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S U M M A R Y
The converted wave data (P-to-s/S-to-p), commonly termed as receiver functions, contain noise
of various origins. Such noises may influence the modeling and may sometimes lead to over
interpretations of the data. In order to suppress noise, we use a robust sparsity enhancing tool,
that is, the Seislet Transform, to process receiver function data by applying regularization in the
seislet domain. The transform utilizes the multiscale orthogonal basis and the basis functions
are oriented along the dominant seismic phases following local linearity. The inversion results
of both the synthetic and field examples from the Hi-CLIMB network and station HYB from
the Indian shield show an excellent performance over the original data sets.
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1 I N T RO D U C T I O N

The converted wave technique, traditionally called receiver func-
tion (RF; e.g. Burdick & Langston 1977; Langston 1977; Vinnik
1977), has been proved to be a robust tool to image crust and
upper-mantle discontinuities. The receiver functions can be defined
as Green’s functions that are closely associated with structures be-
neath the seismic stations and can be retrieved from three component
seismograms. Receiver function data, like any other seismic wave-
fields, contain noise of various origins, for example, background
noise, filter induced noise and migration smiles. In exploration
seismology, seismic data processing is an inevitable workflow to
enhance the signal-to-noise ratio (SNR) by utilizing sophisticated
seismic imaging algorithms (Yilmaz 2001). Many of these array-
based data pre-processing techniques are also applicable in teleseis-
mic wavefield imaging. Exploration geophysicists have developed
many de-noising schemes to regularize the irregular seismic data
(e.g. Kanasewich et al. 1973; Tessmer & Behle 1988; Poppeliers
& Pavlis 2003; Abma & Kabir 2005). The approximate plane-wave
feature of teleseismic wave front ensures a smoothness of teleseis-
mic data, which facilitates the wavefield reconstruction. Therefore,
some robust methods, such as weighted slant stacking (e.g. Neal
& Pavlis 1999; Poppeliers & Pavlis 2003; Pavlis 2011) and cubic
B-spline interpolation (e.g. Sheldrake et al. 2002; Zhang & Zheng
2015), have been applied to teleseismic wavefield reconstruction
to improve the SNR. Additionally, there exist various sparsity pro-
moting transforms, for example, Wavelet transform (Mallat 2009),
Curvelets (Starck et al. 2002), Shearlets (Guo & Labate 2007), Ba-
sis pursuit deconvolution (e.g. Chen et al. 1998; Sen et al. 2014),
Radon transform (Foster & Mosher 1992), Empirical wavelet trans-
forms (Liu et al. 2016), etc. In general, the Wavelet transform has
poor directionality and does not provide shift variance, as a result of

which it cannot capture the curves and edges of a constructed image
precisely. The Curvelet transform deals with curves and edges as
it is characterized by both direction and scale; therefore, it simul-
taneously provides a sparse representation of the complex seismic
data (Hermann et al. 2007). However, it has high computational cost
and also the choice of thresholding value is crucial. Furthermore, it
does not take into account the prior knowledge of the seismic data.
Another transform, Shearlet, is also multiscale directional, which
accommodates various geometrical features; however, it may some-
time introduce artifacts. The Basis pursuit deconvolution method
utilizes sparse inversion techniques, which is accommodated with
a regularization parameter, but the choice of this parameter is an
open problem. The Radon transform is also a sparsity promoting
tool, which is based on the shape of the integral operator and can be
utilized using linear, parabolic, hyperbolic and polynomial functions
(Xue et al. 2014, 2016). On the other hand, the Seislet Transform
(ST; Fomel & Liu 2010) is characterized by the use of plane wave
destruction(PWD) filter (Claerbout 1992), which acts as local slope
estimator assuming piecewise linear signal from the input data set.
Therefore, it is intimately dependent on the local slope estimation
instead of input parameters and has more multiscale sparse com-
pared to other transforms (Chen & Fomel 2018). Among different
random noise attenuation approaches, the ST domain thresholding
approach has emerged as one of the most widely used approach
(Chen 2016). The principle of this approach is simple, that is, seis-
mic phase has coherent structure and can be sparsely represented,
while random noise is spreading through the whole transform do-
main, thus can be removed by applying a simple thresholding oper-
ator in the transformed domain. Slope estimation is a process that
predicts the seismic phase between adjacent traces throughout a
seismic profile using an operator. The ST method can effectively
compress and separate the data up to a certain degree of accuracy
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Figure 1. Analysis of synthetic RF data in the seislet domain. The synthetic RFs have been generated using the reflectivity method for a simple model shown
in panel (a). (b) The RF images shows four primary converted phases (labelled as M, L, 410 and 660) and free surface reverberations mostly occurring below
10 s time window. Panel (c) denotes the Seislet Transform generated using forward ST with significant coefficients of 20%. The abscissa represents the distance
separation between the traces. The reconstructed image using the inverse ST is displayed in panel (d), which shows remarkable improvement by subsiding the
noise from various origins.

