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Abstract

Satellite remote sensing has been widely used in the last decades for agri-
cultural applications, both for assessing vegetation condition and for subse-
quent yield prediction. Existing remote sensing-based methods to estimate
gross primary productivity (GPP), which is an important variable to in-
dicate crop photosynthetic function and stress, typically rely on empirical
or semi-empirical approaches, which tend to over-simplify photosynthetic
mechanisms. In this work, we take advantage of all parallel developments
in mechanistic photosynthesis modeling and satellite data availability for an
advanced monitoring of crop productivity. In particular, we combine process-
based modeling with the soil-canopy energy balance radiative transfer model
(SCOPE) with Sentinel-2 and Landsat 8 optical remote sensing data and ma-
chine learning methods in order to estimate crop GPP. With this approach,
we by-pass the need for an intermediate step to retrieve the set of vege-
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tation biophysical parameters needed to accurately model photosynthesis,
while still accounting for the complex processes of the original physically-
based model. Several implementations of the machine learning models are
tested and validated using simulated and flux tower-based GPP data. Our
final neural network model is able to estimate GPP at the tested flux tower
sites with r2 of 0.92 and RMSE of 1.38 gC d−1 m−2, which outperforms em-
pirical models based on vegetation indices. The first test of applicability of
this model to Landsat 8 data showed good results (r2 of 0.82 and RMSE of
1.97 gC d−1 m−2), which suggests that our approach can be further applied
to other sensors. Modeling and testing is restricted to C3 crops in this study,
but can be extended to C4 crops by producing a new training dataset with
SCOPE that accounts for the different photosynthetic pathways. Our model
successfully estimates GPP across a variety of C3 crop types and environ-
mental conditions even though it does not use any local information from the
corresponding sites. This highlights its potential to map crop productivity
from new satellite sensors at a global scale with the help of current Earth
observation cloud computing platforms.

Keywords: Gross primary productivity (GPP), Sentinel-2 (S2), Landsat 8,
Machine learning (ML), Neural networks (NN), Radiative Transfer
Modeling (RTM), Soil-Canopy-Observation of Photosynthesis and the
Energy balance (SCOPE), C3 crops

1. Introduction

Monitoring spatio-temporal changes in the photosynthetic functioning of
agricultural lands is of paramount importance for many societal, environ-
mental and economical challenges within the current scenario of increasing
demands of biofuels and food. In particular, the accurate estimation of the
gross primary productivity (GPP, amount of carbon fixed by plants through
photosynthesis) of agricultural lands is key for monitoring, understanding
and forecasting crop’s status and potential yields. GPP at various spatio-
temporal scales (field, region, the globe) can be applied in order to compare
the impact of different management practices (e.g., tillage or crop rotation)
and spatio-temporal variations in geographic and meteorological conditions
on crop photosynthesis (Falge et al., 2002; Baker and Griffis, 2005; Reeves
et al., 2005).

Remote sensing provides consistent and systematic observations of the
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Earth surface and has therefore remarkably contributed to crop monitoring
on large scales. Satellite observations of crops have been applied for crop
vegetation monitoring, crop yield forecasting and management decisions op-
timization by agriculture companies and sectoral organizations (e.g., Stra-
chan et al., 2002; Pinter et al., 2003; Mulla, 2013; Wu et al., 2014; Pulwarty
and Sivakumar, 2014). Over the last decade, both quantity and quality
(including spectral and spatial resolution) of remote sensing data have been
steadily increasing (Belward and Skien, 2015). For example, the Sentinel-
2 mission of the European Copernicus program provides observations at a
spatial resolution of 10–20 m, at multiple spectral bands in visible to short-
wave infrared wavelengths with a 5-day revisit time, a long-term operation
commitment and a free and open data policy (Drusch et al., 2012), which
constitutes a great improvement as compared to other previous and current
missions in terms of agricultural application.

GPP is typically modeled with three different approaches: process-
based models (PBMs), semi-empirical light use efficiency (LUE) models
(e.g., Zhang et al., 2012), and data-driven statistical models (Jung et al.,
2011; Tramontana et al., 2016). PBMs are based on the mechanistic
description of photosynthetic biochemical processes, usually as described
in the Farquhar’s photosynthesis model (Farquhar et al., 1980). GPP is
first computed at the leaf level and then scaled-up to the whole canopy.
In LUE models, GPP is explicitly decoupled into two terms: the amount
of absorbed photosynthetically active radiation (APAR) and the LUE, the
latter accounting for the effect of environmental conditions on photosynthesis
(Monteith, 1972). Usually biome-specific relationships are established from
empirical observations of GPP and APAR (e.g., Running et al., 2004),
but Zhang et al. (2018) found that the expression of LUE based on PAR
absorption by canopy chlorophyll tends to converge across biome types.

PBMs rely on more rigorous formulations than LUE models (e.g., Zhang
et al., 2012), but they have the disadvantage of complexity and uncertainty
of their parametrization. Although these input parameters for PBMs are
interpreted as being more physical and biologically meaningful, many of them
may be unavailable or highly uncertain. On the other hand, the fundamental
assumptions underlying LUE models –that plant canopies behave like a big
single-leaf, and their LUE is independent of the directional nature of solar
radiation and vegetation structure– have been widely questioned already by
Pury and Farquhar (1997) and continue to be discussed with support of flux
data measurements (Gu et al., 2002; Zhang et al., 2011; Propastin et al.,
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2012). Furthermore, it is unclear how well these empirical relationships
hold for spatial and temporal scales beyond those used to derive them,
and how they might change under altering environmental conditions (e.g.,
Xin et al., 2015). The most widely used LUE model is applied in the
Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product,
MOD17 (Running et al., 2004), currently available (Collection 6) globally at
8-day and 500 m resolution (Running et al., 2015). Despite general good
performance of the model, evaluation of MOD17 for crops showed that it
usually underestimates GPP for certain crops, for example soybeans and
maize (e.g., Turner et al., 2005; Peng and Gitelson, 2012). This can be partly
explained by neglecting the high heterogeneity of different crop types and a
coarse spatial resolution, which does not allow separating observations of
individual fields, as well as different irrigation and fertilization practices that
are important for crop performance (Zhang et al., 2012). The VPM GPP V20
dataset –a more recent global GPP product that utilized MODIS datasets
together with a reanalysis climate dataset and a land cover classification–
was based on an improved LUE theory that uses the energy absorbed by
chlorophyll (Zhang et al., 2017), and it’s overall accuracy was relatively high,
though it also underestimated cropland GPP (by ∼15%).

A third approach to GPP estimation from remote sensing data is based on
linking GPP fluxes at flux tower locations with observations of large spatial
fields from satellites adopting advanced statistical and machine learning (ML)
algorithms that use input variables from climate reanalysis and satellite data
products (Xiao et al., 2008; Jung et al., 2009, 2011; Tramontana et al.,
2016), such as the Max Planck Institute for Biogeochemistry (MPI-BCG)
GPP product (Jung et al., 2011). Such methods are powerful in application,
but being essentially a statistical approach, they share with more simple
empirical LUE models the disadvantage of lacking the capacity to extrapolate
to different conditions (Beer et al., 2010). In addition, the dataset needed
to train such ML approaches should be sufficiently representative and cover
a wide range of conditions, which is difficult in general and especially at the
start of new satellite missions when the collected data is limited.

