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Abstract: Reliable multi-temporal landslide detection over longer periods of time requires 

multi-sensor time series data characterized by high internal geometric stability, as well as 

high relative and absolute accuracy. For this purpose, a new methodology for fully 

automated co-registration has been developed allowing efficient and robust spatial 

alignment of standard orthorectified data products originating from a multitude of optical 

satellite remote sensing data of varying spatial resolution. Correlation-based co-registration 

uses world-wide available terrain corrected Landsat Level 1T time series data as the spatial 

reference, ensuring global applicability. The developed approach has been applied to a 

multi-sensor time series of 592 remote sensing datasets covering an approximately 

12,000 km2 area in Southern Kyrgyzstan (Central Asia) strongly affected by landslides. 

The database contains images acquired during the last 26 years by Landsat (E)TM, 

ASTER, SPOT and RapidEye sensors. Analysis of the spatial shifts obtained from  

co-registration has revealed sensor-specific alignments ranging between 5 m and more than 

400 m. Overall accuracy assessment of these alignments has resulted in a high relative 

image-to-image accuracy of 17 m (RMSE) and a high absolute accuracy of 23 m (RMSE) 

for the whole co-registered database, making it suitable for multi-temporal landslide 

detection at a regional scale in Southern Kyrgyzstan. 
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1. Introduction 

Landslides are a world-wide occurring natural hazard leading to severe loss of life and 

infrastructure. A global tendency towards steadily increasing landslide risk can be observed, because 

of the spreading of settlements in unfavorable regions and the consequences of climate change [1,2]. 

Against this background, improved understanding of landslide processes in space and time is of  

great importance, requiring multi-temporal landslide inventories [3–5]. So far, they have been largely 

missing for most parts of the world, because of their time and labor intense preparation using 

conventional mapping methods [5–7]. In this context, the increasing availability of optical satellite 

remote sensing data has opened up new opportunities for spatiotemporal analysis of landslide 

occurrence covering large areas [5,8–10]. 

The completeness and quality of remote sensing-based landslide inventories depend on the used 

multi-temporal image database, whereas a high temporal repetition rate over the longest possible time 

period of data availability is required in order to perform longer term analysis of landslide occurrence, 

which is necessary for objective landslide hazard assessment [3–5]. For this purpose, the global 

Landsat archive is of key importance, providing free access to the longest available time series of 

medium-resolution optical satellite remote sensing data [11]. However, in order to achieve the best 

possible temporal data coverage, multi-sensor data have to be used, resulting in a heterogeneous 

database of varying spatial and temporal resolution. 

Despite this variability, precise image-to-image co-registration has to be ensured for all  

multi-temporal and multi-sensor datasets, because insufficient spatial fit leads to various ambiguities, 

resulting in the detection of artifact changes [12,13], as well as incorrect spatial delineation of 

landslides. The creation of longer term inventories requires maintaining the geometric stability of the 

image database over several decades, taking into account seasonal and inter-annual landscape changes. 

Furthermore, the resulting multi-temporal remote sensing database has to be of sufficient absolute 

positional accuracy related to an external spatial reference system, allowing the combination of 

information derived from remote sensing analysis with other spatial data, such as GPS-based field 

measurements within a GIS environment in order to perform subsequent process and hazard analysis.  

The overall goal of the presented study has been the development and application of a methodology 

for automated image-to-image co-registration in order to create an image database that is suitable for 

longer term automated landslide detection within a 12,000 km2 study area in Southern Kyrgyzstan 

(Central Asia) strongly affected by landslides [8]. The original image database for this area comprises 

almost 600 datasets acquired by the multispectral Landsat-(E)TM, SPOT, ASTER and RapidEye 

satellite systems during the last 26 years. Most of these images were obtained in the form of 

orthorectified standard data products from the respective satellite data providers. Initial evaluation of 

the relative spatial fit between these higher-level data products has revealed that significant spatial 

offsets occur between most of them, including data acquired by the same sensor. 
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Against this background, the objective has been the development of a co-registration methodology 

that is suitable to correct for the spatial offsets between large amounts of orthorectified standard data 

products comprising longer term multi-sensor time series. Thus, the approach has to be able to handle 

various multi-sensor effects, such as differences between the spatial, spectral and radiometric 

properties of the image data, as well as multi-temporal effects, such as varying atmospheric, solar and 

land cover conditions, resulting from seasonal and long-term variability between the image  

datasets [14–16]. Despite the large number of existing methods for automated co-registration, which 

are comprehensively discussed in Le Moigne et al., 2011 [14], Dawn et al., 2010 [17] and Zitova and 

Flusser, 2003 [18], only a few of these methods are capable of dealing with multi-sensor and  

multi-temporal effects at the same time. 

In general, the existing co-registration methods are classified into two main categories comprising 

feature-based and area-based techniques [18]. For accommodating multi-sensor effects during  

co-registration, feature-based techniques, such as scale-invariant feature transform (SIFT) [19] and 

speeded-up robust features (SURF) [20], are considered to be more suitable, because these techniques 

use salient features, such as edges, corners, intersections of linear structures and centroids of distinct 

geometric objects. These features are expected to be geometrically stable despite the sensor-related 

variability of the image data [21–24]. However, in rural mountainous areas, like Southern Kyrgyzstan, 

such distinct time-invariant features are often scarce and unevenly distributed, which largely increases 

the likelihood for significant co-registration errors [21,25]. For such environments, area-based methods 

are considered to be more suitable, because co-registration is based on identifying distinctive 

properties for image matching using intensity information rather than local features [21,25]. Hence, 

area-based methods aim at identifying image areas that are similar in intensity, whereas the commonly 

used similarity measures are cross-correlation and sequential similarity detection [18,26]. 

Independent of the used co-registration method, most of the already existing approaches have not 

been developed for fully automated and efficient processing of big amounts of multi-sensor and  

multi-temporal image data covering large areas over longer periods of time. Therefore, the practical 

usability of these methods is often limited, because of the high methodological complexity, the big 

computational effort, as well as additional requirements specific to the analyzed datasets [15,17,22]. 

The presented study aims at the development of a robust and globally applicable methodology for 

automated co-registration, which is suitable for efficient correction of spatial offsets between 

orthorectified standard data products representing multi-sensor time series. 

In this context, a spatially and temporally consistent spatial reference system is required, allowing 

spatial alignment of all datasets with sufficient relative and absolute accuracy. For this purpose, 

globally available Landsat Level 1T time series data have been selected as a common spatial reference. 

They are characterized by sub-pixel image-to-image co-registration accuracy throughout the whole 

time series [27–29], whereas the absolute accuracy of the global Landsat Level 1T database has been 

estimated to 15 m [27]. Both accuracies are considered to be sufficient for landslide detection at a 

regional scale. Moreover, Landsat data represent the only source of spatial reference information 

consistently and repeatedly covering the whole study area, allowing consistent spatial alignment of all 

time-series datasets, which, in part, are irregularly and patchily distributed over the large study area. 

The developed co-registration approach is described in Section 3. The results of spatial alignment 

are presented in Section 4, comprising sensor-specific analysis for the complete database. In Section 5, 
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the relative and absolute accuracy of the achieved co-registration is analyzed for the whole database, 

including its influence on the multi-temporal delineation of landslides. The developed methodology is 

comprehensively discussed in Section 6, focusing on achievable accuracy and overall applicability. 