Figure 2. Same as Fig. 1 but the synthetic RF data are now contaminated
with two different amounts of Gaussian noise with 7% (a) and 10% (b), re-
spectively. The resulting reconstructed images for the two cases are depicted
in panels (c) and (d), respectively. It is clearly seen that the signal-to-noise
ratio of the reconstructed images is improved.

based on their difference in local slopes and therefore stands hybrid
for attenuating random noise by simply applying a thresholding for
most significant coefficients (Donoho 1995; a structural filtering
approach).

In this study we use the ST to a suit of synthetic receiver function
data as well as the real field data from Hi-CLIMB network in the
Nepal Himalayan region and from a GEOSCOPE station (HYB)
located in the Precambrian shield of central India. The reconstructed
images show an excellent improvement of the noise attenuation over
the original ones.

2 M E T H O D O L O G Y

The ST is widely used in reflection seismology to improve the
sparsity regularization (Xue et al. 2017). Basically, the ST is a robust
de-noising technique that takes the advantage of the local slope
estimation using the plane-wave destruction filter (Fomel 2002).
Further, it is one kind of special wavelet like transform for seismic
data, which has more effective compression capability than the
classical wavelet transform. In practice we can define the seismic
data as collections of traces and predict one trace from the other
by only following the local seismic event slopes. Such prediction
process carried out by plane-wave destruction is the key idea in the
ST (Fomel 2002). The details of the ST have been given by Fomel
& Liu (2010); however, for the sake of completeness we briefly
describe here the key steps.

Here, we applied a 2D ST to RF data. The approach consists of
forward and inverse processes. The RF amplitude data can be viewed
as a collection of traces (sequence) and one trace can be predicted
from others on the basis of local slopes of the seismic phases. The
local slope can be calculated using a robust algorithm as introduced
by Fomel (2002). The sequence of RF amplitude data is divided into
odd (o) and even (e) parts and one part will be predicted from the
other. The next step is to find the residual difference r between the
odd component and the prediction of odd component from the even
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Figure 3. Same as Fig. 1 but the synthetic RF data (b) are now contaminated with 10% Gaussian noise (c). Here the model is taken up to the upper most mantle
depth with Moho at 40 km depth and an LVL at 80 km depth (a). RFs contain primary converted phases between 4 and 11 s and free surface reverberations
(between 15 and 32 s). The inverse ST image has been displayed in panel (d), which has marked improvement over the original. Panel (e) shows the stack traces
generated after the moveout correction with the reference slowness of 6.4 s deg−1. The stack traces are displayed in the same order as the images are arranged.
In order to show that insignificant pulse broadening has taken place, all the individual stacked traces are superimposed and plotted in panel (e) at the rightmost.
The two thin parallel lines on the summation traces are the errors estimated with bootstrap technique with ±2σ standard error limit. It is clearly seen that the
stack trace as well as the image of the reconstructed data brought out the desired phases as inferred from the model very well above the noise level.

Figure 4. The analysis of migrated RF data in the seislet domain. (a) The velocity model of the upper mantle for generating the synthetic RFs. (b) The RF
cross-section using the Fresnel zone migration. (c) Reconstruction of the migrated RF cross-section. The spurious noise and smiley effect generated by the
hyperbola are substantially reduced.

component, that is,

r = o − P [e] , (1)

where P is a prediction operator and it can be defined as

P[e]K = (R(+)
k [ek−1] + R(−)

k [ek])/2, (2)

where ek is the even components of RF data at the kth transform
scale, R(+)

k and R(−)
k are operators that predict a trace from its left

and right neighbours correspondingly by shifting seismic events
according to their slopes. A good prediction operator leaves the

residual small. Here we use the Cohen–Daubechies–Feauveau bi-
orthogonal wavelet (Cohen et al. 1992), as it is a basic algorithm for
the lifting scheme and fits the de-noising theory in the seislet domain
better than other wavelets. Next, the coarse approximation c has
been estimated from the RF data by updating the even component,

c = e + U [r ] , (3)

where, U is the update operator which preserves the running average
of the signal (Sweldens & Schroder 1996), and can be defined as

U [r ]K = (R(+)
k [rk−1] + R(−)

k [rk])/4, (4)
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Figure 5. Effect of the spatial sampling density on the ST demonstrated by the same synthetic data shown in Fig. 2a. (a) Images with data gaps of different
widths (1.0 s deg−1 in the upper panel, 1.6 s deg−1 in the lower panel) in the slowness domain. (b) The inverse ST images. (c) Same as (b) but with interpolation.
It is clear that the ST can properly reconstruct data with gaps, while the interpolation seems to be ineffective beyond certain data gap and slope (lower panel).

where, rk is the residual difference between the odd component of
data and its prediction from the even component.