GPP was also previously estimated at a finer spatial resolution; e.g.
Gitelson et al. (2012) assessed crop GPP with the Landsat data (spatial
resolution of 30 m). They used the concept of total crop chlorophyll content,
based on evaluation of performances of twelve vegetation indices (VIs) for
estimating GPP using ground-based measurements (Peng and Gitelson,
2012).
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However, as these approaches use only simple VIs, the increased number
of bands in the Sentinel-2 satellites and ongoing advancements in vegeta-
tion and GPP models motivate a more sophisticated application of available
reflectance bands and the development of more flexible and powerful GPP
algorithms. In this work, we propose a hybrid approach for GPP estima-
tion (Camps-Valls et al., 2011; Verrelst et al., 2016) based on the combination
of process-based radiative transfer models (RTMs) with Sentinel-2 spectral
reflectance data through ML algorithms. Rather than retrieving the bio-
physical parameters accounting for the impact of canopy structure and leaf
pigments on the harvest of light, we convert spectral reflectance and meteo-
rological information into GPP directly using statistical ML methods, such
as random forests and neural networks. It is important to emphasize that
the training is performed on the modeled data, rather than flux tower GPP,
which allows us to simulate a broad range of conditions. This, as well as
the use of all reflectance data (instead of derived products), makes the study
different from purely data driven ML algorithms such as that of Jung et al.
(2011) and LUE models like Gitelson et al. (2012). By adapting the same
modeled data for different spectral characteristics of various instruments, our
approach can remain consistent among multiple past and future satellites and
still makes the use of all available bands. Furthermore, it also can be applied
across the range of spatial dimensions, independently of the footprints of the
reference data used for the training of empirical models. For the RTM, we use
the soil-canopy energy balance radiative transfer model SCOPE to simulate
the reflectance spectra, the light distribution in the vegetation, and the GPP
as a function of the vegetation structure. The SCOPE model incorporates
leaf model Fluspect (Vilfan et al., 2016) and canopy RTM 4SAIL (Verhoef
et al., 2007), which can also be used for retrieving vegetation variables, e.g.,
leaf area index (LAI) and chlorophyll-a and b content (Cab), as well as frac-
tion of APAR (fPAR) that is used as input to a number of LUE models (e.g.,
Weiss and Baret, 2016). We focus our investigation on soybeans and other
C3 crops. However, the same approach can be used for C4 crops, after run-
ning simulations with appropriate biochemical settings (e.g., photochemical
pathway, maximum carboxylation capacity, and temperature response).

This paper is structured as follows: in Section 2 we first introduce the
SCOPE model, the satellite and meteorological data, flux tower sites for
which our approach was tested, as well as other GPP models. We also
introduce the methods applied for the analysis of the simulated data and
the ML methods used. In Section 3, we analyze relationships between
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vegetation parameters relevant for GPP modeling, as well as the relationships
between the components of the various LUE models, based on broad SCOPE
simulations. We also discuss the performance of machine learning algorithms
for different vegetation parameters, and explain how and why we chose to
model GPP. Afterwards, we compare the results of our ML models applied to
the satellite data with other GPP models and flux tower estimates. Finally,
in Section 4, we conclude our findings and give an outlook for future work.

2. Materials and methods

The overall process of creating and applying ML models for GPP estima-
tion is schematically shown in Figure 1. For creating the synthetic dataset
we use the SCOPE model (Section 2.1). Afterwards, the model is applied to
the reflectance data of Sentinel-2 and Landsat 8 data (Section 2.2 and Sec-
tion 2.3, respectively), and meteorological dataset GLDAS 2.1 (Section 2.4).
Initially, we considered three different workflows to estimate GPP (Figure 2):

• retrieving vegetation parameters from satellite data, then running the
SCOPE model in a forward mode. In this case some vegetation
parameters are estimated, while others have to be set a-priori;

• retrieving fPAR from satellite data, then applying LUE model;

• estimate GPP directly from satellite and meteorological data.

To analyze these approaches and finally decide on the most suitable method,
we analyzed the synthetic dataset created with SCOPE. We performed
global sensitivity analyses (Section 2.7), examined the relationships between
fPAR, LUE and GPP, as well as tested ML algorithms for retrieving various
parameters (Section 2.8) using the modeled dataset. Eventually, we applied
the ML model of GPP directly to satellite and meteorological data. We use
data from flux tower sites (Section 2.5) for a feasibility test, and simple GPP
models based on vegetation indices (Section 2.6) for comparison with our ML
model.

2.1. The SCOPE model

The SCOPE model is a vertical (1-D) integrated radiative transfer and
energy balance model (van der Tol et al., 2009). SCOPE calculates radiance
spectra in the visible to thermal infrared range (0.4 to 50 µm) as observed
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Figure 1: Flow chart of the processing chain applied in this work. The ML model is trained
on the dataset created from SCOPE simulations, afterwards the ML model is applied to
the satellite and meteorological data.

above the canopy, as well as the fluxes of water, heat and carbon dioxide.
SCOPE is continually updated, and recent significant improvements were
introduced to link chlorophyll-a vegetation fluorescence to the photosynthesis
processes within the framework of the Photosynthesis Study for the ESA
FLEX mission (Mohammed et al., 2014).

SCOPE integrates radiative transfer and energy balance calculations at
the level of individual leaves, as well as at the canopy level. The spectral
transmittance and reflectance of the leaves are calculated with the Fluspect
model (Vilfan et al., 2016). Radiative transfer within the canopy is based on
the 4SAIL model (Verhoef et al., 2007). The leaf biochemical processes are
based on Collatz et al. (1991) and Collatz et al. (1992) for C3 and C4 plants,
respectively. The geometry of the vegetation is treated in a stochastic way,
where a probability of a leaf viewing in solar direction depends on the canopy
parameters, and subsequently the different biophysical processes for sunlit
and shaded components are considered. To simulate photosynthesis, SCOPE
requires inputs of meteorological forcing, vegetation structure parameters,
leaf biophysical parameters, and optical and plant physiological parameters.
In the comparison of the simulated GPP (using Landsat data and locally
measured weather data) to flux tower measurements, Bayat et al. (2018)
found a typical root-mean-square error of 1.7 µmol s−1 m−2 (for GPP of about
8 µmol s−1 m−2, so about 20% error), with an r2 of 0.65 during a drought
episode. Their relatively low r2 was mainly due to the overestimation of GPP
during the drought. They also showed that the accuracy can be improved
by including thermal information. More details on the SCOPE model can
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Figure 2: Workflows of three considered approaches to estimate GPP using data from
SCOPE.

be found in van der Tol et al. (2009).
Here, we used the most recent SCOPE model release (version 1.70), in

which optical coefficients used by the leaf model are consistent with the latest
PROSPECT-D model (Féret et al., 2017). In addition, a new soil spectral
reflectance Brightness-Shape-Moisture model (BSM) (Verhoef et al., 2018),
which is based on the Global Soil Vectors of Jiang and Fang (2012), has been
added as an alternative to providing an input soil spectrum. In the BSM
model, dry soil spectra are approximated using the soil brightness (B), and
“lat” and “long” parameters that define spectral shape effects, while SMC
parameter accounts for the soil moisture impact on the dry soil reflectance
spectrum (see Table 1). In addition, a biochemical routine has been updated
so that the internal CO2 concentration in the leaf is calculated iteratively.

We adapted the model to work in parallel computing within the Matlab
environment, and customized the input and output of the model as follows:

1. Added GPP to the output data, since the default output of the
model covers only net canopy photosynthesis (GPP minus leaf dark
respiration).
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Table 1: List of varied input parameters used in SCOPE model simulations. In this study
we assumed uniform distribution of the input variables.