2. Study Area and Spatial Database 

2.1. Study Area in Southern Kyrgyzstan (Central Asia) 

The study area is located in Southern Kyrgyzstan in Central Asia and covers approximately 

12,000 km2 (Figure 1), whereas landslide occurrence is especially concentrated along the Eastern rim 

of the Fergana Basin in the foothills of the surrounding Tien Shan and Pamir mountain ranges. In this 

area of high tectonic activity and pronounced topographic relief, landslides are a widespread 

phenomenon, representing one of the most severe natural hazards to the local population. Landslides 

vary widely in their sizes, ranging between a few hundred square meters for small events and several 

hundred thousands or even millions of square meters for large failures [8,30].  

Since most of these landslides belong to the rotational and translational types, they cause 

widespread destruction of the mostly vegetated surface cover and, thus, are well detectable in optical 

imagery in general [8,31]. Most of these landslides are caused by complex interactions between 

geological, tectonic, seismic and hydrogeological factors, which have not been well understood, yet. 

As a result, landslides occur frequently, but at the same time, irregularly throughout the whole study 

area and cannot be related to distinct triggering events, such as earthquakes and intense rainstorms [8]. 

In this region, landslides have been investigated since the 1950s, whereas approximately 3000 

landslides have been documented (Figure 1). However, regular monitoring has been limited to the time 

period between 1968 and 1992, focusing on larger settlements and their surroundings, whereas for 

most of the landslides, coordinate-based geographic locations are missing. Against this background, 

there is a great need for creating a spatiotemporal landslide inventory covering the whole area  

(Figure 1). 

2.2. Satellite Remote Sensing Database 

A multi-temporal database of optical remote sensing data has been created for the study area in 

Southern Kyrgyzstan. This multi-temporal database consists of 592 multispectral mid- and  

high-resolution satellite remote sensing images acquired by the Landsat-TM and ETM+, SPOT-1  

and -5, ASTER and RapidEye sensors during the last 26 years (Table 1). The spatial resolutions of the 

contributing sensors range between 30 m for Landsat and 5 m for RapidEye data. They also cover 

different spectral ranges by varying spectral bands and resolutions. However, all of these sensors 

represent multispectral instruments comprising the green, red and near-infrared (NIR) spectral bands  

as the lowest common spectral denominator, allowing comprehensive multi-sensor analysis of  

landslide-related surface changes. 
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Figure 1. Study area in Southern Kyrgyzstan. (Inset) The location within Kyrgyzstan 

(depicted as a red dashed line). (Main figure) The location of known landslides  

and reference information for accuracy assessment in Section 5 (check points (CPs), 

differential GPS (DGPS) points and analyzed landslides) within the study area, depicted as 

a transparent polygon overlay. 

 

Almost all of the remote sensing datasets were obtained from the respective satellite data providers 

in the form of orthorectified standard data products (Table 1) in order to minimize geometric 

preprocessing efforts and to facilitate the applicability of the developed methodology independent of 

local ground-truth information, such as GCPs. In the case of SPOT, radiometrically-calibrated  

Level 1A data were automatically orthorectified using standard orthorectification routines of the ENVI 



Remote Sens. 2014, 6 2577 

 

software, which are based on orbital position parameters and a digital elevation model (SRTM). As a 

result, the established multi-temporal and multi-sensor satellite remote sensing database solely 

contains orthorectified datasets. 

Table 1. Optical satellite remote sensing database. 

Sensor 
Resolution 

(m) 

Swath Width, 

Extent (km) 

Spectral 

Range (nm) 

No. of 

Bands 
Time period 

Acquisition 

Dates  
Datasets 

Product 

Level 
Provider 

RapidEye 5 77, 25 × 25 440–850 5 2009–2012 51 503 3A BlackBridge 

SPOT-5 10 60, 60 × 60 500–1750 4 2006–2010 5 9 1A SPOT IMAGE 

ASTER 15–90 60, 60 × 60 520–2430 14 2000–2008 20 30 3A 01 ASTER GDS 

SPOT-1 20 60, 60 × 60 500–890 3 1986 2 3 1A SPOT IMAGE 

Landsat TM 30 
185,  

185 × 170 
450–2350 7 

1989–1999 

2009–2012 
14 25 1T USGS GLS 

Landsat ETM+ 30 
185,  

185 × 170 
450–2350 8 1999–2003 13 24 1T USGS GLS 

Except for RapidEye, all other datasets have been contained in satellite remote sensing data 

archives. RapidEye data have been acquired in the frame of the RESA (RapidEye Science Archive) 

program, allowing customized tasking of data acquisition during pre-defined time periods. Due to the 

five independent satellites of the RapidEye system [32], a database of high spatial and temporal 

resolution could be created for the whole region of interest. In total, the database comprises 503  

Level 3A standard orthorectified data products characterized by a 5-m pixel size, resulting from cubic 

convolution resampling of the original 6.5-m RapidEye data. Each of these datasets belongs to one of 

the fixed 21 RapidEye tiles [33] covering the study area (Figure 2). 

Datasets acquired by different sensors vary in their spatial extent between 185 × 170 km2 for 

Landsat and 25 × 25 km2 for a single RapidEye tile. Therefore, for each sensor, varying numbers of 

datasets are required to cover the whole region of interest. Figure 2 illustrates the spatiotemporal 

coverage for the different sensors, whereas the numbers of temporal repetitions are color-coded. The 

diagrams at the bottom show the number of temporal repetition and their areal coverage of the study 

area, with maximum and minimum values depicted in grey.  

In the case of Landsat, the database contains 49 scenes covering 100% of the study area at least for 

23 different acquisition dates, whereas the maximum temporal repetition of 27 acquisition dates could 

be achieved for 80% of the area during the time period between 1989 and 2012. ASTER (30 scenes) 

and SPOT (10 scenes) have significantly lower temporal repetitions, with spatial coverage of the study 

area of 91% and 77%, respectively. RapidEye comprises the highest number of datasets, due to the 

high temporal repetition and the orthorectified datasets of a relatively small size (25 × 25 km2), 

resulting in a high number of datasets for a single acquisition date. Temporal repetition varies between 

13 and 28 coverages for the different parts of the study area and is almost as high as for Landsat, 

despite the much shorter acquisition period (4 versus 19 years). Overall, spatial and temporal coverage 

differs within the study area, because of its large size and the variety of used sensors, representing a 

challenge to co-registration, since the whole image database has to be transferred into one consistent 

spatial system. For this purpose, the Landsat Level 1T database has been selected, because it 

repeatedly covers the whole study area in a spatially consistent way (Section 2.3). 
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Figure 2. Maps depict sensor-specific spatiotemporal coverage of the study area. Diagrams 

show the number of temporal repetitions and the related areal coverage of the study area. 

 

The multi-temporal database is characterized by high seasonal and inter-annual variability of land 

cover, comprising additional challenges to co-registration. In Figure 3, this variability is exemplarily 

illustrated for a 6.8 × 7.2 km2 subset of the study area showing color infrared (CIR) visualizations of 

the image data of all sensors contained in the database acquired during different seasons between 1986 

and 2011. Seasonal variability mainly originates from differences in vegetation cover, whereas the 

period of most intense vegetation development lasts from May until early August, peaking in June. 

