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Heterogeneous materials such as rocks, concrete, and granular materials exhibit a strong elastic
nonlinearity. The sensitivity of the elastic nonlinearity to the applied stress and pore pressure in principle
allows the use of seismic waves for remote observations of stress or pore pressure changes. Yet the
nonlinearity of rocks is difficult to quantify in situ as active deformation tests are not possible in the field.
We investigate the elastic nonlinearity in a fully natural experiment using the ambient seismic noise of a
single seismic station to sense changes of the seismic velocity in the subsurface reaching 0.026% in
response to the minute deformation caused by various constituents of the tidal forces exerted by the Sun
and Moon.
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Elastic moduli of geomaterials are not constant. Due to
the elastic nonlinearity of heterogeneous materials they
change with the applied strain. This makes seismic waves,
whose velocity depends on the elastic moduli, an ideal tool
for the remote monitoring of subsurface stress or strain
variations—an observation that is of fundamental impor-
tance in underground operations from construction to
mining, and for the monitoring of geological processes
in volcanoes and fault zones. However, the strain sensitivity
of the seismic wave velocity is a parameter that is hard to
measure in situ. The laboratory approach to probe the
sensitivity in an active deformation test cannot be trans-
ferred to the field where controlled strain cannot be applied.
Using the laboratory estimates for interpretation on the field
scale requires access to representative samples and involves
significant uncertainty in the upscaling. Here we show that
the improved processing of data from a single seismic
station allows measurements of the in situ strain sensitivity
of the seismic wave velocity in a natural experiment that
uses the deformation induced by tidal forces as perturba-
tions and the ambient seismic noise to measure the velocity
response. We observe multiple tidal constituents, a thermal
strain signal induced by temperature variations and nonlinear
coupling between tidal and thermal strain perturbations.
By exciting solid earth tides, the Sun and the Moon

perform a controlled deformation experiment with the Earth
that provides a way to probe the nonlinear elastic properties
of geomaterials on a large spatial scale. Detecting the
response of the seismic velocity to varying tidal strain is
therefore an attractive target that has been approached with
active source measurements [1–4] at dedicated experimental
facilities. Such measurements can provide very precise
observations and a high spectral resolution depending on

their duration. Due to the logistic efforts, active source
measurements are impractical for long term and spatially
extensive field observations. For this task, noise correlation
monitoring [5–8] is the ideal tool that uses the ambient
vibration field, which is recorded with standard seismom-
eters at thousands of locations globally.However,monitoring
tidal deformation with ambient seismic noise has been of
limited success so far due to the precision required that to date
has only allowed us to distinguish between periods of high
and low volumetric strain using arrays of several seismom-
eters [9,10]. Here we report observations of tidally induced
seismic velocity changes with unprecedented spectral reso-
lution and precision from a single seismic station in Chile
(Patache). These allow us to observe several tidal constitu-
ents in the spectrum of the seismic velocity variations which
we use to calibrate the velocity-strain sensitivity.
The station Patache (PATCX) of the Integrated Plate

Boundary Observatory Chile (IPOC) [11] is located in the
Atacama desert in northern Chile. Variations of the seismic
velocity have been observed at PATCX following the
dynamic deformation during earthquake shaking and in
response to the thermal strain caused by annual and daily
temperature variations [12,13]. An image of the geological
material close to the station and a thin section in Fig. 1
show numerous clasts embedded in a “gypcrete” matrix
containing large amounts of evaporites (likely gypsum and
halite).
In the present Letter, we use three-component seismic data

of PATCX from January 1, 2007 until January 31, 2018.
Variations of seismic velocity.—Calculation of noise

correlation functions to retrieve the pulse-echo Green’s
function and the procedure to measure velocity changes
at high precision and temporal resolution are described in
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the sections I and II of the Supplemental Material [14].
It details our new procedure for temporal smoothing and
the combination of observations from different compo-
nents. Figure 2 shows the relative seismic velocity change
at station PATCX for 11 years with 10 min sampling.
To reduce scatter in the time series, a temporal smoothing
of 250 min is applied. We use a 10 s long time window
starting at 2 s lapse time in the coda of the noise correlation
functions. Figure 2 shows the estimates of dv=v for each
individual component combination and for the joint meas-
urement. The most prominent features in the long term
time series of Fig. 2(a) are an annual cycle and coseismic
velocity decreases during the Tocopilla (2007) and Iquique
(2014) earthquakes that are followed by transient velocity

increase. The close-up on March 2008 in Fig. 2(b) shows
that the broad scatter in the long time series is not a random
measurement error but a deterministic signal with a period
of about one day. Additionally, the co- and postseismic
changes immediately after two small aftershocks of the
Tocopilla earthquake are visible.
To investigate the cause of the periodic variations we