Symbol Parameter Unit Min Max

Leaf optical
Cab Chlorophyll-a and b content µg cm−2 11 90
Cca Carotenoid content µg cm−2 0 40
Cant Anthocyanins content µg cm−2 0 40
Cdm Dry matter content g cm−2 0.0 0.05
Cw leaf water equivalent layer cm 0.0 0.1
Cs senescent material fraction fraction 0 0.9
N leaf thickness parameter - 1 2.5

Canopy
LAI Leaf area index m2 m−2 0 9
hc vegetation height m 0.1 2
LIDFa leaf inclination - -1 1
LIDFb variation in leaf inclination - -1 1

Soil
SMC volumetric soil moisture content in the root zone - 0.01 0.7
BSMBrightness BSM model parameter for soil brightness - 0.01 0.9
BSMlat BSM model parameter ’lat’ - 20 40
BSMlon BSM model parameter ’long’ - 45 65

Geometry
SZA solar zenith angle degree 0 85

Meteorology
Rin broadband incoming shortwave radiation (0.4-2.5 um) Wm−2 0 1400
Rli broadband incoming longwave radiation (2.5-50 um) Wm−2 0 400
Ta air temperature °C -10 50
p air pressure hPa 500 1030
ea atmospheric vapour pressure hPa 0 125
u wind speed m s−1 0 25
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Figure 3: Band settings of Sentinel-2A with respect to a typical vegetation reflectance
spectrum. The bands in bold are those that overlap with Landsat 8 bands. The red
rectangle encloses the bands used in this study.

2. Added an option to calculate leaf maximum carboxylation capacity
(Vcmax) at 25°C (V 25

cmax), as a function of chlorophyll concentration Cab,
following Houborg et al. (2013):

V 25
cmax = 2.5294Cab − 27.34, (1)

where V 25
cmax is in [µmol m−2 s−1] and Cab in [µg cm−2].

2.2. Sentinel-2 data

Sentinel-2 is a wide-swath, high-resolution, and multi-spectral imaging
mission, supporting Copernicus Land Monitoring, including the monitoring
of vegetation, soil covers and water bodies, as well as observation of inland
waterways and coastal areas. The Sentinel-2 Multispectral Instrument (MSI)
samples 13 spectral bands spanning from the visible and the near infrared to
the shortwave infrared (Figure 3), including two new spectral bands in the
so-called red edge region (at 705 nm and 740 nm), which are very important
for retrieval of chlorophyll content (Clevers and Gitelson, 2013). The spatial
resolution varies from 10 m to 60 m depending on the spectral band with a
290 km field of view (Drusch et al., 2012). Three bands at 60 m are mainly
dedicated for atmospheric correction and cloud screening, which leaves ten
bands aimed at land surface observations. Currently, there are two Sentinel-2
satellites operating in tandem: Sentinel-2A was launched in June 2015, and
Sentinel-2B launched in March 2017, which enables a revisit time of less than
5 days.

We visually chose relatively cloud-free images over fields of interest (see
Section 2.5) for the years 2016-2017. These images were atmospherically
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corrected using the Sen2Cor (version 2.4) algorithm, converting top-of-
atmosphere (TOA) reflectance into top-of-canopy (TOC) reflectance (Louis
et al., 2016). In addition, Sen2Cor delivered information on pixel quality
(cloud, cloud shadow, etc.). We used this information subsequently to
evaluate more precisely if the images were cloudy. In few cases, when
available, we used atmospherically corrected TOC data directly. Obtained
TOC bands (B2-B8, B8a, B11, B12) were re-sampled to a common resolution
of 20 m using the SNAP toolbox. We do not consider the effects of the
resampling procedure, as we eventually calculate a mean value of the GPP
over the whole fields.

2.3. Landsat 8 data

Landsat 8, a NASA and USGS collaboration, is the latest of the Landsat
series and was launched in February of 2013. Operational Land Imager
(OLI), an instrument onboard the Landsat 8 satellite, has overall similar
spectral coverage to Sentinel-2 (sharing six common bands, see Figure 3),
but unfortunately does not cover as densely the vegetation red edge bands.
The images of the Earth are collected with a 16-day repeat cycle, with a
resolution of 30 m for bands of our interest (Storey et al., 2016).

We used in this study atmospherically corrected surface reflectance from
Landsat 8/OLI (USGS Landsat 8 Surface Reflectance Tier 1) from the Google
Earth Engine (GEE) platform (Gorelick et al., 2017). These data have been
atmospherically corrected using LaSRC (Vermote et al., 2016) and include a
cloud, shadow, water and snow mask produced using CFMASK (Foga et al.,
2017), as well as a per-pixel saturation mask. We only used pixels which
were marked clear by pixel quality attributes generated from the CFMASK
algorithm.

2.4. Meteorological data

We used the meteorological data from Global Land Data Assimilation
System (GLDAS) 2.1 that ingests satellite and ground-based observational
data products to generate optimal fields of land surface states and fluxes
(Rodell et al., 2004). GLDAS has been developed jointly by National Aero-
nautics and Space Administration (NASA) Goddard Space Flight Center
(GSFC), and the National Oceanic and Atmospheric Administration (NOAA)
National Centers for Environmental Prediction (NCEP). It extends from the
year 2000 to present with about one month latency and is updated monthly.
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Table 2: Details about the flux tower sites used in this study (Griffis et al., 2004; Ney and
Graf, 2017).

Site ID Lon (°W) Lat (°N) Period Crops

US-Ro1 -93.0898 44.7143 2016 soybeans
US-Ro2 -93.0888 44.7288 2016 Kura clover only
US-Ro5 -93.0576 44.6910 2017 soybean
US-Ro6 -93.0578 44.6946 2017 wheat/Kura Clover

DE-RuS 6.4472 50.8659 2016 & 2017
winter barley in spring 2016, a catch crop
mixture in fall 2016 and sugarbeet in 2017

Choosing this dataset as meteorological input was also motivated by its avail-
ability on GEE, which we plan to use in future for applying our GPP model
globally. We used 3-hourly GLDAS-2.1 land surface model data available
through GEE with a resolution of 0.25°. The data was exported for the
dates of interest (availability of Sentinel-2 data) for the years 2016-2017. For
Landsat 8 application, the GLDAS-2.1 data was used directly in GEE to
estimate GPP. We did not perform any spatial interpolation, and used the
meteorological data directly from the grid cells covering the chosen fields.

2.5. Flux tower sites

We used data from four flux tower sites located in the USA (US-Ro 1,
US-Ro 2, US-Ro 5, US-Ro 6) and one site in Germany, DE-RuS (SE EC 001
in the TERENO data portal http://teodoor.icg.kfa-juelich.de ), for
the feasibility test of our GPP models. Information on the location of the
sites and crop types grown there can be found in Table 2. The sites were
chosen based on the type of crop (soybeans and other C3 crops). The
data was acquired for the dates of available Sentinel-2 observations for the
years 2016 and 2017. We obtained GPP data directly for dates of from the
Principle Investigators of the sites, and integrated half-hourly data to daily
GPP values, which were then used as the reference value for the validation
of our GPP model.

2.6. GPP estimated with vegetation indices

LUE models making use of VIs and incident photosynthetically active
radiation (PARin) to estimate GPP for crops, were also applied for a
comparison with our model. In previous studies different VIs were tested
using ground-based in situ reflectance measurements (Peng and Gitelson,
2012), as well as Landsat (Gitelson et al., 2012) and MODIS data (Peng
et al., 2013). These studies suggested different equations for GPP models
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Table 3: Summary of vegetation indices used in this study. ρgreen, ρred, ρred edge and ρNIR

are reflectance in spectral bands of green, red, red edge and near-infrared spectral regions
and the refer to Sentinel-2 bands B3 (560 nm), B4 (665 nm), B5 (705 nm) and B8 (842
nm), respectively.

