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S U M M A R Y
Microseismic monitoring is a primary tool for understanding and tracking the progress of
mechanical processes occurring in active rock fracture systems. In geothermal or hydrocar-
bon fields or along seismogenic fault systems, the detection and location of microseismicity
facilitates resolution of the fracture system geometry and the investigation of the interaction
between fluids and rocks, in response of stress field perturbations. Seismic monitoring aims to
detect locate and characterize seismic sources. The detection of weak signals is often achieved
at the cost of increasing the number of false detections, related to transient signals generated
by a range of noise sources, or related to instrumental problems, ambient conditions or human
activity that often affect seismic records. A variety of fast and automated methods has been
recently proposed to detect and locate microseismicity based on the coherent detection of
signal anomalies, such as increase in amplitude or coherent polarization, at dense seismic
networks. While these methods proved to be very powerful to detect weak events and to reduce
the magnitude of completeness, a major problem remains to discriminate among weak seismic
signals produced by microseismicity and false detections. In this work, the microseimic data
recorded along the Irpinia fault zone (Southern Apennines, Italy) are analysed to detect weak,
natural earthquakes using one of such automated, migration-based, method. We propose a
new method for the automatic discrimination of real vs false detections, which is based on
empirical data and information about the detectability (i.e. detection capability) of the seismic
network. Our approach allows obtaining high performances in detecting earthquakes without
requiring a visual inspection of the seismic signals and minimizing analyst intervention. The
proposed methodology is automated, self-updating and can be tuned at different success rates.

Key words: Computational seismology; Earthquake source observations; Induced seismic-
ity; Seismicity and tectonics; Statistical seismology; Earthquake detection.

I N T RO D U C T I O N

The increasing demand for fast and automated seismic monitoring
routines for earthquake hazard management and industrial applica-
tions stimulated in recent years the development of new, unsuper-
vised and accurate methods for the detection and location of micro-
seismicity. These techniques are developed to process large seismic
data sets and detect low magnitude events. Typically, when process-
ing microseismic data, seismicity detectors are prone to a certain
number of false detections, which results from amplitude anomalies
in seismic records, either because of instrument malfunctioning or
due to simultaneous incoherent signals recorded at different sta-
tions. Obviously, it is desirable to minimize the percentage of false
detections, and this percentage can be used to evaluate the detection
algorithm performance. Thus, automated unsupervised seismicity

detectors face the challenge of discriminating coherent seismic sig-
nals produced by weak seismic sources from comparable coherent
seismic noise related ones, reducing the percentage of false detec-
tions.

Among different automated detectors, migration-based methods
(also called coherence-based methods) have undergone a consid-
erable development in recent years (e.g. among others, Cesca &
Grigoli 2015). Using the full waveform information, these meth-
ods are based on the migration techniques extensively adopted in
reflection seismic: the observed seismic waveforms are delayed
and stacked to maximize the coherence of selected wave packets
recorded at different stations. The migration-based methods have
been used at various scales and context: from global seismology
(Kruger & Ohrnberger 2005; Ekstrom 2006; Maercklin et al. 2012)
to local microseismic monitoring (Whiters et al. 1999; Gharti et al.
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2010; Grigoli et al. 2013; Zeng et al. 2014), but also for real-
time applications in earthquake early warning (e.g. Picozzi et al.
2011; Meng et al. 2014). In all these methods, the first step towards
the earthquake source location and detection is the computation
of characteristic functions (CFs) that are non-linear combinations
of seismic signals, which allows depicting changes of energy, fre-
quency or polarization of the original signals with respect to the
background noise. A variety of CFs have been used for earthquake
detection purposes. The ratio between signal average amplitudes
computed for windows of different length, generally referred as
short-term average/long-term average (STA/LTA, Freinberger 1962;
Allen 1978, 1982) is the most applied, but various alternative CFs
in which higher-order statistics such as skewness and kurtosis of
these functions (Saragiotis et al. 2002; Gentili & Michelini 2006;
Kuperkoch et al. 2010; Baillard et al. 2013) have been also proposed
(see Cesca & Grigoli 2015, for an overview). According to some
authors, CFs based on signal energy offer better performances than
STA/LTA in situations of low signal-to-noise ratio (SNR) or intense
seismic activity (Grigoli et al. 2016). Independently on the adopted
CFs, migration-based approaches detect and locate earthquakes by
shifting in time and stacking the chosen CFs, or their STA/LTA
ratio, for all the possible source locations at all stations. For the
correct earthquake source location, the stacked waveforms provide
the highest coherence. Migration based methods show several ad-
vantages: (1) phase identification and picking are not required, (2)
high robustness against noisy data, (3) full automation, (4) fast
processing and (5) high detection rate. Despite these advantages,
waveforms stacking and coherence techniques show also some im-
portant drawbacks. Indeed, their performance strongly depends on
the chosen detection threshold. In particular, these approaches ex-
ploit the coherence values as indicators for the detection quality,
and the larger is the coherency the more likely the detected event
is true one. Furthermore, the coherence value depends on the event
magnitude. Large events are recorded by many stations with high-
SNR, thus many traces contribute to the stacking of CFs, and the
overall coherence is large. Weak events are instead recorded by few
stations, and the coherence decreases. On the other hand, in order
to recover weaker events and reduce the completeness magnitude
of the catalogue, earthquake detectors are generally set with low
coherence thresholds. While decreasing this threshold typically re-
sults in a high number of detections, it is well known that the results
are certainly contaminated by higher numbers of false detections;
requiring a post-processing phase to check and/or classify detected
signals and to guarantee that each detection corresponds to a seismic
event. Since the discrimination between real and false detections is
a challenging task to accomplish for large data sets, it became a
priority to implement strategies to facilitate this task and to improve
the performances of detection algorithms.