Another seasonal change is the decline of discharge in the river bed during the depicted time span 

(April–September). Besides these regularly occurring changes, episodic changes can be observed, 

which are caused by agricultural land use and landslide occurrence. During the depicted period of time, 

the highest landslide activity can be observed between 2002 and 2004, resulting in a significant 

increase of landslide affected slopes (yellow ellipses in Figure 3), comparing the datasets acquired in 

2004 and 1986. 

The small subsets (Figure 3a–f) depicted at the bottom of Figure 3 illustrate the initial spatial offsets 

occurring between standard orthorectified datasets. The black cross hairs represent the center 

coordinates of the subsets, whereas the circle-shaped markers indicate an identical point represented by 

a road crossing. In Figure 3a, the cross hair and the marked point have the same position, whereas  

for all other subsets, a relative offset can be observed, amounting to a maximum of almost 400 m  

in the case of SPOT-1 (Figure 3d). This maximum geometric offset is caused by the applied 

orthorectification procedure that is solely based on orbital position parameters, which have been less 

accurate for SPOT-1 than for the later SPOT-5. Although, in the case of the other sensors, these offsets 

are less pronounced, they still amount to up to 60 m and need to be corrected in the process of 

automated co-registration. 
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Figure 3. Exemplary representation of multi-temporal time series (1986–2011) (A–F) 

Color infrared (CIR) visualization of seasonal differing multi-sensor datasets; selected 

landslide prone areas are depicted by yellow dashed ellipses. (a–f) The geometric offsets 

within the time series. 

 

2.3. Spatial Reference Information 

2.3.1. Spatial Reference for Co-Registration 

In this study, terrain corrected Landsat Level 1T data are used as the spatial reference, while at the 

same time, they are part of the satellite remote sensing database (Section 2.2). They have been selected 

because they are freely and widely available and because they represent the only spatially consistent 

reference information for the whole study area. In contrast, datasets acquired by other sensors either do 
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not cover the complete study area or require many datasets of different acquisition dates and swaths 

(Figure 2). Such multiple acquisitions result in a spatially and temporally inconsistent data coverage, 

which is not suitable as the spatial reference. However, since the Landsat reference represents the 

lowest spatial resolution of the whole database, the co-registration procedure needs to support  

sub-pixel alignment in order to enable precise co-registration of higher resolution images (Section 3.2). 

The Landsat Level 1T data are characterized by sub-pixel image-to-image registration  

accuracy [27–29], enabling the introduction of multiple reference scenes in the co-registration process. 

Using the reference scenes of different acquisition dates is advantageous, because it accommodates the 

multi-temporal variability caused by seasonal and long-term land cover changes, which often reduces 

the accuracy of co-registration [15]. Moreover, Landsat Level 1T data are characterized by an absolute 

geolocation accuracy of 15 m [27] and, thus, are suitable as the external spatial reference. 

Out of all 49 Landsat Level 1T datasets contained in the database, six scenes of three seasonally 

differing acquisition dates have been selected as the spatial reference. They comprise three mosaics of 

Landsat ETM+ scenes (path 151; row 31 and 32), which have been acquired on 24 August 2000,  

26 May 2002, and 27 April 2003 comprising the main seasonal contrast between abundant green 

vegetation in spring and mostly dry vegetation in late summer. The Landsat scenes of 24 August 2000, 

have been identified as the primary spatial reference, which is used as the default. If co-registration to 

these scenes fails, one of the two other mosaics is selected. 

2.3.2. Image-Based Check Points for Relative Accuracy Assessment 

The relative accuracy of the co-registration approach is determined by assessing image-to-image 

accuracy between the single datasets of the remote sensing database. For this purpose, time invariant 

check points (CPs) were digitized in the Landsat reference. Because of its low spatial resolution of 

30 m, only 21 CPs could be identified throughout the mountainous study area. To overcome this 

limitation, high resolution (5 m and 2.5 m) panchromatic orthorectified SPOT datasets, which are not 

part of the multi-temporal database, have been manually co-registered to the Landsat reference using 

the 21 CPs as tie points. Based on these co-registered SPOT images, an additional 65 CPs could be 

identified in areas of insufficient CP coverage, resulting in a total of 86 CPs. They are mostly 

represented by streets, intersections and corners of buildings, which were identified in settlements 

throughout the whole study area (Figure 1). Based on these CPs, the spatial offset of a dataset in 

relation to Landsat is determined before and after co-registration (Section 5.1).  

2.3.3. Differential GPS Points for Absolute Accuracy Assessment 

The absolute accuracy of the co-registered remote sensing database is assessed using high accuracy 

differential GPS (DGPS) points, which were measured in the field in the years 2011 and 2012 with a 

geolocation accuracy of a few centimeters by a Topcon GB-1000 receiver. This way, the spatial fit of 

the co-registered image database with spatial information from other sources, such as the results from 

GPS-based field mapping, can be evaluated. The measured 46 DGPS points (Figure 1) represent 

corners of buildings and road crossings. However, due to the dominating rural character of the study 

area, these structures are rather small and, thus, can only be precisely identified in remote sensing data 

of higher spatial resolution. Therefore, absolute accuracy assessment is only carried out for the  
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co-registered SPOT-5 and RapidEye datasets with a spatial resolution of 10 m and 5 m, respectively 

(Section 5.2).  

2.3.4. Time Series of Digitized Landslides 

In order to evaluate the influence of co-registration accuracy on the multi-temporal spatial 

delineation of landslides, three landslides have been selected, which have not changed their extent 

since initial failure. These stationary landslides are situated far apart from each other in different parts 

of the study area (Figure 1). They have been manually digitized in all available multi-temporal datasets 

before and after co-registration. First, each landslide was digitized in a high-resolution RapidEye 

dataset. The resulting polygons were used as spatial templates, which, in a second step, have been 

manually overlaid on the landslide representations in all of the other datasets. This way, errors 

introduced by multiple manual digitization in datasets of varying spatial resolutions have been omitted, 

which otherwise would have influenced accuracy assessment (Section 5.3). The number of datasets 

that were available for multi-temporal digitization differs between the landslides depending on 

temporal data coverage after failure. Landslides A and B (Figure 1) occurred in 2009. Landslide A 

could be identified in 25 datasets acquired by three sensors (RapidEye, Landsat, SPOT-5) and 

Landslide B in 24 datasets acquired by two sensors (RapidEye, Landsat). Landslide C failed in 1999, 

resulting in its presence in 39 datasets acquired by the Landsat, ASTER, SPOT and RapidEye sensors. 

3. Co-Registration of Multi-Temporal and Multi-Sensor Optical Satellite Data 

3.1. Overall Approach 

Image-to-image co-registration aims at the spatial alignment of the whole database (Section 2.2) to 

a common spatial reference represented by the Landsat Level 1T data (Section 2.3.1). The developed  

co-registration approach (Section 3.2) is based on the assumption that the orthorectified standard data 

products of the various sensors only differ by constant spatial offsets, which can be corrected by 

applying image-specific shifts. Checking the fulfillment of this condition for each dataset is an integral 

part of the co-registration approach, which is depicted in its overall structure in Figure 4. 