Now, the coarse approximation c becomes the new data and the
above-mentioned steps are repeated at the next scale level.

Once the data are transformed to the seislet domain, the inverse
scheme will be applied to reconstruct the RF amplitude data. The
inverse steps consist of reconstruction of the even component fol-
lowing eq. (3),

e = c − U [r ] , (5)

and subsequently reconstruction of the odd component following
eq. (1),

o = r + P [e] . (6)

In order to get the information about seislet coefficients the for-
ward ST is required which starts with the finest scale (the original

sampling) and go to the coarsest scale as described above. In order
to preserve the signal of interest while reconstructing the data, we
should apply inverse ST with the coarsest scale and go back to the
finest scale (Chen et al. 2014). However, for reconstructing a high-
resolution image the seislet forward transform accommodates with
the most important de-noising approach called thresholding. So, in
this study, in order to reduce the noise coefficients for reconstructing
the RF amplitudes the significant signal coefficients are preserved.
Here we adopted the soft thresholding approach (Donoho 1995) for
limiting the significant coefficients and its operator is defined as

Tτ (x) = (|x | − τ ) ∗ sign(x) for |x | ≥ τ

0 for |x | < τ
,

where ‘sign’ is the signum function, x stands for seislet coefficients
and τ is the threshold value. The thresholding scheme is based on
the assumption that noise in the ST is Gaussian and approximately
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Figure 6. Location map of the seismic stations (inverted white triangles
with thin black border). Major thrusts and suture zones are plotted on the
map (black dotted lines). MBT, Main Boundary Thrust; MCT, Main Central
Thrust; YZS, Yarlung Zangbo suture; BNS, Bangong-Nujiang Suture. AB—
location of a seismic profile along which the RF migration and ST are
performed.

stationary at each resolution level. This follows from the fact that
the seislet basis is orthogonal. Further, the thresholds affect the RF
amplitude and the transform compresses the data/image along the
local structures. While for noisy data or data with conflicting dips,
the threshold value for the ST should be chosen up to a certain limit
so that it will not bring any harm to the signal of interest otherwise
it may limit the compression ratio of the ST. Such compression
can lead to reconstruction errors while taking the inverse transform
(Donoho & Johnstone 1994). However, finding an optimized/exact
value for soft thresholding is little time consuming in practice but
efficient enough to provide the suitable de-noising results. In order
to set the optimum threshold, we use a percentile strategy of Chen
et al. (2014), assuming that a certain percentage of coefficients can
represent the RF data. The percentile thresholding refers to using
a constant percentage of maximum coefficients during the itera-
tions. In order to obtain a very good reconstruction, the number of
iterations should be relatively large (here we took about 120 itera-
tions). During each iteration, we preserve the coefficients as men-
tioned in each figure. After the iterations are completed, we obtain a
well-reconstructed data visually verified with a high SNR, here, for
example, we have the SNR derived from noise-free and de-noised
signal of about 7 dB for station HYB. For the field data example,
as we do not know the exact answer, we cannot judge by numeri-
cal measurement. Instead, we only evaluate by visual observation,
which is still effective. For example, if we choose a threshold of
20%, we preserve the 80% largest coefficients attributable to signal
for reconstruction of the image. Then, when tuning the parameters,

we can only tune the percentage, which is convenient to implement
in practice.