In this work, we present an application of a coherence-based
detection and location method applied to two seismic sequences
recorded at a near-fault observatory along the Irpinia fault zone
(Fig. 1), Southern Apennines (Italy), and the implementation and
validation of a new method for the automatic discrimination of
real against false detections, which considers empirical data and
includes implicit information about the detectability of the seismic
network. The detectability of a seismic network depends on several
factors: distribution of stations, density of the network, site condi-
tions, instrumental characteristics and post-processing methods of
recorded data (Schorlemmer & Woesssner 2008). The approach that
we propose is based on the idea that, while coherence is a robust
metric for event detection and location, the information about the

number and geometry of stations can be used for improving the
discrimination of real and false events.

DATA

The Irpinia Fault System is a complex, fault structure area with
extensional kinematics. It is characterized by high seismic poten-
tial and destructive earthquakes. The most recent large event, the
Ms 6.9, 1980 Irpinia earthquake, occurred along NW–SE striking
faults with complex rupture characterized by three main episodes,
producing about 3000 fatalities and severe damage (Bernard &
Zollo 1989, Fig. 1). On the 3 April 1996, a ML 4.9 earthquake oc-
curred within the epicentral area of the 1980 earthquake; it showed a
normal fault mechanism (Cocco et al. 1999) and was the largest one
since 1980.

The seismicity in this area has been monitored since 2005 by
a near-fault seismic observatory, the Irpinia Seismic Network (IS-
Net). ISNet is a dense seismic network made up of 32 stations,
each equipped with three-component ground acceleration and ve-
locity (short and broad-band) sensors. ISNet covers an area of about
100 km x 70 km, monitors the Campania-Lucania Apennines, in
Southern Italy, and is operated by the Department of Physics of the
University of Naples ‘Federico II’.

Instrumentally recorded seismicity observed during the last 10
yr is comprised of low magnitude earthquakes (M < 3), mostly
confined within a volume bounded by subparallel, NW–SE trend-
ing normal faults, following the Apenninic chain direction, as the
segments of the fault system activated during the 1980 Irpinia
earthquake (Bernard & Zollo 1989). The seismicity is distributed
uniformly in the uppermost 15 km of the crust, with normal to
normal-strike focal mechanisms, evidencing a NE–SW extension,
consistent with the regional stress field in the Southern Appenines
(De Matteis et al. 2012; Adinolfi et al. 2015). Seismicity frequently
occurs in the form of microseismic sequences or swarms that last a
few days with weak maximum magnitudes (M < 3). These repeated
microearthquake sequences originate along zones of weakness and
are characterized by colocated events with the same focal mecha-
nism (Stabile et al. 2012). The seismic sequences suggest a similar
stress loading-unloading mechanism spanning a range of spatial
scales and distributed along the segmented normal fault system in
the Southern Apennines, also related to the internal local stress
variations and/or fluid migration along the fault zone near the geo-
metrical barrier (Stabile et al. 2012).