Vegetation index (VI)
VI
abbreviation

VI formula
GPP
(x = V I × PARin)

Reference

Red edge chlorophyll index CIred edge ρNIR/ρred edge − 1 4.80ln(x) − 37.93 Peng and Gitelson (2012)
Green chlorophyll index CIred edge ρNIR/ρgreen − 1 5.13ln(x) − 46.92 Peng and Gitelson (2012)
Normalized difference
vegetation index

NDVI (ρNIR − ρred)/(ρNIR + ρred) 2.07x− 6.19 Gitelson et al. (2012)

Green normalized
difference vegetation index

greenNDVI (ρNIR − ρgreen)/(ρgreen + ρgreen) 2.86x− 11.9 Gitelson et al. (2012)

Enhanced vegetation index EVI 2.5(ρNIR − ρred)/(ρNIR + 6ρred − 7.5ρblue + 1) 2.26x− 3.73 Peng et al. (2013)
Red edge normalized
difference vegetation index

reNDVI (ρNIR − ρred edge)/(ρNIR + ρred edge) 1.61x - 1.75 this study

using various VIs as input. The ones that showed the best performance in
these studies were also tested here (cf. Table 3). We applied these approaches
because they can be relatively easily adapted for our case (Sentinel-2 data,
daily values), as compared to studies using MODIS data at 8-day temporal
resolution and minimum 500 m spatial resolution (e.g. Wagle et al., 2015;
Yuan et al., 2015; Zhang et al., 2014a). For VIs using a red edge band,
we tested both red edge Sentinel-2 bands (B5 and B6), and eventually we
chose B5, which led to higher correlation with flux tower GPP than using
B6. We calculated 45% of daily integrated Rin values (following Running and
Zhao (2015)) from GLDAS 2.1 to obtain PARin (even though the original
equations were sometimes developed for PARin and sometimes for potential
PARin). In addition, since none of these equations was actually designed for
the band setting of Sentinel-2, we also established a linear function of red
edge NDVI (reNDVI) and PARin using the flux tower validation dataset and
calibrating the function directly on this data (cf. Table 3).

2.7. Global sensitivity analysis

Global sensitivity analysis (GSA) refers to a set of mathematical tech-
niques aimed to analyze how the variation in the output of a numerical
model can be attributed to variations of its inputs. Among others, GSA
can be applied to evaluate the relative importance of each input variable in
a model and can be used to identify the most influential variables affecting
model outputs (Pianosi et al., 2015).

Here, we used the PAWN method (Pianosi and Wagener, 2015, the
name derived from these authors names), which employs the entire model
output distribution (cumulative distribution function, CDF) to quantify the
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sensitivity of the parameters and therefore it is applicable independently of
the shape of the distribution. This is in contrast to variance-based sensitivity
analysis (VBSA) that uses only the output variance, which might be not
sufficient if the output distribution is multi-modal or highly skewed (see
Pianosi et al. (2015) for more details). In addition, PAWN can be tailored to
focus on particular ranges of the output, for instance extreme values (Pianosi
et al., 2015). In the PAWN method, the sensitivity of the model output
to the parameters due to direct and interaction effects is estimated with a
PAWN total sensitivity index (Ti). The PAWN index has a range of variation
between 0 and 1, with larger values reflecting higher importance. An input
can be concluded to be non-influential, when Ti is below a threshold that
depends on the chosen confidence level and the size of sample. The parameter
space was sampled using Latin Hypercube Sampling (LHS) (McKay et al.,
1979). In total, Nu+NcMPAWNnPAWN model runs are needed to approximate
the total sensitivity index of all MPAWN parameters, where Nu and Nc are
the sample sizes of unconditional and conditional CDFs, respectively, and
nPAWN is the number of conditioning values of the model input. GSA was
performed using the SAFE Toolbox (Pianosi et al., 2015).

2.8. Machine learning models

ML techniques map the relationship between the input (e.g., reflectances)
and output (e.g., GPP) by fitting a flexible model directly to the data. Unlike
parametric models that define an input-output mapping function, whose
definition depends on a fixed set of parameters, the function in machine
learning is typically non-parametric, nonlinear and very flexible. The weights
of the model are fitted by using a training dataset (here provided by the
forward modeling using SCOPE) in such a way that the model should perform
well (i.e. provide accurate predictions) in a hold-out set, typically called
validation or test dataset. Verrelst et al. (2012) compared four ML regression
algorithms as candidates for biophysical parameter retrieval for Sentinel-2
and -3 and showed that Gaussian Process (GP) regression gave the most
promising results. However, the main limitation of GP regression is the
high computational cost for training and testing, as each test example has
to be compared to all training samples (Quionero-Candela and Rasmussen,
2005). Therefore, having in mind effective and global application of the
developed models, we decided to eventually apply more efficient methods in
terms of computational cost, such as neural networks (NNs) and random
forests (RFs). Neural networks learn a relationship between input and
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output variables by establishing a set of nonlinear units (nodes with non-
linear activation functions) organized in layers and connected by weights and
biases that are equivalent to the regression parameters of classical parametric
models (Bishop, 1995). They are a popular tool in the analysis of remotely
sensed data (e.g., Mas and Flores, 2008), and have been already implemented
in operational retrieval chains, including processing of Sentinel-2 data in the
biophysical processor of the Sentinel Application Platform SNAP (Weiss and
Baret, 2016). Random Forests (RFs) are ensemble methods, which means
that a RF generates multiple estimators and aggregates their results. RFs
can model complex interactions among input variables and are relatively
robust with regard to outliers. They also have less parameters compared
with NNs (Breiman, 2001) and recently were successfully applied in remote
sensing applications (Wang et al., 2016b; Tramontana et al., 2016). We
trained these ML algorithms for the retrieval of vegetation parameters and
modeling GPP using the data originated from the SCOPE model only.

Two training setups were engineered for this purpose:

• Case 1: Retrieving canopy and leaf parameters as well as retrieving
fPAR. The input information is the reflectance data and the solar zenith
angle (SZA) of the satellite observation.

• Case 2: Directly retrieving GPP. Here the input information is the
reflectance data, SZA of observation, meteorological conditions, and
SZA of a given modeling time step (which changes during the day, as
opposite to the SZA of observation).

Multiple models were trained to estimate GPP, using reflectance data at
Sentinel-2 resolution with all ten spectral land bands, but also a subset of
bands that are common with Landsat 8 (i.e. B2, B3, B4, B8a, B11, B12,
cf. Table 3). The GPP models were eventually applied to satellite data
and GLDAS 2.1 meteorological data (Rodell et al., 2004) at 20 m spatial
resolution (of the satellite data) and 3 h temporal resolution (temporal
resolution of the meteorological dataset), for four temporal points per day
(when incoming shortwave radiation was above zero). These values were
then integrated to obtain daily values, which is a typical scale at which GPP
from remote sensing data is evaluated. To compare data with flux tower
measurements, we calculated daily GPP for the fields by taking average of
Sentinel-2 (or Landsat 8) pixels within each field.
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The ML regressions were applied in Python and were built using the
scikit-learn toolkit (Pedregosa et al., 2011). If not mentioned otherwise, the
settings of the ML models were set to default and the random state to 1.

2.9. Modeling set-up

We run multiple sets of SCOPE simulations to perform GSA (Section 2.7),
and train ML algorithms (Section 2.8). Since the SCOPE model has a large
number of input parameters, we tried to limit the number of considered
parameters by building up on a recent study by Verrelst et al. (2015), in
which the driving parameters for reflectance and SIF were investigated.

First of all, we focused on a number of vegetation and soil parameters
that could be potentially retrieved from Sentinel-2 data. We varied 15 leaf,
canopy and soil parameters (see Table 1) assuming a uniform distribution,
while keeping other parameters constant. We used a uniform distribution
for overall simplicity and generalization, and to obtain even performances
over the whole range of the input variation. Furthermore, the variables
were considered independent. We acknowledge that other distributions and
assumptions might have led to a different performance of our ML models.
However, since we wanted to focus on the concept of our approach, further
optimization of ML algorithms is beyond the scope of this study, especially
when considering a small validation dataset.