3 A P P L I C AT I O N T O S Y N T H E T I C DATA

First, we analyse a synthetic receiver function data set in the ST
domain. We used a simple model with Moho, a low-velocity layer
and upper-mantle discontinuities (shown in Fig. 1). The synthetic
RFs are computed for the epicentral distance range of 30◦–90◦.
The synthetic seismograms have been generated using the reflec-
tivity technique (e.g. Fuchs & Muller 1971; Kind 1985), where full
waves are allowed to generate both primary and multiple phases.
The source here used to generate the synthetics is a double cou-
ple strike-slip. For the synthetic case, the receiver functions have
been computed as follows. First of all, the vertical and horizontal
components have been rotated to the L and Q components along
and perpendicular to the ray direction, respectively, using the esti-
mated maximum polarization direction of the P wave based on the
maximum eigenvalue of the covariance matrix. Then the L com-
ponent has been deconvolved from the respective Q component to
get the receiver functions. Here, we have adopted the time-domain
deconvolution technique (Berkhout 1977). Prior to deconvolution,
the data have been filtered with Butterworth low pass filter of corner
frequency of 0.5 Hz. The image of the synthetic RF and the models
are displayed in Fig. 1. The image has been generated with stacks in
a narrow slowness bin of 0.2 s deg−1. As described in the Method-
ology section, the ST has been computed with a threshold value of
20% with the amplitude of RF as input. This numerical value for
thresholding has been reached after exploring many other values,
where most of our phases are optimally resolved. Once the forward
ST has been done, for the purpose of reconstruction of the image
the inversion has been estimated with the same regularization pa-
rameters as used during forward ST. The results of forward ST and
inversions have been displayed in Figs 1c and d, respectively. From
Fig. 1c, it is clear that the seislet coefficients decay rapidly as the
amplitude of coefficient get diffused after the scale around 4. Here,
we are using the RF data as input with three columns having time,
slowness and amplitude to the forward seislet computation with the
method of soft thresholding (Donoho 1995). Once the seislet has
been estimated the reconstruction is done by utilizing the most sig-
nificant seislet coefficients. Fig. 1d shows the reconstructed image,
which optimally represents the original input data as the low am-
plitude, numerical noise and noise introduced by the processing or
filtering have been substantially suppressed.

In order to mimic the observed data, we added the Gaussian noise
to the RF waveforms. The noisy RF data are analysed in the seislet
domain and further reconstructed using inverse-ST. The resulting
images for two different scenarios are displayed in Fig. 2. Here 7
and 10% Gaussian noise with mean = 0 are added to the synthetic
data and are shown in Figs 2a and b, respectively. The resulting
images (Figs 2c and d) show that the desired phases are recovered
well in spite of that the phases in the noisy data are visually not very
clear.

Fig. 3 depicts synthetic RF for a simple model as shown in Fig. 3a
(same as Fig. 1a, but down to a depth of 120 km in the upper most
mantle) with Moho and a low velocity layer. The primary converted
waves Pms and Pls from Moho and LVL respectively are clearly seen
Fig. 3b. Apart from primary conversions, the free surface multiples
below 15 s are also generated with greater moveout. To investigate
the ability of ST we add 10% Gaussian noise to the synthetic RF
and the result is displayed in Fig. 3c. The inverse ST (in Fig. 3d)
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Figure 7. The analysis of observed data along profile AB (shown in Fig. 5) in the seislet domain. (a) The CCP stack of RFs. (c) The Fresnel zone migrated
section. The sections cover the upper-mantle depth range. (b and d) Reconstructed images after applying the inverse ST to panels (a) and (c), respectively. It
can be seen that the reconstructed images become clearer than the input images.

indicates a significant improvement over the original image. Further,
we computed the stack of each subplot in Fig. 3e with bootstrap
error (Efron & Tibshirani 1993), for the sake of comparison. In
order to estimate error in stacking for each subplot, we employed
the bootstrap technique to each set of data by re-sampling 500
times. Each time, we constructed a resampled observed data set (of
an equal size to the observed data set) that was obtained by random
sampling with replacement from the original data set, and then we
stacked resampled seismograms after a moveout correction. Those
500 bootstrap stacked seismograms are then used to estimate the
standard error (SE) of the final stacked trace. The reconstructed
stack has clear phases similar to the noise free data (e.g. Fig. 3a),
whereas the noisy stack (from Fig. 3c) annihilate the prominent
phases including the multiples. The stack trace of the reconstructed
data, therefore, indicates that the Gaussian noise energy has been
attenuated substantially and there is significant improvement of the
SNR. Additionally, in this figure it is also obvious that the amplitude
of the stack trace of the reconstructed data shown on the right in
Fig. 3e differ from the other two traces because during the inverse
seislet transform the virtual wave field produced by the Gaussian
noise gets diminished as a result of which higher amplitude signal
will primarily control the gain function. So, in response to the low
intensity portion of the signal the gain will increase in reaction
to the diminished overall noise wavefield. This increase in gain
consequently boosts the lower level signal and allows these lower
level boosted signals to get added constructively which is present
in the noisy data sets as a result of which the appearance of the
waveform gets enhanced effectively. The important ramification of
this plot is the visual identification of the phases by the interpreter,
that is, the noisy trace may lead to something deviated interpretation
than the true one; however, the constructed stack may be helpful in
such a case.