In this study, we examine two microseismic sequences, both oc-
curred along the Irpinia fault zone near the village of Lioni (Fig. 1).
The first occurred on 2–3 August 2011 with a ML 2.7 main shock
happened on August 2nd at 20:14:17 (hereinafter, SS1). It consisted
of 25 events with a minimum magnitude equal to ML 0.3. The sec-
ond sequence began with an event of ML 2.8 on 16 July at 18:01:24
(hereinafter, SS2) and finished on 17 July 2017. It was composed
of 16 earthquakes with a minimum magnitude equal to ML 0.8
(http://isnet-bulletin.f isica.unina.it/cgi-bin/isnet-events/isnet.cgi).

In order to enhance the number of detected foreshocks and af-
tershocks, continuous seismic data streams were analysed for both
seismic sequences for a period of 10 d, extending from 5 d before
to 5 d after the occurrence of each main shock. We used continuous
waveforms recorded at three-component velocimeters (1 Hz short-
periods and 40 s broad-bands sensors) with a sampling frequency
of 125 Hz. SS1 and SS2 data are acquired by 21 and by 10 seismic
stations, respectively.
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Figure 1. Epicentral map of the earthquakes analysed in this study. Green circles and star (mainshock) refer to SS1, light blue circles and star (mainshock) to
SS2. The Irpinia Seismic Network (ISNet) is indicated with red and blue triangles. SS1 was recorded by seismic stations indicated in blue; SS2 was recorded
by seismic stations indicated in red and blue. Yellow star refers to epicentral location of the 23 November 1980, Ms 6.9, Irpinia earthquake and orange star
refers to the epicentral location of 3 April 1996, ML 4.9 earthquake. Seismogenic sources related to Irpinia Fault System are indicated in orange; potential
sources for earthquakes larger than M 5.5 of surrounding areas are indicated in grey (Database of Individual Seismogenic Sources, DISS, Version 3.2.1, DISS
Working Group 2018). Black square shows the location of volumetric grid of potential hypocentres explored in this work. (b) Enlarged map of the red rectangle
presented in (a). Earthquakes evidenced in (b) are used to calculate the scaling factor of the two seismic sequences.
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M E T H O D

We used a recently developed detection and location algorithm
(Lassie, https://gitext.gfz-potsdam.de/heimann/lassie, Heimann
et al. 2017). Lassie exploits a migration-based technique that depicts
coherent (P and S wave) arrivals at different stations for detecting
and locating earthquakes (Matos et al. 2018; Lopez-Comino et al.
2017). In a pre-processing step, traveltimes for different seismic
phases were computed for a 3-D grid (with size 20 × 20 × 20 km
and 2 km grid spacing) of possible locations using the CAKE tool
(Heimann et al. 2017) and using a local 1-D velocity model (Ma-
trullo et al. 2013).

The detection process includes following steps (Figs 2a–d and
S3):

(1) First, continuous waveforms are cut into overlapping time
windows (width equal to 20 min with 20 per cent overlap). Wave-
forms of each time windows are used to compute the characteristic
functions. In particular, each three-component recording is band-
pass filtered using a 4th order Butterworth filter (1–15 Hz) and
squared. The squared components are combined by summation into
a single trace, which is proportional to the seismic energy. Next,
the resulting trace is smoothed by convolving it with a Hann win-
dow. The length of the window should roughly correspond to the
duration of the transient wave packets of interest (i.e. we used a
length of 10 s). Finally, the signal is normalized by its moving av-
erage of length 50 s. This processing results in a smooth positive
characteristic function (CF) for each station, which is sensitive to
transient increases of seismic energy. We adopted a smooth CF to
reduce the spatial and temporal sampling. This choice improves the
computational performance and allows to process high sampling
rate and large data set quickly (Lopez-Comino et al. 2017).