The value of V 25
cmax (leaf maximum carboxylation capacity at 25°C) was

set constant (V 25
cmax = 100 µmol m−2 s−1), or varied as a function of Cab. The

constant value of 100 µmol m−2 s−1 was chosen following Zhang et al. (2014b),
who applied it for SCOPE simulations for soybeans, and is commonly
estimated for C3 crops (Wullschleger, 1993; Kattge et al., 2009). Since
we focused on the vegetation and soil parameters first, the meteorological
conditions were set to default SCOPE values (Rin=600 W m−2, Ta = 20°C,
Rli=300 W m−2, p=970 hPa, ea=15 hPa, u=2 m s−1), as well as the SZA (30°).
Regarding the geometry of observations, we used the constant values of the
observation zenith angle (0 °) and the azimuthal difference between solar
and observation angle (90 °), since both Sentinel-2 and Landsat 8 have a
relatively narrow field of view as well as quasi-nadir observations. We point
out that LIDFa and LIDFb parameters were not independently sampled, but
instead we used their sum (LIDFa+b) and their difference (LIDFa−b). This is
motivated by the fact that their (LIDFa and LIDFb) values must be chosen
such that the sum of their absolute values equals to (or is smaller than) one,
and therefore these parameters are not independent (Verhoef, 1998). As a
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solution we chose LIDFa+b and LIDFa−b to vary independently between -1
and 1, and based on their values we calculated LIDFa and LIDFb. For these
settings, we run the PAWN analyses, where Nu, Nc and nPAWN were set to
1000, 400 and 30, respectively, which equaled to 181000 simulations.

In order to train the ML GPP model, we additionally varied in simulations
meteorological parameters and solar zenith angle (SZA). To cover a large
range of vegetation and meteorological conditions, the variable ranges were
based on previous studies that performed satellite retrievals and global
sensitivity analysis of SCOPE data (Verrelst et al., 2015; Zhang et al., 2014b).
All 22 parameters (see Table 1) were varied assuming uniform distribution
(we run in total 177000 simulations). These simulations were then re-run
with different SZAs. This allows us to account for different SZAs at a given
time step of GPP modeling (as opposed to the SZA during the Sentinel-2
observation). The SZAs in this scenario were chosen randomly between 0°and
85°. In this final training dataset, reflectance, meteorological data and SZA
of observation are based on the original dataset, while GPP and SZA at a
given time step are based on the re-run simulations.

For some combinations, the energy balance has not converged without
adjusting the maximum iteration number or the maximum accepted error in
the energy balance. These cases were not included in the training dataset
for the ML model. This led to underrepresentation of cases with small LAI.
To resolve this problem, we additionally performed a subset of calculations,
where the value of LAI was set to 0.001, while all other variables varied as
before (which led to a number of 10700 additional simulations). For these
cases, regardless whether simulations converged, we simply assigned the value
of GPP to zero in all these scenarios. This subset was afterwards included
in the training dataset to represent conditions of a very small (almost zero)
LAI.

3. Results and Discussion

This section gives empirical evidence of the performance of the proposed
scheme for GPP estimation. We start the analysis by exploring the relative
relevance of parameters using a sensitivity analysis approach. Then we
examine the relationship between the components of the LUE model. After
this analysis we provide quantitative results of GPP estimations using
machine learning methods for the training and validation datasets. Results
are then further validated for some selected flux towers and crops.
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Figure 4: PAWN indices for GPP for simulations with V 25
cmax dependent on Cab for (a)

all data, or three GPP sub-ranges: (b) small (<5 µmol CO2 m−2 s−1); (c) medium (5-20
µmol CO2 m−2 s−1); and (d) high (>20 µmol CO2 m−2 s−1). The boxes represent single
values estimated for each input parameter.

3.1. Predictor variables of GPP

We applied GSA to identify the most influential variables affecting GPP.
We focused on the vegetation and soil parameters that can be potentially
retrieved from the satellite data. Such an analysis should help to decide
which vegetation parameters ought to be estimated in order to accurately
estimate GPP with the SCOPE model. We used here a dataset, where
V 25
cmax was varied as a function of Cab, while meteorological conditions were

constant. The results of PAWN indices computed over the whole output
range are shown in Figure 4a. LAI was the most influential input (TLAI of
0.97), followed by Cab (Thc of 0.87), while other parameters were much less
influential (Ti < 0.5). In addition, we performed the PAWN analysis in the
following three GPP sub-ranges: small (<5 µmol CO2 m−2 s−1), medium (5-
20 µmol CO2 m−2 s−1) and high (>20 µmol CO2 m−2 s−1). The influences of
input parameters vary substantially for different sub-ranges. While LAI and
Cab turn out to be the most influential parameters predominantly for small
and medium GPP, other variables (and especially hc) are also influential for
high GPP (Figure 4 b-d). LAI is the parameter that in general controls the
presence and abundance of vegetation, and hence has a dominant role in
determining GPP. The high influence of Cab is due to it’s role in capturing
light used for synthesis, but also because V 25

cmax is set as a function of Cab;
hc is used in the model to calculate the roughness length for the momentum
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of the canopy displacement height, which in turn has an effect on the leaf
temperatures and the gradients of water and CO2 between the leaf surface
and the atmosphere. As a result, we observe a high influence of hc on GPP.
Eventually, for high GPP, most of vegetation parameters become relevant
to a certain degree (Figure 4d). For example, other leaf pigments (content
of carotenoid (Cca) and content of anthocyanins (Cant)), dry matter and
canopy geometry parameters have all a stronger influence for medium and
high GPP than for low GPP. Optically active leaf components compete with
each other for light to absorb, while canopy geometry alters the relationship
between sunlit and shaded leaves. The least influential vegetation variables
are the leaf thickness parameter (N), leaf water equivalent layer (Cw) and
senescent material fraction (Cs). Soil parameters have no influence in all
cases. This is due to fact that the effect of soil properties on photosynthesis
is not parameterized in the model.

The ranges of the input variables were chosen to be very broad in order to
cover many various scenarios (see Table 1), but at any given time and place,
their actual seasonal and daily variability can be very different. However,
since it is very difficult to determine with certainty what is exactly probable
for a global scale, we opted for including rather too much variability than too
little. The description of the variability of each input parameter, including
their range and distribution, can significantly affect the GSA results. For
example, considering only a small range of pigment concentrations, could
decrease their influence on the output parameters as seen in the GSA. On the
other hand, the parameter that has overall smaller influence can be sometimes
the most important one if it changes more drastically than other parameters.

The vegetation parameters (LAI and Cab) that emerged as the most
influential for estimating GPP, are exactly the ones that are often retrieved
from remote-sensing data. However, more leaf and canopy parameters are
important for precise calculation of GPP, especially for high GPP (which is
often the case for crops, on which we focus in this study). Therefore, in case of
using the SCOPE model, multiple further input variables should be estimated
for running the model in the forward mode. Many of the variables are more
difficult to estimate, and must be therefore assumed a priori, often with
high uncertainties. However, if these assumption are not well constrained, it
makes the global applications of such a complex model challenging.
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Figure 5: Relationships between GPP and (a,d) APAR, (b,e) APARCab and (c,f) canopy
chlorophyll content (LAI·Cab) for (top panel) the whole dataset and (bottom panel) a
selected subset (Cca 15-35% of Cab, Cant 30-60% of Cab, hc 1.2 - 1.6m). The data
were calculated with SCOPE, assuming constant V 25

cmax and constant meteorological
conditions as default in SCOPE (Rin=600 W m−2, Ta = 20°C, Rli=300 W m−2,p=970 hPa,
ea=15 hPa, u=2 m s−1).