Fig. 4 demonstrates the application of ST to a migrated receiver
function data set, generated for a simple model consisting of Moho,
a LVL in the upper most mantle till 120 km depth, while the lower

part is taken from the IASP91 model (Fig. 4a). The synthetic
data have been generated and processed as described in the previ-
ous paragraph. Here, we migrated the RF data into depth domain
within the Fresnel zones around each ray path (Kind et al. 2002).
RF amplitudes were migrated into the cross-section as diffracted
waves from single scatterers, so smiley artifacts appear where data
coverage is sparse. The station spacing is kept 0.5◦. The migrated
image shows some spurious (Fig. 4b) phases with smiley effect.
The RF data in depth domain are subjected to the seislet domain
as mentioned in the earlier section and then inverted to retrieve the
image. The reconstructed image after inverse ST is displayed in
Fig. 4c, which is much clearer and having only prominent phases
corresponding to the input model. Furthermore, Fig. 4c is devoid
of any smiley effect which in few cases gives the impression of an
extended interface especially in the case of less dense data set. Here
we used thresholding value of 15% as discussed in the Methodol-
ogy section. We can see that after applying the threshold, the output
image is quite clearer.

Due to various reasons seismic data may have spatial gaps or
missing traces in seismological studies. In order to demonstrate the
impact of spatial sampling density on the de-noising performance
of the seislet transform, here we use the synthetic data from Fig. 2a
and introduce gaps of various widths in slowness domain (Fig. 5).
Since the ST has inherent property of de-noising and interpolation,
here first we only restrict to de-noising by choosing proper thresh-
olds (Fig. 5b) as discussed in the previous section. Results show
that introducing the data gaps do not have significant influence on
de-noising nature of the ST. Next, we play with the regularization
values. In order to recover the missing signal components at the
spatial locations, we use an effective sparse transform, that is, the
same ST approach which is accommodated with the local slope.
However, in order to recover the missing signal components at the
spatial locations we used different thresholding values and regu-
larization parameters iterated several times (around 120) until the
missing data are optimally restored (Fig. 5c). It is observed that
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Figure 8. Reconstructed Hi-CLIMB sections by the ST with data gaps of
different widths in distance from the original receiver functions. A threshold
of 16% has been applied. It is clear that noises are substantially suppressed
in spite of gaps in data.

the interpolation is more effective for smaller data gap and the more
inclined phases tend to be poorly interpolated.

4 A P P L I C AT I O N T O O B S E RV E D DATA

4.1 The Hi-CLIMB network

Synthetic tests have demonstrated that the application of ST sub-
stantially improves the SNR of the RF images (converted wave
data). Here we test the approach with real data acquired from the
HI-CLIMB network in southern Tibet (Nabelek et al. 2009; Fig. 6).
The seismological experiment was in operation from 2002 to 2005
with an average station spacing of ∼5 km (Nabelek et al. 2009).
The array covers the foot hill of the Himalayas in Nepal, higher
Himalayas and Tibet; however, we restrict our application to the
southern part of the profile consisting of 64 broad-band seismic
stations (Fig. 6).

Using these data sets, a number of seismological works have been
published in the recent past. Nabelek et al. (2009) analysed the
converted wave technique and studied the lithospheric structures,
tracing the Indian Moho till 31◦N latitude in Tibet. First, we com-
puted receiver functions (e.g. Kumar & Kawakatsu 2011; Kumar

et al. 2011) of all the available stations. The final images generated
using two different stacking approaches, for example, the common
conversion point stacking (CCP) and the Fresnel zone migration
are displayed in Figs 7a and c. On application of the ST, the image
reconstruction has been taken place by applying 20% thresholding
collecting the significant coefficients which helps in compressing
the signal and noise along their local slopes. The reconstructed im-
age indicates an excellent improvement over the original in terms
of background noises and artifacts (Figs 7b and d, top and bot-
tom panels). However, in the large depth range the re-constructed
images are laterally shrunk due to the annihilation of diffused end
data of lower amplitude.

We further analysed the impact of the spatial sampling density on
the de-noising performance of the seislet transform with the same
HI-CLIMB data (Fig. 8). The images are produced by the same
Fresnel zone migration stacking procedure as shown in Fig. 7d.
Figs 8a–c are the reconstructed results by the inverse ST after
data gaps of different widths have been introduced. The experiment
shows that, when there is smaller data gap in the input data sets the
converted wave signal and noise can be sampled without aliasing
which leads to the enhancement of the wavefield continuity (Figs 8a
and b). When the data gaps increase the shallow seismic phases are
resolved very well and the depth seismic phases with strong dips
are still resolved poorly (Fig. 8c) as the seislet transform fills up the
deficiency in the input data in its own domain by following the local
slopes of the events.

