

Originally published as:

Fenton, C. R., Niedermann, S., Dunai, T., Binnie, S. A. (2019): The SPICE project: Production rates of cosmogenic 21Ne, 10Be, and 14C in quartz from the 72 ka SP basalt flow, Arizona, USA. - *Quaternary Geochronology*, *54*.

DOI: http://doi.org/10.1016/j.quageo.2019.101019

1	
2	
3	The SPICE Project: Production rates of cosmogenic ²¹ Ne, ¹⁰ Be, and ¹⁴ C in quartz from
4	the 72 ka SP basalt flow, Arizona, USA
5	
6	
7	
8	
9	Cassandra R. Fenton ^{*, 1, 2, 3}
10	Samuel Niedermann ³
11	Tibor Dunai ²
12	Steven A. Binnie ²
13	
14	
15 16	*Corresponding author: E-mail: <u>cassiefenton@gmail.com</u>
16 17 18 19 20 21 22 23 24 25 26	¹ Present Address: Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO 81501, USA
	² Institut für Geologie und Mineralogie, Universität zu Köln, 50674 Cologne, Germany. <u>sbinnie@uni-koeln.de</u> , <u>tdunai@uni-koeln.de</u>
	³ Deutsches GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam, Germany; <u>nied@gfz-potsdam.de</u>
27	
28	Revisions submitted for publication in Quaternary Geochronology
29	August 28, 2019
30	
31 32	Keywords: cosmogenic nuclide production rates, ²¹ Ne, ¹⁰ Be, ¹⁴ C, quartz, geomagnetic field, SP lava flow

33 HIGHLIGHTS 34 Total reference production rates at SLHL are calculated in 72 ka quartz. Cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C rates (*St*): 17.0 \pm 1.1, 3.84 \pm 0.27, and 11.2 \pm 0.6 at/g/yr. 35 These rates agree with *St* scaled production rates over past 20 ka in literature. 36 37 There is a proposed period of decreased geomagnetic field strength from 20 to 50 ka. 38 SPICE rates do not record increased cosmogenic nuclide production over past 72 ka. 39 40 41 ABSTRACT The SP lava flow is a quartz-, olivine- and pyroxene-bearing basalt with an ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ 42 43 age of 72 ± 4 ka (2σ). The flow is preserved in the desert climate of northern Arizona, 44 USA. Its unweathered appearance and the lack of soil development indicate it has 45 undergone negligible erosion and/or burial, making it an ideal site for direct calibration of cosmogenic nuclide production rates. Cross-calibrated production rates and production 46 rate ratios for cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C have been determined from SP flow quartz. 47 Production rate ratios for ²¹Ne/¹⁰Be, ²¹Ne/¹⁴C, and ¹⁴C/¹⁰Be are based on the total, local 48 production rates of each cosmogenic nuclide, independent of scaling models, and have 49 50 error-weighted means ($\pm 2\sigma$ uncertainty) of 4.44 \pm 0.32, 1.43 \pm 0.10, and 2.85 \pm 0.21, 51 respectively. Error-weighted mean, sea-level, high latitude (SLHL) total reference production rates of ²¹Ne, ¹⁰Be, and ¹⁴C are 17.0 \pm 1.1, 3.84 \pm 0.27, and 11.2 \pm 0.6 at/g/yr 52 53 (2σ) , respectively, using time-independent Lal (1991)/Stone (2000) (St) scaling factors. St scaled spallogenic ¹⁰Be and ¹⁴C rates are 3.73 ± 0.26 and 9.2 ± 0.6 at/g/yr, 54 respectively. ²¹Ne and ¹⁰Be production rates are integrated over the past 72 ka, 55 whereas ¹⁴C production rates are integrated over 25 ka, the time at which SP flow quartz 56 57 has reached saturation with respect to 14 C. These rates overlap within 2σ uncertainty with 2

58	other <i>St</i> -scaled production rates in the literature, including the total reference SLHL ²¹ Ne
59	production rate of Niedermann (2000), which is revised in this paper to 16.8 ± 3.3 at/g/yr
60	$(2\sigma; St \text{ scaling})$ to reflect a recent change in age control at the Sierra Nevada sites. All
61	SLHL production rates are lower if time-dependent Sf, Sa, and Lm scaling factors are
62	used. For example, error-weighted mean, sea-level, high latitude (SLHL) total reference
63	production rates for ^{10}Be as calculated in the CREp online calculator range from 3.49 \pm
64	0.23 to 3.74 \pm 0.25 at/g/yr (2 σ), using time-dependent <i>Lm</i> scaling factors. Commonly
65	used SLHL ¹⁰ Be and ¹⁴ C production rates in the literature were calibrated on surfaces that
66	have been exposed to cosmic rays for less than 20 ka. Between 20 and 50 ka, the
67	geomagnetic field is proposed to have been weaker than it is today. Production rates of
68	cosmogenic nuclides increase during periods of weaker geomagnetic field strength.
69	However, our study finds no measureable difference between St-scaled production rates
70	of cosmogenic ²¹ Ne and ¹⁰ Be over the past 20 ka and <i>St</i> -scaled ²¹ Ne and ¹⁰ Be production
71	rates over the past 72 ka. As such, the study suggests that ²¹ Ne and ¹⁰ Be production rates
72	in quartz were not significantly greater during the proposed period of decreased magnetic
73	strength from 20 to 50 ka.

75 **1. Introduction**

76 Cosmogenic-nuclide geochronology has revolutionized Quaternary geology.

77 Scientists can now quantify large-scale, long-term (Myr time-scale) landscape evolution,

78 determine rates of generation and movement of sediment through drainage systems, and

79 date glacial moraines, debris flows, landslides, lava flows, and alluvial/fluvial deposits.

80 Nearly all Quaternary paleoclimate syntheses make use of glacial geochronology studies

that rely in large part on cosmogenic nuclide data (Balco, 2011). Cosmogenic nuclide
burial dating is even being used for age control at archeological sites (Gibbon et al., 2009;
2014).

Cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C are among the most extensively used nuclides from the cosmogenic nuclide repertoire, because they are formed and retained in quartz, one of the most common minerals on Earth. Cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C are often used in multi-nuclide studies that quantify erosion rates on the short- (¹⁴C /¹⁰Be), intermediate-(²⁶Al/¹⁰Be) and long-term (²¹Ne/¹⁰Be; ²¹Ne/²⁶Al) timescales. This study focuses on calibration of new cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C production rates in quartz at the 72±4 ka basaltic SP lava flow in northern Arizona.

91 Production rates of cosmogenic nuclides are determined either directly (calibrated) or 92 indirectly. Calibrated production rates are determined by measuring the concentration of 93 cosmogenic nuclides in rocks (minerals) at sites with independent age control (e.g., 94 radiocarbon dates, ⁴⁰Ar/³⁹Ar ages). Indirect production rates are calculated in one of two 95 ways: 1) The production-rate ratio technique uses a calibrated production rate for one 96 nuclide to estimate the rate for the other based on the assumption that the production-rate 97 ratio of the two nuclides is constant. For example, a ²¹Ne production rate can be estimated by multiplying the ratio ²¹Ne/¹⁰Be by the calibrated ¹⁰Be production rate. 2) If a mineral 98 has reached saturation with respect to a radionuclide (e.g., ¹⁴C), the cosmogenic nuclide 99 100 production rate equals the decay rate defined as the decay constant times the 101 concentration of the radionuclide. Radioactive saturation, independent of erosion, occurs 102 at sites where the age of the landform is older than four to five half-lives of the

103 cosmogenic radionuclide of interest. Accurate production-rate calibrations, whether they104 are directly or indirectly calibrated, require negligible erosion rates.

105 A variety of algorithms, termed scaling methods, have been developed to adjust 106 production rates for local conditions of latitude, longitude, elevation, and time (e.g. 107 Nishiizumi et al., 1989; Lal, 1991; Stone, 2000; Lifton et al., 2014; Lifton, 2016). Scaling 108 for time presents a special problem because fluctuations in the Earth's magnetic field 109 change the intensity of cosmic radiation, and thereby, change the rate of cosmogenic 110 nuclide production. Heretofore, the Lal (1991)/Stone (2000) scaling method (St) has been 111 used for calculating constant (or time-independent) scaling factors based on the average 112 strength of the Earth's magnetic field over time. It could be argued the St method has 113 been the most often used of scaling methods, and continues to be, even with the advent of 114 time-dependent scaling methods (e.g., Sf and Sa; Lifton et al., 2014; Lm, Nishiizumi et 115 al., 1989; Balco et al., 2008), which account for time-variant weakening and 116 strengthening of the Earth's magnetic field. Abbreviations St, Sf, Sa, and Lm are used in 117 this study to be consistent with abbreviations used in Balco et al. (2008), Marrero et al. 118 (2016), and Martin et al. (2017). 119 Most production rate calibration studies, particularly those focusing on 120 cosmogenic ¹⁰Be and ¹⁴C, are based on independent ages at calibration sites that are <20121 ka (Heyman, 2014 and references therein; Borchers et al., 2016; Martin et al., 2017). Yet, these ¹⁰Be production rates are commonly extrapolated to date landforms much older than 122 123 20 ka. Landform surfaces older than 20 ka have cosmogenic nuclide inventories which 124 'integrate' or average temporal changes in rates of cosmogenic nuclide production 125 dependent on magnetic field strength. It has been proposed that Earth experienced a

decrease in its magnetic field strength between 20 and 50 ka, and thus increased

127 cosmogenic nuclide production (Lifton et al., 2005; Lifton et al., 2014 and references

128 therein). Minerals, including quartz xenocrysts, in SP flow basalt contain a record of

129 cosmogenic nuclide accumulation that includes this period of higher nuclide production.

130 If the increased production were significant, we would expect it to be detected in

131 measured cosmogenic nuclide concentrations in SP flow minerals.

132 This paper is the first of several papers planned to present data from the SPICE (SP

133 Flow Production-Rate Inter-Calibration Site for Cosmogenic-Nuclide Evaluations)

134 project. Here, we present calibrated production rates and production-rate ratios for

135 cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C in 72 \pm 4 ka SP flow quartz, and suggest that the *St* scaled

136 production rates can be used to calculate accurate exposure ages and erosion rates even

137 on surfaces between 20 and 70 ka in age.

138

139 **2. The SP Lava Flow**

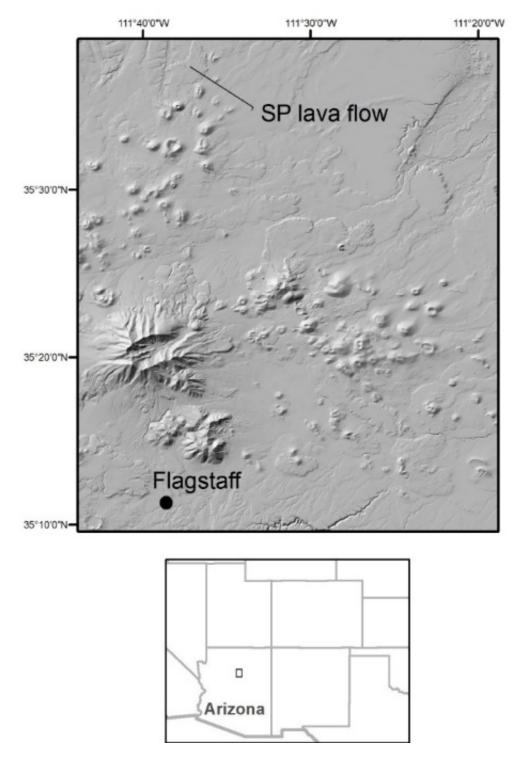
140 The SP lava flow and its cinder cone (formally named SP Mountain; Billingsley et al.,

141 2007) are located in the northern part of the San Francisco volcanic field, about 55 km

142 north of Flagstaff, AZ, USA (Figure 1). The flow contains co-existing quartz xenocrysts,

143 olivine, and pyroxene in a dark-gray crystalline basaltic andesite (Billingsley et al.,

144 2007). This is a relatively rare occurrence, as quartz does not usually crystallize in


145 basaltic magmas. The flow is preserved in the arid desert climate of northern Arizona,

146 USA and its youthful, unweathered appearance and the lack of soil development indicate

147 it has undergone negligible erosion (Fenton et al., 2013) (Figures 2, 3, and Figures S1

148 through S13, found in Supplementary Material).

149	The SP lava flow retains well-defined lava-flow levees, aa, pressure ridges, and
150	agglutinate features. The SP lava flowed northward from its vent for approximately 6.5
151	km. The flow is between 6 and 40 m thick and has a rough blocky surface and steep flow
152	fronts. Most of the lava-flow surface is free of desert-pavement and/or soil formation, and
153	appears as the black areas in the satellite image (Figure 2; '2018 SPICE Sample
154	Sites.kmz here'). Areas along the edges of the flow, mainly on the western side, do have
155	occasional, well-developed patches of pavements overlying the fine-grained A soil
156	horizon (A_v ; 10-15 cm deep; McFadden et al., 1998). These areas are the gray-to-green
157	colored areas in the satellite image of the SP lava flow.
153 154 155 156	appears as the black areas in the satellite image (Figure 2; '2018 SPICE Sample Sites.kmz here'). Areas along the edges of the flow, mainly on the western side, do have occasional, well-developed patches of pavements overlying the fine-grained A soil horizon (A_v ; 10-15 cm deep; McFadden et al., 1998). These areas are the gray-to-green

159 Figure 1. Location of the SP lava flow in the San Francisco volcanic field, north of

Flagstaff, Arizona. The small box in the lower figure indicates the extent of the top image

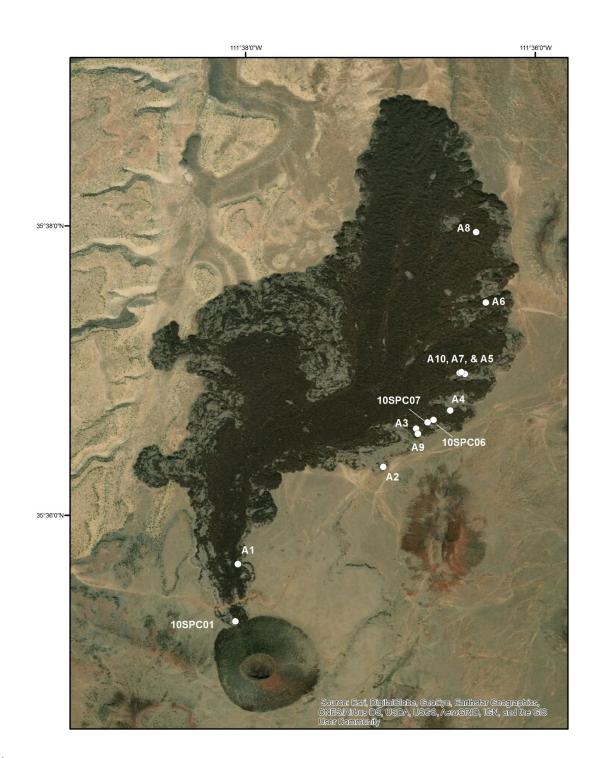


Figure 2. Satellite image of the SP lava flow and its cinder cone. White circles indicate
locations of SPICE sample sites. Table 1 lists the latitude, longitude, and elevation of each
SPICE sample site. An interactive Google Earth map is also available '2018 SPICE Sample
Sites.kmz here', so it is possible to zoom in on a specific sample site.

167 Table 1. Information on sampling locations and sample types collected from the SP lava flow and SP Crater in the San Francisco

168 volcanic field in northern Arizona, USA. An interactive Google Earth map is also available '2018 SPICE Sample Sites.kmz here',

169 where it is possible to zoom in on a specific sample site.

						Bulk							Quartz mass	Quartz mass	Quartz mass
				Collected rock	l Maximun sample	n whole- rock			Topographic	Sample thickness	Total	Pre-acid etching	used in ¹⁰ Be	used in ²¹ Ne	used in ¹⁴ C
Location/	Latitude	Longitude	Elev.	mass	thickness	density	Dip	Dip	shielding	shielding	shielding	quartz	analysis	analysis	analysis
Sample	(°N)	(°W)	(m)	(kg)	(cm)	(g/cm ³) ^a	(°)	azimuth	factor ^b	factor ^c	factor ^d	mass ^e (g)	(g)	(g)	(g)
SPICE-															
A1	35.5944	111.6342	1837	19.1	8	2.25	0	n/a	0.999	0.946	0.945	6.10	2.1608	0.48040	1.00116
A2 ^g	35.6056	111.6175	1807	30.5	8	2.26	0	n/a	0.999	0.946	0.945	5.39	2.0711 2.0559	0.47372	0.98914
A3 ^g	35.6100	111.6137	1810	24.1	13	2.15	0	n/a	0.999	0.918	0.917	8.16	2.1188 2.0803	0.48278	0.9573
A4	35.6121	111.6098	1803	30.9	13	2.13	12	45	0.998	0.918	0.916	10.09	2.0803	0.80032	0.9836
A5	35.6163	111.6081	1800	26.8	13	2.28	0	n/a	1.000	0.913	0.913	8.53	2.1358	0.48470	0.9938
A6 ^g	35.6245	111.6057	1778	29.5	12	2.29	0	n/a	1.000	0.919	0.919	7.35	2.0919 2.1112	0.48494	0.9718
A7	35.6164	111.6087	1800	25.9	13	2.45	0	n/a	1.000	0.907	0.907	6.78	2.0676	0.47508	0.9833
48	35.6326	111.6068	1778	25.0	13	2.05	15	38	0.997	0.921	0.918	12.19 ^f	2.1340	0.80998	0.9993
A8 ^g	35.6326	111.6068	1778	25.0	13	2.05	15	38	0.997	0.921	0.918	12.19 ^f	2.1391 2.1340	0.80998	0.9993
A9	35.6094	111.6135	1810	30.5	13	2.29	0	n/a	0.999	0.912	0.912	8.49	2.0503	0.46248	1.0613
A10	35.6165	111.6085	1800	25.0	12	2.31	7	315	0.999	0.918	0.917	5.32	2.0525	0.48178	0.9781
10SPC01	35.5878	111.6345	1876	n/a	6	2.25	0	n/a	0.985	0.959	0.945	n/a	n/a	0.52770	n/a
10SPC06	35.6110	111.6117	1799	n/a	6	2.25	15	45	0.999	0.959	0.958	n/a	n/a	0.50342	1.0522
10SPC07	35.6107	111.6124	1787	n/a	6	2.25	23	233	0.995	0.959	0.954	n/a	n/a	0.73352	1.0708

170 Note: All SPICE samples were collected from the exposed surfaces of pressure ridges on the SP lava flow. Samples 10SPC01, 10SPC06, and 10SPC07 were

171 collected in 2010. All other SPICE samples were collected in 2015. n/a = not applicable or not available.

¹⁷² ^a Bulk densities were measured for each sample, except for samples 10SPC01, -06, and-07, for which densities reported here are an average of the measured

173 densities for samples SPICE-A1 to -A10.

^bCalculated using CRONUSCalc Topographic Shielding Calculator version 2.0 (Marrero et al., 2016).

¹⁷⁵ ^cCalculated using CRONUS-EU CosmoCalc version 3.0 (Vermeesch, 2007) with the bulk whole-rock density measured or reported for each sample and an

176 exponent of topographic shielding correction of 2.3.

- ^d The total shielding factor includes corrections for sample depth (self-shielding) and topographic shielding, which includes dipping of a sample site surface,
- 178 when present. Shielding factor = 1.0 equates to no shielding correction.
- ¹⁷⁹ ^eSamples yielded quartz concentrates (>75% quartz) in the 125-1000 µm fraction, unless otherwise noted. Masses reported here are the amounts of quartz
- 180 extracted from each basalt sample prior to any treatment with HF acid.
- ^f Sample yielded quartz concentrates in the 90-1000 μm fraction.
- 182 ^g Sufficient purified quartz was obtained to allow duplicate sample preparation and ¹⁰Be measurement. Listed masses are those used in duplicate sample
- 183 preparation and AMS measurements.
- 184

185	
186	The age of the SP lava flow has been debated since the first K-Ar age (70±8 ka; 2σ)
187	was reported by Baksi (1974). Many volcanologists who studied the flow argued that the
188	flow surface appeared "too young" to be 70 ka. More age-dating studies followed. Quartz
189	xenocrysts in the SP flow yielded OSL ages of 5.5-6 ka (Rittenour et al., 2012). Fenton et
190	al. (2013) reported an age of 72±4 ka (2 σ ; ± 5.6%) for the SP lava flow, based
191	on ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ analysis of three basalt groundmass samples (Figure 4). The ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age is
192	in excellent agreement with the previously reported K-Ar age (70±8 ka; Baksi, 1974).
193	Fenton and Niedermann (2014) also report an exposure age of 69±7 ka based on
194	cosmogenic ³ He and ²¹ Ne concentrations in SP flow pyroxene (<i>St</i> scaling) and production
195	rates from Goehring et al. (2010) and Fenton et al. (2009). The ³ He and ²¹ Ne exposure
196	ages further substantiate the 40 Ar/ 39 Ar and K-Ar ages. The strong agreement between
197	initial cosmogenic ³ He and ²¹ Ne data and the existing ⁴⁰ Ar/ ³⁹ Ar and K-Ar ages indicates
198	that the SP flow has undergone negligible erosion and is suitable for cross-calibrating
199	production rates of cosmogenic nuclides. The small uncertainty (\pm 5.6%) of the ⁴⁰ Ar/ ³⁹ Ar
200	age, in combination with lack of erosion or burial and the presence of quartz, olivine, and
201	pyroxene in the basalt, made the SP lava flow an obvious candidate as a primary
202	calibration site for cosmogenic nuclide production rates (Fenton et al., 2013; Fenton and
203	Niedermann, 2014).
204	

204 **3. Background on Terrestrial Cosmogenic Nuclides**

105

205 Cosmogenic nuclides are produced by spallation reactions induced by high-energy

206 nucleons, secondary thermal and epithermal neutron capture reactions, and muon-induced

- 207 reactions (Gosse and Phillips, 2001). Cosmogenic nuclides produced by spallation
- 208 reactions and those produced by muon-induced reactions are referred to as spallogenic

- and muogenic nuclides, respectively. Spallation reactions are the dominant mechanism by
- 210 which cosmogenic nuclides are produced in rocks at the Earth's surface.
- 211

- 213 Figure 3. Photograph of a representative pressure ridge at the SP lava flow. The
- whiteboard stands 8.5 inches tall and is on the surface from which SPICE-A10 was
- collected. Note the continuity of the pressure-ridge surfaces and the well-developeddesert varnish, indicating negligible erosion.
- 217
- 218
- 219

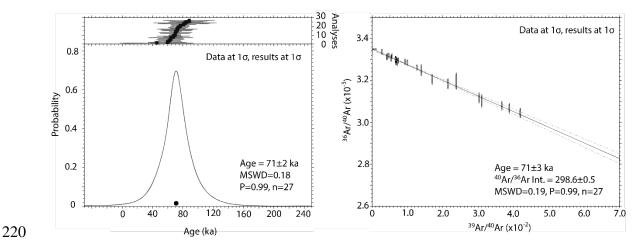


Figure 4. Relative probability plot (left) showing all age steps from the three ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ step-heating experiments for the SP flow samples. The isotope correlation plot (right) also shows all age steps from the three step-heating experiments for the SP flow. Figure is modified from Fenton et al. (2013) and the age (72±4 ka) of the SP flow is recalculated relative to the optimization model of Renne et al. (2010).