3.2. Relationships between APAR and GPP

We also considered using SCOPE to estimate GPP by means of applying a
LUE model, in which the only retrieved parameter would be fPAR, while LUE
would be assumed constant and adjusted only by meteorological conditions
(Figure 2). In order to examine this application scheme, we analyzed the
relationships between the components of the various LUE models (based
on fPAR, fraction of PAR absorbed by chlorophyll, fPARCab, or canopy
chlorophyll content) as captured in SCOPE. The relationships between
APAR, APARCab (PAR absorbed by chlorophyll), canopy chlorophyll content
(LAI·Cab) and GPP were examined for a simple case of constant V 25

cmax and
constant (default in SCOPE) meteorological conditions (Rin=600 W m−2, Ta
= 20°C, Rli=300 W m−2, p=970 hPa, ea=15 hPa, u=2 m s−1). This was done
in order to dismiss the impact of biochemical variability on LUE. Overall,
obtained relationships are nonlinear, strongly scattered and heteroscedastic
(Figure 5), which does not agree with the assumptions made in the foreseen
LUE model, where LUE would only vary with meteorological conditions.
These simulations were performed for a constant irradiance and, therefore,
the light response is not as saturating as typical light response curves. Thus,
all variability is due to changes in leaf and canopy properties. However,
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it is important to keep in mind that this dataset includes strongly varied
combinations. By limiting the data variability, for example by narrowing
the relations between pigments and height of the canopy (e.g., Cca 15-35%
of Cab, Cant 30-60% of Cab, hc 1.2 - 1.6 m, chosen just as an example not
to suggest any specific distributions), these relationships become much more
linear, with larger scatter of data points only for high APARCab, APAR
and canopy chlorophyll content. This agrees with the GSA analysis, which
also showed that the impact of more parameters is larger for high GPP.
Since we use constant Rin (600 W m−2), this high variability towards larger
values can be due to the photosynthetic efficiency being mitigated in the
excessive light by other parameters (e.g., LIDFa that controls the angular
distribution and therefore the ratio of sunlit and shaded leaves). As compared
to APAR, APARCab appears to be a better parameter for estimating GPP.
In the case of canopy chlorophyll content, the relationship saturates between
100 and 200 µg cm−2. Gitelson et al. (2016) directly related GPP with canopy
chlorophyll content and argued that GPP divided by incident PAR remained
invariant, supporting the concept of an optimization of resource allocation
(Goetz and Prince, 1999; Field, 1991). Since we used constant Rin in our
simulations, we can directly compare the shapes of our curves with Gitelson
et al. (2016). It is remarkable that Gitelson et al. (2016) also reported that
GPP was very sensitive to canopy chlorophyll content up to 150 µg cm−2,
and not so much for canopy chlorophyll content above. Still, our results are
more scattered and show a higher variability of GPP. However, since we used
only a synthetic dataset, we can neither support nor refute their functional
convergence hypothesis.

In general, these results suggest that LUE can change due to differences
in leaf and canopy properties and that, by limiting the variability of the
input variables, the SCOPE modelling results can converge into a more
constant LUE. However, the confining of the input parameter distribution
is not straightforward when all possible cases have to be accounted for.
Nevertheless, as Zhang et al. (2018) found that maximum LUE (based on
APARCab) tends to converge across space and time, this approach could be
further improved when the specific distributions of input parameters and
their co-dependencies are investigated in detail.

3.3. Training of vegetation parameters and GPP models

Since before we were considering different workflows of estimating GPP
using SCOPE (Figure 2), we also tested the performance of various ML
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algorithms on the data modeled with SCOPE (dataset with V 25
cmax varying

as a function of Cab and changing meteorological conditions). In addition
to GPP models, we compared performances of ML algorithms retrieving
vegetation biophysical parameters using the SCOPE data. The GPP model
was trained using satellite and meteorology data, while the other considered
ML algorithms for LAI, canopy chlorophyll content and fPARCab, used only
satellite data. We used synthetic data to both train and validate ML
algorithms. Simulated samples from SCOPE were hence divided into training
(85%) and validation (15%) subsets. For LAI, canopy chlorophyll content
and fPARCab retrievals, we used all ten (B2-B8, B8a, B11, B12) Sentinel-
2 bands (reflectance output of SCOPE convolved to Sentinel-2 bands using
spectral response functions) and the SZA of the observation. For models
estimating GPP we used Sentinel-2 bands, both SZAs (of the observation
and the modeling step), and the meteorological data.

Figure 6: Performances of NN models for (a) LAI, (b) canopy chlorophyll content
(LAI·Cab), (c) fPARCab, and (d) GPP on the test dataset (the subset of SCOPE
simulations).

We show results for NN, as RF gave similar results (data not shown).
First, to compare the performance of the NNs for different parameters, we
built a NN for each output separately. To minimize the effects of different
atmospheric corrections and to at least partly harmonize the spectra across
the sensors, for which we plan to apply our approach, we normalized the
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reflectance data to their spectral integral. In future, it would be optimal to
use harmonized products, like e.g., Claverie et al. (2018). In addition, all
inputs were normalized to fall in the range between zero and one (MinMax
scaler). For this comparison, we used a simple NN: two hidden layers with
12 neurons with rectified linear unit function (ReLU). We also tested briefly
other network structures, but results were similar and are not shown.

The performance of NN models for validation subsets is shown in Figure 6
Our results show that retrieving vegetation parameters with a good accuracy
is, in general, problematic. Even LAI, which is a commonly retrieved
parameter, is difficult to estimate with a certain accuracy. For example, LAI
has similar (even though much stronger) effects on the reflectance to LIDFa.
Overall, retrieving multiple parameters from a limited number of Sentinel-
2 bands is by nature an ill-posed inverse problem, where a set of possible
solutions could lead to a match between the measured and the simulated
reflectance data. Therefore, additional prior information can be helpful to
improve the solution (Combal et al., 2003).

Our NN model of LAI showed a worse performance than the LAI retrieval
that is implemented in SNAP, which is also using NN trained on the
PROSAIL data (Weiss and Baret, 2016). Their results were validated with
an independent test dataset (simulated using the same radiative transfer
model), which also showed a minor LAI underestimation (but only around
6) and a much better performance overall. In addition, a comparison of LAI
derived from Sentinel-2 data using this SNAP algorithm with a small set of
non-destructive (optical) field reference measurements showed a very good
agreement, with r2 of 0.83 (Vuolo et al., 2016). There are several issues that
might lead to the poor performance of our NN model. First of all, we used
a more recent version of the SCOPE model with a higher number of input
parameters, which can make it more difficult to train NNs. Furthermore, not
only a number of input parameters, but also their distribution differs among
this study and Vuolo et al. (2016), who used a Gaussian distribution. We used
a uniform distribution and LHS in order to limit assumptions on underlying
parameters as much as possible, but using a Gaussian distribution was shown
to improve performance of the LAI retrieval in case of Verger et al. (2011).
However, since GPP retrieval performed satisfactorily and it is the main focus
in this study, we did not test adding additional a priori assumptions. We
also applied a normalization of the satellite spectra to their sum across all
bands, which might lead to the loss of some information from the magnitude.
Overall, this is an ill posed problem, and an algorithm specifically designed to
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estimate LAI may impose a number of conditions to regularize the problem,
as compared to our approach where we focus on GPP estimation.

NN performed better for canopy chlorophyll content and fPARCab than
for LAI (Figure 6c and d), which agrees with the study of Verger et al. (2011).
For canopy chlorophyll content, we obtained much better performance (r2 of
0.74, as compared to r2 of 0.67 for LAI), with only minor underestimation
above 500 µg cm−2. For fPARCab, NN produced much better results (r2 of
0.94), which shows that even though here we were not able to retrieve leaf
and canopy properties accurately, more general characteristics of absorbed
radiation can be retrieved really well. Therefore, at least the fPAR element
of the LUE model can be well observed using the Sentinel-2 data.