(2) The 3-D grid is scanned iterating over all the possible sources.
For each location, CFs are shifted in time according to the travel-
time corrections and stacked to form a so-called image function
contribution (IFC):

I FC(k, t) =
∑

i

C Fi (t + �τi (k)), (1)

where k is the grid node index, t is the time sample and �τ is the
travel time correction for the ith station and kth node. The IFC is
computed for each spatial location and time step. Multiple IFCs, for
example derived by the detection of different seismic patterns and/or
seismic phases, may be weighted and combined to build a global
image function (i.e. an indirect measure of signals coherence). In
this study, we worked with a single CF pre-processing scheme,
but we used two different travel time corrections in the stacking,
one for P and one for S phases, resulting in two distinct IFCs as
defined in eq. (1). We combined the two IFCs using summation with
equal weight. P and S traveltimes corrections generally improve the
performance of the algorithm (Heimann et al. 2017; Lopez-Comino
et al. 2017), even if comparable detection results can be obtained
using only one seismic phase with smoothed CF (i.e. S wave, the
most energetic phase; as shown in Table S1).

(3) For detection purposes, we considered the time dependence
of the coherence. In particular, the events detection is performed
by analysing the image function, which is a time-series built by
considering at each time step the highest coherence value in the
spatial grid. Hence, the events detection is achieved by searching
for local maxima in the image function, whereas an event is declared
whenever the image function is greater than a threshold value. Of
course, in relative terms, higher coherence values reflect both a
coherent seismic energy increase recorded at a larger number of

sensors and a better SNR. However, the range of possible coher-
ence values strongly depends on the network geometry, number of
sensors and noise conditions. Therefore, the detection threshold is
generally manually defined evaluating the real/false detections and
their relating detection (coherence) value.

In this study, we carried out little adjustments to the Lassie code
to get additional information. In particular, to automatically let it to
discriminate between real from false detections, we implemented
an empirical approach based on an assimilation principle. Our ap-
proach exploits the distribution of the interdistances of seismic
stations for a set of real detections and leads us to define a seismic
network detectability, which is in turn applied to new data. The
network detectability is in general function of different parameters:
seismic network density (i.e. number of stations and their areal dis-
tribution), geometrical characteristic of the seismic network, site
conditions that account for velocity, attenuation model, seismic
noise, waveforms characteristic that account for the magnitude and
frequency content and time. The detectability is a time-dependent
property, mainly due to possible changes in operational conditions
with time (i.e. different number of operating stations, network den-
sity and geometrical characteristic) that the seismic networks could
experiment and variations in the environmental seismic noise con-
ditions. Finding a theoretical relation or expression that accounts
for all these variables is a difficult task, since it would require also
an accurate knowledge of the medium. For this reason, we decided
to exploit directly the empirical data characteristics to assimilate
information on the network capability of detecting earthquakes. To
this purpose, we investigated the relation between the number and
the mutual distances of stations contributing to real detections and
the relative coherence values.

We define as ‘triggered’ the seismic stations that mostly con-
tribute to determine the coherence value for a seismic event. To do
this, we single out the stations having a CF amplitude greater or
equal than the average CF value computed for all stations. In other
words, triggered stations correspond to those mostly contributing
to the stack of CFs and, consequently, to the final value of the IFC.
In the case of detections of earthquakes, as expected, we observe
that seismic stations located close to the epicentre are associated to
larger CF amplitudes than those at greater distance. Hence, for each
detection, we defined the triggered stations interdistance (TSI; see
Supporting Information) as the mean value of their distances from
their spatial barycentre. Larger magnitude events are typically well-
recorded at many seismic stations, even at large epicentral distances;
and therefore, we obtain for them large TSI values. On the contrary,
smaller magnitude events are recorded with good SNR only by few
stations near the epicentre, leading to small TSI. In the case of false
detections due to natural/anthropic seismic sources or instrumen-
tal malfunctioning, simultaneous spurious signals may lead to high
IFC, but the distribution of triggered stations can be spatially sparse
and not clustered like in case of earthquakes. Hence, while the co-
herence value associated to a false detection can be comparable the
one of weaker earthquakes, we expect that the TSI for false detec-
tion will be in general larger (i.e. the triggered stations for a false
detection are not spatially clustered). The TSI depends on earth-
quake location with respect to seismic network and its geometry,
and is affected by the ambient noise level too. The TSI is therefore a
parameter potentially capable of providing useful information about
the network performance. In the following, we illustrate how the TSI
can be used as additional parameter towards the automated discrim-
ination of real and false detections, especially when approaching the
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Figure 2. Example of detection belonging to SS1. The earthquake (ML 2.7) occurred on the 2011-08-02 at 20:14:17 (UTC) nearby the Lioni village. (a)
Waveforms used for detection, sorted by hypocentral distance. (b) Characteristic functions (normalized amplitude) calculated for each station. They are
corrected with P-wave velocity (red lines) and S-wave velocity (blue lines) for the travel time and stacked to obtain the image function (d). The markers
indicate the best fit of synthetic arrival time for P and S phase. (c) Stack of the coherence map for the search region with seismic stations (black triangle) and
event detected (white star). The colour bar shows coherence values. (d) Image function corresponding to the best fit of source position along a processing time
window centred on the origin time of the detected earthquake. The white star indicates the detected event above a fixed threshold value (black line).