227 The production of in-situ cosmogenic nuclides is dominantly controlled by the flux of 228 galactic cosmic rays (with energies >100 MeV) through Earth's atmosphere (Cerling and 229 Craig, 1994). This flux of nucleons (primarily protons and alpha particles) is modulated 230 by the strength of the Earth's magnetic field. During periods of weaker magnetic 231 strength, the flux is higher. Secondary particles (i.e. neutrons) responsible for cosmogenic 232 nuclide production at the Earth's surface are created during nucleonic interactions 233 between galactic cosmic rays and elements in the Earth's upper atmosphere. These 234 secondary particles then penetrate rocks/minerals, striking target atoms (e.g., O, Mg, Si, 235 etc.) and causing spallation reactions that produce terrestrial cosmogenic nuclides (Gosse 236 and Phillips, 2001), such as ²¹Ne, ¹⁰Be, and ¹⁴C. 237 The production rates of these nuclides in rocks are highest in the upper 4 cm of the 238 Earth's surface, and are dependent not only on the Earth's magnetic field strength, but 239 also on the chemical composition of the bulk-rock and mineral of interest and on the

240 latitude and elevation where the rock or mineral of interest is located.

241 Production rates increase with increasing latitude and elevation. Longitude plays a 242 smaller role in modifying production rates, but is sometimes considered because of the 243 non-dipole nature of the Earth's magnetic field (Gosse and Phillips, 2001; Dunai, 2001; 244 Lifton et al., 2005; Lifton et al., 2014). In addition, sample depth affects production rates. 245 Generally, the production rate of a cosmogenic nuclide decreases exponentially with increasing depth (Gosse and Phillips, 2001). 246 There are stable cosmogenic nuclides (e.g., ²¹Ne) and radioactive cosmogenic 247 nuclides (e.g., ¹⁰Be and ¹⁴C). In the absence of erosion or burial, concentrations of stable 248 249 nuclides accumulate with time (Equation 1), $C(t) = P_0 t \qquad [Eq. 1]$ 250 where C is the concentration of the stable nuclide as a function of time (t), and P_0 is the 251 252 production rate of the stable nuclide. In the same conditions, concentrations of 253 radionuclides (C(t)) are governed by their production rates (P_0) and their decay constants 254 (λ) (Equation 2), $C(t) = \frac{P_0}{\lambda} \left(1 - e^{-\lambda t} \right) \qquad [\text{Eq. 2}].$ 255

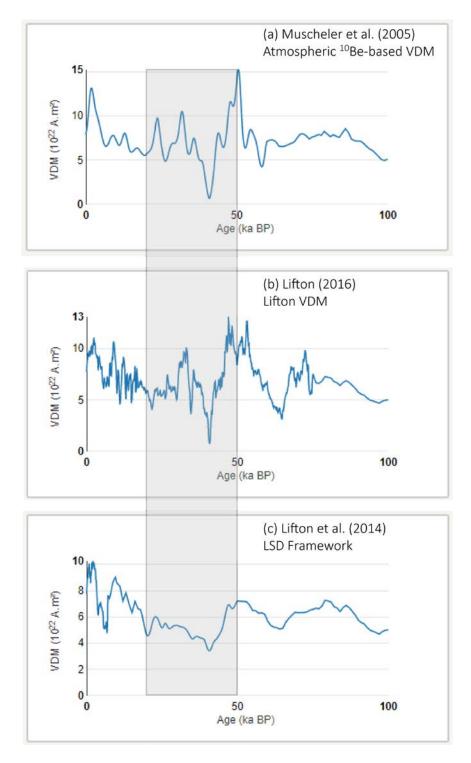
256 When the production rate of a cosmogenic radionuclide equals its decay rate (or 257 $\lambda C(t)$), the radionuclide has reached secular equilibrium. Concentrations of nuclides at 258 secular equilibrium are, thus, governed by their production rate and decay constant 259 (Equation 3),

260
$$C(t) = \frac{P_0}{\lambda}$$
 [Eq. 3].

Radioactive nuclide saturation (>95%) can be assumed to occur between 4 and 5 halflives (Lifton et al., 2001). Erosion, burial, and cover (i.e. soil, snow, dust, etc.) will affect

the concentrations of cosmogenic nuclides in a given rock or mineral sample bydecreasing production via shielding.

The total production rate of a cosmogenic nuclide includes spallation production and 265 muon-induced production at a given latitude, longitude, and elevation. Muogenic ¹⁰Be 266 and ²¹Ne only contribute a small fraction ($\sim 2\%$) to total ¹⁰Be and ²¹Ne production at the 267 Earth's surface (Heisinger et al., 2002a; 2002b; Balco et al., 2008; 2009; Goethals et al., 268 2009; Kober et al., 2011;). In contrast, the muogenic component of the total reference ${}^{14}C$ 269 270 production rate is significantly higher at the Earth's surface ($\sim 20\%$; Heisinger et al., 2002a; 2002b; Lupker et al., 2015). Spallation production rates for ²¹Ne, ¹⁰Be, and ¹⁴C 271 272 include production of each nuclide from fast-muon induced spallation, following Lal (1991)/Stone (2000) and Dunai (2000). Muogenic contributions (2%) to the total ²¹Ne 273 274 production rate should only come from fast muon interactions (Balco and Shuster, 2009; Goethals et al., 2009; Kober et al., 2011), and recent data confirms production of ²¹Ne 275 276 from negative muon capture is indeed negligible (Balco et al., 2019). Consequently, no distinction between total and spallogenic production rates of ²¹Ne is made in this paper. 277 278 Because production rates vary by latitude, longitude, and elevation, and because they 279 also vary with time-dependent fluctuations in the Earth's magnetic field strength, 280 scientists have set out over the past few decades to establish production-rate calibration 281 sites all over the globe. The goal has been to increase the accuracy of global, average production rates, such that associated uncertainties are minimized to less than 5% 282 283 (Phillips, 2016).


284 Scientists contributing to the global production-rate database have been striving to 285 quantify the time-and-space variability in production rates and to use this variability to

286 construct or improve scaling methods (Nishiizumi et al., 1989; Lal, 1991; Stone, 2000; 287 Dunai 2000, 2001; Desilets and Zreda, 2003; Lifton et al., 2005; Desilets et al., 2006; 288 Lifton et al., 2014; Lifton, 2016). These scaling methods comprise complex algorithms 289 that calculate scaling factors, which are used to normalize 'local' production rates from 290 various elevations and latitudes to a sea-level and high-latitude (>60°) (SLHL) 291 production rate. Conversely, the scaling factors are also used as 'multipliers' to scale a 292 SLHL production rate to a local production rate (for a specific latitude, longitude, and 293 elevation).

294 Until recently, the combined Lal (1991)/Stone (2000) model (St) has been the most 295 commonly used scaling model. This time-independent model calculates a constant 296 scaling factor for a given latitude and elevation. In the St model, scaling-factor values are 297 mainly controlled by the geographic position of a sample site. Other models are time 298 dependent and account for documented variations in the strength of the geomagnetic 299 field. The time-dependent models (Sf and Sa) were developed by Lifton et al. (2014). Sf 300 scaling factors can be used with any cosmogenic nuclide, whereas Sa scaling factors are 301 nuclide specific. The time dependent Lm scaling method (denoted as Lm by Balco et al., 302 2008) is based on the St model of Lal (1991)/Stone (2000) and is modified for 303 geomagnetic corrections as described in Nishiizumi et al. (1989). In general, sites at high 304 latitudes and high elevations will have higher resultant scaling factors than sites at low 305 latitudes and low elevations. 306 Sf, Sa, and Lm scaling factors also account for periods of lower or higher nuclide

production that are tied to the strengthening or weakening of the Earth's magnetic field,
respectively (Nishiizumi et al., 1989; Lifton et al., 2014; Lifton, 2016). Periods of weak

309 field strength result in higher nuclide production, and thus result in an increase in the 310 scaling factor value at, and vice versa. The SP lava flow surface has been exposed to 311 cosmic rays for the past 72 ka, which includes a proposed period of higher cosmic-ray 312 flux between 20 and 50 ka, when the Earth's magnetic field was weaker than it is now 313 (Figure 5; Lifton et al., 2014). Sf and Sa scaling factors are calculated to incorporate the 314 proposed increase in cosmogenic nuclide production. Lm scaling factors calculated in the 315 online CREp calculator (https://crep.otelo.univ-lorraine.fr/#/init; Martin et al., 2017) 316 using the "LSD Framework" also incorporate this proposed increase in production. CREp 317 *Lm* scaling factors are calculated using three different virtual dipole moment (VDM) 318 databases: (1) the atmospheric ¹⁰Be-based VDM of Muscheler et al. (2005) and Valet et 319 al. (2005); (2) the Lifton VDM of Lifton (2016); and (3) the LSD Framework of Lifton et 320 al. (2014). In this study, these three virtual dipole moment databases are referred to as 321 VDM 1, VDM 2, and VDM 3, respectively. 322 VDM 1 and VDM 2 indicate a period of only slightly decreased virtual dipole 323 moment, or geomagnetic field strength, between 20 and 50 ka, whereas VDM 3 indicates 324 a more pronounced decrease during the same time period (Figure 5). VDM 3 values are predominantly between 4×10^{22} and 6×10^{22} Am², whereas VDM 1 and VDM 2 values 325 are predominantly between 5×10^{22} and 10×10^{22} Am². 326

328 Figure 5. Three virtual dipole moment (VDM) models as displayed on the CREp

- 329 parameters webpage (<u>https://crep.otelo.univ-lorraine.fr/#/init</u>) (modified from Martin et
- al., 2017). The transparent gray box indicates the period of increased cosmogenic nuclide
- 331 production between 20 and 50 ka proposed by Lifton et al. (2014).
- 332
- 333

4. Current Values of Production Rates for ²¹Ne, ¹⁰Be, and ¹⁴C in Quartz

335 Impressive progress has been made over the past 30 years in determining cosmogenic 336 nuclide production rates, but there still exists a need to refine production rates. Though the ¹⁰Be production rate is reasonably well constrained, with data from at least 24 337 338 different direct-calibration studies contributing to calculation of the global average SLHL 339 value (Nishiizumi et al., 1989; Gosse et al., 1995; Larsen, 1996; Kubik et al., 1998; Stone 340 et al., 1998; Kubik and Ivy-Ochs, 2004; Farber et al., 2005; Balco et al., 2009; Putnam et 341 al., 2010; Fenton et al., 2011; Kaplan et al., 2011; Ballantyne and Stone, 2012; Briner et 342 al., 2012; Goehring et al., 2012; Blard et al., 2013; Young et al., 2013; Heyman, 2014; 343 Kelly et al., 2015; Small and Fabel, 2015; Stroeven et al., 2015; Lifton et al., 2015; 344 Martin et al., 2015; Borchers et al., 2016; Martin et al., 2017; Putnam et al., 2019), 345 calibration sites at low latitudes and calibration sites older than 20 ka are still needed. Importantly, aside from SPICE data reported in this study, all ¹⁰Be production rates 346 347 contributing to the average global SLHL production rate are based on landform surfaces exposed for less than 20 ka. SLHL ²¹Ne and ¹⁴C production rates are constrained by 348 349 fewer studies (6 and 4, respectively; Figures 6 and 7). More calibration sites are also needed around the world for more robust calculations of global, average SLHL ²¹Ne 350 351 and ¹⁴C production rates. While global, average production rates for multiple cosmogenic 352 nuclides have been updated several times over the past 11 years (e.g., Balco et al., 2008; 353 Heyman, 2014; Borchers et al., 2016; Martin et al., 2017), it is useful to think of 354 cosmogenic nuclide production-rate research as a 'work in progress', to which the SPICE project is contributing, particularly with regard to ²¹Ne, ¹⁰Be, and ¹⁴C production in 355 356 quartz. The ICE-D calibration database addresses this 'work in progress' issue with

357 regular updates to production-rate data when new studies are published

358 (http://calibration.ice-d.org/; Martin et al., 2017). The ICE-D data is linked to the online

359 calculators of Balco et al. (2008) and the CREp calculator of Martin et al. (2017).

360 Cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C are produced and retained in quartz, one of the most

361 abundant minerals on the Earth's surface. The concentration of ²¹Ne, a stable nuclide, is

362 limited only by processes such as burial and erosion of a landform's surface. As

363 such, ²¹Ne is an ideal cosmogenic nuclide for dating surfaces with exposure histories up 364 to $10^6 - 10^7$ years.

Cosmogenic ²¹Ne in quartz has been used in studies since the 1990s, but it has really

366 grown in popularity since 2000, particularly in multi-nuclide surface-process research

367 (e.g., Phillips et al., 1998; Summerfield et al., 1999; Hetzel et al., 2002; Tschudi et al.,

368 2003; Ivy-Ochs et al., 2006, 2007, Kober et al., 2007, 2011; Strobl et al., 2012; Decker et

369 al., 2013; Balco et al., 2014; Codilean et al., 2014; Matmon et al., 2014; Kounov et al.,

370 2015; Ma et al., 2016; McPhillips et al., 2016; Pavićević et al., 2016). Still, the direct

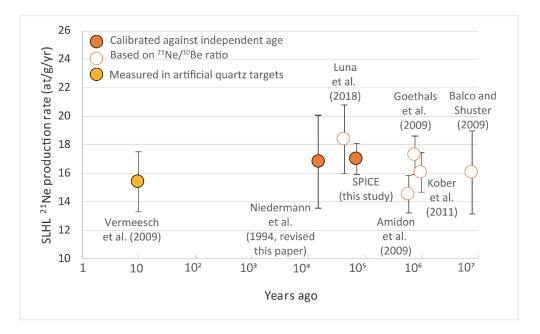
371 calibration of the cosmogenic ²¹Ne production rate in quartz remains poorly constrained

relative to the direct calibration of the ¹⁰Be production rate. Only one published direct

373 calibration of the ²¹Ne production rate in quartz exists (Niedermann et al., 1994; revised

by Niedermann, 2000). That rate is based on two samples (WGS-8 and WGS-12) from a

375 site in the Sierra Nevada (California) exposed by deglaciation during the late Pleistocene.


376 In 2000, new age control at the site resulted in a revision of the production rate to $20.3 \pm$

377 3.8 at/g/yr (Niedermann, 2000; *St* scaling). Glacier retreat was originally thought to be at

378 11 ka, and was then changed to 13 ka, with ¹⁰Be and ²⁶Al exposure ages calibrated

against radiocarbon data in the study area (Nishiizumi et al., 1989; Clark et al., 1995).

More recently, age control has changed at the site again. Phillips (2016) and Phillips et al. (2016) now conclude glacier retreat occurred at the sample sites at 15.75 ka. Herein, the total reference SLHL ²¹Ne production rate of Niedermann (2000) is revised to reflect this change in age control at the Sierra Nevada sites. The new total reference ²¹Ne production rate is 16.8 ± 3.3 at/g/yr (2 σ ; *St* scaling; Figure 6).

385

Figure 6. Error-weighted mean total reference SLHL production rate for ²¹Ne in SPICE quartz samples (17.0 ± 1.1 at/g/yr), and published SLHL ²¹Ne rates recalculated in this study. The ¹⁰Be_{sp} production rate of 4.01 at/g/yr (Borchers et al., 2016) is used in combination with published ²¹Ne/¹⁰Be values to estimate related ²¹Ne production rates (white circles). Values are scaled with the *St* method. The production-rate ratios of Luna et al. (2018) incorporate an erosion rate of 1 mm/ka.

393 The remaining five ²¹Ne production rates in quartz are indirectly determined and

based on ²¹Ne/¹⁰Be production-rate ratios at the sample sites, in combination with use of

a SLHL ¹⁰Be production rate (Amidon et al., 2009; Balco and Shuster, 2009; Goethals et

al., 2009; Kober et al., 2011; Luna et al., 2018) such that,

398
$$P_{21Ne} = \left(\frac{{}^{21}Ne}{{}^{10}Be}\right) \times P_{10Be}$$
 [Eq. 4]

399	The production rate of ¹⁰ Be (P _{10Be} ; Eq. 4) is based on Equation 2. ²¹ Ne and ¹⁰ Be are
400	measured concentrations of each nuclide, where the measured concentration of 10 Be is
401	corrected for the decay of ¹⁰ Be over time.
402	The SLHL ¹⁰ Be production rates used previously by Amidon et al. (2009), Balco and
403	Shuster (2009), Goethals et al. (2009), and Kober et al. (2011) were between 4.23 and
404	5.01 at/g/yr, depending on the study and whether the study incorporated the new,
405	lower ¹⁰ Be half-life published by Chmeleff et al. (2010) and Korschinek et al. (2010).
406	The Luna et al. (2018) study uses the SLHL reference production rate in the high, tropical
407	Andes (4.02 ± 0.12 at/g/yr; Kelly et al., 2015 and Martin et al., 2015). Sample sites from
408	Amidon et al. (2009) and Goethals et al. (2009) had independent age control, but the
409	effects of erosion or burial were such that calculating a ²¹ Ne production rate based
410	directly on the independent age would have underestimated the production rate.
411	More recently, the global, average SLHL spallogenic ¹⁰ Be production rate (<i>St</i> -scaled)
412	has been determined to be 3.99 or 4.01 at/g/yr (St; Heyman, 2014; Borchers et al., 2016)
413	or 4.06 - 4.11 at/g/yr (<i>Lm</i> -scaled; CREp online calculator; Martin et al., 2017). The 10 Be

414 production rate of Borchers et al. (2016) is used here to recalculate published ²¹Ne

415 production rates determined by the ratio method (Figure 6; Amidon et al., 2009; Balco

416 and Shuster, 2009; Goethals et al., 2009; Kober et al., 2011). Using the spallogenic P_{10Be}

417 of 4.01 at/g/yr, the indirectly determined 21 Ne production rates now range from 14.6 to

418 18.1 at/g/yr, which are in good agreement with the revised value of the directly calibrated

419 spallogenic ²¹Ne production rate (Niedermann et al., 1994; Niedermann, 2000) of $16.8 \pm$

420 3.3 at/g/yr (*St* scaling; this paper) (Figure 6).

421	The independent ages of the calibration sites in the ²¹ Ne/ ¹⁰ Be ratio studies range
422	much farther back in geologic time than do the independent ages for 10 Be and 14 C
423	production-rate studies. The studies of Amidon et al. (2009), Balco and Shuster (2009),
424	and Goethals et al. (2009) were at sites with ages of 610 ka, >8 Ma, and 760 ka,
425	respectively. Amidon et al. (2009) and Goethals et al. (2009) report significant and
426	observable erosion at their sample sites. That adds a factor of uncertainty to 21 Ne/ 10 Be
427	production ratios of Amidon et al. (2009) and Goethals et al. (2009) (3.56±0.16 and
428	4.31±0.17; 1 σ , respectively), even though Goethals et al. (2009) do their best to quantify
429	erosion at their calibration site and consider its effect on the ²¹ Ne production rate.
430	Balco and Shuster (2009) base their spallogenic ²¹ Ne production rate (recalculated
431	here to be 16.4 \pm 3.0 at/g/yr; 2 σ ; <i>St</i> scaling) on ~8-14 Ma surfaces in Antarctica, where
432	erosion is quantified by cosmogenic ²⁶ Al and ¹⁰ Be concentrations. Balco and Shuster
433	(2009) report a 21 Ne/ 10 Be production ratio of 4.08±0.37 (n = 9), which is nearly identical
434	to that of Kober et al. (2011) of 4.01 ± 0.17 (<i>St</i>). Balco and Shuster's (2009) data are used
435	in the CRONUSCalc online calculator (Marrero et al., 2016) and CRONUSCalc
436	documentation lists the spallogenic ²¹ Ne production rates as 16.63 (<i>St</i>) and 16.96 at/g/yr
437	(<i>Sf</i>) (Table 2).
438	The Kober et al. (2011) study yields a spallation ²¹ Ne production rate (recalculated
439	here to be 16.1 \pm 1.4 at/g/yr; 2 σ) based on a statistical analysis of all published ²¹ Ne/ ¹⁰ Be
440	data (n=95) produced at ETH Zurich, where all 10 Be data was corrected for the new 10 Be
441	half-life (1.387 Ma; Chmeleff et al., 2010; Korschinek et al., 2010). Twenty-five percent

442 of the samples have exposure ages younger than 50 ka, and 75% have ages < 1 Ma. The

oldest samples (~6 - 10 Ma) are from Antarctica (Schäfer et al., 1999; Di Nicola et al.,
2009).

The Luna et al. (2018) study reports a ²¹Ne production rate (18.1 \pm 2.4 at/g/yr; 2 σ) 445 based on ²¹Ne/¹⁰Be production ratios measured in 11 quartz samples. Luna et al. (2018) 446 447 calculate exposure ages of 38.9 to 392 ka for moraines from which the eleven samples 448 were collected. Five of these samples are from moraines with exposure ages ranging from 449 38.9 to 49.6 ka. These ages fall within the 20-50 ka period of decreased geomagnetic 450 field strength. If these five samples are considered alone, they yield an error-weighted mean ^{21}Ne recalculated production rate of 18.4 \pm 2.4 at/g/yr (2\sigma; plotted in Figure 6), 451 which is only 1.7% greater than the ²¹Ne production rate of 18.1 ± 1.2 at/g/yr (2 σ) Luna 452 453 et al. (2018) calculated with all 11 samples. The five samples of Luna et al. (2018) from moraines between 38.9 to 49.6 ka do thus not record any significant increase in ²¹Ne 454 455 production in quartz (Figure 6).