The GPP model performed much better than the LAI or canopy chloro-
phyll content retrievals, though similarly to fPARCab, with a very small bias
(mean error = 0.2 µCO2 s−1 m−2) across the complete GPP range. (Figure 6).
This suggests that it may be possible and actually easier to directly estimate
GPP than to first retrieve other vegetation parameters, which would be then
afterwards used to estimate GPP by running the original model in the for-
ward mode. Good performance of the GPP and fPARCab models also suggests
that the important information is already available in the Sentinel-2 bands,
despite the fact that an accurate retrieval of leaf and canopy variables is very
challenging (e.g., Figure 6). However, using retrieved fPARCab in the LUE
model is also not straightforward, as according to our previous analysis, LUE
is not constant in SCOPE (Section 3.2).

Therefore, we chose to apply the ML model of GPP directly to the
satellite data, instead of performing middle-step retrieval of vegetation
parameters followed by re-running the original model in the forward mode.
Our method makes the best use of the complexity of the process-based
model (here SCOPE) in conditions of limited information about the system
that we usually have, as it combines deep understanding of photosynthesis
as implemented in the original model with the ML algorithms that are
appropriate for the application to remote sensing data on a global scale.
In addition, the algorithm design makes it easy to adjust or improve it, when
the new version of the model is available - the data for training would have
to be re-calculated and the algorithm re-trained, but it could be thereafter
directly applied in an identical manner. Furthermore, ML models can be
trained on data from the same model but with different spectral settings,
which allows a global application across a range of different satellites while
still being based on the same model.
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Table 4: Performance (r2) of different ML models on training and test datasets (both
with SCOPE), as well as on the validation (val.) data from the flux tower sites. For five
different NN models we varied the number and size of hidden layers, as shown in the table.

NN (hidden layers)

#1
(12,12)

#2
(20,20)

#3
(20,12)

#4
(12,12,12)

#5
(40,20,12)

GPP r2 train 0.92 0.93 0.92 0.93 0.96
GPP r2 test 0.92 0.94 0.92 0.93 0.95
LAI r2 test 0.58 0.62 0.62 0.59 0.68
GPP r2 val. 0.86 0.88 0.92 0.89 0.91

GPP RMSE val. 1.72 1.66 1.38 1.51 1.41

Eventually, we also added LAI as an output to the ML models trained pri-
marily to retrieve GPP, since LAI is the most influential parameter for GPP
according to GSA. Although overall the performances of both architectures
were similar, we obtained a small improvement in the performance of ML for
GPP in case of our final model settings (of 0.01 for r2 and RMSE=0.2 gC d−1 m−2

for the training and test synthetic datasets). We considered different struc-
tures of the final ML models, and tested their performances on the training,
testing and validation datasets (Table 4 and Table A.5). The results for both
NN and RF were overall very similar. However, RF was in our case slightly
affected by overfitting, since the determination coefficients were higher for
the training than for the testing datasets. This was not the case for NNs,
which had similar performance for training and testing datasets. Therefore,
we focus here on NN models, while results for RF are shown in A3. However,
our approach in general does not rely on any specific ML method.

For NNs, we varied the number of hidden layers, the number of neurons
per layers, the batch size (the number of training examples utilized in one
iteration) as well as activation functions for hidden layers. After examination,
we decided to use a batch size of 32, and ReLU as the activation function
because of its good performance and low computational cost. Eventually,
before finally applying ML algorithms to satellite data, we re-trained these
ML models with the whole available SCOPE dataset. As for the numbers of
hidden layers and neurons per layers, many different settings gave similarly
good results for the synthetic dataset, so we ultimately compared the
performances of five chosen architectures with the flux tower data (r2 between
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0.86 - 0.92, cf. Table 4). Eventually, we chose the NN model that performed
best on the flux tower validation dataset. The best settings chosen for NN
were afterwards applied to another ML model of GPP, for which we used
only Sentinel-2 bands shared with Landsat 8.

3.4. Application to Sentinel-2

The GPP model was applied to the processed Sentinel-2 data. The
comparison of resulting time series of GPP measured at flux towers and
estimated GPP are shown in Figure 7, and the overall results are compared
in scatter plots in Figure 8.

The NN model captures well the seasonal dynamics of the GPP, both in
terms of the magnitude, as well as of the phenology. The good performance of
the model is additionally confirmed by a strong linear relationship that was
established for all seasons (r2 = 0.92). The models successfully estimated
GPP also outside of the growing season, and precisely tracked the emergence
and senescence/harvest.

It must be stated that these results are for clear-sky data. Spectral
reflectance data are affected by clouds, which is not accounted for in our
statistical training and introduces errors in GPP models. In the first
step of the selection of cloud-free days, Sentinel-2 cloud-free images were
chosen visually. However, additional cloud check (based on the Sen2Cor
classification of pixel into cloud, snow, shadow, etc.), showed that we included
few days when the fields were covered by thin clouds, or partly by clouds
and/or cloud shadows. These days show worse results (underestimation for
most cases, cf. Figure A.12), which stresses the importance of atmospheric
correction and scene classification.

Our ML algorithms performed better as compared to VI models (Fig-
ure 8). However, the reNDVI model, which was fitted directly to the flux
tower dataset, also yielded good results (r2=0.77 and RMSE=4.41 gC d−1 m−2

for EVI, and r2=0.81 and RMSE=2.16 gC d−1 m−2 for reNDVI). We note that
for VI models, using the red edge band in the reNDVI indeed improves GPP
estimation as compared to EVI, and such LUE models are already widely
used and show an overall good performance (e.g., Gitelson et al., 2012; Peng
et al., 2013; Zhang et al., 2014a; Wagle et al., 2015; Yuan et al., 2015).
However, we see the strength of our method not in directly outperforming
empirical models, but in its potential to be used across a range of instru-
ments with different spectral and spatial characteristics, and for a range of
different conditions that might not be captured by empirical models. A good
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Figure 7: Time series of GPP estimated from flux towers (red), and modeled with NN
(green). Data points correspond to the days for which a clear Sentinel-2 image was
available.
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(a) (b) (c)

Figure 8: Relationships between daily flux tower GPP and GPP estimated using (a) NN,
(b) EVI and (c) reNDVI. Functions used for VIs are shown in Table 3. The straight line
shows a 1:1 relationship.

Figure 9: Relationship between daily flux tower GPP and GPP estimated using (a) the
subset of Sentinel-2 spectral bands that are also available in Landsat 8, (b) Landsat 8
data. The straight line shows a 1:1 relationship.

performance of our model was obtained despite using no empirical informa-
tion. First of all, it proves that the SCOPE model performs well and that it
is a good and a reliable tool for coupled radiative transfer and biochemical
modeling and therefore for relating reflectance data with GPP, also without
having local information from the site. Accordingly, a possible future global
application looks very promising.

The application of our approach to the Sentinel-2 data allows agriculture
observations at a sub-field scale. The importance of the spatial resolution
is very clear when considering areas, which despite being homogeneously
croplands, consist in fact of variable crop types. For example, as shown
in Figure 10, two observed fields (at flux tower sites US-Ro1 and US-Ro2)
demonstrate very different phenology. Kura Clover (which is a cover crop)
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Figure 10: Maps of estimated GPP using Sentinel-2 data over area neighboring the flux
tower sites US-Ro1 and US-Ro2 for four days in summer 2016. The fields at these sites
are highlighted. Soybeans and Kura Clover were grown at US-Ro1 and US-Ro2 in 2016,
respectively.

was grown in 2016 at the site US-Ro2, and is photosynthetically active during
the whole summer. However, the phenology of soybeans is determined by
planting and harvesting time, and its growing season is much shorter than
for Kura Clover. Using Sentinel-2 images allows clear separation of different
fields (not always the case for observations with coarser spatial resolution),
which improves the differentiation of GPP among fields and therefore the
estimation of the timing of crop phenology stage.