coherence threshold, where real and false detections mostly overlap
(Fig. 3 and Figs S1 and S2).

We first took into consideration the Lassie’s detections for the
second earthquakes sequence (SS2) and analysed the TSI and coher-
ence. In particular, a binned correlation matrix between coherence
and TSI was calculated, estimating for each bin the real detection
frequency, which we define as the number of real detections divided
by the number of total detections (i.e. real plus false). A detection
is defined ‘real’ or ‘false’ after a visual inspection of the recordings
by an operator. We selected a grid sampling of 10 units for the
coherence and 1 km for the TSI. Finally, the binned correlation ma-
trix was spatially interpolated for computing correlation values also
at those bins for which detections were not available (see Section
’Results and Discussion’). The derived coherence–TSI detection
matrix, which is obtained from the analysis of a training data set
(hereinafter SS2) and accounts for the real detections performance
of the considered seismic network (i.e. it considers its geometry and
data quality) can be used to discriminate true/false detections in new
data sets. Indeed, real detections can be automatically identified by

extracting all the detections that fall into the coherence–TSI bins
with values larger than a desired threshold.

In order to carry out a performance analysis and to validate our
method, for both the considered data sets all the detections were
visually inspected and in the case of earthquakes their location and
magnitude were estimated. We point out that in this study we did not
use the preliminary locations provided by Lassie, which are obtained
by the maximum value of coherence and the travel-time stacking
after the P- and S- wave velocities corrections. The reason for this
choice is that our main goal here was to accomplish the earthquakes
detection being as fast and accurate as possible. Hence, we decided
to adopt a smooth CF which allows good performance in detecting
energetic signals at the cost of a larger location uncertainties. Our
idea is that, once the detection of earthquakes is carried out with
the Lassie’s configuration used in this study, a refined analysis on
the data set of trusted events with fine-tuned CFs capable of better
identifying P and S waves arrival times can be easily implemented.

Therefore, for the location of earthquakes occurred inside the
ISNet seismic network, we manually picked the P and S wave
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Figure 3. Plot of triggered (red triangles) and not-triggered (grey triangles) stations, their barycentre (red circles) with the location of detected event (yellow
star) for the example shown in Fig. 2 (a), for a case of real detection (b) and false detection (c) of comparable coherence value. For each case, the ’TSI’ values
are indicated. More details are reported in the supporting information.

arrivals and we used the NonLinLoc software (Lomax et al. 2000)
with a local velocity model (Matrullo et al. 2013). The local mag-
nitude was estimated following Bobbio et al. (2009). The hypocen-
tre parameter and local magnitude for the earthquakes outside
the network were extracted from the INGV Bulletin web page
(http://cnt.rm.ingv.it/en).

R E S U LT S A N D D I S C U S S I O N

Full waveform detections for both SS1 and SS2 were carried out
with a threshold value (IFC) equal to 200. We adopted such rather
low threshold value aiming to obtain large numbers of detections
which can be analysed in terms of TSI. For SS1, 147 detections were
found, with 51 real earthquakes after visual inspection (Figs 4a and
S4a). For these real detections, the coherence ranges between 265
and 1235, while the TSI ranges from 12.4 and 22.7 km. For SS2, we
visually identified 52 real events out of 316 detections (Figs 4b and
S4b). The coherence of real detections varies here between ∼200
and ∼700 and the TSI between 12.0 and 23.5 km. The detected
seismicity is not limited to the Lioni seismic sequences, but also
includes the background seismicity occurred inside and outside the
seismic network.