In order to accommodate the needs originating from the diversity of datasets contained in the 

comprehensive satellite remote sensing database, two modes have been implemented. The first one 

enables co-registration of single datasets to the Landsat reference representing the standard case. This 

mode gets applied if datasets of the same sensor have very small or non-existing spatial overlaps and, 

thus, cannot be reliably co-registered to each other before aligning them to the Landsat reference. The 

second mode is applied to data stacks of high temporal and spatial resolution acquired by the same 

sensor. This two-step mode starts with sensor-internal co-registration of the datasets before they are 

co-registered en bloc to the Landsat reference using the average of all shifts calculated for the single 

images of the sensor-internal data stack by the same procedure as in Mode 1. This way, high-accuracy 

spatial fit between datasets of the same sensor can be achieved or maintained avoiding the 

uncertainties that get introduced by the co-registration of individual images to a spatial reference of a 

largely differing spatial resolution. In this study, the second mode has been applied to the RapidEye 

data, since they are characterized by much higher temporal and spatial resolutions than the Landsat 
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reference and the other medium-resolution satellite remote sensing data, which are co-registered using 

the first mode. 

Figure 4. The overall structure of the developed co-registration approach. 

 

3.2. Co-Registration to Landsat Reference 

Co-registration builds on area-based cross-correlation [17,18,26] that requires the same spatial 

resolution for the reference image and the warp image. Thus, spatial resampling is a critical step for the 

performance of the correlation process. In order to get comparable results, downsampling the higher 

resolution dataset to the lower resolution one is applied, since upsampling of the lower resolution 

image to the higher resolution one does not allow the reconstruction of spectral details, which are only 

present in the higher resolution image and, thus, not suitable for correlation purposes. In contrast, 

downsampling enables the simulation of the spectral signatures of lower resolution data by mixing the 

spectral information of the higher resolution image. In this study, the warp images of higher spatial 

resolution are resampled to realistic Landsat pixels by applying a Gaussian filter kernel, which takes 

into account the spatial resolution of both sensors [34]. The used approach defines the full width at half 



Remote Sens. 2014, 6 2583 

 

maximum (FWHM) of the Gaussian kernel as the ratio between the pixel size of the Landsat reference 

and the pixel size of the warp image. Once both images have the same spatial resolution, the warp 

image is shifted to the spatial grid of the Landsat reference as a basis for the following correlation. 

Using the cross-correlation method, the warp image is co-registered to the reference image by 

correlating the intensity values within corresponding subsets of the images defined by a moving 

window. The subset of maximum correlation corresponds to the displacement that is stored in a tie 

point. In the presented approach, the red and the near infrared (NIR) bands of the input images are 

used simultaneously, providing a combined overall correlation value. The selection of these bands is 

performed in an automated way, as long as respective wavelength information is contained in the 

header files of the warp and reference images. Since the combination of these two bands reacts very 

sensitively to changes in vegetation cover, high correlation values can only be obtained for temporarily 

stable vegetated and non-vegetated areas. Moreover, for the correlation window, a relatively large size 

(51 × 51 pixels) is selected in order to minimize local ambiguities and further increase the robustness 

of the approach. 

The tie point generation process iteratively selects random pixel positions for centering the 

correlation windows. The correlation coefficient is calculated for each pixel position within a 

predefined search range, which, by default, is constrained to five pixels, making the approach more 

robust and computationally less intense. However, this range can be changed depending on the 

expected offset. If a correlation coefficient is higher than the empirically determined threshold of 0.93, 

the offset value is stored as the tie point. This process is repeated, until 100 tie points are identified per 

image pair or 10% of all image pixels have been checked. 

In order to validate the identified tie points and to exclude potential outliers, an affine 

transformation (translation, rotation, scaling) between both images is assumed, because global 

translation cannot be introduced as an a priori hypothesis. The biggest outliers in regard to the affine 

model are excluded in an iterative process, until the RMSE is less than one pixel. In the next step, the 

obtained optimized affine model allows for validating the initial assumption of a global translation. If 

the scaling or rotation factors of the affine model are negligibly small, i.e., additional offsets at the 

image corners are less than 1.5 pixels, the global translation transformation is used for co-registration. 

If the validation process fails (e.g., due to an unfavorable tie point constellation) or less than 10 tie 

points per scene remain after the removal of outliers, one of the two other Landsat reference mosaics 

(Section 2.3) is selected, starting with the one that is seasonally closer to the warp image acquisition 

date (Figure 4). If none of the reference images meets these quality criteria, the warp image is excluded 

from the automated processing chain and has to be checked by the user with the option of interactively 

choosing an affine transformation for image wrapping based on the selected tie points. 

In the case of a successful correlation, a final sub-pixel optimization is performed for images of 

significantly higher spatial resolution than the Landsat reference. In the initial simulation of the 30-m 

warp image, only one possible centering of the Gaussian filter kernel has been used for resampling to 

the 30-m resolution warp image. However, in principle, the number of possibilities amounts to the 

number of original warp image pixels fitting within a single reference pixel, e.g., a 10-m resolution 

SPOT image results in nine different possibilities for centering the Gaussian filter kernel. Hence, the 

Gaussian filter kernel is moved in single pixel steps over the original warp image grid around the first 

centering position of the initial resampling step in order to derive all spatial variations of the 30-m 
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warp image. Then, the correlation process is repeated for all of the resampled 30-m warp images at the 

position of the already identified tie points. The image characterized by maximized overall correlation 

represents the sub-pixel optimized co-registered warp image at 30-m resolution. 

The final shift comprises the sum of the shifts used to align the warp image grid to the Landsat grid, 

the 30-m pixel shift resulting from the initial correlation and the original resolution pixel shift 

originating from the sub-pixel optimization. In the last step, this shift is used to co-register the warp 

image using a global translation. As a result, two co-registered warp images are produced: one in the 

spatial resolution of the Landsat reference (the best correlation result) and one in the spatial resolution 

of the original image data. In the case of the original resolution warp image, the shift is used to update 

the coordinate reference point, and thus, the image is corrected without any resampling, which 

maintains the original spectral information of the image after co-registration. Both images are aligned 

to the Landsat reference grid. The simulated 30-m warp image has exactly the same spatial grid as the 

reference, whereas in the case of the original warp image, the upper left coordinate is aligned to the 

reference grid. The achievable accuracy of the approach is determined by the spatial resolution of the 

original data. If the original datasets have the same spatial resolution as the reference, the steps for 

simulating the reference resolution and sub-pixel optimization are omitted. 

3.3. Sensor-Internal Co-Registration  

In Mode 2 of the developed approach, sensor-internal co-registration is performed as the first step 

before the whole data stack is co-registered en bloc to the Landsat reference. For this purpose, a single 

dataset is selected from the data stack representing the sensor-internal spatial reference. All of the 

remaining images of the data stack are co-registered to this reference using the image-to-image  

area-based correlation algorithm implemented in the first mode without performing the simulation of 

30-m data and the following sub-pixel optimization. If a dataset cannot be co-registered (due to a failed 

validation process or less than 10 identified tie points), it is iteratively correlated with already  

co-registered images of former iterations, until a good co-registration result can be achieved (Figure 4). 