There are generally many issues that can hamper the model performance:
the quality of the Sentinel-2 data and their atmospheric correction, the
quality and the coarse spatio-temporal resolution of meteorological data, as
well as the simplifications and assumptions used within the original model
itself (especially lack of consideration of the soil moisture stress). However,
even though there is no direct effect of soil moisture limitation within the
model now, a prolonged stress is expected to have an effect on the canopy
(e.g., through a reduction in Cab, and eventually in LAI) that will be captured
later by SCOPE and therefore by our ML model. We note that the applied
flux tower dataset covers only the two years when no significant drought
stress was affecting crops (even though these fields are not irrigated). The
performance during drought episodes could be improved further by including
thermal data (Bayat et al., 2018), which are however not available from
Sentinel-2 data. Besides the limitations of the original model itself, ML
algorithms are only a representation of the original model and do not exactly
mirror its behavior. We tried to minimize the effects of atmospheric
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correction by normalizing the reflectance spectra. Nevertheless, the model
was strongly impacted by the presence of clouds (Figure A.12). In addition,
footprints for the flux towers were not known and therefore we used a simple
approach to calculate mean values over the whole fields. The footprints of
flux towers for agricultural sites were estimated in previous studies to be up to
1-2 km (e.g., Chen et al., 2012; Wang et al., 2016a), but they vary with wind
speed and direction, turbulence intensity, surface roughness, measurement
height, and atmospheric stability (Vesala et al., 2008), which can also lead
to mismatches of flux tower and modeled estimates. Furthermore, we used
rather coarse meteorological data (resolution of 0.25°) that do not capture
finer spatial variability. We also do not explicitly account for the noise in
the data, even though the performance of our models is affected by the
uncertainties associated with the meteorological and satellite input data as
well as the radiative transfer model itself.

Overall, the GPP model performed best for soybeans, for which the
relationship between modeled and flux tower data was the most accurate
(US-Ro1 and US-Ro5), and worst for the De-RuS site (Figure 8). To apply
our model to C4 crops, SCOPE simulations need to be redone accounting for
the different photosynthetic pathways of the dark reaction of photosynthesis.

3.5. Application to Landsat 8

As the first attempt towards global application of our approach, we tested
it on Landsat 8 data. We used the same NN settings as for Sentinel-2, but
decreased the number of input satellite bands from ten to six. First, we
tested the performance of the model on the Sentinel-2 data at bands shared
with Landsat 8, which led to a decrease in model performance (r2=0.77 and
RMSE=2.27 gC d−1 m−2, see Figure 9). The applied model had the same
structure as the one chosen for the Sentinel-2 band setting, and therefore
it could be expected to perform slightly better if specifically adjusted for
Landsat 8.

Eventually we also applied NN model to the Landsat 8 data in GEE. The
parameters of the model (scaling of the input parameters and the weights
and intercepts of the neural network) were exported, and our final NN model
was implemented in GEE for Landsat 8 data. The results were tested for
the available flux tower data for the four sites in the USA (US-Ro1-2, US-
Ro5-6), as the data for the DE-RuS site was only obtained for the Sentinel-2
overpasses. The overall performance of the model was good, but GPP was
overestimated outside of the growing season (Figure 9b).
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The better performance of the model for Sentinel-2 bands suggests that
the red edge bands do indeed improve ML modeling of GPP, which is also the
case for the VI models. These bands have been shown to improve chlorophyll
content estimation (Clevers and Gitelson, 2013), but in our case they seem
to be especially useful for improving the model performance outside of the
growing season (both for our ML models as well as for VIs).

Applying our ML models to both instruments simultaneously clearly in-
creases the number of available data points for crop observations (Figure 11).
Interestingly, for the US-Ro1 site there are many more Landsat 8 observations
available as compared to Sentinel-2, despite an overall better revisit time of
Sentinel-2 (as there were fewer cloudy days during overpasses of Landsat
8). GPP values were quite similar among the sensors, especially during the
growing season, which suggests a great potential to extend our approach to
other instruments.

4. Conclusions and Future Work

Estimating photosynthesis of crops is crucial for the crop status moni-
toring and the forecasting of the agricultural production, and can be greatly
supported by satellite remote sensing. Since recently, and partly due to the
advent of Sentinel-2 satellites, an unprecedented amount of data suitable for
agriculture observations is available. Taking advantage of recent develop-
ments in satellite remote sensing technology, advances in machine learning
and more complex and detailed models of photosynthetic processes, we de-
veloped a hybrid approach to model GPP with satellite data.

We have combined the process-based model SCOPE with ML algorithms
to estimate GPP of C3 crops using satellite data and ancillary meteorological
information. Several approaches were tested, and our final NN model
estimated GPP at the tested flux towers very accurately (with r2 of 0.92 and
RMSE of 1.38 gC d−1 m−2). ML models were more accurate than VI models,
including the reNDVI model fitted directly into the flux tower dataset. Our
proposed approach successfully estimated GPP across a variety of crop types
and environmental conditions, also for time periods of no vegetation. This
method was used for high spatio-temporal resolution monitoring of crops
with Sentinel-2 and Landsat 8 data, but can be in fact further extended
to other satellites. The results are promising and suggest a way to bridge
process-based modeling for global application in an effective manner using a
hybrid approach. Our model does not use any additional local information
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Figure 11: Time series of GPP estimated from flux towers (blue), and modeled with NN
using Sentinel-2 (orange) and Landsat 8 (green) data.

from the site, and therefore we plan to apply it globally using platforms
providing cloud computing technology. Extending our approach to other
sensors, including MODIS, will require additional accounting for spectral
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differences and the more complex geometry of observations. However, using
data covering a longer time span will allow us to use a more extensive flux
tower dataset for validation (e.g., FLUXNET2015 dataset), and therefore
will provide a good opportunity for further model improvements. This
will include testing a selection of the training dataset (e.g., selecting input
distribution, assuming dependencies among parameters, adding noise to the
data), model types and architectures, as well as procedures performed for
harmonization of the datasets among satellites.
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Appendix A. Appendix

Appendix A.1. RF

In the case of RF model of GPP, we tested settings including maximal
depth, minimal samples leaf, as well as changing sample weight (in order
to better represent scenarios with small LAI). Similarly to NN, the tests
performed on synthetic dataset gave similarly good results, so five models
were chosen to be compared with the flux tower data. The performances of
these ML algorithms are shown in Table A.5.

The comparison of resulting time series of GPP measured at flux towers
and GPP estimate with RF model (as well as NN model, including scenes
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Table A.5: Performance (r2) of different ML models on training and test datasets (both
with SCOPE), as well as on the validation (val.) data from the flux tower sites. For five
different RF models, we varied maximum depth of the tree (MaxD), minimum number of
samples required to be at a leaf node (MinLS), as well as sample weights (SW). In the case
of the settings SW v.1, we increased the sample weight of data points with GPP below
2 µmol CO2 m−2 s−1 to 2, and for the settings SW v.2 to 20.

RF (settings)

#1
default

#2
MaxD:20

#3
MinLS:5

#4
SW v.1

#5
SW v.2

GPP r2 train 0.98 0.98 0.96 0.98 0.98
GPP r2 test 0.90 0.90 0.90 0.90 0.90
LAI r2 test 0.51 0.51 0.52 0.51 0.51
GPP r2 val. 0.84 0.84 0.85 0.87 0.89

GPP RMSE val. 1.98 1.99 1.93 1.70 1.58

covered by thin clouds) are shown in Figure A.12, and the overall results are
compared in scatter plots in Figure A.13
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Figure A.12: Time series of GPP estimated from flux towers (red), and modeled with
NN (green) and RF (blue). The straight line shows the GPP for only clear-sky dates,
while dotted images show the dates when fields were covered by thin clouds (that were
not removed directly in the visual check of the images).
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Figure A.13: Relationship between daily flux tower GPP and GPP estimated using the
RF model. The straight line shows a 1:1 relationship.
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