calculate the spectrum of the jointly estimated velocity
changes with a true 10 min resolution. Figure 3 shows the
amplitude spectrum of the 11 years of observation of the
velocity variations resulting in a frequency resolution of
about 2.5 × 10−4 d−1, i.e., 2.9 nHz. The frequency axis is in
cycles per day (d−1). The spectrum [Fig. 3(a)] contains a
dominant peak at 1 cycle per day and a number of spectral
groups roughly located around overtones of the 24 h
oscillation. Close-ups of the different groups are shown
in panels (b)–(f) of Fig. 3. Supplemental to the velocity,
Fig. 3 shows the spectrum of the tidal volume strain
calculated with the ETERNA [19] PREDICT program in the
same time period.
A broad enlargement of the peaks around 2 d−1 in

Fig. 3(b) shows two isolated peaks at 1.896 d−1 and
1.932 d−1. These peaks correspond to the frequencies of
the larger lunar elliptic semidiurnal tide N2 and the
principal lunar semidiurnal tide M2 [20]. Consequently
these peaks are also present in the spectrum of the tidal

FIG. 2. Seismic velocity variations at station PATCX. (a) Long term velocity variations and (b) enlarged, from February 20 until April
1, 2008, showing the velocity decrease due to two earthquakes and superimposed diurnal and semidiurnal oscillations. Colored dots
show results obtained from individual component combinations and black line marks the joint estimate.

FIG. 1. Geological material at station PATCX in northern Chile.
(a) image of sample, (b) thin section.
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strain signal (orange curve in Fig. 3). The M2 spectral
amplitude of dv=v ¼ 13 × 10−5 corresponds to an average
peak to peak velocity change of 0.026%. Another peak is
present in the velocity as well as the tidal spectra at exactly
2 d−1. It corresponds to the principal solar semidiurnal tide
S2. Since this cycle can be influenced by tidal strain as well
as by thermal strain [12,21,22] and atmospheric pressure
variations [23] due to the solar radiation, the ratio of the
tidal strain and velocity spectral amplitudes of S2 differs
from that of the lunar constituents. This difference is even
stronger for the solar diurnal tide S1 at 1 d−1 [Fig. 3(c)].

The S1 strain signal is negligible in comparison to the other
tidal constituents, but the velocity has a pronounced peak
as expected from the sensitivity to thermoelastic strain at
PATCX [12].
Influence of tidal strain and temperature.—The different

peaks in the spectrum of the seismic velocity variations have
different explanations. Signals at frequencies that are solely
related to lunar tides (M2 and N2) are most likely caused
by the direct influence of the tidal strain on the seismic
velocities. A linear relation is observed between spectral
amplitudes of volumetric strain and velocity variation of the

FIG. 3. Spectrum of velocity changes with true 10 min resolution together with volumetric tidal strain. Broad spectrum in (a) shows
diurnal and semidiurnal peaks. (b) through (f) show enlarged peaks of one to four cycles per day.
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tidal constituents N2,M2, and K2 that are not influenced by
radiation effects (Fig. 4) defining the absolute value of the
sensitivity of seismic velocity to volumetric strain perturba-
tions jðdv=vÞ=ϵVj ¼ ð8� 2Þ × 103 [24]. We estimate the
depth sensitivity of these observations to be about 100 m
[25]. For plane wave propagation, this sensitivity is related
by β ≈ 2jðdv=vÞ=ϵVj to the commonly used parameter of
quadratic nonlinearity β defined as M ¼ M0ð1þ βεÞ with
the nonlinear elastic modulus M and the linear elastic
modulus M0.
The velocity does not instantaneously follow the tidal

strain. The velocity maximum of M2 lags 150� 15 min
behind thevolumetric strainminimum (compression, Fig. S1
in the Supplemental Material) [29]. We suggest that this
delay results from the transient response of the rocks, which
leads to either hysteresis in load experiments [30] or slow
dynamic recovery after dynamic perturbations [31]. The
transient response can be related to thermally activated
processes at weak internal cracks and contacts [32,33].
The phase lag complicates a comparison with other

observations that did not allow for a phase shift between
strain and velocity [9,10]. At the Pinion Flats Observatory
the velocity difference between periods of maximum and
minimum strain (0.03%) [10] are close to our peak to peak
velocity difference but showed significant differences
between observation on different components. A sensitivity
of the p-wave velocity to tidal (areal) strain changes of 103

was estimated in granite in Japan [4] without a significant
phase shift. Since the elastic nonlinearity is considered to
arise from processes at grain boundaries and cracks [34],
it appears within reason that the sensitivity of the hetero-
geneous gypcrete in Chile is about eight times larger
than that of the Japanese granite. An estimate of the tidal
strain sensitivity of seismic velocity at Iwate volcano,
Japan [9], of 6.9 × 104 is about ten times larger than our