457 Table 2. Comparison of spallation production rates in quartz from this study to those

458 reported by Borchers et al. (2016). Niedermann (2000), and Marrero et al. (2016).

reported by Borchers et al. (2016), Nieder	mann (2000), and		(2010).
	SLHL	SLHL	SLHL
	Production	Production	Production
	Rate	Rate	Rate
	St	Sf	Sa
Cosmogenic nuclide	(at/g/yr)	(at/g/yr)	(at/g/yr)
SPICE ${}^{10}Be_{sp} \pm 2\sigma^{a}$	3.73 ± 0.26	3.43 ± 0.24	3.30 ± 0.23
SPICE ${}^{10}\text{Be}_{\text{sp}} \pm 2\sigma_{\text{SD}}{}^{\text{b}}$	3.75 ± 0.18	3.45 ± 0.13	3.31 ± 0.16
$^{10}\text{Be}_{\text{sp}}$ (Borchers et al., 2016)	4.01	4.09	3.92
SPICE ${}^{14}C_{sp} \pm 2\sigma^{a, c}$	9.2 ± 0.6	9.5 ± 0.6	9.5 ± 0.6
SPICE ${}^{14}C_{sp} \pm 2\sigma^{a, c}$ SPICE ${}^{14}C_{sp} \pm 2\sigma_{SD}^{b, c}$	9.2 ± 0.6 9.2 ± 1.7	9.5 ± 0.6 9.5 ± 1.7	9.5 ± 0.6 9.6 ± 1.7
SPICE ${}^{14}C_{sp} \pm 2\sigma_{SD}{}^{b, c}$	9.2 ± 1.7	9.5 ± 1.7	9.6 ± 1.7
SPICE ${}^{14}C_{sp} \pm 2\sigma_{SD}{}^{b, c}$	9.2 ± 1.7	9.5 ± 1.7	9.6 ± 1.7
SPICE ${}^{14}C_{sp} \pm 2\sigma_{SD}{}^{b, c}$ ${}^{14}C_{sp}$ (Borchers et al., 2016)	9.2 ± 1.7 12.24	9.5 ± 1.7 12.72	9.6 ± 1.7
SPICE ${}^{14}C_{sp} \pm 2\sigma_{SD}{}^{b, c}$ ${}^{14}C_{sp}$ (Borchers et al., 2016) SPICE ${}^{21}Ne \pm 2\sigma^{a}$	9.2 ± 1.7 12.24 17.0 ± 1.1	9.5 ± 1.7 12.72 15.5 ± 1.0	9.6 ± 1.7
SPICE ${}^{14}C_{sp} \pm 2\sigma_{SD}{}^{b, c}$ ${}^{14}C_{sp}$ (Borchers et al., 2016) SPICE ${}^{21}Ne \pm 2^{a}$ SPICE ${}^{21}Ne \pm 2^{b}$	9.2 ± 1.7 12.24 17.0 \pm 1.1 16.7 ± 2.1	9.5 ± 1.7 12.72 15.5 ± 1.0 15.3 ± 1.9	9.6 ± 1.7
SPICE ${}^{14}C_{sp} \pm 2\sigma_{SD}{}^{b, c}$ ${}^{14}C_{sp}$ (Borchers et al., 2016) SPICE ${}^{21}Ne \pm 2^{a}$ SPICE ${}^{21}Ne \pm 2^{b}$ ${}^{21}Ne \pm 2\sigma$ (Niedermann et al., 1994;	9.2 ± 1.7 12.24 17.0 \pm 1.1 16.7 ± 2.1	9.5 ± 1.7 12.72 15.5 ± 1.0 15.3 ± 1.9	9.6 ± 1.7

459 Note: SPICE production rates are based on data reported in Tables 3, 4, 5, and SD1, SD2, SD3, SD4. St

460 refers to the time-independent scaling method of Lal (1991)/Stone (2000). Sf and Sa refer to the time-

461 dependent scaling methods of Lifton et al. (2014) for non-nuclide specific and nuclide specific factors,

462 respectively. -- indicates there was no code yet available online to calculate Sa scaling factors for ²¹Ne at

463 SPICE calibration sites, though the documentation for the code of Marrero et al. (2016) lists a *Sa* SLHL

464 production rate for 21 Ne. The subscript *sp* refers to a production rate produced by spallation reactions. This 465 includes fast-muon induced spallation reactions included in the 21 Ne production rate.

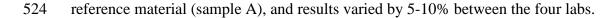
466 ^a This is the error-weighted mean and standard error of the mean for all samples and includes the 467 uncertainty of the 40 Ar/ 39 Ar age or 14 C half-life.

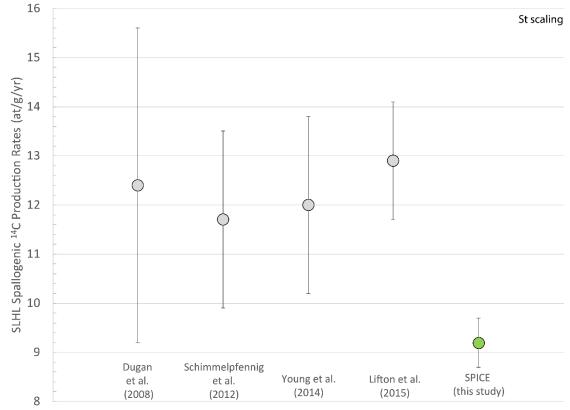
^b This is the arithmetical mean and two standard deviations ($2\sigma_{SD}$) of all samples; $2\sigma_{SD}$ does not include

469 uncertainty of the 40 Ar/ 39 Ar age or radiocarbon half-life.

470 ° Time-dependent SLHL production rates for 14 C are calculated using Sf and Sa scaling factors integrated

471 over the past 25 ka. This equates to 4.5 ¹⁴C half-lives, at which time quartz in the SP flow reached 95%


saturation. Carbon-14 reaches secular equilibrium between 25 and 30 ka (e.g., the decay of ¹⁴C atoms \approx the production of in-situ ¹⁴C atoms) (Lifton et al., 2001). Samples SPICE-A7 and –A9 are excluded from mean values presented here.


Lastly, there is one study that measured present-day production of cosmogenic ²¹Ne 476 477 in artificial quartz targets placed at high altitude in the Swiss Alps for one year (Vermeesch et al., 2009). The reported SLHL ²¹Ne production rate (15.4 ± 2.1 at/g/yr) is 478 479 in excellent agreement with the Sierra Nevada calibration site, as well as with the ratiodetermined ²¹Ne production-rate estimates of Amidon et al. (2009), Balco and Shuster 480 481 (2009), Goethals et al. (2009), Kober et al. (2011), and Luna et al. (2018). In summary, SLHL ²¹Ne spallation production rates in guartz and artificial guartz 482 483 targets range from 14.6 to 18.1 at/g/yr, and the only primary, geological calibration (Niedermann et al., 1994) of the total reference SLHL ²¹Ne production rate in quartz is 484 485 now 16.8 ± 3.3 at/g/yr (*St* scaling; revised this paper; Figure 6). The estimate for the global, average SLHL ¹⁰Be production rate from spallation has 486 decreased by ~20% from 4.96 \pm 0.43 at/g/yr (St; Balco et al., 2008) to 3.99 \pm 0.22 at/g/yr 487 488 (Heyman, 2014) or 4.01 at/g/yr (no error stated; Borchers et al., 2016) with the addition of new ¹⁰Be calibration sites, and with the improved ¹⁰Be half-life and standardization 489 490 studies of Chmeleff et al (2010), Korschinek et al. (2010), and Nishiizumi et al. (2007). Borchers et al. (2016) performed a rigorous statistical analysis of published ¹⁰Be 491 calibration data sets and reported a best-fitting spallation ¹⁰Be production rate of 4.01 492 493 $\frac{dt}{g}$ (St scaling). This rate, however, does not include ¹⁰Be production rates published 494 since 2010 (Putnam et al., 2010; Fenton et al., 2011; Kaplan et al., 2011; Ballantyne and 495 Stone, 2012; Briner et al., 2012; Goehring et al., 2012; Blard et al., 2013; Young et al., 496 2013; Kelly et al., 2015; Lifton et al., 2015; Martin et al., 2015; Small and Fabel, 2015; 497 Stroeven et al., 2015; Putnam et al., 2019). Heyman (2014), in contrast, includes all 498 above post-2010 publications except Blard et al. (2013), Lifton et al. (2015), Martin et al.

499	(2015), Small and Fabel (2015), and Putnam et al. (2019) in calculation of his global 10 Be
500	production rate. All post-2010 publications point to a spallogenic ¹⁰ Be production rate
501	(St) of ~4 at/g/yr, in agreement with global, average SLHL $^{10}Be_{sp}$ production rates of
502	Heyman (2014), Borchers et al. (2016), and Martin et al. (2017). At the time this paper
503	was written, the CREp online calculator of Martin et al. (2017) reported world-wide
504	mean SLHL total reference ^{10}Be production rates of 4.06 \pm 0.38, 4.09 \pm 0.38, and 4.11 \pm
505	0.38 at/g/yr (2 σ ; <i>Lm</i> scaling), which vary as a function of the virtual dipole moment
506	database used in calculation of scaling factors (Martin et al., 2017).
507	Only four production-rate determinations have been made for spallogenic ¹⁴ C in
508	quartz. These rates range from 11.7 to 12.9 at/g/yr (Figure 7) and are based on
509	radiocarbon ages at calibration sites ranging in age from 9.6 to 17.4 ka. All $^{14}C_{sp}$ values
510	here are reported with 2σ uncertainty and <i>St</i> scaling. These four rates incorporate data
511	from New Zealand (11.7±1.8 at/g/yr; Schimmelpfennig et al., 2012), along the
512	Bonneville shoreline in Utah, USA (12.9±1.2 at/g/yr; Lifton et al., 2001; Pigati, 2004;
513	Miller et al., 2006; Dugan, 2008; Dugan et al., 2008; Lifton et al., 2015), from two
514	sample sites, Corrie nan Arr and Maol Chean-dearg, in the Highlands of northwestern
515	Scotland (12.4 \pm 3.2 at/g/yr; Dugan et al., 2008), and from West Greenland (12.0 \pm 1.8
516	at/g/yr; Young et al., 2014). Borchers et al. (2016) also performed a statistical evaluation
517	of ¹⁴ C production rates, and report a St scaled value of 12.24 at/g/yr, but again, this value
518	does not include any ¹⁴ C production rates since 2010, thus excluding the two lower
519	production rates of Schimmelpfennig et al. (2012) and Young et al. (2014). Furthermore,
520	an AMS laboratory intercomparison study (Jull et al., 2015) points out that there is
521	considerable variability within a small number of analyses of in-situ ¹⁴ C in quartz. Four

522 AMS laboratories (University of Arizona, Purdue University, ETH Zurich, and Lamont-

Doherty Earth Observatory) participated in 23 separate measurements of the ¹⁴C quartz 523

525 526 Figure 7. Comparison of published ${}^{14}C_{sp}$ production rates (gray circles) and the errorweighted mean spallogenic ${}^{14}C_{sp}$ production rate of the SPICE study (green circle) scaled 527 with the St scaling method. Error bars represent 2σ uncertainty. 528 529

Only two of these ¹⁴C studies determined accompanying ¹⁰Be_{sp} production rates, and 530

thus average spallogenic¹⁴ C_{sp} /¹⁰Be_{sp} values (Schimmelpfennig et al., 2012; Young et al., 531

532 2014). They are 3.0 ± 0.4 and 3.1 ± 0.4 (2σ , *St* scaling). Lifton et al. (2014) suggest the

- production-rate ratio of ${}^{14}C/{}^{10}Be$ may change as both a function of latitude and elevation, 533
- 534 and thus the value of the ratio may vary from calibration site to calibration site.
- 535 The ${}^{14}C/{}^{10}Be$ ratios could also be affected by the very different muon contributions to
- cosmogenic ¹⁴C and ¹⁰Be and, subsequently, by the different altitude-scaling effects on 536

the spallation and muon-induced reactions producing each nuclide (Heisinger et al.,

538 2002a; 2002b; Lupker et al., 2015). To the best of our knowledge, no

539 spallogenic 21 Ne/ 14 C values have yet been published.

540 Table 2 lists spallogenic SLHL ²¹Ne, ¹⁰Be, and ¹⁴C production rates of Borchers et

541 al. (2016) scaled with the St, Sf, and Sa methods. These production rates are used in the

- online calculators of Marrero et al. (2016; CRONUSCalc) and Balco et al. (2008; version
- 543 3.0). No uncertainties are reported with the rates. Borchers et al. (2016) state they "cannot
- 544 infer statistically justifiable production rate uncertainties from the fitting exercise."
- 545

546 **5. Methods**

547 **5.1 SPICE** sample collection, shielding corrections and quartz separation

548 Surface samples were collected from the SP lava during two field seasons. Samples

549 10SPC01, 10SPC06, and 10SPC07 were collected in 2010. Unfortunately, the collected

550 masses of basalt were too low to extract enough quartz from these three samples

551 for ²¹Ne, ¹⁰Be, and ¹⁴C analysis. The concentration of quartz xenocrysts in the basalt is

quite low (<2-3%; Rittenour et al., 2012). Thus, in 2015, between 19 and 31 kg of basalt

553 were collected for samples SPICE-A1 through –A10 (Table 1). All samples were

collected from the well-preserved surfaces of pressure ridges on the SP lava flow. Sample

elevations ranged from 1778 m to 1876 m, and sample thicknesses ranged from 6 cm to

- 556 13 cm (Table 1). Corrections were made to production rates based on topographic
- shielding and self-shielding (i.e. sample thickness and/or dipping of a boulder surface)
- according to CosmoCalc (Vermeesch, 2007). A value of 2.3 was used for the exponent m

in Equation 3 of Vermeesch (2007). Bulk whole-rock densities (2.05-2.45 g/cm³) were 559 560 measured and used in calculation of the sample thickness shielding factor (Table 1). 561 Whole-rock samples were crushed, washed, and sieved. The 90-125, 125-250, 250-562 500, 500-710 and 710-1000 µm grain size fractions were split into magnetic and non-563 magnetic fractions using a Frantz magnetic separator. The magnetic fraction concentrated 564 olivine and pyroxene, and the non-magnetic fraction concentrated quartz xenocrysts, some feldspar, and secondary carbonate and zeolites. Diiodomethane ($\rho \sim 2.83$ g/cm³), a 565 566 heavy liquid, was used to separate the mafic minerals from the magnetic fraction. 567 Bromoform ($\rho \sim 2.64 \text{ g/cm}^3$) was used to isolate quartz grains from the quartz-bearing, 568 non-magnetic fraction. Quartz xenocrysts sank through the bromoform, creating quartz 569 concentrates (weighing between 5 and 12 g) that contained >75% quartz. Quartz 570 concentrates were treated and purified according to procedures introduced by Kohl and 571 Nishiizumi (1992). Details are in Appendix A. 572 5.2 Neon gas mass spectrometric analysis 573 Between 0.46 and 0.86 g of sample from the thirteen quartz samples (Tables 1 and SD1) were analyzed for cosmogenic ²¹Ne content at the noble-gas laboratory at 574 575 GeoForschungsZentrum (GFZ) Potsdam. Noble gases were extracted by stepwise heating 576 (at 400, 800, and 1200°C, with an additional 600°C step for two samples) for 20 minutes 577 each. In addition, aliquots of two samples (SPICE-A4 and -A8) were crushed in vacuo to 578 check the isotopic composition of Ne released from fluid inclusions. Further details about 579 the analytical procedures can be found in Niedermann et al. (1997) and in Appendix A. 580 5.3 Be extraction and AMS analysis

581	Around two grams of purified quartz was dissolved for each of samples SPICE-A1 to
582	-A10 after being spiked with ca. 250 μ g of a commercial beryllium solution (Scharlab,
583	1000 mg/l, density 1.02 g/cm ³) (Tables 1 and SD2). From four of the samples (SPICE-
584	A3, -A4, -A6 and -A8) there was enough quartz extracted to allow duplicate
585	measurements. Laboratory preparation of the purified quartz as AMS targets was
586	undertaken in two batches of eight, each batch additionally containing two reagent blanks
587	and a CoQtz-N quartz reference sample (Binnie et al., 2019). Target preparation
588	chemistry was performed in the clean laboratory at the University of Cologne using the
589	single-step column approach described by Binnie et al. (2015) and beryllium hydroxide
590	was co-precipitated with Ag, according to Stone et al. (2004), for pressing into AMS
591	targets. Targets for ²⁶ Al/ ²⁷ Al AMS analysis were similarly prepared by co-precipitation
592	with Ag. Measurement of these targets is still pending.
593	Determinations of ¹⁰ Be/ ⁹ Be were undertaken at CologneAMS (Dewald et al., 2013),
594	normalized to the revised standard values reported by Nishiizumi et al. (2007). Details
595	can be found in the footnotes of table SD2. The nominal ¹⁰ Be/ ⁹ Be standard values of
596	Nishiizumi et al. (2007) were determined independently of the ¹⁰ Be half-life but are
597	consistent with the 1.387 Myr value measured by Chmeleff et al. (2010) and Korschinek
598	et al. (2010). A ¹⁰ Be half-life of 1.387 Myr is used in ¹⁰ Be production-rate calculations in
599	this study.

600 5.4 In-situ ¹⁴C extraction and AMS mass spectrometer analysis

601 We extracted about 1 g quartz for each sample for ¹⁴C analysis. The ¹⁴C extraction

followed the procedures described in Fülöp et al. (2015) using 14 C-dead CaCO₃ carrier

603 material mass (carrier added equivalent to between 5 and 20 μ g C equivalent). ¹⁴C AMS

- 604 measurements were conducted using the purified CO₂ gas and the gas source at
- 605 CologneAMS (Stolz et al., 2017). Results are shown in Table SD3.
- 606

607 **6. Results**

608 6.1 Neon results

- 609 Results from neon analyses are listed in Table SD1. Crushing extractions of two quartz
- 610 samples (SPICE-A4 and –A8) yielded isotopic compositions that are indistinguishable
- from air and indicate that Ne trapped in SP-flow quartz is atmospheric in composition

612 $({}^{22}\text{Ne}/{}^{20}\text{Ne} = 0.1020, {}^{21}\text{Ne}/{}^{20}\text{Ne} = 0.002959$; Eberhardt et al., 1965) (Figure 8).

613 Furthermore, the Ne three-isotope diagram provides no indication for the presence of

614 additional Ne components (e.g., nucleogenic Ne). All data points plot along the spallation

- 615 line for quartz (Niedermann et al., 1993). Thus, the amount of cosmogenic ²¹Ne in each
- 616 heating step has been calculated according to the following equation:

617
$${}^{21}\text{Ne}_{\text{cosmogenic}} = [({}^{21}\text{Ne}/{}^{20}\text{Ne})_{\text{measured}} - ({}^{21}\text{Ne}/{}^{20}\text{Ne})_{\text{atmospheric}}] * {}^{20}\text{Ne}_{\text{measured}}$$
[Eq. 5].

618 The "classical" atmospheric 21 Ne/ 20 Ne ratio of Eberhardt et al. (1965) used here is ~1.9%

higher than a recent redetermination by Honda et al. (2015; 0.002905). If that value

- 620 would be used, all ²¹Ne excesses, as well as the production rates calculated from them,
- 621 would decrease by 1.9% as well. This is well within uncertainties, and for the time being,
- 622 we also chose to stay with the old value as to date the vast majority of cosmogenic Ne
- 623 applications rely on it. Nevertheless, future work applying the Honda et al. (2015)
- 624 atmospheric 21 Ne/ 20 Ne ratio should strictly use production rates reduced by 1.9%.

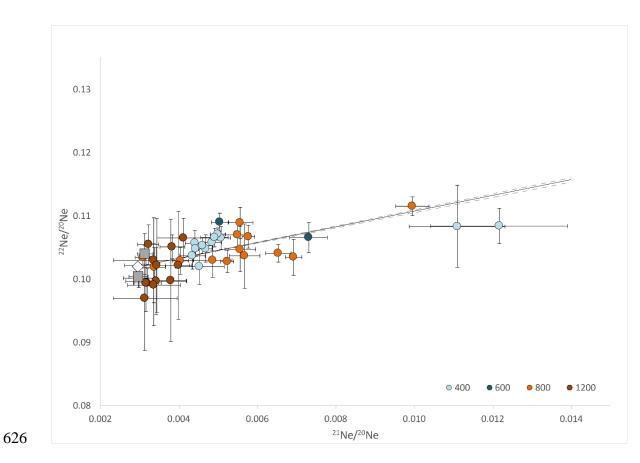


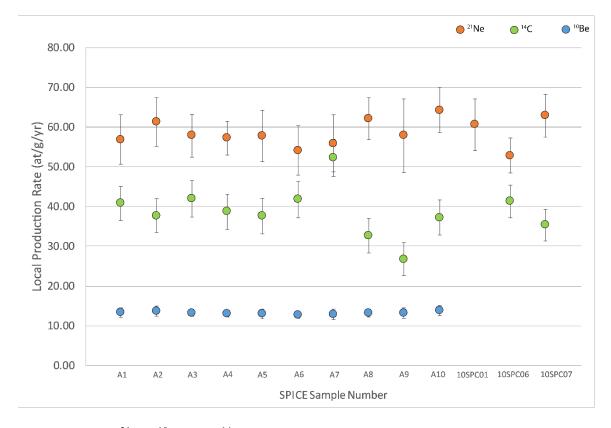
Figure 8. Neon three-isotope plot (after Niedermann et al., 1993). Measurements from all
temperature steps (circles) are plotted on the graph, as are the two crush values (gray
boxes). Atmospheric neon is represented by the white diamond. The dashed lines show
the uncertainty range on the spallation line. Error bars represent 2σ uncertainty.

