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Abstract 17 

In this study, a computer-aided methodology is proposed to estimate the earthquake magnitude 18 

based on fault parameters. So far, log-linear regression equations are separately employed for 19 

each fault parameter. However, this can lead to inconsistent magnitude predictions because non-20 

linear parameter correlations are ignored and those parametric functions cannot take into account 21 

potential deviations from log-linear scaling. In order to address the aforementioned deficiencies, 22 

we employ Artificial Neural Network (ANN) to estimate the magnitude of earthquakes 23 

simultaneously using all available fault parameters such as rupture length and width, thereby 24 

excluding the chances of inconsistent estimations. Our evaluation of M>=5 earthquakes shows 25 

that the predictions from the proposed methodology outperform the regression equation-based 26 

predictions in terms of mean absolute error and root mean square error. Furthermore, the 27 

pictorial view of the performance also demonstrates the strength of ANN to identify and 28 

reproduce, without any initial assumption, systematic deviations from the log-linear scaling of 29 

earthquake magnitudes as a function of the fault parameters. 30 

Keywords: Fault parameters, Artificial Neural Network, Earthquake magnitude estimation, 31 

Seismic hazard Assessment  32 
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Introduction 34 

Seismic hazard assessments rely on estimates of the maximum possible magnitude (Mmax) of 35 

earthquakes. However, instrumental earthquake catalogs are usually too short to cover full 36 

seismic cycles and thus do not include the largest possible events. Therefore, geologically 37 

mapped faults or paleo-earthquake studies are often used to estimate Mmax. For that purpose, the 38 

relation between the earthquake magnitude (M, hereinafter refers to the moment magnitude) and 39 

fault parameters, such as rupture length (L), rupture width (W), area (A), and slip must be 40 

known.   41 

In theory, the moment magnitude is simply a function of the shear modulus, the mean slip, and 42 

the rupture area. However, the average earthquake slip on the rupture area is usually not known 43 

and empirical estimations based only on the rupture dimensions might differ significantly from 44 

the true value. Many authors proposed empirical scaling relationships between seismic moment 45 

and fault area (Thatcher and Hanks 1973, Kanamori and Anderson 1975, Kanamori 1977) and 46 

fault length or width (Scholz 1982, Romanowicz 1992, Romanowicz and Rundle 1993). Previous 47 

research studies used regression analysis to develop such empirical relationships between fault 48 

rupture parameters and magnitude for large worldwide historic earthquakes (Wells and 49 

Coppersmith 1994, Mai and Beroza 2000, Henry and Das 2001, Leonard 2010). Currently, the 50 

empirical relations of Wells and Coppersmith (1994) (WC-94) are commonly employed to 51 

estimate earthquake magnitudes, but these relations are not self-consistent because the regression 52 

equations for the earthquake magnitude are estimated independently for the different fault 53 

parameters, which limit their applicability. 54 

 It is also noted that data for many recent large earthquakes were missing during the time of the 55 

aforementioned studies. Furthermore, the conventional methodologies based on regression 56 
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equations cannot account for non-linear correlations between the rupture parameters.  For a given 57 

fault parameter (e.g. L), these regression equations simply predict one magnitude value 58 

independently of the values of the other fault parameters (e.g. W) and the observed deviations 59 

are taken as random fluctuations.  Figure 1 shows the fit of the WC-94 regression equation to 60 

actual earthquake magnitudes as function of L. The data set used in Figure 1 consists of the 61 

combined WC-94 and SRCMOD data sets described in Section 2. The predictions simply follow 62 

a line, while true values widely scatter around it with some systematic trends. For example, the 63 