As shown in Fig. 4(a), the selection of an IFC threshold equal
to 400 would lead to avoiding all false events, but at the price of
reducing the number of detected events to only 13. A smaller IFC
threshold equal to 300 would instead introduce some false detec-
tions. We observe a ‘transitional’ zone between 300 and 400 in
which both real and false detections are concomitant due to low
SNR or coherent noise at near stations. These results confirm that
an event-discrimination strategy based only on coherence thresh-
olds is not optimal to classify real/false events and it would force
the operators to look for a compromise between the need of de-
tecting the microseismicity with the lowest possible magnitude and
the need of avoiding the interpretation of false detections as real
earthquakes.

Figs 5(a) and (b) shows the coherence–TSI matrix computed for
the SS2 data set. The contour lines represent the real detection
frequency (RDF, i.e. the number of real detections divided by the
number of total detections) as a function of coherence and TSI.
The coherence grows as TSI grows; so, once the TSI is calculated,
the coherence threshold can be used for discriminating among real

and false events, or to identify transitional zones that need special
attention. The coherence–TSI matrix provides empirical thresholds
for the discrimination of real/false events with different confidence
levels. Our aim was to verify if such a matrix could be used as a
tool for an automatic real event discrimination. To this purpose, we
tested this strategy on the SS1 dataset, using as discriminator the real
detection coherence–TSI matrix obtained for SS2. Before running
the discrimination analysis, we must consider that any change in
the number and geometry of operating stations could impact on the
coherence– TSI matrix, and therefore on the discrimination results.
Indeed, if the number of triggered stations changes, considering
that the IFC functions (eq. 1) are calculated by stacking a different
number of waveforms, the coherence level threshold should change
too. To correct for this effect, we select a couple of earthquakes from
the two seismic sequences SS1 and SS2 having similar magnitude
and location (ML 1.0, Lioni on 16 July 2017, at 18:18:55 and ML

1.0, Lioni on 2 August 2011, at 20:38:50; Fig. 1b) and that were
recorded by a different number of stations. Therefore, we scaled
the coherence values of SS1 (i.e. the validation dataset) by a factor
equal to the coherences ratio of the two considered earthquakes (i.e.
the correcting factor is 0.5; Fig. S5). We estimated such correcting
factors for three more suitable earthquake couples, obtaining a mean
value of 0.5.

The coherence–TSI matrix defined for SS2 is then applied to
the normalized values of SS1. We tested the performance of our
approach for different RDF values as threshold. We compared the
success rate of our automatic and empirical discriminator for RDF
equal to 0.8, 0.5 and 0.3 against the effective number of real detec-
tions from visual inspection (number of real detections, correctly
identified, divided by the total number of real detections for a con-
sidered RDF threshold as percentage). Setting a RDF > 0.8, we
identified 31 detections, with 30 real detections and only 1 false de-
tection (Fig. 6a). For a RDF > 0.5, we found 38 detections, with 35
real detections and 3 false detections (Fig. 6b). For a RDF > 0.3, we
obtained 48 detections, with 40 real and 8 false detections (Fig. 6c).
These results show that our approach select empirically real earth-
quakes from false detections with a 96.8, 92.1 and 83.3 per cent of
success rate, respectively. We obtained a percentage increase in the
number of automated earthquake detections equal to 43 and 76 per
cent compared to the INGV and the ISNet catalogues in the first case
(RDF > 0.8), to 66 and 106 per cent in the second case (RDF > 0.5),
and to 90 and to 135 per cent in the third case (RDF > 0.3). These
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2060 G.M. Adinolfi et al.

Figure 4. Coherence versus Triggered station interdistance (TSI) for SS2 (a) and for SS1 (b). Real detections are indicated in green and false detections are
indicated in grey. In (b) the coherence values are multiplied for a scaling factor equal to 0.5.

results demonstrate the potential of our approach for the automatic
classification of large detection catalogues (Table S2).