4.2 Geoscope station HYB from the Indian shield

In this section, we examine the performance of the presented method
on real data application to HYB, a Geoscope station located in
Hyderabad, on the Precambrian craton of the Indian shield. We used
the teleseismic earthquake data to compute the receiver functions as
described in the previous section (e.g. Kumar & Kawakatsu 2011;
Kumar et al. 2011). The receiver function image is prepared and
presented in Fig. 9a with slowness as abscissa. We observe strong
phases at ∼4 s and ∼18–20 s corresponding to the Moho conversion
and free surface multiples, which were previously modeled by Saul
et al. (2000). However, the upper-mantle discontinuities at 410 and
660 km depths are poorly visible. For de-noising this complex data
set we have performed the seislet scheme (Figs 9b and c) with 7%
and 25% thresholding as the original seismic image would not be
optimally sparse so that threshold should be more conservative in
order to avoid any possible damage to the signals. The stacks for
both the original and reconstructed RFs (Fig. 9d) show all the
prominent discontinuities. The stacks are generated after moveout
correction for direct conversions with a reference slowness of 6.4 s
deg–1 (Yuan et al. 1997) using IASP91 velocity model (Kennett &
Engdahl 1991). It is interesting to note that the P410s and P660s
phases, which are not very clearly seen in the individual RF (Fig. 9a),
become more visible in the reconstructed images (Figs 9b and c).
Apart from these phases, another intriguing phase at about 30 s can
be observed (Figs 9b and c) unambiguously. Here for the sake of
comparison, we applied two different threshold values. It is clear
that the threshold values of 25% (Fig. 9b) and 7% (Fig. 9c) bring
out the X-discontinuity; however, a lower value of threshold seems
to have slightly less resolution. The SNR in each case is estimated
to be about 7 dB. Although all the stacks show more or less similar
phases, however, the careful observation shows that the spurious
oscillations in RF stacks (the right-hand panel of Fig. 9d) are more
due to the random noise compared to the stack of Figs 9b and c
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Figure 9. Observed data example from Geoscope station HYB located in the central Indian shield on the Precambrian terrain. The images in panels (a)–(c)
are the observed RF and the reconstructed images after inversion of Seislet Transform with two different regularization parameters (thresholding values of 25
and 7, respectively). The purpose of applying different parameters is to show the phase at ∼30 s. The stacks of all the data are shown in (d), that is, the right
and left traces correspond to (a)–(c) data, respectively. Two thin lines running on the mean of each stack trace are the standard error of ±2σ . It is clearly seen
that the reconstructed image brought out all the prominent phases along with a discontinuity at about 30 s marked as X, which is not prominent in the original
receiver function image in (a).

(left trace in Fig. 9d) where the random noises are substantially
reduced. Also the linear stacking error is lesser in the reconstructed
stack compared to the RF stack. The de-noising result shows an
excellent improvement as the mentioned approach has removed
most of the random noise due to its better compression capability
and improves the SNR.

5 C O N C LU S I O N S

This study presents the application of a de-noising approach of RF
data in the seislet domain to subside the incoherent and Gaussian
noise. Tests of synthetic and real field data show a substantial im-
provement over the original images by suppressing the background
random noise and artifacts while preserving the details of the ge-
ological structures of interest. The advantage of analysing RF data
in the seislet domain is that the converted phases can be identified
with more confidence. However, the aliasing of the reconstructed
image is influenced by the wide spatial data gap and local slope.

A C K N OW L E D G E M E N T S

The director NGRI has kindly permitted to publish this work. Seis-
mic data for Hi-CLIMB and HYB (Hyderabad) are from IRIS
(DMC) and Geoscope. Plots are generated using Generic Map-
ping Tool (Wessel & Smith 1995). The codes used here are from
the Madagascar open-source software package freely available at
http://www.ahay.org. The manuscript is benefited immensely from
the comments by Prof. Chauris (editor), associated editor and two
anonymous reviewers. This work has been performed under the
Main Lab Project of the Passive Seismology group. B.Dalai is a

PhD student working in sponsored by Ministry of Earth Sciences,
Govt. of India. The paper has Ref. No. NGRI/LIB/2018/Pub-68.

R E F E R E N C E S
Abma, R. & Kabir, N., 2005. Comparison of interpolation algorithms,

Leading Edge, 24, 984–989.
Berkhout, A.J., 1977. Least-squares inverse filtering and wavelet deconvo-

lution, Geophysics, 42, 1369–1383.
Burdick, L.J. & Langston, C.A., 1977. Modeling crustal structure through

the use of converted phases in teleseismic body-wave forms, Bull. seism.
Soc. Am., 67, 677–691.

Chen, S., Donoho, D. & Saunders, M., 1998. Atomic decomposition by
Basis Pursuit, SIAM J. Sci. Comput., 20, 33–61.

Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding
and adaptive empirical mode decomposition based dip filter, Geophys. J.
Int., 206(1), 457–469.