WC-94 regression equation fails to correctly predict magnitudes M≥ 8.0, thus underestimating 64 

the seismic hazard in that range.  In order to improve hazard estimations, a methodology capable 65 

of incorporating the non-linear dependence of earthquake magnitudes on fault parameters is 66 

highly desirable. We investigate the application of intelligent computing algorithms as one 67 

solution to this problem. 68 

Machine learning is a branch of computer science that has the ability to identify and extract 69 

meaningful, hidden relations from data. These learned relations are then used to make 70 

predictions for unseen data (Reyes, et al. 2013). In the recent past, the use of machine learning 71 

techniques in the field of seismology and earth sciences has increased (Asim, et al. 2017, Asim, 72 

et al. 2018, Rouet‐Leduc, et al. 2017, DeVries, et al. 2018, Bergen, et al. 2019, Asencio-Cortés, 73 

et al. 2016, Morales-Esteban, et al. 2013, Tareen, et al. 2019). This interdisciplinary approach 74 

has already provided new insights and increased predictability for different challenging data sets 75 

(Kong, et al. 2018). In this paper, we test its applicability to the problem of magnitude estimation 76 

based on sets of fault parameters. In particular, we employ Artificial Neural Network (ANN) for 77 

the mapping between fault parameters and the corresponding earthquake magnitude. We split the 78 

collected earthquake data, consisting of historical and instrumental earthquakes compiled by 79 
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Wells and Coppersmith (1994) and the finite-source rupture model database SRCMOD (see 80 

Section 2), into training and test data, showing that the proposed methodology provides 81 

improved, robust, and self-consistent estimations of earthquake magnitude by simultaneously 82 

taking into account the knowledge of all available fault parameters.  83 

The analysis is divided into two parts. In Section 3.1, we estimate the magnitude of the target 84 

events by means of the regression equation proposed by Wells and Coppersmith (1994). Here we 85 

also analyze regression equations which are recomputed based on the new and increased data 86 

collection including many events occurred after 1993.  In Section 3.2, Artificial Neural Network 87 

(ANN) is developed for training data and tested for unseen data. The results are then discussed 88 

and compared to the conventional regression-based methodologies in Section 4. 89 

Earthquake Data 90 

We analyze data from past earthquakes with magnitude M ≥ 5.0, which are collected from both 91 

the WC-94 catalog and SRCMOD database. 92 

WC-94 Catalog: 93 

The WC-94 catalog of past large earthquakes was compiled by Wells and Coppersmith (1994). 94 

In this publication, a total of 244 events, which occurred until 1993, are listed with mixed focal 95 

mechanisms consisting of both strike-slip and dip-slip earthquakes. The fault parameters of these 96 

events were estimated either by paleoseismological and seismological studies, aftershock 97 

distributions, or geodetic modeling of surface deformations. We selected those events from the 98 

catalog which have both fault length L and width W information. If both subsurface and surface 99 

rupture lengths were provided for a single event, we chose the subsurface length. Our selection 100 
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criterion yields a total of 180 earthquake ruptures with M≥5.0 for our analysis. Out of these 101 

cases, 95 include information about the maximum slip of the rupture (See Table S1(a)).  102 

SRCMOD Database: 103 

A data set consisting of more recent earthquakes is maintained by Martin Mai and his colleagues. 104 

The SRCMOD database collects finite-source rupture models (http://equake-105 

rc.info/SRCMOD/searchmodels/allevents/) (Last accessed on April 10, 2019), which are 106 

delivered by different research teams. These slip models are obtained from the inversion of 107 

seismic, geodetic, tsunami and other geophysical techniques with variable resolutions. At the 108 

time of our access, the SRCMOD database contained 347 slip models for a total of 178 different 109 

earthquakes. Because of their limited resolution, we excluded slip models which were solely 110 

derived from tsunami data. The remaining 316 slip models are used in our analysis, after 111 

exclusion of M<5.0 earthquakes. For each case, the dimensions of the fault planes on which the 112 

slip had been inverted are provided in the SRCMOD database. However, the dimension for the 113 

inversion can be much larger than the actual dimension of the earthquake slip region.  Therefore, 114 

each model and its associated fault parameters were manually inspected (see Table S1(b)). As an 115 

example, the slip model of Motagh, et al. (2010) for the 2007 M7.8 Tocopilla earthquake shows 116 

significant slip only in a discrete part of the assumed fault plane, which is 349 km long and 180 117 

km wide. The recomputed rupture length and width of the actual slip area are 270 km and 110 118 