Considering the magnitude and the hypocentres of the detected
earthquakes, our results agree with the ISNet performance estimated
by Stabile et al. (2013). Although the present network configuration
is slightly different from that considered by Stabile et al. (2013), we

detected and located earthquakes at Lioni with a minimum magni-
tude (ML) of 0.3. Other detected earthquakes, probably with smaller
magnitude, could not be located because they did not meet the min-
imum location criteria (3 P-wave + 1 S-wave arrival times), in
accordance with the detection and location thresholds indicated for
ISNet by Stabile et al. (2012).
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Detection of weak seismic sequences 2061

Figure 5. Coherence–TSI matrix calculated for SS2. Bins used for the linear interpolation are indicated. The linear interpolated matrix is shown with real
detections used (grey circles). The colours refer to different values of the frequency of real detections calculated for each bin.

The coherence–TSI matrix derived using a training dataset rep-
resents an empirical measure of the network detectability. Its usage
for the processing of new data sets is only conditioned to the seis-
mic network characteristics of the training dataset. If we look at
the trend of isolines, we see that the coherence grows as TSI grows
(Fig. 5b); this is due to the attenuation experimented by the seismic
wavefield. As an effect, small earthquakes will be recorded by few
stations, located close to epicentre, while large earthquakes will be
recorded by a larger number of stations with higher interdistances.
Our approach empirically defines the range of station interdistance
at which the analysed seismicity is well recorded by a specific net-
work configuration.

If the seismic network experiences a variation of its operating
conditions (e.g. change in the number or in the distribution of seis-
mic stations), the coherence-based detection method can be easily
recalibrated by choosing a new threshold, suitable for the modified
geometry and numbers of stations. A further useful aspect of the
coherence–TSI matrix is that different thresholds can be selected
while analysing the earthquake detections results, modulating the
chance of detecting false events and the ratio of real/false detec-
tions. If an operator wishes to reduce or exclude false detections,
a high threshold can be selected; while, if it is necessary to focus
the attention on smaller earthquakes that are located at the limit
of the detectability of seismic network, a smaller threshold can be
selected. If the geometrical configuration of the seismic network is
constant and the ambient noise and the physics proprieties of the
medium are in first approximation stationary, the coherence–TSI
matrix will depend only on the seismicity characteristics (location
and magnitude distributions).

The approach proposed in this study is data- and network-driven,
in the sense that the method performance is driven by the available
data and the network geometry. Furthermore, the approach is as-
similative, in the sense that the method detection performance will

improve in time with the increase of the data set used for training
the system. Indeed, the coherence–TSI matrix can be easily updated
with new recorded data and real/false detection results so that its
power in discriminating between the real/false detections, especially
at ‘transitional zone’, will increase with time.

One of the problems shown by coherence-based earthquake de-
tectors is related to earthquakes occurring at the edge or outside the
network. As shown in Fig. 7, the real detections show two distinct
trends with respect to the coherence. The earthquakes occurring
inside the seismic network show coherences that linearly grow with
magnitudes with a lower gradient with respect to earthquakes oc-
curring outside the network (i.e. these latter show a higher slope).
Even if characterized by larger magnitudes, earthquakes occurring
outside of the network have P- and S-waves signals with lower SNR
than the within network events due to the larger epicentral distances
and the larger seismic phases attenuation, which leads to low coher-
ences and high stations interdistance. For instance, considering the
real detection of SS1, earthquakes located at the border or outside
the seismic network show a TSI above 20 km. Therefore, combin-
ing the information of coherence, magnitude and TSI, it is possible
to estimate a range of stations interdistance and coherence values
to further discriminate earthquakes occurring inside or outside the
network.

