixel) required if these approaches are used at the

catchment scale is often in the order of tens to hundreds of metres

and thus one or two orders of magnitude larger than the scale at

which these physical relations (e.g., Richards' equation) originally have

been developed. So it is doubtful that these models can still be

referred to as “physically based” (Köhne, Köhne, & Šimůnek, 2009).

In order to incorporate hydrological heterogeneity at scales larger than

the plot or hillslope, hydrological models have used certain simplifica-

tions and assumptions. For instance, TOPMODEL (Beven et al., 1979)

is based on the assumption that under steady‐state flow conditions,

the slope of the groundwater table is parallel to the slope of the sur-

face topography. Only then is the topographic index derived from a

digital elevation model such as theTopographic Wetness Index (Beven

& Kirkby, 1979) a good proxy to estimate the groundwater table

across a catchment. Other models, such as PDM (Probability Distrib-

uted Model, Moore, 2007) or VarKarst‐R (Hartmann et al., 2015;

Hartmann, Gleeson, Wada, & Wagener, 2017), implement subsurface

heterogeneity by using Pareto functions.

Although these approaches are useful modelling concepts for cap-

turing flow in the saturated zone, they do not explicitly incorporate

SSF processes (Rinderer, van Meerveld, & Seibert, 2014; Seibert,

Bishop, Rodhe, & McDonnell, 2003). Therefore, new modelling con-

cepts are necessary, which explicitly incorporate the process



CHIFFLARD ET AL. 1381
knowledge and first‐order controls of SSF that were obtained in many

experimental studies at various spatial scales. In addition, new ways

have to be found to parameterize rainfall–run‐off models adequately

to calculate SSF at scales larger than a soil column or an experimental

plot. Instead of continuing to investigate the process complexity of

SSF with more and more experimental studies at different sites, we

call for a concerted, method‐orientated experimental approach carried

out in accordance with the new approaches to include SSF explicitly in

catchment‐scale rainfall–run‐off models. We thus generate process

knowledge based on a systematic measurement program, which in

turn allows us to parameterize and calibrate SSF modules in rainfall–

run‐off models at the catchment scale.
4 | CAN WE REALLY VERIFY SIMULATED
SSF?

Rainfall–run‐offmodels are used for studies that are either investigative

or predictive (Blöschl & Sivapalan, 1995). In both cases, the simulated

SSF is mainly calibrated and validated based on single rainfall–run‐off

events (e.g., artificial sprinkling experiments) for which tracer hydrolog-

ical data and information on specific run‐off components are available

(e.g., Markart et al., 2015; Uhlenbrook, Roser, & Tilch, 2004). However,

it is obvious that these single events with steady‐state conditions are

not sufficient to capture the whole range of SSF response that depends

on factors such as initial conditions and rainfall intensities and is often

threshold dependent. Furthermore, the quality of a run‐off model is still

assessed by comparing modelled and observed total run‐off measured

at a gauge often situated at the catchment outlet. This is not expedient

for studying the generation of SSF. However, currently, SSF in both

types of rainfall–run‐off models (investigative and predictive) is still an

unvalidated parameter, which is adjusted (calibrated) to fit the model

output against available discharge observations. The assumption is that

if themodel discharge fits the discharge observations satisfyingly, SSF is

also simulated correctly. This is not necessarily true, particularly when

considering changes in SSF contributions over the course of an event.

High frequency measurements of chemical tracers and stable water iso-

topes (e.g., 18O and 2H) in streams and soils have the potential to gain

better insights into SSF (e.g., Mueller et al., 2014; Sprenger et al.,

2018). However, this comes with additional challenges: for soil water

isotope data, the choice of the sampling method (e.g., wick sampler

and suction cups) predetermines whether the more tightly bound or

themoremobile soil water is extracted (Landon, Delin, Komor, & Regan,

1999). Even the choice of laboratory has been shown to influence the

results of isotope analysis (Orlowski et al., 2018). In addition,

hydrochemical signatures that can give insights into the

biogeochemical‐hydrological process links at different spatial scales

(e.g., McKnight, Burns, Barnard, & Gabor, 2015; Ponton, West, Feakins,

&Galy, 2014) are promising approaches to identify subsurface flow net-

works. The use of such “tracers” (e.g., N, DOC, 13C, 15N, and microbial

communities; Blume & van Meerveld, 2015; Sanderman, Lohse,

Baldock, & Amundson, 2009; Sebestyen et al., 2008), their chemical

characteristics (e.g., biodegradable organic carbon and excitation
emission matrix; Barnard, Burns, McKnight, Gabor, & Brooks, 2014;

Burns, 2014; Hood,Williams, &McKnight, 2005), and their depth distri-

bution in soils (Gabor, Eilers, McKnight, Fierer, & Anderson, 2014;

Hassouna, Massian, Dudal, Pech, & Theraulaz, 2010; Wynn, Harden,

& Fries, 2006) in combination with traditional tracers (e.g., 18O, 2H,

and SiO2) may offer new opportunities for testing hydrological models.

Nevertheless, limited consideration has been given to assimilating these

approaches into rainfall–run‐off models (Ebert, McKnight, Lajtha,

Hartnett, & Jaffe, 2013).
5 | CONCLUSIONS

Existing empirical studies have revealed different facets of SSF across

catchments in different environments. Nevertheless, deficits still exist

in the capability to use this knowledge to generalize our process

understanding on subsurface flow dynamics at the catchment scale.

This might be due to the fact that a generally accepted organizational

framework for site intercomparison is not yet available. We have to

consider whether such a framework is absolutely necessary or

approaches based on a few representative monitoring sites and an

upscaling approach based on landscape structure seem a promising

way forward.

Nevertheless, many catchment hydrological models do not even

consider SSF, whereas the more detailed, physically based models that

do so are difficult to parameterize or validate without spatial informa-

tion on catchment states (e.g., soil properties) and dynamics (e.g., ante-

cedent soil moisture). The run‐off response at the catchment scale is

also most likely not dominated by the same detailed processes that

we observe at the point or plot scale but instead by an emergent

behaviour that results from an interplay between small‐scale and

large‐scale processes. So how can we simulate subsurface flow at

the catchment scale if we cannot even measure it?

We advocate for a more systematic design of future empirical

studies on SSF across a range of representative landscapes which

are concerned with the need not only to improve process understand-

ing but also to develop new modelling approaches. Instead of model

validation on the basis of single rainfall–run‐off events for which

tracer hydrological data and hydrometric measurements of selected

run‐off components are available at a single gauged trench, it is instead

necessary to continuously monitor subsurface run‐off components at

the catchment outlet as well as on its hillslopes with high temporal res-

olution over longer time spans. We see great potential in exploiting the

potential of distributed sensor networks and new tracers or combina-

tion of tracers that can give direct or indirect information on SSF. To

address this concern, we need to collaborate with colleagues from

neighbouring disciplines that have developed biogeochemical methods

that can also be highly informative for SSF (e.g., microbial communities

and nanoparticles as tracers). These new types of datasets will bring us

one step further towards knowing what, where, and when to measure

and how complex our models need to be in order to make our SSF

simulations more realistic than they are today.
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