km, respectively, reducing the area by a factor of approximately two in this case. Note that we 119 

calculate the rupture area simply by the product of L and W.    120 

Research Methodology 121 

http://equake-rc.info/SRCMOD/searchmodels/allevents/
http://equake-rc.info/SRCMOD/searchmodels/allevents/
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 To relate fault parameters to earthquake magnitudes, we firstly employ the traditional 122 

regression-based methodology and then apply the new ANN-based approach. This allows us to 123 

properly compare the results of both approaches in terms of consistency, accuracy and 124 

robustness.  125 

Regression Analysis 126 

Regression analysis is carried out to derive log-linear relations between fault parameters and 127 

earthquake magnitudes. However, these relations are separately derived for each individual fault 128 

parameter, i.e. independent regression equations relating either L or W to the earthquake 129 

magnitude are obtained. In this regard, the regression equations of Wells and Coppersmith 130 

(1994) are widely used, which were derived for the WC-94 data set (including all mechanisms) 131 

as follows:  132 

 4.38 1.49log( )M L   (1) 133 

                                           4.06 2.25log( )M W                                          (2)  134 

 135 

To take advantage of the extended data set, we also perform our own regressions for the 136 

combined WC-94 and SRCMOD data collection described in Section 2. Our derived new 137 

empirical relations between M, L and M, W, respectively, are given by 138 

 4.33 1.57log( )M L   (3)  139 

 4.7 1.7 log( )M W   (4)  140 

Figure 2 shows the fit of these regression lines to the empirical earthquake data. 141 
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Artificial Neural Networks 142 

Artificial Neural Networks (ANN) are inspired from biological neural networks consisting of 143 

neurons and weighted connections between different layers of neurons (Hassoun 1995). 144 

Earthquake magnitude estimation using fault features is treated as a regression problem and 145 

solved using ANN. The network is trained on a part of the known data by providing fault 146 

features on the input layer and the corresponding actual earthquake magnitudes on the output 147 

layer. The input layer leads to the hidden layer through weighted connections and is further 148 

passed to the output neurons. The weights of connections in neurons are either excitatory or 149 

inhibitory. An output value is received at the output neuron through the processing of fault 150 

parameters. The error between the value received at the output neurons and the actual earthquake 151 

magnitude is then calculated and propagated backwards in order to adjust and tune the weighted 152 

connections accordingly. This process of adjusting connection weights based upon known data is 153 

called “learning”. The explained topology of ANN is called feed forward neural network and the 154 

learning process is referred as back propagation.  155 

The number of input neurons is equal to the number of fault parameters provided as input. In 156 

regression problems, only a single neuron is kept in the output layer. In addition to the input and 157 

output layers, a single hidden layer is used. In this case, we chose seven neurons in the hidden 158 

layer based upon performance during training and cross-validation. As activation function, we 159 

used tan-sigmoid, 160 

 ( ) tanh( )
x x

x x

e e
f x x

e e






 


 , (5) 161 

which is widely used as an activation function in shallow neural networks. We also found that it 162 

performs better than linear and sigmoid activation functions in our case. 163 
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The trained ANN model maps the given set of fault parameters, such as L, W, A, and maximum 164 

slip S (if available) to the actual earthquake magnitude in an optimized way and is then capable 165 

to predict the earthquake magnitude for unseen data. In other words, ANN learns from the 166 

known available data and develops a relation between potential inputs (fault parameters) and 167 

corresponding output (earthquake magnitude).  168 

In this paper, we use two different sets of fault input data for the ANN approach. In the first 169 

scenario, we restrict the fault parameter set to the geometrical values, namely L, W and the 170 

rupture area (L-W-A). In practical applications, only L-W-A might be available, while the 171 

maximum slip value is often not known. However, we also developed a second ANN model 172 

simultaneously utilizing all fault parameters including maximum slip (L-W-A-S). Although the 173 

second scenario might have fewer applications for hazard assessment, it is interesting to evaluate 174 

and compare the overall prediction performance of ANN for both cases, because such a 175 

comparison can highlight the information gain due to additional input values. However, for the 176 

comparison of our ANN model results with conventional regression results, we concentrate on 177 

the L-W-A approach as the most practical one. 178 

In order to assess the performance of ANN, we predict earthquake magnitudes from the test data. 179 