This iterative approach allows the co-registration of seasonally differing datasets, resulting in a  

sensor-internal geometrically-consistent data stack, which is then co-registered en bloc to the Landsat 

reference. For this purpose, the procedure of Mode 1 is applied to each of the datasets contained in the 

stack in order to determine the average values for all shifts, which then are used for the en bloc  

co-registration of the whole data stack. 

4. Sensor-Specific Results of the Estimated Shifts 

The developed co-registration approach has been applied to all of the 592 image datasets. All of 

them have passed the validation step, which means that the original orthorectified images have a 

consistent internal image geometry, which is free of significant distortions. In the following, the shifts 

obtained by automated co-registration are analyzed separately for each sensor. 
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4.1. Landsat Datasets 

Applying the developed approach to the remaining 43 Landsat Level 1T datasets has resulted in no 

need for integer pixel shifts, confirming the sub-pixel image-to-image registration accuracy known 

from the literature [27–29]. Co-registration was performed in the standard way (Section 3.2) for all of 

the datasets, which shows that the datasets are free of internal distortions. This also proves the 

robustness of the developed approach, accommodating the variability of the image data caused by  

the presence of clouds and snow, as well as inter-annual and seasonal changes introduced by the  

time series between 1989 and 2012 and long annual acquisition periods ranging from February  

to November. 

4.2. ASTER and SPOT Datasets 

In this study, 42 datasets of ASTER and SPOT have been co-registered to the Landsat reference 

using Mode 1 of the developed approach. It was possible to co-register all datasets in the standard way, 

whereas the applied global shifts range between −62 m and +126 m in the east-west direction (X) and 

between −434 m and +29 m in the north-south direction (Y) (Figure 5). The largest shifts have been 

obtained for the SPOT-1 images, reflecting the limited accuracy of the standard orthorectification 

process (Section 2.2). For visualization purposes, these maximum shifts have not been included in 

Figure 5a, showing all other individual shifts applied to the ASTER and SPOT-5 images. 

Figure 5. Shifts applied during co-registration to Landsat reference (in rounded meters), X: 

east-west; Y: north-south. (a) The scatterplot of the shifts contains all individual datasets; 

(b) The sensor-specific statistics of applied shifts. 

 

From the depicted data points, it can be seen that only westward shifts have been applied. Thus, all 

of the images were originally located east of the Landsat reference with maximum offsets of 48 m for 

SPOT-5 and 62 m for ASTER datasets (Figure 5b). Furthermore, the analysis of the applied shifts 

allows for assessing the sensor-internal spatial fit before co-registration. The range of the applied shifts 

represents the largest spatial difference before co-registration and amounts to approximately three 

pixels of the original resolution (SPOT-5 (10 m resolution): X: 35 m, Y: 29 m; ASTER (15 m 
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resolution): X: 54 m, Y: 39 m). The standard deviation of the applied shifts for co-registering the 

images to the Landsat reference can be interpreted as the standard deviation between the orthorectified 

data products of each sensor before co-registration. It amounts to approximately one original pixel 

(SPOT-5: X: 13 m, Y: 9 m; ASTER: X: 17 m, Y: 9 m). These results show that for both sensors, the 

original sensor-internal spatial fit is better in the Y direction than in the X direction. 

4.3. RapidEye Datasets 

Co-registration of the RapidEye datasets has been performed by applying Mode 2 of the developed 

approach (Section 3.3). In the first step, sensor-internal co-registration has been carried out. For this 

purpose, for each of the 21 tiles, one RapidEye dataset was selected as the spatial reference. All of 

these reference datasets were acquired in May 2011. In the second step, each of the 21 sensor-internal 

co-registered data stacks were co-registered en bloc to the Landsat reference. 

Figure 6 depicts the obtained sensor-internal shifts for all of the 482 co-registered images related to 

their respective acquisition years (Figure 6a–d), whereas (X) represents shifts in the east-west and (Y) 

in north-south direction. Part e of Figure 6 summarizes the statistics for all of the applied shifts. Since 

the original orthorectified RapidEye standard data products are located in a fixed pixel reference grid, 

only integer pixel shifts have been applied in order to fit the warp image to the sensor-internal 

RapidEye reference image. The number of datasets with the same applied shift is coded by color  

and the size of the circle symbols. 

Figure 6 shows that the sensor-internal spatial fit between the orthorectified data products was less 

accurate in 2009 at the beginning of the operational RapidEye mission than in the following years. 

Maximum shift values amount up to 65 m (13 RapidEye pixels), and large ranges are observed in the 

X (40 m) and Y (75 m) directions with a strong systematic component in the Y direction. For the 

datasets acquired in 2010, these ranges are significantly smaller (X: 25 m, Y: 30 m) and less 

systematic. For most of the datasets acquired during the years of 2011 and 2012 (80% and 66%, 

respectively), no shift or a maximum shift of one pixel (5 m) has been applied, indicating a greatly 

improved sensor-internal spatial fit for these years, whereas in Figure 6c and d, hardly any systematic 

component can be observed. In the diagrams of Figure 6, all datasets with maximum shifts of one pixel 

are depicted within the black rectangles centered at the origin of the diagrams. Moreover, for the years 

2011 and 2012, low standard deviation values of approximately 5 m confirm the high geometric 

stability of the standard orthorectified data products. Figure 6e also shows that during the whole 

acquisition period, the spatial fit in the X direction has been more accurate than in the Y direction, 

which is the opposite of the results obtained for the datasets acquired by the ASTER and SPOT 

sensors. 

Figure 7a summarizes the shifts that have been applied to the 21 sensor-internally co-registered data 

stacks during the second step; en bloc co-registration to the Landsat reference. In Figure 7b, these 

shifts are depicted as scaled arrows for each of the 21 tiles. For six data stacks comprising 154 images, 

the applied shifts amount to 10 m in the western direction and 15 m in the northern direction. The 

mean shift for all data stacks amounts to 9 m in the western direction and 20 m in the northern 

direction. Figure 7b shows that all of the applied shifts have a northwestern orientation, indicating that 

the selected RapidEye reference datasets used for sensor-internal co-registration in Step 1 are 
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systematically offset from the Landsat reference. However, all of the applied shifts are smaller than the 

spatial resolution of the Landsat reference, and most of the tiles are characterized by rather similar 

shifts, reflecting the high geometric stability of the selected RapidEye sensor-internal reference 

datasets throughout the whole study area. 

Figure 6. Applied shifts for sensor-internal co-registration of RapidEye. (a–d) The 

obtained shifts are related to the acquisition year. The number of images with the same 

shift is indicated by the color and size of the circle symbols. All symbols falling within the 

black rectangles represent datasets shifted by one pixel or less. (e) The table of statistics. 

 



Remote Sens. 2014, 6 2588 

 

Figure 7. En bloc shifts applied to RapidEye data stacks represented by Level-3A tiles:  

(a) The number of data stacks (tiles) and related images with that particular shift;  

(b) The direction and amount of shift for each data stack depicted by scaled arrows 

(tile size: 25 × 25 km2). 