Chen, Y. & Fomel, S., 2018. EMD-seislet transform, Geophysics, 83, A27–
A32.

Chen, Y., Fomel, S. & Hu, J., 2014. Iterative deblending of simultane-
ous source seismic data using seislet-domain shaping regularization,
Geophysics, 79, V179–V189.

Claerbout, J.F., 1992. Earth Soundings Analysis: Processing versus Inver-
sion, Blackwell Scientific Publications, Inc.

Cohen, A., Daubechies, I. & Feauveau, J.C., 1992. Biorthogonal bases of
compactly supported wavelets, Commun. Pure Appl. Math., 45, 485–560.

Donoho, D.L., 1995. De-Noising via soft thresholding, IEEE Trans. Inf.
Theory, 41(3), 631–627.

Donoho, D.L. & Johnstone, I.M., 1994. Ideal spatial adaptation via wavelet
shrinkage, Biomefrika, 81, 425455.

Efron, B. & Tibshirani, R., 1993. An Introduction to the Bootstrap, Chapman
and Hall/CRC.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/3/2047/5380777 by Bibliothek des W

issenschaftsparks Albert Einstein user on 24 Septem
ber 2019

http://www.ahay.org
http://dx.doi.org/10.1190/1.2112371
http://dx.doi.org/10.1190/1.1440798
http://dx.doi.org/10.1137/S1064827596304010
http://dx.doi.org/10.1093/gji/ggw165
http://dx.doi.org/10.1190/geo2017-0554.1
http://dx.doi.org/10.1190/geo2013-0449.1
http://dx.doi.org/10.1002/cpa.3160450502
http://dx.doi.org/10.1109/18.382009


De-noising receiver function data using ST 2055

Fomel, S., 2002. Applications of plane-wave destruction filters, Geophysics,
67, 1946–1960.

Fomel, S. & Liu, Y., 2010. Seislet transform and seislet frame, Geophysics,
75(3), V25–V38.

Foster, D.J. & Mosher, C.C., 1992. Suppression of multiple reflections using
the radon transform, Geophysics, 57, 386–395.

Fuchs, K. & Muller, G., 1971. Computation of synthetic seismograms with
the reflectivity method and comparison with observations, Geophys. J. R.
astr. Soc., 23, 417–433.

Guo, K. & Labate, D., 2007. Optimally sparse multidimensional represen-
tation using shearlets, SIAM J. Math. Anal., 9, 298–318.

Hermann, F.J., Boniger, U. & Verschuur, D.J., 2007. Non-linear primary-
multiple separation with directional curvelet frames, Geophys. J. Int.,
170, 781–799.

Kanasewich, E.R., Hemmings, C.D. & Alpaslan, T., 1973. Nth-root stack
nonlinear multichannel filter, Geophysics, 38, 327–338.

Kennett, B.L.N. & Engdahl, E.R., 1991. Traveltimes for global earthquake
location and phase identification, Geophys. J. Int., 105, 429–465.

Kind, R., 1985. The reflectivity method for different source and receiver
structures and comparison with GRF data, J. Geophys., 58, 146–152.

Kind, R. et al., 2002. Seismic images of crust and upper mantle beneath
Tibet: evidence for Eurasian plate subduction, Science, 298(5596), 1219–
1221.

Kumar, P. & Kawakatsu, H., 2011. Imaging the seismic lithosphere–
asthenosphere boundary of the oceanic plate, Geochem. Geophys.
Geosyst., 12(1) .

Kumar, P., Kawakatsu, H., Shinohara, M., Kanazawa, T., Araki, E. & Kiyoshi,
S., 2011. P and S receiver function analysis of seafloor borehole broadband
seismic data, J. geophys. Res., 116, B12308, doi:10.1029/2011JB008506.

Langston, C.A., 1977. Corvallis, Oregon, crustal and upper mantle structure
from teleseismic P and S waves, Bull. seism. Soc. Am., 67, 713–724.

Liu, W., Cao, S. & Chen, Y., 2016. Seismic time-frequency analysis via
empirical wavelet transform, IEEE Geosci. Remote Sens. Lett., 13, 28–
32.

Mallat, S., 2009. Geometrical grouplets, Appl. Comput. Harmon. Anal., 26,
161–180.

Nabelek, J. et al., 2009. Underplating in the Himalaya–Tibet collision zone
revealed by the Hi-CLIMB experiment, Science, 325, 1371–1374.

Neal, S.L. & Pavlis, G.L., 1999. Imaging P to S conversions with multichan-
nel receiver functions, Geophys. Res. Lett., 26, 2581–2584.