observation—supporting the pronounced susceptibility of
volcanic edifices to dynamic perturbations [8]. Velocity
changes due to volcanic deformation on a timescale of half
a year and longer were used to estimate the strain sensitivity
at Izu-Oshima volcano in Japan [35] to be 2.3 × 103.
Despite the different timescale, this value is in a similar
range as the tidebased observations. It is interesting to note
that our strain sensitivity corresponds closely to the
acoustic nonlinearity that was used earlier [12] to explain
the thermally induced velocity changes at PATCX.
The solar tides are synchronous with the solar radiation

and related air pressure and temperature variation that bias
the sensitivity jðdv=vÞ=ϵVj for the cycles at 1 d−1, 2 d−1,
4 d−1 (S1, S2, θ4) and their annual modulations (P1, K1, T2,
R2, θ4þ=−) in Figs. 3 and 4. The most likely mechanism
linking solar radiation to seismic velocity is thermal strain
[12,21,22,36]. An exception is the O1 tidal constituent that
is not influenced by radiation but shows an anomaly in the
spectral ratios.
In contrast to the tidal strain which is—to first order—

constant with depth, daily and annual temperature fluctua-
tions are confined to a very shallow layer. The amplitude of
the thermoelastic strain changes in this layer, however, can
be orders of magnitude larger than the strain of tidal origin.
Nonlinear coupling of thermal and tidal velocity varia-

tions.—In addition to the spectral peaks that can be explained
by either tidal strain or thermal effects, we observe further
significant peaks in the velocity spectrum. These frequencies
[cf. Figs. 3(e) and 3(f)] can be explained exactly by the sumof
the frequencies of a solar radiation constituent and a lunar
tidal constituent: 2.932 d−1 annotated S1 þM2 is the sum
of S1 andM2 frequencies, 3.003 d−1 (K1 þ S2) is the sum of
the lunar diurnal and the solar semidiurnal frequencies and
3.932 d−1 (S2 þM2) equals the sum of the solar and lunar
semidiurnal frequencies. This suggests that the thermal and
tidal influences on the elastic moduli are not strictly additive
but modulate each other to some extent [37].
Discussion.—The deformation experiment that the tidal

forces of the Sun and Moon impose on the Earth can be
observed with the help of ambient seismic noise recorded at
a single seismic station. The high precision observations
with temporal resolution below 1 d−1 are facilitated by a new
processing procedure for noise correlation monitoring. It
allows us to observe the velocity response to a dynamic and
well characterized natural perturbation—the tidal strain—
with high temporal resolution above the timescale of the
perturbation.With a single seismometerwe are able to conduct
in situ dynamic acoustoelastic testing [38,39] (DAET) which
is currently one of the most elaborate experimental protocols
to characterize elastic nonlinearity in terms of both amplitude
and phase of the response at the excitation frequency and its
overtones [40].
The strain sensitivity observed here is within the range of

comparable observations [4,9,10]. However, we show that a
significant phase lag can occur between tidal strain and the

FIG. 4. Velocity sensitivity to tidal strain. Spectral amplitudes
of the velocity variations are plotted against volumetric tidal
strain for all frequencies. Larger tidal constituents are annotated.
Tidal constituents which are not influenced by radiation are
highlighted in red. The slope of these points defines the
sensitivity of the seismic velocity to changes of the volumetric
strain.
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velocity response. This possibility was not considered in
previous studies that measured the velocity difference
between periods of maximum and minimum strain [9,10].
Since tidal strain as a perturbation and seismic noise as a

probe are ubiquitous, our approach can be used to gauge the
velocity-strain sensitivity of subsurface materials wherever
seismic observations of about one month are available [43].
We see three important implications of this development.
(1) Ideally, precise knowledge of the velocity strain
sensitivity allows quantitative estimates of stress and strain
changes to be obtained from seismic measurements. It
could turn seismometers into strain meters. (2) Under dry
conditions the velocity-strain sensitivity depends on con-
fining pressure [39]. In the presence of pore-fluids we can
assume that the velocity-strain sensitivity depends on
effective pressure [44,45] providing an alternative means
for remote estimation of pore pressure [8,46,47]. Finally
(3) the dynamic response of geomaterials (in amplitude and
phase) to a controlled perturbation is a novel observation
that will contribute to a more complete characterization
of subsurface properties and a holistic understanding of
transient rheological phenomena such as dynamic softening
after earthquakes [8,13,48], transient recovery [13,48], and
hysteresis [49] that is not yet developed. Since our
observation requires data from a single seismometer only,
it is suitable for applications in planetary seismology [50]
and may help to probe the subsurface of Mars with seismic
data from the inSight mission.
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