 

5. Accuracy Assessment 

5.1. Relative Image-to-Image Accuracy of the Database 

The relative accuracy of the co-registered database is assessed at 86 time invariant check points 

(CPs) representing the location of the Landsat reference (Figure 1, Section 2.3.2). By using at least  

6 CPs per image, the mean spatial offsets (ΔxIM, ΔyIM), the position error (PEIM) and the  

root-mean-square error (RMSEIM) is determined before and after co-registration. The position error 

amounts to the mean of the Euclidean distances between the image and the Landsat reference at the 

locations of the digitized CPs (Equation (3)). The RMSEIM is represented by the square root of the 

mean of the squares of the position errors at each CP (Equation 4). 
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For evaluating the relative accuracy of the whole database, a representative subset of images has 

been selected. It comprises images of all sensors, which are characterized by varying offsets and are 

located in different parts of the study area. In total, three SPOT-5 images, three ASTER images and 

two SPOT-1 images have been selected. In the case of RapidEye, the representative datasets comprise 

12 images, four images per data stack, for three out of the 21 RapidEye tiles. 

The data points depicted in Figure 8 represent the mean spatial offsets of the selected images to the 

Landsat reference in the X and Y direction (ΔxIM, ΔyIM) before co-registration (Figure 8a) and after  
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co-registration (Figure 8b). For visualization purposes, the datasets of SPOT-1 have not been included 

in Figure 8a, because of their large offsets of more than 400 m (Section 4.2). Statistics of the analyzed 

distance parameters (ΔxIM, ΔyIM, PEIM, RMSEIM) are shown in the table below (Figure 8c). Before  

co-registration (Figure 8a), the analyzed datasets are characterized by significantly larger offsets 

compared to the ones that have remained after co-registration (Figure 8b). After co-registration, all 

datasets are located closely to the Landsat reference, resulting in a mean PEIM of 16 m, a mean 

RMSEIM of 17 m and absolute maximum offsets of approximately 20 m in the X and Y directions 

(ΔxIM: −21 m, ΔyIM: 19 m). 

Figure 8. Relative accuracy: the relative location of datasets to the Landsat reference 

(represented as the point of origin) (a) before co-registration and (b) after  

co-registration; (c) statistics of the offsets (in meters).  

 

All of these values are smaller than the spatial resolution of the used Landsat reference (30 m), 

indicating an overall sub-pixel accuracy. The achieved significant improvement in relative accuracy 

for the whole database is also revealed by comparing the after co-registration mean offset values with 

the ones obtained before co-registration (mean PEIM: 72 m; mean RMSEIM: 74 m; maximum offsets: 

ΔxIM: 52 m, ΔyIM: 440 m). Moreover, the offsets remaining after co-registration include a slight 

systematic error (mean values of ΔxIM: −8 m, ΔyIM: 12 m), which is also deducible from the scatterplot 

in Figure 8b. However, this distribution also shows high sensor-internal geometric stability as a result 

of co-registration, especially for the SPOT-5 and RapidEye datasets. 
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In order to evaluate the relative accuracy, which has been achieved by applying Mode 2, the results 

obtained for the RapidEye images have been analyzed in more detail. In Figure 8a, each data stack 

contains four images of different acquisition dates, including one image of early data acquisitions 

(2009) with offsets of up to 60 m in the Y direction. All other images are characterized by relatively 

small before co-registration offsets in comparison with the SPOT-5 and ASTER datasets depicted  

in Figure 8a. After co-registration, the images belonging to the same data stack form clusters  

with internal offsets of approximately 5 m or less (Figure 8b), representing sub-pixel relative  

image-to-image registration accuracy, which has been achieved within the same data stack during the 

first step of co-registration. However, the cluster formed by images of Stack 1 differs in its offset from 

the offsets of the clusters representing Stacks 2 and 3, which are very similar to each other (Figure 8b). 

These results show the possibility for slight differences in relative accuracy between data stacks 

originating from the second step—en bloc co-registration. These differences could be related to the 

position of the data stack in the study area, which might lead to different land cover conditions 

influencing co-registration. 

5.2. Absolute Accuracy of the Database 

The absolute geolocation accuracy achievable by the developed approach is primarily determined 

by the absolute geolocation accuracy of the Landsat Level 1T reference, amounting to 15 m (RMSE) 

for Landsat Level 1T products located in areas of flat terrain with optimal ground-truth availability for 

the standard orthorectification process [27]. For independent assessment of the absolute accuracy  

of the co-registered database, high accuracy differential GPS (DGPS) points have been used 

(Section 2.3.3). In 19 co-registered images acquired by the high spatial resolution RapidEye and 

SPOT-5 sensors, the offsets between DGPS points and their corresponding locations in the  

co-registered images have been manually determined.  

The results of 52 measurements are depicted in Figure 9a, whereas the point of origin represents the 

location of the DGPS point reference. Statistical analysis of the obtained offsets is shown in Figure 9b. 

The obtained RMSE of 23 m and the maximum absolute offsets (ΔxDGPS: 27 m, ΔyDGPS: 16 m, PEDGPS: 

29 m) reveal overall absolute accuracy in the sub-pixel range compared to the spatial resolution of the 

Landsat reference (30 m). The low standard deviations of 3 m (X) and 5 m (Y) reflect the high 

absolute geometric stability of the whole database. Furthermore, the results shown in Figure 9 depict a 

systematic error of 22 m in the western and 5 m in the northern direction, which implies that the 

Landsat reference is systematically offset in relation to the measured DGPS points. Due to the high 

relative accuracy between the Landsat datasets (Section 4.1), this systematic error is assumed to be 

constant for the whole study area. Therefore, it can be corrected by applying a spatial shift to the whole 

database resulting from the inversion of the identified average offsets; in this case, 22 m towards the 

east and 5 m towards the south. As a result, maximum absolute offsets are reduced to approximately 

6 m in the X and 10 m in the Y direction (Figure 9b), representing the remaining uncertainty resulting 

from the relative differences between the datasets.. 
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Figure 9. Absolute accuracy: the location of the co-registered datasets in relation to the 

DGPS points (represented as the point of origin). 

 

5.3. Influence of Co-Registration on Spatial Delineation of Landslides 

Reliable multi-temporal landslide delineation depends on the quality of the relative spatial fit 

between the datasets contained in the multi-temporal and multi-sensor database. In order to quantify 

the influence of the spatial fit on the delineation of landslides, multi-temporal digitization has been 

performed for three exemplary stationary landslides based on the available datasets before and  

after co-registration (Section 2.3.4). Figure 10 comprises the analysis of the spatial overlay of the  

multi-temporal digitized landslides in the form of the number of spatial overlaps between the digitized 

polygons. Figure 10b,c show the number of these overlaps by a color-coding scheme, where red 

depicts the area of overlap between all of the digitized landslide polygons and blue the area that is 

covered by only one of the digitized landslide polygons. 