Pavlis, G.L., 2011. Three-dimensional wavefield imaging of data from
the USArray: new constraints on the geometry of the Farallon slab,
Geosphere, 7, 785–801.

Poppeliers, C. & Pavlis, G.L., 2003. Three-dimensional, prestack, plane
wave migration of teleseismic P-to-S converted phases, 2. Stacking mul-
tiple events, J. geophys. Res., 108, 2112, doi:10.1029/2001JB001583.

Saul, J., Kumar, M.R. & Sarkar, D., 2000. Lithospheric and upper man-
tle structure of the Indian shield, from teleseismic receiver functions,
Geophys. Res. Lett., 27, 2357–2360.

Sen, M.K., Biswas, R., Mandal, P. & Kumar, P., 2014. Basis pursuit receiver
function, Bull. seism. Soc. Am., 104, 2673–2682.

Sheldrake, K.P., Marcinkovich, C. & Tanimoto, T., 2002. Regional wavefield
reconstruction for teleseismic P-waves and surface waves, Geophys. Res.
Lett., 29(11), 1544.

Starck, J.L., Candes, E.J. & Donoho, D.L., 2002. The curvelet transform for
image denoising, IEEE Trans. Image Process., 11–6, 670–684.

Sweldens, W. & Schroder, P., 1996. Building your own wavelets at home,in
Wavelets in Computer Graphics, pp. 15–87, eds Klees, R. & Haagmans,
R., Springer.

Tessmer, G. & Behle, A., 1988. Common reflection point data-stacking
technique for converted waves, Geophys. Prospect., 36, 671–688.

Vinnik, L.P., 1977. Detection of waves converted from P to SV in the mantle,
Phys. Earth planet. Inter., 15, 39–45.

Wessel, P. & Smith, W.H.F., 1995. New version of the generic mapping tools
released, EOS, Trans. Am. geophys. Un., 76, 329.

Xue, Y., Ma, J. & Chen, X., 2014. High-order sparse radon transform for
AVO-preserving data reconstruction, Geophysics, 79, V13–V22.

Xue, Y., Yang, J., Ma, J. & Chen, Y., 2016. Amplitude-preserving nonlinear
adaptive multiple attenuation using the high-order sparse radon transform,
J. geophys. Eng., 13(3), 207–219.

Xue, Z., Zhu, H. & Fomel, S., 2017. Full waveform inversion using seislet
regularization, Geophysics, 82(5), A43–A49.

Yilmaz, O., 2001. Seismic Data Analysis, Society of Exploration Geophysi-
cists.

Yuan, X., Ni, J., Kind, R., Mechie, J. & Sandvol, E., 1997. Lithospheric and
upper mantle structure of southern Tibet from a seismological passive
source experiment, J. geophys. Res., 102, 27 491–27 500.

Zhang, J.H. & Zheng, T., 2015. Receiver function imaging with recon-
structed wavefields from sparsely scattered stations, Seismol. Res. Lett.,
86, 165–172.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/3/2047/5380777 by Bibliothek des W

issenschaftsparks Albert Einstein user on 24 Septem
ber 2019

http://dx.doi.org/10.1190/1.1527095
http://dx.doi.org/10.1190/1.3380591
http://dx.doi.org/10.1190/1.1443253
http://dx.doi.org/10.1111/j.1365-246X.1971.tb01834.x
http://dx.doi.org/10.1137/060649781
http://dx.doi.org/10.1111/j.1365-246X.2007.03360.x
http://dx.doi.org/10.1190/1.1440343
http://dx.doi.org/10.1111/j.1365-246X.1991.tb06724.x
http://dx.doi.org/10.1126/science.1078115
http://dx.doi.org/10.1029/2010GC003358
http://dx.doi.org/10.1109/LGRS.2015.2493198
http://dx.doi.org/10.1016/j.acha.2008.03.004
http://dx.doi.org/10.1126/science.1167719
http://dx.doi.org/10.1029/1999GL900566
http://dx.doi.org/10.1130/GES00590.1
http://dx.doi.org/10.1029/1999GL011128
http://dx.doi.org/10.1785/0120140004
http://dx.doi.org/10.1029/2001GL013721
http://dx.doi.org/10.1109/TIP.2002.1014998
http://dx.doi.org/10.1111/j.1365-2478.1988.tb02186.x
http://dx.doi.org/10.1016/0031-9201(77)90008-5
http://dx.doi.org/10.1029/95EO00198
http://dx.doi.org/10.1190/geo2013-0002.1
http://dx.doi.org/10.1088/1742-2132/13/3/207
http://dx.doi.org/10.1190/geo2016-0699.1
http://dx.doi.org/10.1029/97JB02379
http://dx.doi.org/10.1785/0220140028