C O N C LU S I O N S

A coherence-based earthquake detector was applied to two mi-
croseismic sequences (ML < = 2.8) at the Irpinia Fault System
(Southern Italy). The earthquakes were detected with a migration-
based technique using coherent P- and S-wave arrivals recorded
by the dense seismic network operating in Irpinia and assuming a
local, 1-D velocity model. A new strategy was proposed to automat-
ically discriminate between real and false detections. The triggered
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Figure 6. Results for SS1 data using threshold larger than 0.8 (a), 0.5 (b) and 0.3 (c). The coherence–TSI matrix used for the selection of real/false detections
is shown. Grey circles refer to false detections; white circles refer to real detections, correctly selected for the relative threshold; fuchsia circles refer to false
detections, incorrectly selected as real earthquakes.
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Figure 7. Local magnitude versus coherence for SS1 (green stars) and SS2 (blue stars). Light-blue and light-green stars showing a linear trend with a smaller
slope correspond to earthquakes occurred inside the seismic network. Dark-green and dark-blue stars refer to earthquake located outside the network.

station interdistance (TSI) information was included in the earth-
quake detection strategy; a coherence–TSI matrix was empirically
calculated and applied to real data. Our results show that the pro-
posed approach empirically selects real earthquakes from overall
detections with 96.8, 92.1 and 83.3 per cent of success rate, corre-
sponding to a real detection frequency (RDF) greater than 0.8, 0.5
and 0.3, respectively.

The new proposed detecting strategy show several advantages:

(1) Based on empirical data, the proposed tool is data-driven and
automatic in selecting real/false detections without the requirement
of visual inspection of the waveforms.

(2) Selecting different RDFs, a false alarm versus missed events
threshold may be selected according to temporal changes in noise
level or network performance, giving the opportunity to be more/less
conservative in reducing the number of possible false detections.

(3) The detection results derived using different geometric con-
figurations of the seismic network can be corrected to be compared
to one other.

(4) The coherence-triggered station interdistance matrix can be
easily updated and refined with the incoming of new datasets.

The limit of our empirical procedure is related to the ‘resolution’
of the coherence-triggered station interdistance matrix, which es-
pecially in the initial phases is influenced by the characteristics of
the training dataset. In fact, assuming the ambient noise and the ge-
ometric characteristics of the seismic network constant in time, the
method resolution depends on how much the data analysed is stati-
cally representative of the seismicity in the considered seismogenic
volume. Therefore, statistically representative dataset are required;
for instance, they can be obtained updating the coherence-triggered

stations interdistance matrix whenever new detection results are
available.

Our empirical procedure can be improved in the next develop-
ment combining different types of information or new coherence-
based matrices (i.e. coherence–magnitude matrix) with the aim to
correctly identify the earthquake occurrence, further reducing the
number of false detections.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. The same as in Fig. 2, but for another example of real
detection. (c) Map of spatial coherence variation for the search
region with seismic stations (black triangle) and event detected
(white star).
Figure S2. The same as in Fig. 2, but for an example of false
detection. (c) Map of spatial coherence variation for the search
region with seismic stations (black triangle) and event detected
(white star).
Figure S3. The same as in Fig. 2, but with the map spatial coher-
ence variation (c) for the search region with seismic stations (black
triangle) and event detected (white star).
Figure S4. Coherence versus Triggered stations interdistance (TSI)
for SS2 (a) and for SS1 (b). Real detections are indicated in green
and false detections are indicated in grey. In (b) the coherence
values are multiplied for a scaling factor equal to 0.53. Earthquakes
that did not met the minimum location criteria (3 P-wave + 1 S-
wave arrivals) are evidenced; for these earthquakes, location and
magnitude estimate could not be calculated.
Figure S5. Coherence versus Triggered stations interdistance (TSI)
for SS1. Real detections are indicated in light green (not scaled val-
ues), green (scaled values using a correcting factor = 0.5) and false
detections are indicated in grey. Since the number and geometry of
operating stations are different, we scale the coherence values of
the target SS1 for a factor equal to the ratio of the coherences for
the two earthquakes with same location and magnitude.
Table S1. Earthquake detections assuming both P and S phases
(evidenced in yellow; as calculated in our work) and assuming only
S phases (evidenced in green) for the calculus of CF. A period of
three days was considered for a test. Number of detections, number
and interdistance of ‘triggered’ stations are reported.
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Table S2. Earthquakes detected and located in this study for SS1,
evidenced in light blue, and for SS2, evidenced in yellow. For each
earthquake, it is reported if INGV or ISNet detected the earthquakes.
For earthquakes that did not met the minimum location criteria (3
P-wave + 1 S-wave arrivals), earthquake location and magnitude
estimate could not be calculated, in accordance with the detection

and location thresholds indicated in Stabile et al. (2013) for the
same area.
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