Only a portion of the available data set (training data set) is fed to ANN for learning and 180 

predictions are obtained for unseen data (test data set). In this study, a cross validation strategy is 181 

employed to test the ANN predictions on the combined WC-94 and SRCMOD data set. The k-182 

fold cross validation approach is widely applied in demonstrating the performance of 183 

classification and regression techniques (Wong 2015). In particular, it is expected to capture the 184 

general properties in cases of limited data samples. We choose the specific value of k=10, i.e. a 185 

10-fold cross-validation (Idris, et al. 2017). In this procedure, we divided the entire data set into 186 
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10 non-overlapping subsets. One of these 10 subsets was reserved for independent standalone 187 

testing, while the remaining 9 subsets were used for model training. We repeated the process 188 

until all 10 subsets were separately employed once for testing. Therefore, we trained 10 different 189 

ANN models separately and obtained earthquake magnitude predictions for every sample 190 

available in the data set. 191 

Results and discussion 192 

In the following, we describe the results of the new ANN method and compare them with those 193 

obtained by the conventional methodologies to demonstrate that the computer-aided technique 194 

has the potential to improve seismic hazard assessments, especially magnitude predictions based 195 

on fault parameters.  196 

The performance of the magnitude estimation is expressed using the Mean Absolute Error 197 

(MAE) and the Root Mean Square Error (RMSE). These errors are computed between actual and 198 

estimated magnitudes for the test data sets to quantify the overall performance of the ANN.  In 199 

contrast, for the conventional regression equations, the errors are calculated partly (WC-94 200 

relations) or fully (Eqs.3,4) for the same data for which the models have been developed. The 201 

calculated errors are defined as: 202 

 1

| |

MAE=
n

i i

n

Predicted Actual

i

M M



 (6) 203 
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  (7) 204 

Below we show that the proposed ANN-based estimates are superior to the regression-based 205 

magnitude estimations with respect to consistency and performance. 206 
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Self-consistency of ANN-based methodology 207 

Regression relations, as presented in Eq. 1-4, determine the earthquake magnitude as function of 208 

a single fault parameter, i.e. L or W in this case. A major issue in such approaches is the lack of 209 

self-consistency. Regression relations tend to yield different magnitude estimations for the same 210 

earthquake if either the regression equation for L or W is used. For example, for our data set, the 211 

RMSE-value of the difference M(Li)–M(Wi) is RMSE = 0.221 for the WC-94 and RMSE = 212 

0.162 for the new regression equations, respectively. However, in the proposed ANN-based 213 

approach, all given fault parameters are employed simultaneously to estimate the earthquake 214 

magnitude. The simultaneous use of all fault parameters eschews different magnitude estimations 215 

for the same sample, thereby providing a self-consistent earthquake magnitude estimation 216 

methodology by taking potential non-linear parameter correlations into account.  217 

Table 1 demonstrates once more the inconsistency of regression equation-based estimations, 218 

which show different errors for the equations based on L and W. On the contrary, a trained ANN 219 

simultaneously takes all given fault parameters into account and provides a single prediction. 220 

Performance of ANN-based methodology 221 

The individual magnitude predictions of the ANN-model and the regression equations for the 222 

whole data set are provided in the supplementary material (Please see Tables S2(a), S2(b)). A 223 

summary of the model performance is provided in Figure 3 in terms of histograms of the 224 

residuals and in Table 1 in terms of RMSE and MAE, computed between predicted magnitudes 225 

and actual earthquake magnitudes. The results for the test data sets highlight the robustness of 226 

ANN-based predictions, demonstrating that ANN has the ability to show decent performance 227 

across the whole data set.  228 
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It is evident from Figure 3 and Table 1 that the L-W-A scenario leads to significantly decreased 229 

errors compared to the regression equations. The availability of the maximum slip value S in 230 

addition to L, W and A further improves the results of the ANN-approach in terms of RMSE and 231 