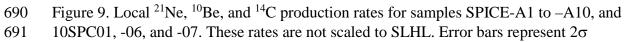
632 6.2 Cosmogenic ¹⁰Be concentrations

633 AMS analysis of our SPICE samples yielded ${}^{10}\text{Be}/{}^{9}\text{Be}$ ratios ranging from 1.03×10^{-13} to

 1.15×10^{-13} (Table SD2). Both batches of SPICE samples were processed in the laboratory

- alongside a pair of blanks and these gave measured ${}^{10}\text{Be}/{}^{9}\text{Be}$ values between 1.55×10^{-15}
- and 3.04×10^{-15} . The arithmetic mean ¹⁰Be atoms in each blank pair was subtracted from
- the ¹⁰Be atoms measured in the relevant SPICE sample, resulting in blank subtractions of
- between 1.7% and 2.2% of the total ¹⁰Be atoms measured. ¹⁰Be concentration
- 639 measurements of the in-house quartz reference material, CoQtz-N from each batch were
- 640 $(2.49 \pm 0.09) \times 10^6$ atoms/g and $(2.63 \pm 0.09) \times 10^6$ atoms/g, in relatively good agreement
- 641 with the preliminary consensus value estimate for this material $(2.53 \pm 0.09) \times 10^6$
- 642 atoms/g at the 95% confidence limit, Binnie et al., 2019). In the case of duplicate samples
- 643 (SPICE-A3, -A4, -A6 and -A8) the error weighted (pooled) mean ¹⁰Be concentration was
- calculated following Ward and Wilson (1978) and used for the production rate
- 645 determinations.


646 **6.3 Cosmogenic** ¹⁴C concentrations


- 647 AMS analysis of our samples yielded ${}^{14}C/{}^{12}C$ ratios ranging from 0.7×10⁻¹² to
- 648 1.1×10^{-12} (Table SD3). Process blanks (n = 10; HF-etched, synthetic hydrothermal quartz)
- prepared alongside the samples gave measured ${}^{14}C/{}^{12}C$ values between 5 and 20×10^{-14} .
- 650 Concentrations of ¹⁴C were calculated using the measured amount of carbon (from
- 651 carrier + sample) released during extraction. Process blanks (n=10) contain (51 \pm 15) x 10³
- atoms ¹⁴C. Samples contain between 200 and 390 x 10^3 atoms ¹⁴C (blank corrected), with
- 653 a mean of $(323 \pm 46) \times 10^3$ atoms ¹⁴C (n=11).
- 654 **6.4 Calculations of local production rates and production-rate ratios**

655 Two determination methods are used to calculate cosmogenic nuclide production rates over time at the SP flow. Production rates of cosmogenic ²¹Ne and ¹⁰Be are directly 656 calibrated and are based the independent ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ eruption age of the SP flow (72±4 ka; 657 2σ ; Fenton et al., 2013) (Tables 3 and 4). The production rate of ¹⁴C is based on the 658 assumption that quartz in the SP flow surface is saturated with respect to ¹⁴C. The half-659 life of ¹⁴C is very short compared to the eruption age and exposure history of the SP flow 660 661 and the nuclide has reached secular equilibrium. Radioactive nuclide saturation (>95%) 662 occurs around 4.5 half-lives, which equates to 25 ka. Thus, the production rates (P_0) of ¹⁴C at the SP flow are calculated by rearranging Equation 3, such that $P_0 = \lambda C(t)$, 663 where λ is the ¹⁴C decay constant ($\lambda = \ln 2/T_{\frac{1}{2}}$, with $T_{\frac{1}{2}} = 5730 \pm 40$ yr) (Table 5). 664 Tables SD1, SD2, and SD3 list cosmogenic nuclide concentrations in terms of ²¹Ne 665 atoms/g quartz, ¹⁰Be atoms/g quartz, and ¹⁴C atoms/g quartz. These values are then 666 667 corrected for topographic and self-shielding (including sample thickness and variations in whole-rock density). Corrected, local production rates are calculated and listed in Tables 668 669 3, 4, 5, 6, and Figure 9. 670 Each local production rate includes total production of a cosmogenic nuclide 671 (spallation production + muon production) at each sample site and excludes use of 672 scaling factors. Thus, these local production rates are latitude, longitude, and elevation specific. Local production rates for ²¹Ne range from 52.8 to 64.2 at/g/yr and agree within 673 2σ uncertainty. Local production rates for ¹⁰Be are 12.7-13.8 at/g/yr and agree within 1σ 674 675 uncertainty. Local ¹⁴C production rates are 26.7-52.3 at/g/yr, and aside from samples –A7 and -A9 agree within 2σ uncertainty. As such, samples SPICE-A7 and -A9 are 676

677 considered outliers for 14 C data (Figure 9).

678	Table SD5 lists production-rate ratios for ²¹ Ne/ ¹⁰ Be, ²¹ Ne/ ¹⁴ C, and ¹⁴ C/ ¹⁰ Be based
679	on the local production rates of each cosmogenic nuclide, which are not yet scaled and
680	therefore independent of scaling models. Error-weighted means ($\pm 2\sigma$ uncertainty) of 4.44
681	\pm 0.32, 1.43 \pm 0.10, and 2.85 \pm 0.21 are calculated for ²¹ Ne/ ¹⁰ Be, ²¹ Ne/ ¹⁴ C, and ¹⁴ C/ ¹⁰ Be,
682	respectively. Uncertainties include those related to measurements, corrections for
683	shielding, the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age, and the ${}^{14}\text{C}$ half-life (where applicable). SP-flow quartz
684	has 21 Ne/ 10 Be and 14 C/ 10 Be values that agree with previously published production-rate
685	ratios within 2σ uncertainty (see section 4). Production-rate ratios using SLHL
686	production rates from spallation are also listed in Table SD5. These values are very
687	similar to ratios based solely on local production rates, and agree well with reported
688	ratios in the literature.

- uncertainty, and do not include the uncertainty associated with the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age of the SP lava flow or the ${}^{14}\text{C}$ half life. 693 694

695 Table 3. Total reference SLHL ²¹Ne production rates for SPICE quartz samples.

697 Note: Table SD1 contains the raw data from mass spectrometer analysis of SP-flow quartz. Scaling factors

are listed in Table SD4.

^a Total concentrations of ²¹Ne are corrected for total shielding. Uncertainties include the analytical

nucertainty of mass spectrometer measurements and uncertainty related to total shielding (2.8%).

^b Local production rates are calculated by dividing the total cosmogenic ²¹Ne concentrations by 72 ka.

702 Uncertainties do not include the uncertainty on the 40 Ar/ 39 Ar age.

⁷⁰³ ^c Total reference SLHL ²¹Ne production rates are derived by scaling them to sea-level, high latitude using

704 St and Sf scaling factors (Table SD4). The scaling factors are determined using CRONUSCalc (Marrero et

705 al., 2016). Uncertainties do not include the uncertainty on the 40 Ar/ 39 Ar age.

^d This is an error-weighted mean of all thirteen samples. The 2σ uncertainty includes the uncertainty on the ⁴⁰Ar/³⁹Ar age.

					¹⁰ Be			-				
					production							
					rate from						Total	
			Total		negative		Spallogenic		Muogenic		reference	
			¹⁰ Be		muon		10 Be		¹⁰ Be		¹⁰ Be	
	Total		production		capture at		production		production		production	
	cosmogenic		rate at local		local		rate at		rate at		rate at	
	¹⁰ Be	2σ	sampling	2σ	sampling	2σ	SLHL	2σ	SLHL	2σ	SLHL	2σ
	concentration	uncertainty	elevation	uncertainty	elevation	uncertainty	(St-scaled)	uncertainty	(St-scaled)	uncertainty	(St-scaled)	uncertainty
Sample ID	$(10^5 \text{ at/g})^{a}$	$(10^5 \text{ at/g})^{a}$	(at/g/yr) ^b	(at/g/yr) ^b	(at/g/yr) ^c	(at/g/yr) ^c	(at/g/yr) ^{d,e}	(at/g/yr)	(at/g/yr) ^e	(at/g/yr)	(at/g/yr)	(at/g/yr)
SPICE-A1	9.38	0.86	13.3	1.2	0.191	0.046	3.67	0.49	0.10	0.02	3.77	0.49
SPICE-A2	9.64	0.94	13.6	1.3	0.189	0.045	3.85	0.54	0.10	0.02	3.96	0.54
SPICE-A3	9.36	0.87	13.2	1.2	0.188	0.045	3.73	0.50	0.10	0.02	3.83	0.50
SPICE-A4	9.25	0.88	13.1	1.2	0.188	0.045	3.71	0.51	0.10	0.02	3.81	0.51
SPICE-A5	9.17	0.87	13.0	1.2	0.187	0.045	3.68	0.51	0.10	0.02	3.78	0.51
SPICE-A6	9.01	0.87	12.7	1.2	0.186	0.044	3.67	0.51	0.10	0.02	3.77	0.51
SPICE-A7	9.09	0.87	12.9	1.2	0.187	0.045	3.64	0.51	0.10	0.02	3.75	0.51
SPICE-A8	9.36	0.90	13.2	1.3	0.186	0.044	3.81	0.53	0.10	0.02	3.91	0.53
SPICE-A9	9.31	0.89	13.2	1.3	0.188	0.045	3.71	0.51	0.10	0.02	3.81	0.51
SPICE-A10	9.75	0.92	13.8	1.3	0.187	0.045	3.92	0.53	0.10	0.02	4.02	0.53
			<u> </u>			Average ^f	3.73	0.26	0.10	0.01	3.84	0.27

708 Table 4. Muogenic portions, spallogenic portions, and total reference SLHL ¹⁰Be production rates for SPICE quartz samples.

					Total						Total	
	Spallogenic ¹⁰ Be		Muogenic ¹⁰ Be		reference ¹⁰ Be		Spallogenic ¹⁰ Be		Muogenic ¹⁰ Be		reference ¹⁰ Be	
	production		production		production		production		production		production	
	rate at		rate at		rate at		rate at		rate at		rate at	
	SLHL	2σ	SLHL	2σ	SLHL	2σ	SLHL	2σ	SLHL	2σ	SLHL	2σ
	(Sf-scaled)	uncertainty	(Sf-scaled)	uncertainty	(Sf-scaled)	uncertainty	(Sa-scaled)	uncertainty	(Sa-scaled)	uncertainty	(Sa-scaled)	uncertainty
Sample ID	(at/g/yr) ^d	(at/g/yr)	(at/g/yr) ^e	(at/g/yr)	(at/g/yr) ^{e,}	(at/g/yr)	(at/g/yr) ^{d,e}	(at/g/yr)	(at/g/yr) ^e	(at/g/yr)	(at/g/yr)	(at/g/yr)
SPICE-A1	3.36	0.45	0.07	0.02	3.43	0.45	3.23	0.43	0.07	0.02	3.30	0.43
SPICE-A2	3.54	0.50	0.07	0.02	3.61	0.50	3.40	0.48	0.07	0.02	3.47	0.48
SPICE-A3	3.42	0.46	0.07	0.02	3.50	0.34	3.29	0.44	0.07	0.02	3.36	0.44
SPICE-A4	3.40	0.47	0.07	0.02	3.47	0.35	3.27	0.45	0.07	0.02	3.34	0.45
SPICE-A5	3.38	0.47	0.07	0.02	3.45	0.47	3.25	0.45	0.07	0.02	3.32	0.45
SPICE-A6	3.37	0.47	0.07	0.02	3.45	0.35	3.24	0.45	0.07	0.02	3.31	0.45
SPICE-A7	3.35	0.47	0.07	0.02	3.42	0.47	3.22	0.45	0.07	0.02	3.29	0.45
SPICE-A8	3.50	0.49	0.07	0.02	3.58	0.36	3.37	0.47	0.07	0.02	3.44	0.47
SPICE-A9	3.41	0.47	0.07	0.02	3.48	0.47	3.27	0.45	0.07	0.02	3.34	0.45
SPICE-A10	3.60	0.49	0.07	0.02	3.67	0.49	3.45	0.47	0.07	0.02	3.52	0.47
Average ^f	3.43	0.24	0.07	0.01	3.50	0.25	3.30	0.23	0.07	0.01	3.36	0.24

711 Table 4.(continued). Scaled with *Sf* and *Sa* scaling factors

712 ^a Total concentrations of ¹⁰Be are corrected for total shielding. Uncertainties include the uncertainty of AMS measurements and uncertainty related to total

713 shielding (2.8%).

714 ^b Local production rates are calculated by dividing the total cosmogenic ¹⁰Be concentrations by 72 ka. Uncertainties do not include the uncertainty on the ⁴⁰Ar/³⁹Ar

715 age. Total ¹⁰Be concentrations are corrected for decay using the ¹⁰Be half-life of 1.387 Myr (Chmeleff et al., 2010; Korschinek et al., 2010).

716 ^c Production of ¹⁰Be from negative muon capture corrected for sample thickness and scaled for elevation, according to Heisinger et al. (2002a) and Lal (1991)/Stone

717 (2000), respectively; muogenic production rates determined here are independent of the calibration sample measurements, and only rely on literature values. Scaling

718 factors are listed in Table SD4. Uncertainty includes 7% and 10% relative uncertainties on the production rates from negative muon capture and on scaling factors

719 for negative muon capture (Heisinger et al., 2002a; 2002b).

720 ^d The spallogenic ¹⁰Be production rates are derived by (1) subtracting the ¹⁰Be production rates resulting from negative muon capture from the total ¹⁰Be production

721 rate at the corresponding sample elevation for each sample, and then (2) scaling the resultant spallogenic ¹⁰Be production rate to SLHL. The spallation production

722 rate includes the production from fast-muon induced spallation, following Lal(1991)/Stone (2000) and Dunai (2000). Uncertainty includes the uncertainty related to

negative muon capture (column 7), as well as 14% relative uncertainty on production rates from fast muon induced spallation (Heisinger et al., 2002a; 2002b) and

124 uncertainty associated with total cosmogenic ¹⁰Be concentrations (column 3).

^e SLHL production rates are derived by scaling them to sea-level, high latitude using *St*, *Sf* and *Sa* scaling factors (Table SD4). The scaling factors are determined

726 using CRONUSCalc (Marrero et al., 2016). Uncertainties do not include the uncertainty on the ⁴⁰Ar/³⁹Ar age.

f This is an error-weighted mean of all ten samples. The 2σ uncertainty is the standard error on the mean and includes the uncertainty on the 40 Ar/ 39 Ar age. 728

					¹⁴ C							
					production							
					rate from						Total	
			Total		negative		Spallogenic		Muogenic		reference	
			¹⁴ C		muon		¹⁴ C		¹⁴ C		¹⁴ C	
	Total		production		capture at		production		production		production	
	cosmogenic		rate at local	_	local		rate at		rate at		rate at	
	¹⁴ C	2σ	sampling	2σ	sampling	2σ	SLHL	2σ	SLHL	2σ	SLHL	2σ
	concentration	uncertainty	elevation	uncertainty	elevation	uncertainty	(St-scaled)	uncertainty	(St-scaled)	uncertainty	(St-scaled)	uncertainty
Sample ID	$(10^5 \text{ at/g})^{a}$	$(10^5 \text{ at/g})^{a}$	(at/g/yr) ^b	(at/g/yr) ^b	(at/g/yr) ^c	(at/g/yr) ^c	(at/g/yr) ^{d,e}	(at/g/yr)	(at/g/yr) ^e	(at/g/yr)	(at/g/yr)	(at/g/yr)
SPICE-A1	3.37	0.36	40.8	4.3	6.1	1.5	9.6	1.8	1.97	0.47	11.6	1.9
SPICE-A2	3.12	0.35	37.7	4.3	6.0	1.4	9.0	1.8	1.98	0.47	10.9	1.9
SPICE-A3	3.47	0.38	42.0	4.6	6.0	1.4	10.2	1.9	1.97	0.47	12.2	2.0
SPICE-A4	3.20	0.37	38.7	4.4	6.0	1.4	9.3	1.9	1.97	0.47	11.3	2.0
SPICE-A5	3.11	0.37	37.6	4.4	6.0	1.4	9.0	1.9	1.97	0.47	11.0	1.9
SPICE-A6	3.45	0.38	41.8	4.6	5.9	1.4	10.4	2.0	1.98	0.48	12.4	2.0
SPICE-A7	4.32	0.39	52.3	4.7	6.0	1.4	13.3	2.0	1.97	0.47	15.2	2.0
SPICE-A8	2.70	0.36	32.7	4.3	5.9	1.4	7.7	1.9	1.98	0.48	9.7	1.9
SPICE-A9	2.21	0.34	26.7	4.1	6.0	1.4	5.8	1.8	1.97	0.47	7.7	1.8
SPICE-A10	3.07	0.37	37.2	4.4	6.0	1.4	8.9	1.9	1.97	0.47	10.8	2.0
10SPC06	3.41	0.34	41.3	4.1	6.0	1.4	10.1	1.8	1.98	0.48	12.1	1.8
10SPC07	2.92	0.33	35.3	4.0	6.0	1.4	8.4	1.7	1.99	0.48	10.4	1.8
					<u> </u>	Average ^f	9.2	0.5	1.97	0.3	11.2	0.6

729	Table 5 Muogenic portions	spallogenic portions	and total reference SLHL ^{14}C	production rates for SPICE quartz samples.
12)	rable 5. Muogenic portions,	spanogenic portions	, and total reference SLITE C	production rates for SFICE quartz samples.

		,			Total						Total	
	Spallogenic		Muogenic		reference		Spallogenic		Muogenic		reference	
	^{14}C		$^{14}\mathrm{C}$		$^{14}\mathrm{C}$		$^{14}\mathrm{C}$		^{14}C		^{14}C	
	production		production		production		production		production		production	
	rate at		rate at		rate at		rate at		rate at		rate at	
	SLHL	2σ	SLHL	2σ	SLHL	2σ	SLHL	2σ	SLHL	2σ	SLHL	2σ
	(Sf-scaled)	uncertainty	(Sf-scaled)	uncertainty	(Sf-scaled)	uncertainty	(Sa-scaled)	uncertainty	(Sa-scaled)	uncertainty	(Sa-scaled)	uncertainty
Sample ID	(at/g/yr) ^d	(at/g/yr)	(at/g/yr) ^e	(at/g/yr)	(at/g/yr) ^e	(at/g/yr)	(at/g/yr) ^{d,e}	(at/g/yr)	(at/g/yr) ^e	(at/g/yr)	(at/g/yr)	(at/g/yr)
SPICE-A1	9.9	1.7	1.44	0.35	11.3	1.8	9.9	1.7	1.45	0.35	11.4	1.8
SPICE-A2	9.2	1.8	1.46	0.35	10.7	1.8	9.3	1.8	1.47	0.35	10.8	1.8
SPICE-A3	10.4	1.9	1.46	0.35	11.9	1.9	10.5	1.9	1.46	0.35	11.9	1.9
SPICE-A4	9.5	1.8	1.46	0.35	11.0	1.9	9.6	1.8	1.47	0.35	11.1	1.9
SPICE-A5	9.3	1.8	1.46	0.35	10.7	1.9	9.3	1.8	1.47	0.35	10.8	1.9
SPICE-A6	10.6	1.9	1.48	0.35	12.1	2.0	10.7	1.9	1.49	0.36	12.2	2.0
SPICE-A7	13.4	1.9	1.46	0.35	14.9	2.0	13.5	1.9	1.47	0.35	15.0	2.0
SPICE-A8	8.0	1.8	1.48	0.35	9.5	1.9	8.0	1.8	1.49	0.36	9.5	1.9
SPICE-A9	6.1	1.7	1.46	0.35	7.6	1.7	6.1	1.7	1.46	0.35	7.6	1.7
SPICE-A10	9.1	1.8	1.46	0.35	10.6	1.9	9.2	1.8	1.47	0.35	10.7	1.9
10SPC06	10.3	1.7	1.47	0.35	11.8	1.7	10.4	1.7	1.48	0.35	11.9	1.7
10SPC07	8.7	1.6	1.47	0.33	10.2	1.7	8.7	1.6	1.49	0.36	10.2	1.7
Average ^f	9.5	0.5 °	1.46	0.10	10.9	0.5	9.5	0.6 °	1.47	0.10	11.0	0.5

Table 5. (continued). Scaled with *Sf* and *Sa* scaling factors

^a Total concentrations of ¹⁴C are corrected for total shielding. Uncertainties include the uncertainty of AMS measurements and uncertainty related to total shielding (2.8%).

^b Local production rates are calculated by multiplying the total cosmogenic ¹⁴C concentration in a sample (C(t)) by the decay constant for ¹⁴C. Uncertainties do

not include the uncertainty on of the radiocarbon decay constant.

^c Production of ¹⁴C from negative muon capture corrected for sample thickness and scaled for elevation, according to Heisinger et al. (2002a) and Lal

738 (1991)/Stone (2000), respectively; muogenic production rates determined here are independent of the calibration sample measurements, and only rely on

739 literature values. Scaling factors are listed in Table SD4. Uncertainty includes 7% and 10% relative uncertainties on the production rates from negative muon

740 capture and on scaling factors for negative muon capture (Heisinger et al., 2002a; 2002b).

⁷⁴¹ ^d The spallogenic ¹⁴C production rates are derived by (1) subtracting the ¹⁴C production rates resulting from negative muon capture from the total ¹⁴C production

rate at the corresponding sample elevation for each sample, and then (2) scaling the resultant spallogenic ¹⁴C production rate to SLHL. The spallation production

rate includes the production from fast-muon induced spallation, following Lal(1991)/Stone (2000) and Dunai (2000). Uncertainty includes the uncertainty related

- to negative muon capture (column 7), as well as 57% relative uncertainty on production rates from fast muon induced spallation (Heisinger et al., 2002a; 2002b)
- 745 and uncertainty associated with total cosmogenic 14 C concentrations (column 3).
- ^e SLHL production rates are derived by scaling them to sea-level, high latitude using *St*, *Sf*, and *Sa* scaling factors (Table SD4). The scaling factors are
- 747 determined using CRONUSCalc (Marrero et al., 2016). Uncertainties do not include the uncertainty on the ¹⁴C decay constant.
- ^f This is an error-weighted mean of all twelve samples. The 2σ uncertainty is the standard error on the mean and includes the uncertainty on the radiocarbon decay constant (0.7%).
- 750

752 III		, aaaabeb 1	in the onup	onnie euleulutoi (mepber erep		, in a line in the second seco	i i i i i i i i i i i i i i i i i i i	., 2017).		
										VDM 3	
				VDM 1			VDM 2			LSD	
			VDM 1	Atmospĥeric		VDM 2	Lifton VDM		VDM 3	Framework ^d	
	Total		Integrated	¹⁰ Be-based VDM ^b		Integrated	2016 °		Integrated	total reference	
	cosmogenic		<i>Lm</i> scaling	total reference		Lm scaling	total reference		<i>Lm</i> scaling	10 Be	
	10 Be	2σ	factor	¹⁰ Be production	2σ	factor	¹⁰ Be production	2σ	factor	production rate	2σ
	concentration	uncertainty	(sample-site	rate at SLHL	uncertainty	(sample-site	rate at SLHL	uncertainty	(sample-site	at SLHL	uncertainty
Sample ID	$(10^5 \text{ at/g})^{a}$	$(10^5 \text{ at/g})^{a}$	specific)	(at/g/yr)	(at/g/yr)	specific)	(at/g/yr)	(at/g/yr)	specific)	(at/g/yr)	(at/g/yr)
SPICE-A1	9.38	0.86	3.600	3.68	0.40	3.651	3.63	0.40	3.865	3.43	0.36
SPICE-A2	9.64	0.94	3.532	3.86	0.44	3.578	3.81	0.42	3.786	3.6	0.40
SPICE-A3	9.36	0.87	3.540	3.73	0.40	3.585	3.69	0.40	3.794	3.48	0.38
SPICE-A4	9.25	0.88	3.523	3.71	0.42	3.568	3.66	0.40	3.776	3.46	0.38
SPICE-A5	9.17	0.87	3.516	3.68	0.40	3.561	3.64	0.40	3.769	3.44	0.38
SPICE-A6	9.01	0.87	3.464	3.68	0.42	3.508	3.63	0.40	3.712	3.43	0.38
SPICE-A7	9.09	0.87	3.516	3.65	0.40	3.561	3.61	0.40	3.769	3.41	0.38
SPICE-A8	9.36	0.90	3.464	3.81	0.42	3.509	3.77	0.42	3.713	3.56	0.40
SPICE-A9	9.31	0.89	3.540	3.72	0.42	3.585	3.67	0.40	3.794	3.47	0.38
SPICE-A10	9.75	0.92	3.516	3.92	0.42	3.561	3.87	0.42	3.769	3.65	0.40
		Average ^e		3.74	0.25		3.69	0.24		3.49	0.23

Table 6. Total reference SLHL ¹⁰Be production rates for SPICE quartz samples (*Lm*-scaled) calculated with three virtual dipole 751 752 moment (VDM) databases in the CREp online calculator (https://crep.otelo.univ-lorraine.fr/#/init; Martin et al., 2017).