Moreover, a comparison between the spatial extents of the area of overlap between all landslide 

polygons (area intersect (AI)) and the whole area that is covered by all of the landslide polygons (area 

union (AU)) has been performed. The results are shown in Figure 10e and f and are quantified in the 

accompanying table. The AI area depicted in dark grey (10e,f) and red (10b,c) represents the area that 

is delineated as landslide in all of the multi-temporal datasets. For a stationary landslide, the ideal case 

of multi-temporal landslide delineation results in a seamless object, indicating spatial identity between 

AI and AU. A bigger spatial shift between the image data results in a larger AU, shown in light grey 

and blue colors. 
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Figure 10. Influence of co-registration on multi-temporal landslide delineation for three 

stationary landslides before and after co-registration. (a) Field photo; (d) Digitized 

landslide; (b,c) The number of overlapping datasets; (e,f) Overlapping area of all datasets 

(area intersect (AI)); area covered by all landslide polygons (area union (AU)). Image: 

RapidEye 2 May 2011. 
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Such an improved spatial fit can be observed for all three landslides depicted in Figure 10, implying 

that these findings are valid for the whole database. The significance of the achieved improvements 

mainly depends on the size of the landslide in relation to the offsets occurring between the  

multi-temporal datasets, whereas the bigger the size of a landslide, the lesser the influence of the 

spatial offset. In the case of Landslide B, with a length of 1.5 km and an area of approximately 

250,000 m2, the offsets of the original datasets result in an AI that is considerably higher (69%) than 

for Landslide A (19%) and Landslide C (26%). Therefore, in the case of Landslide B, the relative 

improvement after co-registration only amounts to 26% and is significantly smaller compared to 

improvements of 65% and 62% for Landslides A and C, respectively. 

Furthermore, the uncertainty in landslide delineation resulting from the quality of the spatial fit 

between datasets can be quantified by the maximum distance of AU (dashed line) to the original 

polygon shown in Figure 10c. This distance (Max_dist) represents the size of a landslide failure or the 

enlargement of a landslide that can reliably be detected within the multi-temporal database. In the case 

of the three analyzed landslides, the uncertainty remaining after co-registration ranges between 6 m 

and 9 m, representing a significant improvement compared to the uncertainty contained in the original 

database comprising values between 43 m and 59 m. The remaining uncertainty reflects the relative 

accuracy of co-registration, which has been achieved for the datasets used for multi-temporal  

landslide delineation. 

6. Discussion 

6.1. Applicability of Approach 

Validation as part of the co-registration approach has revealed that the developed procedure of  

image-to-image co-registration using image-specific global shifts in the X and Y directions could be 

applied to all of the 592 datasets contained in the database, showing the high internal geometric 

stability of the orthorectified standard data products. The application of the global shift method results 

in the preservation of the original spectral properties of the standard data products, since there is no 

need for performing another resampling step. 

Automated spatial alignment has mostly resulted in shifts of several tens of meters, whereas 

maximum offsets have been obtained in the case of SPOT-1, amounting to more than 400 m. These 

results show that the developed approach is capable of handling a wide range of offsets occurring in 

images of various spatial resolutions ranging between 5 m for RapidEye and 30 m for Landsat data. 

The successful application of the approach to all datasets also proves its robustness against the 

variability of image data caused by different multi-sensor and multi-temporal effects, which have  

the potential for impeding the applicability of co-registration, as well as reducing the achievable 

accuracy [14–16]. 

Sensor-specific analysis of the applied shifts (Section 4) allows for evaluating the sensor-internal 

spatial fit between standard data products generated by external providers. In the case of Landsat data, 

no integer pixel shifts have been applied (Section 4.1), confirming the sub-pixel image-to-image 

accuracy stated in the literature [27–29]. For ASTER and SPOT-5 data, the standard deviations of the 

applied shifts are less than the respective pixel sizes, and the largest spatial offsets amount to 
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approximately three pixels of the original resolutions (Section 4.2). Sensor-internal RapidEye  

co-registration (Figure 6) has revealed a steadily improving spatial fit between the datasets since the 

start of operational data acquisition in 2009, cumulating in offsets of one pixel or less for most of the 

images acquired in 2011 and 2012. These results are in accordance with the findings of a study 

assessing the geometric accuracy of the RapidEye constellation [32]. 

6.2. Accuracy Assessment 

Assessment of the relative image-to-image co-registration accuracy based on time-invariant check 

points (CPs) has resulted in an overall accuracy of 17 m (RMSE) and the maximum remaining offsets 

to the Landsat reference amounting to 20 m (Section 5.1). Taking into account the 30-m resolution of 

the Landsat reference, these results indicate the sub-pixel relative accuracy of the whole multi-sensor 

database. Sensor-specific analysis of the achieved relative accuracy shows high sensor-internal spatial 

fit for the SPOT-5 and RapidEye datasets, which exceeds the accuracy obtained in relation to the 

Landsat reference. In the case of RapidEye, the results show that implementation of Mode 2 allows for 

generating (Step 1) and maintaining (Step 2) high image-to-image accuracies within sensor-internal 

data stacks during multi-sensor co-registration. 

Moreover, it is noticeable that after co-registration, the majority of images still show a small 

northwestern shift in regard to the Landsat reference (Figure 8b), implying a systematic offset, which 

is of a significantly lesser amount than one Landsat pixel (mean values of ΔxIM: –8 m, ΔyIM: 12 m). 

Such a bias could not be observed for the co-registration of the Landsat time series (Section 4.1) and 

also not for sensor-internal RapidEye co-registration using Step 1 of Mode 2 (Figure 6). Therefore, it is 

assumed that this small bias is caused by a systematic offset between the Landsat reference and the 

CPs digitized in panchromatic SPOT-5 datasets, which have been manually co-registered to the 

Landsat reference (Section 2.3.2). In this case, the detected bias most likely originates from the manual 

co-registration step and, thus, is not a result of the co-registration approach itself. Direct determination 

of this offset has not been possible, because of the big difference in spatial resolution between the 

Landsat reference (30 m) and the panchromatic SPOT-5 datasets (2.5 m and 5 m). 

Overall, the achieved relative image-to-image accuracies are comparable or, in parts, even better 

than the accuracies obtained by other studies dealing with the co-registration of optical time series 

data. The approach proposed by Gianinetto for automatic co-registration of Level 1A ASTER time 

series data [16] has resulted in RMSE values of less than two pixels. Liu and Chen [35] have  

co-registered multi-temporal Formosat-2 Level 1A images (8-m resolution), achieving a RMSE of 

approximately 1.5 pixels in flat terrain and 2.2 pixels in mountainous areas. Barazetti et al. [36] 

automatically co-registered 13 Landsat TM datasets acquired over a 30-year period mainly by 

correcting sub-pixel translation errors, resulting in a relative accuracy of sub-pixel RMSE values. 

Although, accuracy requirements for co-registration depend on the targets and methods used for 

change detection [12,37], in general, accuracies (RMSE) of less than one pixel are considered suitable 

for subsequent change detection [38].  

The absolute accuracy of the whole co-registered database, which has been assessed based on 

DGPS point measurements (Section 2.3.3), amounts to an RMSE of 23 m and a maximum position 

error of 29 m, whereas a clear systematic error of 22 m in the western and 5 m in the northern direction 
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could be observed. These results indicate that the Landsat reference is systematically offset to the high 

accuracy DGPS points. This assumption is further supported by the low standard deviation of the 

derived absolute offsets (X: 3 m, Y: 5 m), implying a high relative accuracy between images, which is 

of primary importance for subsequent multi-temporal landslide detection. 