MAE. Figure 4 shows scatter plots of the actual earthquake magnitudes and ANN-based 232 

predictions. We detect systematic deviations from the exponential relations assumed in the 233 

regression equations. The model clearly depicts the noticeable scale breaks in the relations 234 

between M, L and M, W. For L <= 80 km, the magnitudes scale approximately linearly with the 235 

logarithm of length. However, between 80 and 180 km, the slope becomes smaller, then 236 

increases again for L≥180 km (corresponding to M≥7.7). A quite similar behavior is observed for 237 

the dependence of magnitude on fault width. The ANN-predictions reproduces the two observed 238 

kinks in the scaling at rupture widths of approximately 25 km and 100 km. 239 

We also analyzed the results of the ANN with respect to the predictions for different rupture 240 

mechanisms. In Figure 5, the results are separately shown for the strike-slip and dip-slip events 241 

in the data set. The general trend of both rupture types is well reproduced. However, some 242 

outliers with magnitudes significantly higher than the average value for the given rupture length 243 

are observable in the case of strike-slip events. Earthquakes with largely erroneous predictions 244 

(encircled in Figure 5a) are mostly related to historical earthquakes in the WC-94 catalog, in 245 

particular those which lack subsurface length information. Another example is the 1920 Ms8.5 246 

Gansu, China, earthquake, one of two strike-slip earthquakes with magnitude >8.0 in the data set. 247 

The largest strike-slip event is the 2012 M8.7 Sumatra intra-plate earthquake. Besides the 248 

missing subsurface length information for the Gansu event, the erroneous prediction of the two 249 

largest events can be explained by the fact that both events can be rarely seen as a single fault 250 

rupture, because they ruptured several subfaults (Huan, et al. 1992). In particular, the Sumatra 251 
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event consisted of an extraordinarily complex four-fault rupture lasting about 160 seconds (Yue, 252 

et al. 2012).    253 

The quality, quantity and diversity of data hold crucial importance in training an ANN model. 254 

Larger and diversified data sets lead to a better trained model with robust prediction capabilities 255 

(Krizhevsky, et al. 2012). The catalog employed in this study contains earthquakes with 256 

magnitudes ranging from a minimum magnitude of 5.0 to a maximum of 9.1. However, the 257 

catalog is skewed towards higher magnitudes and has fewer events of low magnitudes. The 258 

abundant presence of a particular data class in the training set forces the ANN to better fit this 259 

class. Therefore, the model is able to identify that class over unseen data with higher accuracy. In 260 

our earthquake catalog (provided in the supplementary material), a varying number of samples 261 

are present in different magnitude classes. We define different ranges for earthquake magnitudes 262 

and analyze the performance of predictions as function of the sample size in the magnitude bins. 263 

The result in terms of MAE (Willmott and Matsuura 2005) is provided in Table 2. The MAE is 264 

highest for the least abundant magnitude class, while it decreases with increasing number of 265 

instances for a class. Thus, the result is in agreement with the expected relation to the sample 266 

size in each class. It also verifies the need of data diversity for an improved training of the 267 

machine learning model.  268 

When an ANN is initialized, random weights are assigned to the connections between layers of 269 

neurons. During the learning process, the neurons continually adjust the connection weights until 270 

the model’s performance reaches a maximum. It is noted that the sufficiency of training data and 271 

random initialization also play an important role in the performance of trained models. The 272 

performance of ANN may vary in different simulations if the training data set is not available in 273 

sufficient quantity. Therefore, it is important to analyze the robustness of the proposed 274 
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methodology concerning the random initialization. For this purpose, we have carried out 10 275 

independent simulation runs and the performance of every run is measured by the MAE-value 276 