753 Note: Scaling factors that account for time-dependent variations in geomagnetic field strength were calculated using three different Virtual Dipole Moment (VDM)

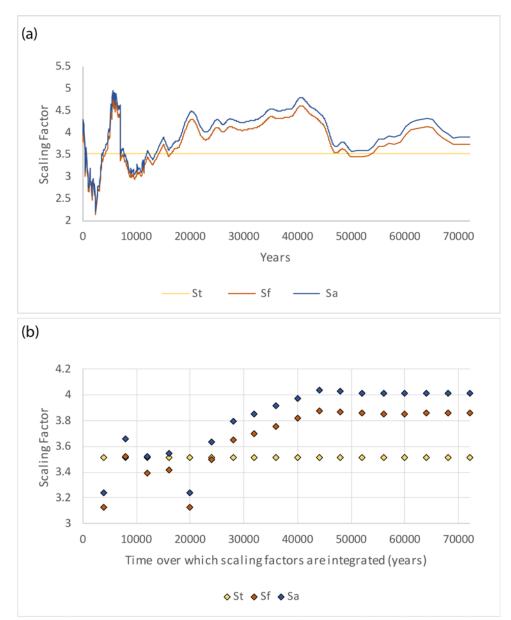
754 databases within the CREp calculator. ERA40 atmospheric model of Uppala et al. (2005) was used with each VDM database. 755 ^a Total concentrations of ¹⁰Be are corrected for total shielding. Uncertainties include the uncertainty of AMS measurements and uncertainty related to total shielding 756 (2.8%).

757 ^b VDM 1 is the database based on Muscheler et al. (2005) and Valet et al. (2005).

758 ° VDM 2 is the database based on Laj et al. (2004), Ziegler et al. (2011), Pavón-Carrasco et al. (2014), and Lifton (2016).

759 ^d VDM 3 is the database based on Lifton et al. (2014).

760 ° This is an error-weighted mean of all ten samples. The 2σ uncertainty includes the uncertainty on the ⁴⁰Ar/³⁹Ar age.


6.5 Scaling methods and SLHL production rates

762	Scaling factors are used to calculate total SLHL reference production rates, spallation
763	production rates, and muon-induced production rates for ²¹ Ne, ¹⁰ Be, and ¹⁴ C in SPICE
764	quartz samples. St, Sf, Sa, and Lm scaling models are employed to scale cosmogenic
765	nuclide data (Tables 3, 4, 5, 6, and SD4). St scaling factors are calculated using the
766	CRONUSCalc online calculator (Marrero et al., 2016). Sf and Sa scaling factors were
767	calculated in Matlab using the mmc1 code of Lifton et al. (2014). Lm scaling factors are
768	calculated for ¹⁰ Be within the CREp online calculator and final integrated values for each
769	sample are reported (Table 6). Individual Lm scaling factors for each time step, such as
770	those produced from the mmc1 code (Lifton et al., 2014), are not reported for ¹⁰ Be
771	calculations. CREp does not yet provide capabilities for calculating cosmogenic ²¹ Ne
772	or ¹⁴ C production rates or exposure ages.
773	Time-dependent Sf and Sa scaling factors are integrated over 72 ka for 21 Ne and 10 Be
774	production rates, and over 25 ka for ¹⁴ C production rates. The mmc1 code of Lifton et al.
775	(2014) does yet not provide the possibility of calculating Sa scaling factors for ²¹ Ne. Sf
776	and Sa scaling factors are also integrated over 8270 a (Table SD4), which is the
777	integration time (t_{int}) of Blard et al. (2019; based on equation 7 therein) for in-situ ¹⁴ C.
778	Integration time is equal to $1/\lambda$ (Blard et al., 2019), when the exposure time of a surface,
779	such as the SP lava flow (72 ka), is much greater than the half-life of the cosmogenic
780	nuclide (5730 a for 14 C); many of the 14 C atoms produced in the first 25 ka of exposure at
781	the SP flow have decayed.
781 782	the SP flow have decayed. To illustrate numerical differences between time-dependent scaling factors calculated

with various scaling methods, *Sf*, *Sa*, and *Lm* scaling factors for 10 Be at the SPICE-A1

784	site are compared with the time independent St scaling factor calculated for the same
785	SPICE-A1 site. The SP lava flow surface has been exposed to cosmic rays for the past 72
786	ka, which includes a proposed period of higher cosmic-ray flux between 20 and 50 ka,
787	when the Earth's magnetic field was weaker than it is now (Figure 10; Lifton et al.,
788	2014). Sf and Sa scaling factors calculated for 10 Be at the SPICE-A1 site are 3.861 and
789	4.021, respectively (Table SD4). In contrast, Sf and Sa factors averaged over only the past
790	20 ka at the SPICE-A1 site are 3.499 and 3.363, respectively. The 72-ka-averaged factors
791	are significantly higher than the 20-ka-averaged factors. In addition, the 20-ka-averaged
792	Sf and Sa factors are only 0.5% lower and 3.4% higher than the constant St factor (3.515)
793	at the SPICE-A1 site, whereas the 72-ka-averaged Sf and Sa factors are 9.9% and 14.4%
794	higher than the St factor. This is because the Sf and Sa factors account for the proposed
795	weak geomagnetic field between 20 and 50 ka (Lifton et al., 2014) (Figure 10).
796	Lm scaling factors calculated for ¹⁰ Be at the SPICE-A1 site are averaged over the past
797	72 ka, and are 3.600, 3.651, and 3.865 for VDM 1, VDM 2, and VDM 3, respectively
798	(Table 6). These factors are $2.4 - 9.9\%$ greater than the <i>St</i> scaling factor for sample
799	SPICE-A1 (3.515). Each of the three VDM models corrects for geomagnetic field
800	strength, but the correction is greatest for VDM 3 (the LSD Framework; Lifton et al.,
801	2014). Lm scaling factors calculated within the VDM 1 and VDM 2 models are only
802	2.4% and 3.8% higher than the St scaling factor for sample SPICE-A1 (3.515). Lm-scaled
803	SLHL production rates at the SP flow and based on VDM 1 and VDM 2 are thus less
804	than St-scaled SLHL production rates, but greater than SLHL production rates scaled
805	with Lm (VDM 3), Sf, or Sa scaling factors.

806 Ten samples (SPICE-A1 to -A10) are used in the calculations of all SLHL ²¹Ne, ¹⁰Be, 807 and ¹⁴C production rates. In addition, ²¹Ne production rates include data from samples 808 10SPC01, 10SPC06, and 10SPC07, and ¹⁴C production rates include data from samples 809 10SPC06 and 10SPC07 (Figures 11, 12, 13, 14 and 15). All uncertainties are reported as 810 2σ unless otherwise noted.

811 812 Figure 10. Time-independent *St* and time-dependent *Sf* and *Sa* scaling factors for 10 Be at

813 the SPICE-A1 sample site (a) calculated for a point in time, and (b) averaged over a

814 period of time.

6.5.1 Total reference SLHL production rates

816	Total reference SLHL production rates sum spallogenic and muogenic contributions
817	to production rates for each nuclide (see footnotes Tables 3, 4, and 5). Using time-
818	independent St scaling factors yields error-weighted mean total reference SLHL
819	production rates for 21 Ne (n=13), 10 Be (n=10), and 14 C (n=12) of 17.0 \pm 1.1 at/g/yr, 3.84
820	\pm 0.27 at/g/yr, and 11.2 \pm 0.6 at/g/yr, respectively. Using the time-dependent Sf scaling
821	method decreases these SLHL values to 15.5 \pm 1.0 at/g/yr, 3.50 \pm 0.25 at/g/yr, and 10.9 \pm
822	0.5 at/g/yr, respectively. Similarly, the nuclide-specific, time-dependent Sa scaling
823	factors modify the SLHL values to 3.36 \pm 0.24 at/g/yr and 11.0 \pm 0.5 at/g/yr for ^{10}Be
824	and ¹⁴ C, respectively (Tables 3, 4, and 5).
825	Total reference SLHL ¹⁰ Be production rates are also calculated using the CREp
826	online calculator (Martin et al., 2017; <u>https://crep.otelo.univ-lorraine.fr/#/init</u>). The CREp
827	calculator does not yet have the capability to calculate ²¹ Ne or ¹⁴ C production rates or
828	exposure ages. CREp produces error-weighted mean total reference SLHL production
829	rates (<i>Lm</i>) for ¹⁰ Be (n=10) of 3.74 ± 0.25 , 3.69 ± 0.24 , and 3.49 ± 0.23 at/g/yr (2 σ ; Tables
830	6 and 8) for VDM 1, VDM 2, and VDM 3 databases, respectively (Figure 11). The two
831	highest mean production rates were determined using the VDM1 and VDM2 (Muscheler
832	et al., 2005; Valet et al., 2005; Lifton, 2016). Both of these rates overlap the Lm-scaled
833	world-wide mean total reference SLHL ^{10}Be production rate (4.11 \pm 0.38 at/g/yr; VDM
834	1) within 2σ uncertainty (Table 8; Figure 11). The lowest value (3.49 ± 0.23 at/g/yr) was
835	determined using the VDM 3 database (Lifton et al., 2014) and is essentially identical to
836	the mean Sf-scaled total reference SLHL ¹⁰ Be production rate calculated in this study
837	$(3.50 \pm 0.25 \text{ at/g/yr}; \text{Table 4})$. The lowest production rate (VDM 3-based) does not

838 overlap the *Lm*-scaled world-wide mean total reference SLHL ¹⁰Be production rate

839 within uncertainty.

840	Both error-weighted mean total referen	ce SLHL ²¹ Ne production rates	(with St and Sf

- scaling) agree within 2σ uncertainty (Figure 13). The *Sf*-scaled total reference SLHL ¹⁰Be
- production rate overlaps both *St*-scaled and *Sa*-scaled ¹⁰Be production rates within 2σ
- 843 uncertainty, however the *Sa*-scaled total reference SLHL ¹⁰Be production rate is notably
- 844 lower than the *St*-scaled total reference SLHL ¹⁰Be production rate. The former and the
- latter do not overlap within 2σ uncertainty. All three *Lm*-scaled production rates overlap
- 846 the *St*-scaled error-weighted mean total reference SLHL production rates for 10 Be (3.84 ±
- 847 0.27 at/g/yr) within 2σ uncertainty (Table 8; Figure 11).
- 848
- 849 Table 8. Comparison of <u>total reference</u> SLHL production rates in SPICE quartz as

850 calculated with one time-independent scaling model (*St*) and various time-dependent

scaling models (*Sf. Sa.*, and *Lm*)

0	<i>j</i> , <i>bu</i> , and <i>Lint</i>	
SPICE Quartz		
Total reference	Abbreviation of	
SLHL ¹⁰ Be	scaling method	
production rate	used to calculate	Online calculator or code
$(2\sigma; at/g/yr)$	production rates	used to calculate SPICE production rates
3.84 ± 0.27	St	CRONUScalc (Marrero et al., 2016)
3.74 ± 0.25	Lm	CREp calculator atmospheric ¹⁰ Be-based VDM ^a
3.69 ± 0.24	Lm	CREp calculator Lifton VDM 2016 ^a (Lifton, 2016)
3.49 ± 0.23	Lm	CREp calculator LSD Framework ^a (Lifton et al., 2014)
3.50 ± 0.25	Sf	mmc1 Matlab code of Lifton et al. (2014)
3.36 ± 0.24	Sa	mmc1 Matlab code of Lifton et al. (2014)

Note: Production rates are reported with 2σ uncertainty. St refers to the time-independent scaling method of

Lal (1991)/Stone (2000). Sf and Sa refer to the scaling methods of Lifton et al. (2014) for non-nuclide

- 854 specific and nuclide specific factors, respectively. *Lm* refers to the time dependent scaling method of Lal
- 855 (1991)/Stone (2000) as corrected for paleomagnetic field variations described in Nishiizumi et al. (1989)
 856 and denoted as *Lm* by Balco et al. (2008).
- 850 and denoted as *Lm* by Balco et al. (2008).
- 857 ^a Calculations on the CREp calculator were made in June 2019; information about the specific version of
- the calculator was not found on the website.

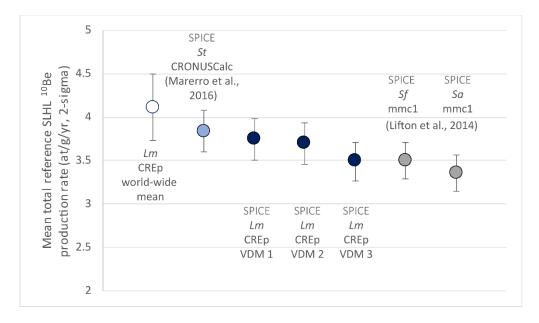


Figure 11. Comparison of SPICE *Lm*-scaled total reference SLHL ¹⁰Be production rates determined with the CREp online calculator (Martin et al., 2017) with SPICE *St*-, *Sf*-, and *Sa*-scaled total reference SLHL ¹⁰Be production rates calculated in this study based on scaling factors from Marerro et al. (2016) and Lifton et al. (2014; mmc1 code). The CREp world-wide mean ¹⁰Be production rate shown here is calculated with VDM 1 (see section 6.5).

869	All error-weighted mean t	total reference SLHL ¹⁴ C	production rates agr	ee within 2σ

- uncertainty when scaled with St, Sf, and Sa scaling methods (Table 5). If samples SPICE-
- A7 and -A9 are excluded as outliers from calculation of total reference SLHL ^{14}C
- production rates, the error-weighted mean values (n=10) are 11.2 ± 0.6 , 10.9 ± 0.6 , and
- 873 11.0 ± 0.6 at/g/yr for *St*, *Sf*, and *Sa* scaling, respectively. Averages and standard
- 874 deviations ($2\sigma_{SD}$) are also reported for the total reference SLHL ¹⁴C production rates
- 875 (n=10): 11.2 ± 1.7 , 11.0 ± 1.7 , and 11.0 ± 1.7 at/g/yr for *St*, *Sf*, and *Sa* scaling,
- 876 respectively. It is not clear why samples SPICE-A7 and -A9 produce outlier ¹⁴C data.
- 877 There is no quantifiable erosion or burial recorded in cosmogenic ²¹Ne or ¹⁰Be
- 878 concentrations in -A9 quartz, thus, the lower ¹⁴C concentration is not explained by

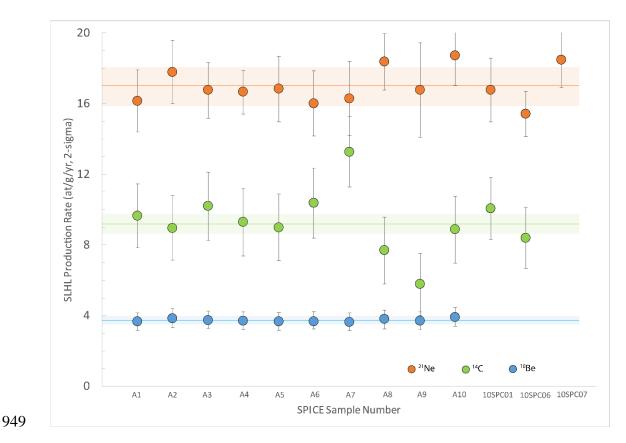
- geological processes. Similarly, there is no observation of anomalously higher
- 880 cosmogenic ²¹Ne or ¹⁰Be concentrations in –A7 quartz. Samples –A7 and –A9 only
- produce outlier ¹⁴C data. It should be noted that extraction of in situ ¹⁴C from quartz is a
- 882 challenging process, and carbon contamination and/or carbon loss can occur.
- 883 **6.5.2 SLHL production rates from muons and spallation**
- 884 This study reports only total reference SLHL production rates for ²¹Ne, because these
- rates includes the fast-muon induced spallation contribution to ²¹Ne. Total reference
- 886 SLHL ²¹Ne production rates (*St*) are shown in Figures 12 and 13. Figure 12 also
- 887 illustrates the SLHL spallation production rates (*St*) of 10 Be and 14 C in SPICE quartz.
- 888 Muogenic contributions to ¹⁰Be and ¹⁴C production rates at SPICE sample sites include
- production from both fast and slow muons and are calculated using the methods
- described and discussed in Heisinger et al. (2002a; 2002b). Production rates of
- 891 muogenic ¹⁰Be and ¹⁴C determined here are independent of SPICE calibration sample
- measurements, and rely only on literature values in Heisinger et al. (2002a; 2002b).
- 893 Spallation production rates of ¹⁰Be and ¹⁴C are derived by (1) subtracting the
- production rates resulting from negative muon capture from the total reference ¹⁰Be
- 14 C production rate at the corresponding sample elevation for each sample, and then
- (2) scaling the resultant spallogenic ¹⁰Be and ¹⁴C production rates to SLHL. The
- spallation production rate thus includes the production from fast-muon induced
- spallation, following Lal (1991)/Stone (2000) and Dunai (2000).
- Production rates by muons for 10 Be and 14 C are listed in Tables 4 and 5. *St*, *Sf*, and *Sa*
- 900 scaling factors give muogenic 10 Be SLHL production rates of 0.10, 0.07, and 0.07 at/g/yr,

901 respectively. Using *St*, *Sf*, and *Sa* scaling factors gives muogenic ¹⁴C SLHL production-902 rates of ~2.0, 1.5, and 1.5 at/g/yr, respectively.

Spallogenic ¹⁰Be contributes \sim 98% to total reference ¹⁰Be production rates, whereas 903 spallogenic ¹⁴C contributes approximately 80% to the total reference ¹⁴C production rate 904 905 at sea level (Balco et al., 2008; Kober et al., 2011; Lupker et al., 2015). Time-906 independent St scaling factors yield error-weighted mean spallation (sp) SLHL production rates for ${}^{10}\text{Be}_{sp}$ (n=10) and ${}^{14}\text{C}_{sp}$ (n=10) of 3.73 ± 0.26 at/g/yr and 9.2 ± 0.6 907 908 at/g/yr, respectively (Figure 12). Using the time-dependent Sf scaling method, these 909 SLHL values are 3.43 ± 0.24 at/g/yr and 9.5 ± 0.5 at/g/yr, respectively. Lastly, the 910 nuclide-specific, time-dependent Sa scaling factors change the SLHL values to $3.30 \pm$ 911 0.23 at/g/yr and 9.5 \pm 0.6 at/g/yr, respectively. The Sf and Sa scaling methods result in an 912 overall shift of data points in a graph similar to that in Figure 12, but the individual 913 positions of data points relative to one another do not change. Spallation SLHL production rates for ${}^{14}C_{sp}$ (n=10) were also determined using the 914 915 integration time (t_{int}) of Blard et al. (2019). In this case, Sf and Sa scaling factors 916 calculated in the mmc1 code of Lifton et al. (2014) were integrated over the past 8270 yr. 917 Using t_{int} and the time-dependent Sf and Sa scaling methods, the error-weighted mean spallation SLHL production rates for ${}^{14}C_{sp}$ are 9.7 ± 0.6 at/g/yr and 9.8 ± 0.6 at/g/yr (2 σ), 918 919 respectively. These are indistinguishable from SLHL ${}^{14}C_{sp}$ production rates (9.5 ± 0.5 920 at/g/yr and 9.5 \pm 0.6 at/g/yr; Sf and Sa) in SPICE quartz integrated over the past 25 ka. 921 All error-weighted mean SLHL spallogenic 10 Be production rates scaled with St, Sf, 922 and Sa scaling methods agree within 2σ uncertainty (Table 4; Figure 14). The same holds true for all three error-weighted SLHL spallogenic ¹⁴C production rates (Table 5). To 923

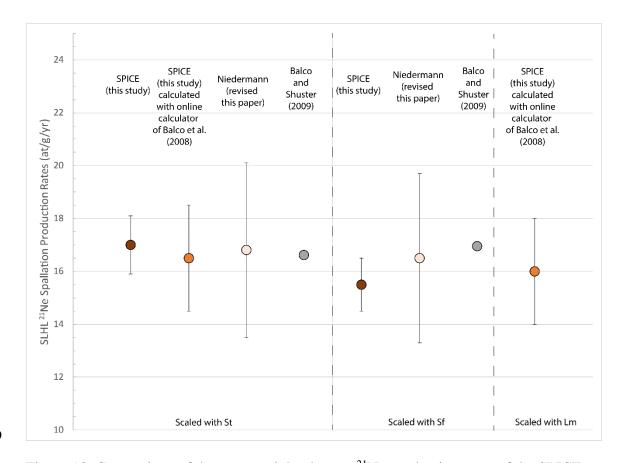
924 illustrate the statistical variation in ¹⁴C production rates, the arithmetical means and

925 standard deviations ($2\sigma_{SD}$) are also reported for the total reference SLHL ¹⁴C production


926 rates (n=10): 9.2 ± 1.7 , 9.5 ± 1.7 , and 9.6 ± 1.7 at/g/yr for *St*, *Sf*, and *Sa* scaling,

- 927 respectively (Table 2). These means and standard deviations are plotted in Figure 15.
- 928 *St*-scaled and *Lm*-scaled production rates for 21 Ne, 10 Be_{sp}, and 14 C_{sp} can also be
- 929 calculated in the online calculator of Balco et al.
- 930 (2008; <u>https://hess.ess.washington.edu/math/v3/v3_cal_in.html</u>). The calculator does not
- 931 report total reference ¹⁰Be or ¹⁴C production rates in the output file. The CREp calculator
- 932 was not used to calculate spallation production rates, because the CREp calculator only
- 933 reports total reference production rates. The Balco online calculator yielded mean St-

scaled <u>spallation</u> SLHL production rates of 16.5 ± 2.0 , 3.73 ± 0.20 , and 9.1 ± 3.4 at/g/yr


- 935 ($2\sigma_{SD}$; two standard deviations) for cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C, respectively, in
- 936 SPICE quartz (Table 9). Online documentation (Balco, 2017) states "that the best-fitting
- 937 reference production rates for *St* and *Lm* scaling are also not comparable to similar values
- generated by other code." This indicates there is expected to be a small degree of
- 939 variation amongst production-rate values determined by various online calculators of
- Balco et al. (2008), Marrero et al. (2016), and Martin et al. (2017). The Balco-calculator
- 941 production rates, however, are in excellent agreement with *St*-scaled arithmetical mean
- values calculated for *St*-scaled cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C in this study (16.7 \pm 2.1,
- 943 3.75 \pm 0.18, and 9.2 \pm 1.7 at/g/yr, respectively; $2\sigma_{SD}$; Table 2). Mean *Lm*-scaled
- spallation SLHL production rates from the Balco calculator are 16.0 ± 2.0 , 3.61 ± 0.20 ,
- and 9.6 \pm 3.6 at/g/yr (2 σ) for cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C, respectively, in SPICE
- 946 quartz. These *Lm*-scaled production rates overlap both the *St*-scaled determined for

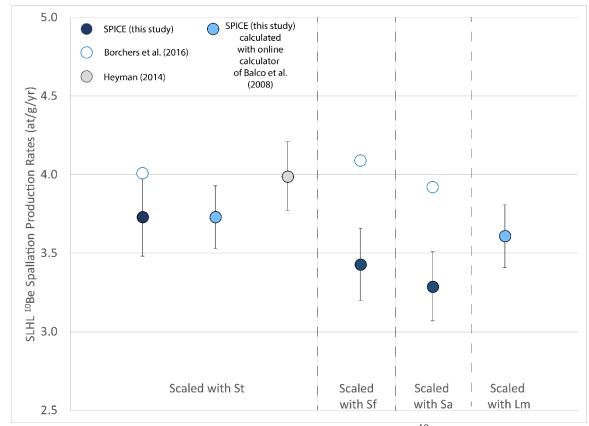
947 SPICE quartz in the Balco et al. (2008) calculator and the St-scaled values calculated in

948 this study well within uncertainty (Tables 2, 3, 4, and 5; Figures 13, 14, and 15).