Due to the availability of the field measured DGPS points and the high geometric stability of the  

multi-temporal Landsat reference, it is possible to correct for this systematic offset by applying a 

constant spatial shift. This procedure has resulted in remaining maximum absolute errors of 

approximately 6 m in the X and 10 m in the Y direction (Section 5.2). However, even the uncorrected 

absolute offsets are considered to be negligibly small, taking into account the near global availability 

of the Landsat reference, allowing for the world-wide application of the developed approach without 

requiring any ground control information. This is especially the case for large area analysis, such as 

landslide detection at a regional scale. 

6.3. Accuracy of Multi-Temporal Landslide Delineation 

Multi-temporal digitization of three stationary landslides within all datasets covering the landslides 

before and after co-registration (Section 5.3) has revealed a significant improvement in the relative 

spatial fit of landslide delineation, reducing the maximum offset from 59 m before co-registration to 

9 m after co-registration (Figure 10). These relative accuracies correspond to the maximum absolute 

offsets, which can be derived for the whole database after correcting for the systematic error 

introduced by the Landsat reference. These findings indicate that the relative accuracy improvements, 

which can be observed for all three landslides after co-registration are valid for the whole study area. 

The remaining relative uncertainty of about 10 m forms a suitable basis for reliable multi-temporal 

landslide detection, as well as the identification of changes within already existing landslides. 

Besides the discussed relative accuracy of landslide delineation, sufficient absolute accuracy is also 

important for the integration of information derived from remote sensing analysis into a GIS 

environment for further landslide hazard and risk analysis. Comparing the achieved absolute accuracy 

of 23 m (RMSE) with the United States National Map Accuracy Standards [39] has shown that the 

approach meets the requirements for a mapping scale of 1:50,000 and smaller, which is suitable for 

landslide analysis at a regional scale.  

6.4. Methodological Aspects 

It could be shown that the developed co-registration approach is suitable for the efficient spatial 

alignment of a large database containing numerous multi-temporal and multi-sensor standard data 

products. Incorporation of three seasonally differing Landsat reference datasets has allowed for 

successful matching of images characterized by high multi-temporal variability. The implementation 

of a special resampling procedure [34] transforming the spatial resolution of the warp image to the one 

of the Landsat reference enables the application of area-based cross-correlation to images of varying 

spatial resolution acquired by different optical sensors. 

The methodological constraints of the developed co-registration approach are related to the applied 

area-based cross-correlation, which is restricted to matching images of only slight affine distortions [18], 

as well as by the implemented geometric transformation only supporting co-registration based on 
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image-specific two-dimensional shifts. These constraints are attributed to the goal of developing a 

robust and efficient co-registration approach that can be applied in a fully automatic way to a large 

number of higher level standard data products, which, in general, are characterized by high internal 

geometric stability. This assumption could be confirmed for all of the 592 analyzed datasets by an 

initial validation procedure as part of the co-registration approach. The automatically detected tie 

points forming the basis for calculating the two-dimensional shifts could also be used in the frame of 

higher-degree transformation methods, which would allow for correcting more complex local 

distortions. However, it also needs to be taken into account that higher-degree transformations tend to 

produce local errors, depending on the spatial distribution and the number of tie points, which has to be 

larger in order to solve these transformation functions. Furthermore, the use of the two-dimensional 

shift transformation is more robust against localization errors related to the detected tie points. 

In order to preserve the spectral information of the original image datasets for subsequent spectral 

image analysis, the co-registration approach aligns the original images to the Landsat pixel grid 

without any further resampling. Thus, the achievable accuracy of the approach is determined by the 

spatial resolution of the original warp image, allowing for sub-pixel accuracy related to the spatial 

resolution of the Landsat reference (e.g., 0.16 pixels for 5-m RapidEye data). The implementation of 

sub-pixel image matching techniques would result in the need for resampling the spectral information 

of the original warp images and lead to much longer processing times, which would impede the 

efficient usability of the approach for larger amounts of data. 

Compared to other approaches, such as AROP [15], TARA [40] and COSI-CORR [41] aiming at 

the precise correction of complex geometric distortions, the developed co-registration approach 

represents a less sophisticated, yet robust and efficient, methodology, which can be applied in a fully 

automated way to large amounts of multi-sensor time series data, resulting in high relative and 

absolute accuracy. 

7. Conclusions and Outlook 

In this study, a new methodology for fully automated co-registration of optical satellite remote 

sensing data has been developed, allowing for the efficient and robust spatial alignment of big amounts 

of orthorectified standard data products acquired during the last 26 years for Southern Kyrgyzstan. The 

co-registration approach is capable of accommodating high image data variability resulting from 

varying spatial resolutions, as well as seasonal and inter-annual land cover variability. Applying  

co-registration to the whole database of 592 datasets from five different sensors has resulted in  

image-specific shifts ranging between 5 m and more than 400 m, showing the robustness of the 

approach and its suitability for the evaluation of relative spatial fit between standard data products. 

Moreover, spatial alignment is performed without any further resampling of the initial datasets, 

maintaining their original spectral information, which is advantageous for subsequent automated  

image analysis. 

Due to the use of freely and globally available Landsat Level 1T data as the spatial reference, the 

developed methodology is independent of local geometric reference information and can be used in any 

part of the world covered by suitable Landsat Level 1T data. In this context, the launch of the Landsat-8 

Operational Land Imager (OLI) on 11 February 2013, as well as the future Sentinel-2 mission [42] will 
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ensure its future applicability. The overall relative accuracy of 17 m, as well as the absolute accuracy of 

23 m (RMSE) represent sub-pixel accuracy in regard to the 30-m resolution of the Landsat reference. 

These achieved accuracies make the co-registered database suitable for subsequent multi-temporal 

change detection and for combination with other spatial data within a GIS environment. 

The analysis of co-registration accuracy in relation to multi-temporal landslide delineation has 

revealed maximum relative spatial offsets of six to 9 m between the otherwise unchanged landslides 

within the multi-temporal database. These offsets correspond to the minimal size of detectable 

landslide-related changes. However, since this size is also determined by the coarsest resolution of the 

used datasets, amounting to 30 m, only changes with an extent of more than 900 m2 can reliably be 

detected. This is more than sufficient for a region dominated by medium-sized to large failures, such as 

Southern Kyrgyzstan. Achievable relative image-to-image accuracies of the developed co-registration 

approach could be further improved by using only higher resolution data (e.g., SPOT-5: 10 m and 

RapidEye: 5 m). Hence, it would be possible to reliably analyze even smaller changes mostly related to 

the reactivation of already existing landslides. 

Altogether, these findings show that the developed methodology is suitable for robust and efficient 

co-registration of multi-sensor standard orthorectified data products acquired during longer periods of 

time. The resulting co-registered datasets of high and medium spatial resolution allow for automated 

landslide detection at a regional scale. Thus, they have the potential for being used for long-term 

spatiotemporal analysis, as well as for the monitoring of ongoing landslide activity, both contributing 

to more complete landslide inventories. However, the developed approach cannot only be used for 

database generation for landslide detection, but also for spatial alignment of any suitable satellite 

remote sensing time series data in order to perform subsequent analysis of long-term land cover 

changes in many parts of the world. This way, the developed co-registration methodology supports 

remote sensing-based analysis of Earth surface processes, which is important for many applied tasks, 

such as hazard assessment, environmental monitoring and land-use management. 
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