(Asim, et al. 2018). We found that the MAE-value only varied by 1%, demonstrating the 277 

robustness of our ANN-model (See Table S3).  278 

The performance of ANN has been compared to another well-known machine learning 279 

technique, namely the Random Forest (RF) method. RF is a decision-tree based algorithm, which 280 

provides an ensembled outcome of multiple decision-trees (Breiman 2001). We found that RF 281 

performs better than the regression equations in estimating earthquake magnitude in the case of 282 

the L-W-A-S scenario, but it is outperformed by ANN in all cases. 283 

For practical applications of our proposed techniques, researchers can follow two different 284 

approaches: (a) They can use the ANN-model trained on our data set; or (b) they can run new 285 

simulation on updated data sets. Both options can be employed according to the feasibility of the 286 

potential users/researchers. The codes developed for this research study are shared publicly for 287 

the use of research community (available on: https://doi.org/10.6084/m9.figshare.8010608). The 288 

codes are developed in MATLAB and require neural network toolbox for successful execution.  289 

  290 

Conclusion 291 

We propose a new technique based on ANN for estimating the earthquake magnitude based on 292 

given fault information. This is often needed to relate geological fault information to potential 293 

maximum earthquake magnitudes for seismic hazard estimations. The ability of ANN to identify 294 

hidden patterns in data and its simultaneous use of fault parameters ensures the consistency of 295 

the approach. Our analysis of the predictions based on the parameters describing the geometrical 296 

dimension of faults (L, W, A) show a clearly improved performance in comparison to 297 

https://doi.org/10.6084/m9.figshare.8010608
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conventional regression methods. The proposed method has also the ability to simply integrate 298 

additional fault information in a consistent way. The addition of the maximum slip has been 299 

shown to further improve these estimations, thereby encouraging the use of additional fault 300 

parameters such as fault dip and rake in the future.   301 

Data and Resources 302 

The earthquake catalogs used in this research are taken from the Wells and Coopersmith (1994) 303 

and SRCMOD databases (http://equake-rc.info/SRCMOD/searchmodels/allevents/) (Last 304 

accessed on April 10, 2019). These data are also available in Table S1. The details regarding 305 

usage of data are explained in Section “Earthquake Data”.  306 
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List of Figure Captions 380 

Figure 1: Earthquake magnitudes versus rupture length: Black triangles refer to the actual 381 

magnitudes, whereas red circles represent the predicted magnitudes from the regression equation 382 

of Wells & Coppersmith (1994). 383 

 384 

Figure 2: Earthquake magnitude versus (a) rupture length and (b) rupture width: Symbols refer to 385 

observed values, while lines represent the regression lines (predicted values).   386 

 387 

Figure 3: Histogram comparison of residuals from our ANN methodology for the L-W-A 388 

scenario with WC-94 regression equations (WC-L, WC-W) and new regression equations (New-389 

L, New-W) 390 

 391 

Figure 4: Actual and predicted earthquake magnitudes plotted against (a) length, (b) width for 392 

the case of the L-W-A scenario, while (c, d) show the same results for the L-W-A-S scenario. 393 

 394 

Figure 5: (a) Scatterplot of actual and predicted earthquake magnitudes as function of fault 395 

length for (a) strike-slip and (b) dip-slip events in the case of the L-W-A scenario. 396 
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 398 

Table 1: Performance of ANN earthquake magnitude estimations for the whole earthquake data 399 

set acquired through 10-fold cross-validation. 400 

Performance 

Measure 

ANN Regression Methods 

 L-W-A L-W-A-S 
L (WC-

94) 

W (WC-

94) 
L (new) W (new) 

RMSE 0.303 0.288 0.372 0.593 0.356 0.518 

MAE 0.239 0.229 0.293 0.463 0.282 0.407 

 401 

  402 
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Table 2: Prediction quality for different available magnitude ranges in the earthquake data set.  403 

Earthquake 

Magnitude 

Range 

L-W-A L-W-A-S 

No. of 

Instances 

MAE 

No. of 

Instances 

MAE 

[5.0, 6.0) 77 0.242 32 0.258 

[6.0, 7.0) 161 0.230 132 0.222 

[7.0, 8.0) 187 0.228 176 0.220 

>8.0 71 0.286 72 0.238 

 404 

 405 

 406 