Figure 12. Total reference SLHL production rate for ²¹Ne and spallation (*sp*) SLHL 950 production rates for ¹⁰Be and ¹⁴C for samples SPICE-A1 to -A10, and 10SPC01, -06, and 951 952 -07. Rates are scaled with the St scaling method. Solid lines represent the error-weighted 953 mean production rates for each nuclide. Samples SPICE-A7 and -A9 are included in 954 calculation of the error-weighted mean spallogenic ¹⁴C production rate represented by the green line. Shaded rectangles represent 2σ uncertainty of each mean, and include the 955 uncertainty associated with the 40 Ar/ 39 Ar age of the SP lava flow. Error bars on the circles 956 represent 2σ uncertainty, and do not include the uncertainty of the ⁴⁰Ar/³⁹Ar age. 957 958

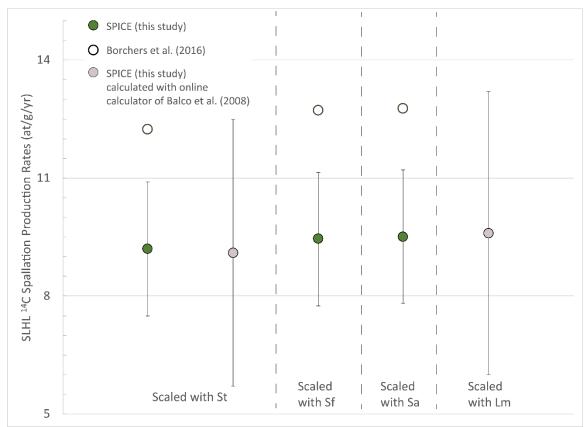
959

Figure 13. Comparison of the error-weighted mean ²¹Ne production rates of the SPICE study (brown circles) with Niedermann et al.'s (1994) revised ²¹Ne production rate (light orange), and Balco and Shuster's (2009) ²¹Ne_{sp} production rate (light gray circle) scaled with *St* (on left), *Sf* (in the middle), and *Lm* (on the right) scaling methods. Also included


is the SPICE ²¹Ne production as calculated within the Balco et al. (2008) calculator

965 (orange circles). Error bars represent 2σ uncertainty. Balco and Shuster's (2009)

966 production rates are those as scaled and reported by Marrero et al. (2016) and Borchers et


al. (2016). No uncertainties are reported with those rates. Borchers et al. (2016) state they
"cannot infer statistically justifiable production rate uncertainties from the fitting

969 exercise".

970 971

Figure 14. Comparison of the error-weighted mean spallogenic ¹⁰Be_{sp} production rates of 972 the SPICE study (blue circles) with Borchers et al. (2016) (white circles) scaled with St, Sf, Sa, and Lm scaling methods and the spallogenic $^{10}Be_{sp}$ production rate of Heyman 973 (2014) (gray circle; *St* scaling). Error bars represent 2σ uncertainty. 974

977 Figure 15. Comparison of the error-weighted mean spallogenic ¹⁴C_{sp} production rates of the SPICE study (dark green, light green, and gray circles) and Borchers et al. (2016) (white circles) scaled with St, Sf, Sa, and Lm scaling methods. Error bars represent two standard deviations (Table 2), because they are much greater than the uncertainties associated with the error-weighted means.

989 Table 9. Comparison of spallation production rates in SPICE quartz as calculated in the

990 online calculator of Balco et al. (2008)

991

	SLHL	SLHL
	Production Rate	Production Rate
	St	Lm
	online calculator of	online calculator of
Cosmogenic	Balco et al. (2008) ^a	Balco et al. (2008) ^a
nuclide	(at/g/yr)	(at/g/yr)
SPICE ¹⁰ Be _{sp}	3.73 ± 0.20	3.61 ± 0.20
SPICE ¹⁴ C _{sp}	9.1 ± 3.4	9.6 ± 3.6
SPICE ²¹ Ne	16.5 ± 2.0	16.0 ± 2.0

992 Note: Uncertainty is reported here as two standard deviations $(2\sigma_{SD})$ according to online documentation 993 (Balco, 2017). The subscript *sp* refers to a production rate produced by spallation reactions. *St* refers to the

(Balco, 2017). The subscript *sp* refers to a production rate produced by spallation reactions. *St* refers to the time-independent scaling method of Lal (1991)/Stone (2000). *Lm* refers to the time dependent scaling
method of Lal (1991)/Stone (2000) as corrected for paleomagnetic corrections described in Nishiizumi et al. (1989) and denoted as *Lm* by Balco et al. (2008).

^a Version 3 of production-rate calibration code: wrapper 3.0.2; get_age 3.0.2; muons 1A, alpha = 1;

998 validate_v3_input.m - 3.0; consts 3.0.4

999

1000 **7. Discussion**

1001 **7.1 Local production rates: predicted vs measured**

1002 We hypothesize that if increased cosmogenic nuclide production between 20 and 50

1003 ka was significant (e.g., measureable at the precision of AMS and noble gas mass

spectrometry available at the moment), the SP flow surface should contain a

1005 concentration of cosmogenic nuclides that would be higher than predicted by the time-

1006 independent *St* scaling method. This would mean that unscaled, calibrated (measured)

1007 <u>local production rates would be higher than rates predicted by scaling global SLHL</u>

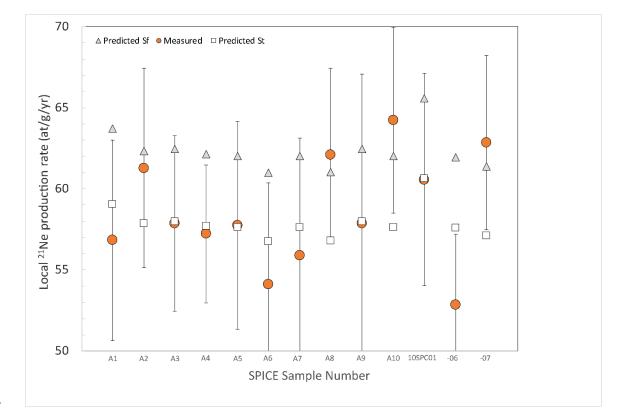
1008 production rates calibrated on surfaces that are <20 ka with *St* scaling factors. *St* scaling

- 1009 factors do not include a correction for temporal fluctuations in geomagnetic field
- 1010 strength.
- 1011 To test this hypothesis, we compare <u>predicted</u> local production rates scaled to SPICE
- sample sites with *St*, *Sf*, and *Sa* scaling methods to <u>unscaled</u>, <u>calibrated</u> local production
- 1013 rates, based on the measured inventories of cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C in SP flow

1014 quartz. Predicted production rates based on the *Lm*-scaling method were not directly 1015 tested in this study, because (1) the mmc1 code of Lifton et al. (2014) only calculates Sf 1016 and Sa scaling factors; (2) the online calculators of Balco et al. (2008) and Martin et al. 1017 (2017) do not report separate scaling factors for spallogenic and muogenic contributions 1018 to total nuclide production, nor do the calculators list scaling factors for each time step 1019 within the 72-ka exposure history at the SP flow; and (3) it is not possible to specify an 1020 exact time (e.g., 72 ka or 25 ka) in the CRONUSCalc calculator over which time-1021 integrated scaling factors for spallation or muon-induced production should be calculated. 1022 *Lm* scaling factors, however, are greater than *St* scaling factors and less than *Sf* scaling 1023 factors (see section 6.5), thus, it can be inferred that *Lm*-scaled production rates will be 1024 less than St-scaled rates and greater than Sf-scaled rates. 1025 Predicted local production rates plotted in Figures 16, 17, and 18 are based on the updated SLHL²¹Ne production rate of Niedermann (this paper; 16.8 (*St*) and 16.5 (*Sf*) 1026 at/g/yr; Table 2) and the global, average SLHL ¹⁰Be and ¹⁴C production rates used in the 1027 1028 CRONUSCalc calculator (Table 2; Borchers et al., 2016; Marrero et al., 2016). Table SD4 lists the *St* and *Sf* scaling factors used to calculate the predicted local ²¹Ne 1029 production rates. Predicted local ¹⁰Be and ¹⁴C production rates are calculated by the 1030 1031 online CRONUSCalc calculator using the scaling factors and SLHL production rates 1032 therein (Marrero et al., 2016). In Figures 16, 17, and 18, all predicted Sf-scaled and Sa-1033 scaled local production rates are greater than predicted *St*-scaled local production rates. 1034 Figure 16 shows the predicted local ²¹Ne production rates (*St* and *Sf*) and

1035 measured ²¹Ne local production rates for SP flow quartz. Eight of thirteen samples have

1036 <u>calibrated</u> local ²¹Ne production rates (within 2σ uncertainty) that plot directly on or


1037 below predicted *St* local production rates. Calibrated production rates from five of these

1038 samples also overlap their predicted Sf local production rates within 2σ uncertainty.

1039 Sample 10SPC06 plots significantly below its predicted *St* and *Sf* local production rates,

- 1040 failing to overlap either within 2σ uncertainty. Of the four remaining samples, samples
- 1041 SPICE-A2, -A8, -A10, and 10SPC07 overlap Sf- scaled predicted local production rates
- 1042 within 2σ uncertainty; however only calibrated local production rates of samples –A2 and

1043 -A8 also overlap the *St*-scaled predicted local production rates within 2σ uncertainty.

1044

1045 Figure 16. Comparison of the predicted local ²¹Ne production rates and the unscaled local 1046 production rates measured in SP flow quartz. Error bars are on measured values (orange 1047 circles), represent 2σ uncertainty, and do not include uncertainty on the ⁴⁰Ar/³⁹Ar age. 1048

1049 In summary, ten of thirteen quartz samples have calibrated local ²¹Ne production rates 1050 that agree with predicted *St* local ²¹Ne production rates at the SP flow. Only three samples plot statistically above or below predicted *St* local production rates. This

1052 indicates that production of cosmogenic ²¹Ne over the past 72 ka is not significantly

1053 greater than cosmogenic ²¹Ne production rates integrated over the past 15.75 ka (Figures

1054 6 and 13). Assuming *St* scaling factors are accurate, the strong agreement between the

1055 predicted (St) and measured local 21 Ne production rates also supports field evidence of

1056 negligible erosion at SPICE sample sites.

1057 Figure 17 shows the predicted local 10 Be production rates (*St*, *Sf*, and *Sa*) and

1058 calibrated (measured) ¹⁰Be local production rates for SP flow quartz. Except for sample

1059 SPICE-A1, measured local ¹⁰Be production rates are all systematically, nominally higher

1060 than the predicted local 10 Be production rates scaled with the *St* method. Even so,

1061 measured production rates agree very well with predicted *St* production rates, and overlap

1062 predicted values within 2σ uncertainty. Measured local ¹⁰Be production rates for six

1063 samples (SPICE-A2, -A3, -A4, -A8, -A9, and -A10) agree with predicted local $Sf^{10}Be$

1064 production rates within 2σ uncertainty. Three of these samples (SPICE-A2, -A8, and -

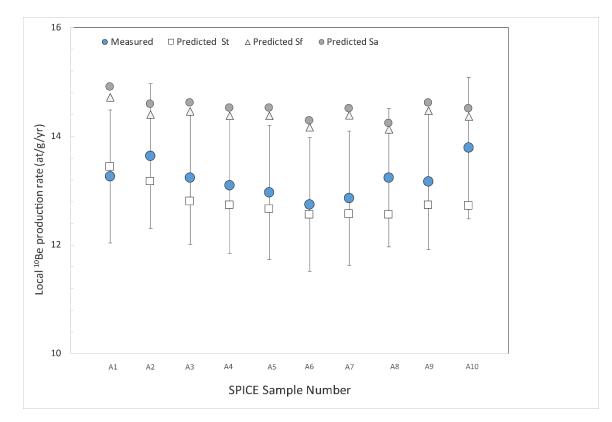
1065 A10) also overlap with predicted local Sa ¹⁰Be production rates within 2σ uncertainty.

1066 All ten quartz samples have calibrated local ¹⁰Be production rates that agree with

1067 predicted St local ¹⁰Be production rates at the SP flow. None of the samples plot

statistically above or below predicted *St* local production rates. This indicates that

1069 production of cosmogenic 10 Be over the past 72 ka is not significantly greater than *St*-


1070 scaled cosmogenic ¹⁰Be production rates integrated over the past 20 ka. Just as with

1071 agreement between ²¹Ne production rates at the SP flow, the strong agreement between

1072 the predicted (St) and measured local ¹⁰Be production rates also supports field

1073 observations of negligible erosion at SPICE sample sites.

1076 Figure 17. Comparison of the predicted local ¹⁰Be production rates and the unscaled local 1077 production rates measured in SP flow quartz. Error bars are on measured values (blue 1078 circles), represent 2σ uncertainty, and do not include uncertainty on the ⁴⁰Ar/³⁹Ar age. 1079

1081 Figure 18 shows the predicted local 14 C production rates (*St* and *Sa*) and

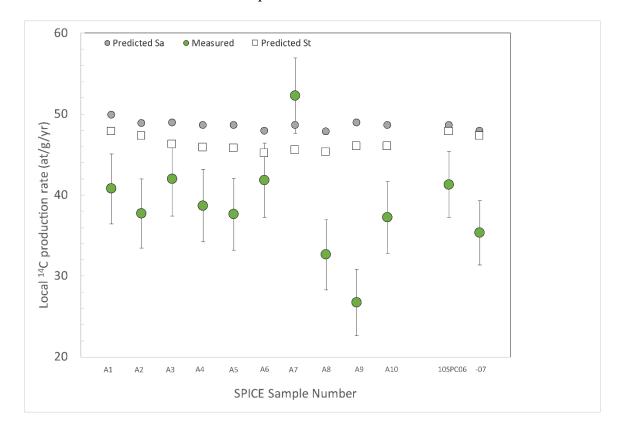
1082 measured ¹⁴C local production rates for SP flow quartz. In order to simplify the graph,

1083 predicted local production rates are not shown for the Sf scaling method. These rates fall

1084 between the predicted local 14 C production rates scaled with *St* and *Sa* methods.

1085 All calibrated (measured) local ¹⁴C production rates, except for sample SPICE-A7

1086 (outlier), are systematically lower than the predicted local ¹⁴C production rates scaled


1087 with both St and Sa methods. Only two samples (SPICE-A3 and –A6) overlap with

1088 predicted local ¹⁴C production rates (*St* scaling) within 2σ uncertainty. None of the

1089 samples overlap predicted *Sa*-scaled local 14 C production rates.

1090	Predicted local ¹⁴ C production rates (<i>St</i> scaling) were calculated by the CRONUSCalc
1091	calculator, using the ¹⁴ C production rate (12.24 at/g/yr; St scaling) of Borchers et al.
1092	(2016). This SLHL ¹⁴ C production rate is based only on two pre-2010 production-rate
1093	publications at sites <17.4 ka in age, excluding the lower SLHL ¹⁴ C production rates
1094	reported in Schimmelpfennig et al. (2012) and Young et al. (2014). It is possible that the
1095	SP flow is affected by erosion, or that quartz in the SP flow records in-situ
1096	cosmogenic ¹⁴ C production rates that are lower at this set of latitudes, longitudes, and
1097	elevations.
1098	Erosional effects on ¹⁴ C concentrations must be considered. The low ¹⁴ C
1099	concentrations in SP flow quartz might indicate that the pressure-ridge surfaces are not
1100	original, primary flow surfaces. Sims et al. (2007) report an erosion rate of 1.7 mm/ka for
1101	a 60 ka basalt in New Mexico, which has weathered in a similar arid environment to that
1102	of the SP flow. Calculations indicate that much higher erosion rates of 15 to 53 mm/ka, or
1103	108 to 310 cm of total erosion, would be required over the past 72 ka to explain the
1104	disparity between the SPICE ¹⁴ C production rate (St) and the ¹⁴ C production rate of
1105	Borchers et al. (2016; St; Figures 15 and 18). Based on field observations alone (Figures
1106	S1-S13), it is unrealistic this much erosion has occurred on the SP flow at SPICE sample
1107	sites. Furthermore, if erosion rates on the SP-flow surface were 15 to 53 mm/ka, we
1108	would also expect much lower cosmogenic ²¹ Ne and ¹⁰ Be concentrations in the same
1109	quartz samples in which ¹⁴ C was also measured. Measured ²¹ Ne and ¹⁰ Be concentrations
1110	measured in this study do not reflect this decrease (Figures 13 and 14). To explain the
1111	small differences between SPICE ²¹ Ne production rates (<i>St</i>) and the ²¹ Ne production rate
1112	of Borchers et al. (2016; 16.63 at/g/yr), the surfaces of sample sites would require 1.4 to

1113 11 cm of total erosion rates of 0.2 to 1.5 mm/ka over 72 ka. Similarly, to explain the 1114 small differences between SPICE ¹⁰Be production rates (*St*) and the ¹⁰Be production rate 1115 of Borchers et al. (2016; 4.01 at/g/yr), sample sites would require 3 to 14 cm of total 1116 erosion at erosion rates of 0.5 to 1.9 mm/ka over 72 ka. While these ²¹Ne and ¹⁰Be 1117 erosion rates (0.2 - 1.9 mm/ka) are realistic and do, in some cases, overlap the erosion 1118 rate of Sims et al. (2007), field evidence does not support erosion of the SP-flow surface 1119 on the order of 10^{1} - 10^{2} cm over the past 72 ka.

1121Figure 18. Comparison of the predicted local ${}^{14}C$ production rates and the unscaled local1122production rates measured in SP flow quartz. Error bars are on measured values (green1123circles), represent 2σ uncertainty, and do not include uncertainty on the radiocarbon half-1124life.

1125

1126 **7.2 Production rates from spallation**

- 1127 New SPICE ²¹Ne production rates in quartz agree very well with other ²¹Ne
- 1128 production rates in the literature (Figures 6 and 13). The error-weighted mean SLHL total

reference ²¹Ne production rate from the SPICE study (17.0 \pm 1.1 at/g/yr; *St* scaling) is in 1129 excellent agreement with both the Sierra Nevada SLHL²¹Ne production rate 1130 1131 (Niedermann et al., 1994) updated in this paper (16.8 \pm 3.3 at/g/yr; 2 σ ; St scaling) and the Antarctica SLHL ²¹Ne production rate (Balco and Shuster, 2009) used in the 1132 1133 calculator of Marrero et al. (2016) (16.63 at/g/yr; St scaling). When SLHL²¹Ne production rates from SPICE samples are scaled with the *Sf* scaling 1134 1135 method, agreement of the SPICE and Sierra Nevada production rates with the Antarctica rate is not as strong. The Sf scaling method yields SLHL ²¹Ne_{sp} production rates for both 1136 1137 the SPICE study (15.5 \pm 1.0 at/g/yr) and the updated Sierra Nevada study (16.5 \pm 3.2 1138 at/g/yr) that are lower than the rates calculated with St scaling factors, but still overlap 1139 within 2σ uncertainty. The lower rate (15.5 ± 1.0 at/g/yr) is nominally less than the Antarctica SLHL²¹Ne production rate (16.96 at/g/vr: *Sf* scaled), but the disagreement is 1140 1141 not notably large. Recall that uncertainties are not reported with the production rates 1142 reported in Borchers et al. (2016). It is possible that the Sf-scaled Antarctica SLHL and SPICE SLHL ²¹Ne production rates would overlap within uncertainty if it were reported. 1143 1144 Small differences in *Sf* scaled SLHL ²¹Ne production rates are possibly due to 1145 significant age differences at the separate sample sites. The SPICE and Sierra Nevada 1146 sample sites are 72 ka and 15.75 ka, respectively, whereas the Antarctica sites have exposure histories ranging from 8 to 14 Ma. The agreement in SLHL²¹Ne production 1147 1148 rates for a given scaling method (St or Sf) at the three different sites (SP flow, Sierra 1149 Nevada, and Antarctica) and with other indirectly determined rates in the literature (St 1150 scaling; Figure 6), however, indicates the integrated production rate of cosmogenic ²¹Ne 1151 has not varied much between ~14 Ma and 15.75 ka. The agreement in rates also confirms

the lack of measureable erosion at the SP flow sample sites, regardless of scaling method(*St* or *Sf*).

1154	Notable differences in SPICE SLHL spallogenic ¹⁰ Be _{sp} production rates are obtained
1155	with the three St, Sf, Sa, and Lm scaling methods, particularly when compared to the
1156	global, average SLHL 10 Be _{sp} production rates of Heyman (2014) and Borchers et al.
1157	(2016). The SPICE project's error-weighted mean SLHL spallogenic ¹⁰ Be _{sp} production
1158	rate, when scaled with the St scaling method, is 7% lower than both the ${}^{10}\text{Be}_{sp}$ production
1159	rates of Borchers et al. (2016) and Heyman (2014), but still overlaps the two rates within
1160	2σ uncertainty (Figure 14). There is very little variation between the SLHL $^{10}Be_{sp}$
1161	production rates of Borchers et al. (2016; 3.92 - 4.09 at/g/yr) when scaled with St, Sf, and
1162	Sa scaling methods. In strong contrast, SPICE SLHL $^{10}Be_{sp}$ production rates show a
1163	systematic decrease with different scaling methods, changing from 3.73 ± 0.26 at/g/yr
1164	(<i>St</i>) to 3.43 ± 0.24 at/g/yr (<i>Sf</i>) and, lastly, to 3.30 ± 0.23 at/g/yr (<i>Sa</i>). The <i>St</i> scaled and <i>Sa</i>
1165	scaled SLHL $^{10}\text{Be}_{\text{sp}}$ production rates from SPICE quartz just overlap within 2σ
1166	uncertainty (Figure 14). The mean Lm-scaled SLHL spallogenic ¹⁰ Be _{sp} production rate
1167	calculated for SPICE quartz in Balco et al.'s (2008) online calculator is 3.61 ± 0.20
1168	at/g/yr; 2 σ). This rate is nominally greater than ¹⁰ Be _{sp} rates scaled with the <i>Sf</i> and <i>Sa</i>
1169	methods, and nominally less than St-scaled SLHL $^{10}Be_{sp}$ production rates (Figure 14).
1170	The <i>Lm</i> -scaled mean SLHL spallogenic ${}^{10}Be_{sp}$ production rate agrees with <i>St</i> , <i>Sf</i> , and <i>Sa</i> -
1171	scaled rates within uncertainty.
1172	The time periods over which Sf and Sa scaling factors are averaged have different
1173	effects on the ¹⁰ Be production rate values of Borchers et al (2016) and those of the SPICE
	10

1174 study. The ${}^{10}\text{Be}_{sp}$ production rates included in the Borchers et al. (2016) value are all

1175 from sample sites with independent ages less than 20 ka, thus, the different time-1176 independent (St) and time-dependent (Sf and Sa) scaling methods are going to produce 1177 very similar scaling factors and, thus, very similar production rates (3.92 - 4.09 at/g/yr). 1178 Recall the similarities between St, Sf, and Sa scaling factors calculated for the past 20 ka 1179 at the SPICE-A1 sample site (section 6.5, Figure 10). The past ~20 ka incorporates 1180 periods of time when the Earth's magnetic field was both weaker and stronger, and thus 1181 created conditions for both increased and decreased cosmogenic nuclide production at the 1182 Earth's surface (Lifton et al., 2014). The magnitude of these changes in production rates, 1183 more or less, balances each other out when scaled with time-dependent Sf and Sa scaling 1184 factors (Figure 10). In contrast, the exposure history of the SP flow (over the past 72 ka) 1185 includes the proposed period of time between 20 and 50 ka when the Earth's magnetic 1186 field was weaker (Lifton et al., 2014), and thus, it is hypothesized, there was increased 1187 cosmogenic nuclide production (Figure 10). This period of proposed increased nuclide 1188 production was not 'balanced out' by a period of equally decreased nuclide production, 1189 thus, the time-dependent Sf and Sa scaling factors over the past 72 ka at the SP flow are 1190 significantly higher than the time-independent St scaling factors. For these reasons, the 1191 St-scaled SLHL ¹⁰Be_{sp} production rate $(3.73 \pm 0.26 \text{ at/g/yr})$ determined from SPICE 1192 samples overlaps the production rates of Borchers et al. (2016) and Heyman (2014) within 2σ uncertainty, but *Sf*- and *Sa*- scaled SPICE ¹⁰Be production rates do not agree 1193 1194 with the St, Sf and Sa scaled rates of Borchers et al. (2016) and Heyman (2014) (Figure 14). Time-dependent SLHL ¹⁰Be_{sp} production rates of 3.43 ± 0.24 at/g/yr (Sf) and $3.30 \pm$ 1195 1196 0.23 at/g/yr (Sa) are significantly lower, based on Sf and Sa scaling factors at the SP flow 1197 that are 9-10% and 13-14% higher than time-independent St scaling factors.

1198	It is important to point out these differences in values, because the popular online
1199	calculators of Balco et al. (2008) and Marrero et al. (2016) use the SLHL ¹⁰ Be production
1200	rates published in Borchers et al. (2016), and yet the calculators are used to determine
1201	exposure ages for surfaces with exposures histories greater than 20 ka. The Sa and Sf
1202	scaled ¹⁰ Be production rates (4.09 and 3.92 at/g/yr, respectively) of Borchers et al. (2016)
1203	are significantly higher than Sa and Sf scaled ¹⁰ Be production rates determined in the
1204	SPICE study (3.43 and 3.29). The CREp online calculator reports world-wide mean total
1205	reference SLHL ^{10}Be production rates of 4.11± 0.38, 4.09 ± 0.38, and 4.06 ± 0.38 at/g/yr
1206	$(2\sigma; Lm \text{ scaling with VDM 1, VDM 2, and VDM 3, respectively})$. These rates are in
1207	agreement with, but nominally higher than, the total reference SLHL ¹⁰ Be production
1208	rates calibrated in SPICE quartz for VDM 1, VDM 2, and VDM 3 geomagnetic
1209	corrections (3.74 \pm 0.25, 3.69 \pm 0.24 at/g/yr, and 3.49 \pm 0.23 at/g/yr, respectively; 2 σ ; <i>Lm</i>
1210	scaling).
1211	If the higher ¹⁰ Be SLHL production rates (~4 at/g/yr) are scaled with Sf, Sa, or Lm
1212	methods to calculate an exposure age at a ~70 ka landform, the resultant exposure age
1213	could be erroneously too young. For example, using the CRONUSCalc 26 Al/ 10 Be
1214	Exposure Age Calculator (v 2.0) of Marrero et al. (2016) and 10 Be concentrations in
1215	quartz from SP flow quartz samples, mean exposure ages of 70.6 ± 4.2 ka, 67.1 ± 4.1 ka,
1216	and 67.1 \pm 3.8 ka (error-weighted means; 2 σ) were calculated using <i>St</i> , <i>Sf</i> , and <i>Sa</i> scaling,
1017	respectively. It could 10 Decourse area best metals the 40 A $\pi/39$ A π are of the CD laws

- 1217 respectively. *St* scaled ¹⁰Be exposure ages best match the 40 Ar/ 39 Ar age of the SP lava
- 1218 flow (72 \pm 4 ka; 2 σ). Though all three mean exposure ages overlap within 2 σ uncertainty,
- 1219 *Sf* and *Sa* scaled mean 10 Be exposure ages are 4.9% lower than the mean *St*-scaled 10 Be
- 1220 exposure ages. The CREp calculator yields mean *Lm*-scaled exposure ages of 65.1 ± 2.6

1221	ka, 64.7 \pm 2.4 ka, and 61.7 \pm 2.4 ka (error-weighted means; 2 σ) when calculated using
1222	VDM 1, VDM 2, and VDM 3 geomagnetic correction models and the total reference
1223	SLHL ^{10}Be production rates of 4.11 \pm 0.38, 4.09 \pm 0.38, and 4.06 \pm 0.38 at/g/yr,
1224	respectively, of Martin et al. (2017). These ages are 7.8 to 12.6% lower than the St-
1225	scaled ¹⁰ Be exposure age (70.6 ka) produced within the CRONUSCalc calculator.
1226	Simply stated, a cosmogenic nuclide concentration divided by a production rate that
1227	is too high will result in an exposure age that is too young, which may make it seem that
1228	a landform has experienced quantifiable erosion and/or burial, even when that is not the
1229	case and no field evidence supports it.
1230	SLHL spallogenic ¹⁴ C production rates from the SPICE project and other SLHL ¹⁴ C
1231	production rates in the literature are integrated over similar time periods (25 ka and <17.4
1232	ka), thus we expect more similar variations in St , Sf and Sa scaled production rates than
1233	are observed when comparing spallogenic 10 Be as discussed above (Figure 7). Sf and Sa
1234	scaling factors for SPICE sample sites average over the past 25 ka, and Sf and Sa scaling
1235	factors used by Borchers et al (2016) are over the past 17.4 ka or less.
1236	The error-weighted mean SLHL spallogenic ¹⁴ C production rate of the SPICE study is
1237	9.2 ± 0.6 at/g/yr (<i>St</i>). The arithmetical mean SLHL spallogenic ¹⁴ C production rate with
1238	two standard deviations is 9.2 \pm 1.7 at/g/yr (<i>St</i>). The SLHL ¹⁴ C _{sp} production rate is
1239	nominally lower than other previously published SLHL ${ m ^{14}C_{sp}}$ production rates, but the
1240	SPICE production rate does overlap the rate of Dugan et al. (2008; 12.4 ± 3.2 at/g/yr (<i>St</i>))
1241	within 2σ uncertainty (Figure 7). If arithmetical means with two standard deviations are
1242	used to assess the data, the mean SLHL spallogenic ¹⁴ C production rate in SPICE quartz
1243	also overlaps the ¹⁴ C production rates of Schimmelpfennig et al. (2012) and Young et al.

1244 (2014). The Balco et al. (2008) calculator yields mean SLHL spallogenic ¹⁴C production 1245 rates in SPICE quartz of 9.1 ± 3.4 at/g/yr (*St*) and 9.6 ± 3.6 at/g/yr (*Lm*) with uncertainty

1246 reported here as two standard deviations ($2\sigma_{SD}$). These Balco-calculator ¹⁴C rates overlap

1247 those calculated in this study (9.2 - 9.5 at/g/yr) and the ¹⁴C rates of Borchers et al. (2016)

1248 determined with *St*, *Sf*, and *Sa* scaling methods (Figure 15).

1249 The ${}^{14}C$ SPICE data set and the ${}^{14}C$ data set of Borchers et al. (2016) each show small

1250 ranges in production rates with changes in scaling methods, because geomagnetic field

1251 corrections for the 25 ka and <17.4 ka time periods are small. Time-dependent (Sf and

1252 *Sa*) scaling factors for SPICE 14 C production rates are integrated over the past 25 ka.

1253 These spallogenic ¹⁴C production rates calculated with time-dependent *Sf* and *Sa* scaling

1254 factors at the SP flow are only ~2% higher than the spallogenic 14 C production rate scaled

1255 with *St* scaling factors (Figure 15). The three SLHL spallogenic ${}^{14}C_{sp}$ production rates

1256 calculated with the St, Sf, and Sa scaling factors range from 9.2 at/g/yr (St) to 9.5 at/g/yr

1257 (Sf and Sa), and are indistinguishable from one another within 2σ uncertainty, regardless

1258 of scaling method.

1259 Muogenic ¹⁴C SLHL production rates in SPICE quartz are 12 to 20% of total

1260 reference ¹⁴C production rates. While Lupker et al. (2015) obtained very similar muon-

1261 production rate parameters to those reported in Heisinger et al. (2002a; 2002b), the

1262 parameters of Lupker et al. (2015) were calculated using a SLHL ¹⁴C spallation

1263 production rate of 12.3 at/g/yr. The proportion of muon production relative to total 14 C

1264 production found in the Lupker et al. (2015) study would likely be higher if a lower

1265 spallation production rate (e.g., SPICE ${}^{14}C_{sp}$ of 9.2 - 9.5 at/g/yr) was used.

1266	Comparison of error-weighted mean and arithmetical mean SLHL ${}^{14}C_{sp}$ production
1267	rates of the SPICE study (St, Sf, and Sa scaling) to the ${}^{14}C_{sp}$ production rates of Borchers
1268	et al. (2016) also scaled with St, Sf, and Sa scaling methods shows that mean SPICE
1269	values $(9.2 - 9.5 \text{ at/g/yr})$ are systematically lower than those of Borchers et al. (2016)
1270	(12.24 – 12.76 at/g/yr; Table 2; Figures 15 and 18). The three production-rate values of
1271	Borchers et al. (2016) also exhibit little variation (4%) in comparison to one another.
1272	Although the SPICE SLHL cosmogenic ${}^{14}C_{sp}$ production rates (8.6 – 10.1 at/g/yr,
1273	including 2σ uncertainty) are nominally lower than the previously reported ${}^{14}C_{sp}$
1274	production rates of Dugan et al. (2008), Schimmelpfennig et al. (2012), and Young et al.
1275	(2014), SPICE rates do overlap these three rates within two standard deviations (Table 2;
1276	Figure 7), and add to a growing database of calibrated 14 C production rates around the
1277	world.

1278

1279 8. Conclusions

The SPICE study has generated a robust dataset of cross-calibrated production rates 1280

of cosmogenic ²¹Ne, ¹⁰Be, and ¹⁴C in quartz samples extracted from the basaltic SP lava 1281

flow. Cosmogenic ²¹Ne and ¹⁰Be production rates are calibrated to the 1282

independent ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age of the lava flow (72 ± 4 ka; 2 σ). Cosmogenic ${}^{14}\text{C}$ rates are 1283

1284 calculated based on the assumption that quartz in the SP flow has reached saturation with

respect to in situ ¹⁴C. Cosmogenic ²¹Ne production rates (n=13) and ¹⁰Be production rates 1285

(n=10) for each SPICE quartz sample agree within 2σ uncertainty. Cosmogenic ¹⁴C 1286

production rates (n=12) for each SPICE quartz sample agree within 2σ uncertainty, 1287

except for ¹⁴C data from samples SPICE-A7 and –A9. These samples are considered 1288

outliers for ¹⁴C data and removed from calculations of error-weighted means. 1289

1290	Cosmogenic ²¹ Ne and ¹⁰ Be concentrations in SP flow quartz strongly support field
1291	evidence for negligible erosion and/or burial on pressure ridges where samples were
1292	collected. Error-weighted mean SLHL total reference ²¹ Ne and ¹⁰ Be production rates at
1293	the SP flow are 17.0 ± 1.1 at/g/yr and 3.84 ± 0.27 at/g/yr (2σ ; <i>St</i> scaling), respectively.
1294	These SPICE production rates agree very well and within 2σ uncertainty with St scaled
1295	SLHL total reference ²¹ Ne and spallogenic ¹⁰ Be production rates reported in the literature
1296	(Figures 6, 11, and 13). The <i>St</i> scaled SLHL total reference 21 Ne production rate
1297	determined for 72 ka SP flow quartz is in excellent agreement with the newly revised
1298	(this paper) total reference ²¹ Ne production rate of Niedermann et al. (1994) of 16.8 ± 3.3
1299	at/g/yr (2 σ ; <i>St</i>). The error-weighted mean SLHL spallogenic ¹⁰ Be production rate of 3.73
1300	\pm 0.26 at/g/yr (2 σ ; <i>St</i> scaling) determined for SP flow quartz is nominally lower but
1301	overlaps the global, average ${}^{10}\text{Be}_{sp}$ production rates of Borchers et al. (2016; 4.01 at/g/yr
1302	(<i>St</i>)) and Heyman (2014; 3.99 at/g/yr (<i>St</i>)) within 2σ uncertainty. The total reference ¹⁰ Be
1303	production rates calibrated in SPICE quartz for the CREp calculator's VDM 1, VDM 2,
1304	and VDM 3 geomagnetic corrections are 3.74 ± 0.25 , 3.69 ± 0.24 , and 3.49 ± 0.23 at/g/yr,
1305	respectively (2σ ; <i>Lm</i> scaling). The rates are nominally lower, but in agreement with, the
1306	world-wide mean total reference SLHL ^{10}Be production rate of 4.11 \pm 0.38, 4.09 \pm 0.38,
1307	and 4.06 \pm 0.38 at/g/yr (2 σ ; <i>Lm</i> scaling with VDM 1, VDM 2, and VDM 3, respectively)
1308	used in the CREp calculator (Martin et al., 2017). The global average ¹⁰ Be rates of
1309	Heyman (2014), Borchers et al. (2016), and Martin et al. (2017) are calibrated on surfaces
1310	younger than 20 ka. If SPICE samples were affected by significant erosion and/or burial,
1311	reduced production of cosmogenic ²¹ Ne and ¹⁰ Be would be recorded in quartz samples
1312	and rates would not agree so well with other ²¹ Ne and ¹⁰ Be in the literature. The SPICE

1313	study shows there is variation in SLHL ²¹ Ne and ¹⁰ Be production rates mainly due to
1314	numerical differences in various scaling time-independent and time-dependent methods,
1315	but there is no measureable difference between the St scaled production rates of
1316	cosmogenic ²¹ Ne and ¹⁰ Be at the SP flow over the past 20 ka and rates over the past 72
1317	ka. This could mean that ²¹ Ne and ¹⁰ Be production rates in quartz were not significantly
1318	greater during the proposed period of decreased magnetic field strength from 20 to 50 ka.
1319	It could also mean that increased nuclide production during this period is not recorded in
1320	SP flow quartz at a concentration that is detectable with current precision and technology
1321	of AMS and noble gas mass spectrometry.
1322	The SPICE study also suggests that production of cosmogenic ¹⁴ C in SP flow quartz
1323	may have been lower over the past 25 ka than production of cosmogenic ¹⁴ C at other
1324	global locations with ages between 9.6 and 17.4 ka. The error-weighted mean SLHL total
1325	reference and spallogenic ^{14}C production rates are 11.2 \pm 0.6 at/g/yr and 9.2 \pm 0.6 at/g/yr
1326	$(2\sigma; St \text{ scaling})$, respectively. This latter rate is lower than the St-scaled SLHL
1327	spallogenic ¹⁴ C production rate of Borchers et al. (2016; 12.24, no error reported) but this
1328	rate does overlap one of the four SLHL spallogenic ¹⁴ C production rates (St scaling)
1329	reported in the literature (9.2 – 15.6 at/g/yr, including 2σ uncertainty; Dugan, 2008).
1330	Borchers et al. (2016) conclude there is no significant, statistical difference between
1331	SLHL 21 Ne, 10 Be, and 14 C production rates calibrated and scaled over the past ~20 ka
1332	using either St, Sf, or Sa scaling factors (Table 2). The SPICE study also shows very little
1333	variation in ¹⁴ C production rates integrated over the past 25 ka using these three scaling
1334	methods (9.2 \pm 0.6 at/g/yr, 9.5 \pm 0.6 at/g/yr, and 9.5 \pm 0.6 at/g/yr, respectively). Over the
1335	past 72 ka, however, SPICE SLHL production rates of 21 Ne (15.5 ± 1.0 at/g/yr; Sf

1336	scaling) and spallogenic ¹⁰ Be (3.43 ± 0.24 and 3.30 ± 0.23 at/g/yr; <i>Sf</i> and <i>Sa</i> scaling,
1337	respectively) show nominal deviation from the SLHL ²¹ Ne and ¹⁰ Be _{sp} production rates
1338	$(17.0 \pm 1.1 \text{ and } 3.73 \pm 0.26 \text{ at/g/yr} (2\sigma))$ calculated with time-independent <i>St</i> scaling
1339	factors.

. 10-

1340 The SPICE study suggests that the *St*-scaled production rates of cosmogenic 21 Ne

and ¹⁰Be can be used to calculate accurate exposure ages and erosion rates even on

1342 surfaces between 20 and 70 ka in age. If future exposure studies calculate erosion rates

1343 and exposure ages using the time-dependent *Sf*, *Sa*, or *Lm* scaling methods, particularly

1344 for landforms that are ~70 ka, then *Sf-*, *Sa-*, or *Lm*-scaled SLHL 21 Ne, and 10 Be

1345 production rates from the SPICE quartz study should be used as reference SLHL rates for

1346 these calculations. Use of the time-dependent Sf and Sa scaling methods in concert with

1347 the Sf and Sa SLHL 10 Be_{sp} production rates of Borchers et al. (2016; 4.09 and 3.92

1348 at/g/yr), or the Lm scaling method in concert with the Lm SLHL ¹⁰Be_{sp} production rates

1349 (CREp; 4.06 - 4.11 at/g/yr), could result in underestimated exposure ages and

1350 interpretations of erosional and/or burial effects where none are present.

1351

1352 Acknowledgements

1353 We gratefully acknowledge field, laboratory, and technical support from Hella

1354 Wittmann-Oelze, Marina Ospald, Hartmut Liep, Juliane Herwig, Johannes Glodny,

1355 Shasta Marrero, Simon Merrall and Enzio Schnabel. We also thank CRONUS-EU and

1356 CRONUS-Earth colleagues, Pierre-Henri Blard, Martin Lupker, Lawrence S. Jones, and

1357 an anonymous reviewer for very helpful critical discussions and reviews. This study was

- 1358 funded by the Deutsche Forschungsgemeinschaft (DFG Project Reference Number FE
- 1359 1418/1-1) and by GFZ Potsdam.
- 1360

1361 References

- Amidon, W.H., Rood, D.H., Farley, K.A., 2009. Cosmogenic ³He and ²¹Ne production 1362 1363 rates calibrated against ¹⁰Be in minerals from the Coso volcanic field. Earth Planet. 1364 Sci. Lett. 280, 194–204. doi:10.1016/j.epsl.2009.01.031
- Baksi, A. K., 1974. K-Ar study of the SP flow. Can. J. Earth Sci. 11(10), 1350-1356. doi: 1365 1366 10.1139/e74-131
- 1367 Balco, G., 2011. Contributions and unrealized potential contributions of cosmogenicnuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev. 30(1-2), 1368 1369 3-27. doi: 10.1016/j.quascirev.2010.11.003
- 1370 Balco, G., 2017. Feb 23, Documentation -- v3 exposure age calculator. Retrieved from 1371 https://sites.google.com/a/bgc.org/v3docs/home
- 1372 Balco, G., Blard, P.-H., Shuster, D. L., Stone, J. O. H., Zimmermann, L., 2019. Cosmogenic and nucleogenic ²¹Ne in quartz in a 28-meter sandstone core from the 1373 McMurdo Dry Valleys, Antarctica. Quat. Geochron. 52, 63-76. 1374
- 1375 Balco, G., Shuster, D.L., 2009. Production rate of cosmogenic ²¹Ne in guartz estimated from ¹⁰Be, ²⁶Al, and ²¹Ne concentrations in slowly eroding Antarctic bedrock 1376 surfaces. Earth Planet. Sci. Lett. 281, 48-58. doi:10.1016/j.epsl.2009.02.006 1377
- 1378 Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from ¹⁰Be and ²⁶Al 1379 1380 measurements. Quat. Geochronol. 3, 174-195. doi:10.1016/j.quageo.2007.12.001
- 1381 Balco, G., Briner, J., Finkel, R.C., Rayburn, J.A., Ridge, J.C., Schaefer, J.M., 2009. 1382 Regional beryllium-10 production rate calibration for late-glacial northeastern North 1383 America. Quat. Geochronol. 4, 93–107. doi:10.1016/j.quageo.2008.09.001
- Balco, G., Stone, J.O.H., Sliwinski, M.G., Todd, C., 2014. Features of the glacial history 1384 of the Transantarctic Mountains inferred from cosmogenic ²⁶Al, ¹⁰Be and ²¹Ne 1385 1386 concentrations in bedrock surfaces. Antarct. Sci. 26, 708-723.
- 1387 doi:10.1017/S0954102014000261
- 1388 Ballantyne, C.K., Stone, J.O., 2012. Did large ice caps persist on low ground in north-1389 west Scotland during the Lateglacial Interstade? J. Ouat. Sci. 27, 297–306. 1390 doi:10.1002/jgs.1544
- 1391 Billingsley, G.H., Priest, S.S., Felger, T.J., 2007. Geologic Map of the Cameron 30' x 60' 1392 Quadrangle, Coconino County, Northern Arizona. U.S. Geol. Surv. Scientific 1393 Investigations.
- Binnie, S.A., Dewald, A., Heinze, S., Voronina, E., Hein, A., Wittmann, H., von 1394 1395 Blanckenburg, F., Hetzel, R., Christl, M., Schaller, M., Léanni, L., ASTER Team, 1396 Hippe, K., Vockenhuber, C., Ivy-Ochs, S., Maden, C., Fülöp, R.-H., Fink, D.,
- 1397 Wilcken, K. M., Fujioka, T., Fabel, D., Freeman, S.P.H.T., Xu, S., Fifield, L.K.,
- 1398
 - Akçar, N., Spiegel C., Dunai, T.J., 2019. Preliminary results of CoQtz-N: A quartz

- 1399 reference material for terrestrial cosmogenic ¹⁰Be and ²⁶Al measurements. Nucl. Instr.
- 1400 Meth. Phys. Res. B. doi: 10.1016/j.nimb.2019.04.073
- Binnie, S.A., Dunai, T.J., Voronina, E., Goral, T., Heinze, S., Dewald, A., 2015.
 Separation of Be and Al for AMS using single-step column chromatography. Nucl. Instr. Meth. Phys. Res. B 361, 397-401.
- Blard, P.-H., Braucher, R., Lavé, J., Bourlès, D., 2013. Cosmogenic ¹⁰Be production rate calibrated against ³He in the high Tropical Andes (3800–4900 m, 20–22° S). Earth Planet. Sci. Lett. 382, 140–149. doi:10.1016/j.epsl.2013.09.010
- Blard, P.-H., Lupker, M., Rousseau, M., 2019. Paired-cosmogenic nuclide
 paleoaltimetry. Earth Planet. Sci. Lett. 515, 271–282.
- Borchers, B., Marrero, S., Balco, G., Caffee, M., Goehring, B., Lifton, N., Nishiizumi,
 K., Phillips, F., Schaefer, J., Stone, J., 2016. Geological calibration of spallation
 production rates in the CRONUS-Earth project. Quat. Geochronol. 31, 188–198.
 doi:10.1016/j.quageo.2015.01.009
- Briner, J.P., Young, N.E., Goehring, B.M., Schaefer, J.M., 2012. Constraining
 Holocene ¹⁰Be production rates in Greenland. J. Quat. Sci. 27, 2–6.
 doi:10.1002/jgs.1562
- 1416 Cerling, T.E., Craig, H., 1994. Cosmogenic ³He production rates from 39° N to 46° N
 1417 latitude, western USA and France. Geochim. Cosmochim. Acta 58, 249-255.
- 1418 Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, D., 2010. Determination of
 1419 the ¹⁰Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl.
 1420 Instr. Meth. Phys. Res. B 268, 192–199. doi:10.1016/j.nimb.2009.09.012
- Clark, D.H., Bierman, P.R., Larsen, P., 1995. Improving in situ cosmogenic
 chronometers. Quat. Res. 44, 367–377. doi:10.1006/qres.1995.1081
- Codilean, A.T., Fenton, C.R., Fabel, D., Bishop, P., Xu, S., 2014. Discordance between
 cosmogenic nuclide concentrations in amalgamated sands and individual fluvial
 pebbles in an arid zone catchment. Quat. Geochronol. 19, 173–180.
 doi:10.1016/j.quageo.2012.04.007
- Decker, J.E., Niedermann, S., de Wit, M.J., 2013. Climatically influenced denudation
 rates of the southern African plateau: Clues to solving a geomorphic paradox.
 Geomorphology 190, 48–60. doi:10.1016/j.geomorph.2013.02.007
- Geomorphology 190, 48–60. doi:10.1016/j.geomorph.2013.02.007
 Desilets, D., Zreda, M., 2003. Spatial and temporal distribution of secondary cosmic-ray
- nucleon intensities and applications to in situ cosmogenic dating. Earth Planet. Sci.
 Lett. 206, 21–42. doi:10.1016/S0012-821X(02)01088-9
- 1433 Desilets, D., Zreda, M., Prabu, T., 2006. Extended scaling factors for in situ cosmogenic
 1434 nuclides: New measurements at low latitude. Earth Planet. Sci. Lett. 246, 265–276.
 1435 doi:10.1016/j.epsl.2006.03.051
- 1436 Dewald, A., Heinze, S., Jolie, J., Zilges, A., Dunai, T., Rethemeyer, J., Melles, M.,
- 1437 Staubwasser, M., Kuczewski, B., Richter, J., Radtke, U., von Blanckenburg, F.,
- 1438 Klein, M., 2013. CologneAMS, a dedicated center for accelerator mass spectrometry1439 in Germany. Nucl. Instr. Meth. Phys. Res. B 294, 18-23.
- 1440 Di Nicola, L., Strasky, S., Schlüchter, C., Salvatore, M.C., Akçar, N., Kubik, P.W.,
- 1441 Christl, M., Kasper, H.U., Wieler, R., Baroni, C., 2009. Multiple cosmogenic nuclides
- 1442 document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay
- 1443 (northern Victoria Land, Antarctica). Quat. Res. 71, 83–92.
- 1444 doi:10.1016/j.yqres.2008.07.004

- Dugan, B., 2008. New production rate estimates for in situ cosmogenic ¹⁴C from Lake 1445 1446 Bonneville, Utah, and northwestern Scotland (Doctoral dissertation, University of 1447 Arizona).
- 1448 Dugan, B., Lifton, N., Jull, A. J. T., 2008. New production rate estimates for in situ 1449 cosmogenic ¹⁴C. Geochim. Cosmochim. Acta 72, A231.
- 1450 Dunai, T.J., 2000. Scaling factors for production rates of in situ produced cosmogenic 1451 nuclides: a critical reevaluation. Earth Planet. Sci. Lett. 176, 157–169. 1452 doi:10.1016/S0012-821X(99)00310-6
- 1453 Dunai, T.J., 2001. Influence of secular variation of the geomagnetic field on production 1454 rates of in situ produced cosmogenic nuclides. Earth Planet. Sci. Lett. 193, 197-212. 1455 doi:10.1016/S0012-821X(01)00503-9
- 1456 Eberhardt, P., Eugster, O., Marti, K., 1965. A redetermination of the isotopic composition 1457 of atmospheric neon. Z. Naturforschung 20a, 623-624.
- 1458 Farber, D.L., Hancock, G.S., Finkel, R.C., Rodbell, D.T., 2005. The age and extent of 1459 tropical alpine glaciation in the Cordillera Blanca, Peru. J. Quat. Sci. 20, 759–776. 1460 doi:10.1002/jqs.994
- Fenton, C. R., Niedermann, S., 2014. Surface exposure dating of young basalts (1-200 1461 ka) in the San Francisco volcanic field (Arizona, USA) using cosmogenic ³He 1462 1463 and ²¹Ne. Quat. Geochronol. 19, 87-105. doi: 10.1016/j.quageo.2012.10.003
- Fenton, C. R., Niedermann, S., Goethals, M. M., Schneider, B., Wijbrans, J., 2009.
- 1464 Evaluation of cosmogenic ³He and ²¹Ne production rates in olivine and pyroxene 1465 1466 from two Pleistocene basalt flows, western Grand Canyon, AZ, USA. Quat. 1467 Geochronol. 4(6), 475-492. doi: 10.1016/j.quageo.2009.08.002
- Fenton, C.R., Hermanns, R.L., Blikra, L.H., Kubik, P.W., Bryant, C., Niedermann, S., 1468 Meixner, A., Goethals, M.M., 2011. Regional ¹⁰Be production rate calibration for the 1469 1470 past 12 ka deduced from the radiocarbon-dated Grøtlandsura and Russenes rock 1471 avalanches at 69° N, Norway. Quat. Geochronol. 6, 437–452.
- 1472 doi:10.1016/j.quageo.2011.04.005
- Fenton, C. R., Mark, D. F., Barfod, D. N., Niedermann, S., Goethals, M. M., Stuart, F. 1473 M., 2013. ⁴⁰Ar/³⁹Ar dating of the SP and Bar Ten lava flows AZ, USA: laying the 1474 1475 foundation for the SPICE cosmogenic nuclide production-rate calibration
- project. Ouat. Geochronol. 18, 158-172. doi: 10.1016/j.quageo.2013.01.007 1476
- Fülöp, R.-H., Wacker, L., Dunai, T. J., 2015. Progress report on a novel in situ ¹⁴C 1477 1478 extraction scheme at the University of Cologne. Nucl. Instr. Meth. Phys. Res. B 361, 1479 20-24.
- 1480 Gibbon, R. J., Granger, D. E., Kuman, K., Partridge, T. C., 2009. Early Acheulean 1481 technology in the Rietputs Formation, South Africa, dated with cosmogenic 1482 nuclides. J. of Hum. Evol. 56, 152-160. doi: 10.1016/j.jhevol.2008.09.006
- 1483 Gibbon, R. J., Pickering, T. R., Sutton, M. B., Heaton, J. L., Kuman, K., Clarke, R. J., 1484 Brain, C.K., Granger, D. E., 2014. Cosmogenic nuclide burial dating of homininbearing Pleistocene cave deposits at Swartkrans, South Africa. Quat. Geochronol. 24, 1485
- 1486 10-15. doi: 10.1016/j.guageo.2014.07.004
- 1487 Goehring, B. M., Kurz, M. D., Balco, G., Schaefer, J. M., Licciardi, J., Lifton, N., 2010. 1488 A reevaluation of in situ cosmogenic 3 He production rates. Ouat. Geochronol. 5(4),
- 1489 410-418. doi: 10.1016/j.quageo.2010.03.001

- Goehring, B.M., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., Gyllencreutz, R., Schaefer, J.,
 Finkel, R., 2012. Late Glacial and Holocene ¹⁰Be production rates for western
- 1492 Norway. J. Quat. Sci. 27, 89–96. doi:10.1002/jqs.1517
- Goethals, M.M., Hetzel, R., Niedermann, S., Wittmann, H., Fenton, C.R., Kubik, P.W.,
 Christl, M., von Blanckenburg, F., 2009. An improved experimental determination of
 cosmogenic ¹⁰Be/²¹Ne and ²⁶Al/²¹Ne production ratios in quartz. Earth Planet. Sci.
 Lett. 284, 187–198. doi:10.1016/j.epsl.2009.04.027
- 1497 Gosse, J. C., Phillips, F. M., 2001. Terrestrial in situ cosmogenic nuclides: theory and
- 1498 application. Quat. Sci. Rev. 20(14), 1475-1560. doi: 10.1016/S0277-3791(00)00171-2
- Gosse, J.C., Evenson, E.B., Klein, J., Lawn, B., Middleton, R., 1995. Precise
 cosmogenic ¹⁰Be measurements in western North America: Support for a global
 Younger Dryas cooling event. Geology 23, 877–880. doi:10.1130/00917613(1995)023<0877:PCBMIW>2.3.CO;2
- Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P., Ivy-Ochs, S., Knie, K., Nolte, E., 2002a.
 Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet. Sci. Lett. 200 (3–4), 357–369. doi: 10.1016/S0012-821X(02)00641-6
- Heisinger, B., Lal, D., Jull, A.J.T., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K.,
 Lazarev, V., Nolte, E., 2002b. Production of selected cosmogenic radionuclides by
 muons 1. Fast muons. Earth Planet. Sci. Lett. 200 (3–4), 345–355. doi:
 10.1016/S0012-821X(02)00640-4
- Hetzel, R., Niedermann, S., Ivy-Ochs, S., Kubik, P. W., Tao, M., Gao, B., 2002. ²¹Ne versus ¹⁰Be and ²⁶Al exposure ages of fluvial terraces: the influence of crustal Ne in quartz. Earth Planet. Sci. Lett. 201, 575-591.
- Heyman, J., 2014. Paleoglaciation of the Tibetan Plateau and surrounding mountains
 based on exposure ages and ELA depression estimates. Quat. Sci. Rev. 91, 30–41.
 doi:10.1016/j.quascirev.2014.03.018
- Honda, M., Zhang, X., Phillips, D., Hamilton, D., Deerberg, M., Schwieters, J. B., 2015.
 Redetermination of the ²¹Ne relative abundance of the atmosphere, using a high
 resolution, multi-collector noble gas mass spectrometer (HELIX-MC Plus). Int. J.
 Mass Spectrom. 387, 1-7.
- Ivy-Ochs, S., Kerschner, H., Reuther, A., Maisch, M., Sailer, R., Schaefer, J., Kubik,
 P.W., Synal, H.-A., Schlüchter, C., 2006. The timing of glacier advances in the
 northern European Alps based on surface exposure dating with
 assmograpia ¹⁰Ra ²⁶Al ³⁶Cl and ²¹Na Gaal Soa Am Space Rep. 415, 43, 60
- 1524 cosmogenic ¹⁰Be, ²⁶Al, ³⁶Cl, and ²¹Ne. Geol. Soc. Am. Spec. Pap. 415, 43–60.
 1525 doi:10.1130/2006.2415(04)
- Ivy-Ochs, S., Kober, F., Alfimov, V., Kubik, P.W., Synal, H.-A., 2007.
 Cosmogenic ¹⁰Be, ²¹Ne and ³⁶Cl in sanidine and quartz from Chilean ignimbrites.
 Nucl. Instr. Meth. Phys. Res. B 259, 588–594. doi:10.1016/j.nimb.2007.03.001
- Jull, A. T., Scott, E. M., Bierman, P., 2015. The CRONUS-Earth inter-comparison for cosmogenic isotope analysis. Quat. Geochron. 26, 3-10.
- Kaplan, M.R., Strelin, J.A., Schaefer, J.M., Denton, G.H., Finkel, R.C., Schwartz, R.,
 Putnam, A.E., Vandergoes, M.J., Goehring, B.M., Travis, S.G., 2011. In-situ
 cosmogenic ¹⁰Be production rate at Lago Argentino, Patagonia: Implications for late-
- 1534 glacial climate chronology. Earth Planet. Sci. Lett. 309, 21–32.
- 1535 doi:10.1016/j.epsl.2011.06.018

1536 Kelly, M.A., Lowell, T.V., Applegate, P.J., Phillips, F.M., Schaefer, J.M., Smith, C.A., 1537 Kim, H., Leonard, K.C., Hudson, A.M., 2015. A locally calibrated, late glacial ¹⁰Be 1538 production rate from a low-latitude, high-altitude site in the Peruvian Andes. Quat. 1539 Geochronol. 26, 70-85. doi:10.1016/j.quageo.2013.10.007 Kober, F., Ivy-Ochs, S., Schlunegger, F., Baur, H., Kubik, P. W., Wieler, R., 2007. 1540 1541 Denudation rates and a topography-driven rainfall threshold in northern Chile: 1542 Multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology 83, 1543 97-120. 1544 Kober, F., Alfimov, V., Ivy-Ochs, S., Kubik, P.W., Wieler, R., 2011. The 1545 cosmogenic ²¹Ne production rate in quartz evaluated on a large set of existing ²¹Ne-¹⁰Be data. Earth Planet. Sci. Lett. 302, 163-171. 1546 1547 doi:10.1016/j.epsl.2010.12.008 1548 Kohl, C. P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in 1549 situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583-3587. 1550 Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., 1551 Wallner, A., Dillmann, I., Dollinger, G., Lierse von Gostomski, C., Kossert, K., Maiti, M., Poutivtsev, M., Remmert, A., 2010. A new value for the half-life of ¹⁰Be 1552 by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instr. 1553 1554 Meth. Phys. Res. B 268, 187–191. doi:10.1016/j.nimb.2009.09.020 Kounov, A., Niedermann, S., de Wit, M.J., Codilean, A.T., Viola, G., Andreoli, M., 1555 Christl, M., 2015. Cosmogenic ²¹Ne and ¹⁰Be reveal a more than 2 Ma alluvial fan 1556 1557 flanking the Cape Mountains, South Africa. South Afr. J. Geol. 118, 129–144. 1558 doi:10.2113/gssajg.118.2.129 Kubik, P.W., Ivy-Ochs, S., 2004. A re-evaluation of the 0–10 ka ¹⁰Be production rate for 1559 1560 exposure dating obtained from the Köfels (Austria) landslide. Nucl. Instr. Meth. Phys. Res. B 223–224, 618–622. doi:10.1016/j.nimb.2004.04.114 1561 Kubik, P.W., Ivy-Ochs, S., Masarik, J., Frank, M., Schlüchter, C., 1998.¹⁰Be and ²⁶Al 1562 production rates deduced from an instantaneous event within the dendro-calibration 1563 1564 curve, the landslide of Köfels, Ötz Valley, Austria. Earth Planet. Sci. Lett. 161, 231-1565 241. Laj, C., Kissel, C., Beer, J., 2004. High resolution global paleointensity stack since 75 kyr 1566 1567 (GLOPIS-75) calibrated to absolute values. Timescales Paleomagn. F. Geophys. Monogr. Ser. 145, 255-265. doi: 10.1029/145GM19 1568 1569 Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates 1570 and erosion models. Earth Planet. Sci. Lett. 104, 424-439. doi:10.1016/0012-821X(91)90220-C 1571 Larsen, P., 1996. In-situ production rates of cosmogenic ¹⁰Be and ²⁶Al over the past 1572 1573 21,500 years determined from the terminal moraine of the Laurentide Ice Sheet, 1574 north-central New Jersey. PhD thesis, University of Vermont. 1575 Lifton, N.A., 2016. Implications of two Holocene time-dependent geomagnetic models 1576 for cosmogenic nuclide production rate scaling. Earth Planet. Sci. Lett. 433, 257-268. 1577 doi: 10.1016/j.epsl.2015.11.006 Lifton, N.A., Jull, A.J.T, Quade, J., 2001. A new extraction technique and production rate 1578 estimate for in situ cosmogenic ¹⁴C in quartz. Geochim. Cosmochim. Acta 65, 1953-1579 1580 1969.

- Lifton, N.A., Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P., Humble, J.E., Pyle,
 R., 2005. Addressing solar modulation and long-term uncertainties in scaling
 secondary cosmic rays for in situ cosmogenic nuclide applications. Earth Planet. Sci.
- 1584 Lett. 239, 140–161. doi:10.1016/j.epsl.2005.07.001
- Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production
 rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet.
 Sci. Lett. 386, 149–160. doi:10.1016/j.epsl.2013.10.052
- Lifton, N., Caffee, M., Finkel, R., Marrero, S., Nishiizumi, K., Phillips, F.M., Goehring,
 B., Gosse, J., Stone, J., Schaefer, J., Theriault, B., Jull, A.J.T., Fifield, K., 2015. In
 situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project
 from Lake Bonneville, Utah, shoreline features. Quat. Geochronol. 26, 56–69.
 doi:10.1016/j.quageo.2014.11.002
- Luna, L. V., Bookhagen, B., Niedermann, S., Rugel, G., Scharf, A., Merchel, S., 2018.
 Glacial chronology and production rate cross-calibration of five cosmogenic nuclide
 and mineral systems from the southern Central Andean Plateau. Earth Planet. Sci.
 Lett. 500, 242-253.
- Lupker, M., Hippe, K., Wacker, L., Kober, F., Maden, C., Braucher, R., Bourlès, D.,
 Vidal Romani, J.R., Wieler, R., 2015. Depth-dependence of the production rate of in
 situ ¹⁴C in quartz from the Leymon High core, Spain. Quat. Geochronol. 28, 80-87.
 doi: 10.1016/j.quageo.2015.04.004
- Ma, Y., Wu, Y., Li, D., Zheng, D., Zheng, W., Zhang, H., Pang, J., Wang, Y., 2016.
 Erosion rate in the Shapotou area, northwestern China, constrained by in situproduced cosmogenic ²¹Ne in long-exposed erosional surfaces. Quat. Geochronol. 31,
 3–11. doi:10.1016/j.quageo.2015.10.001
- Marrero, S. M., Phillips, F. M., Borchers, B., Lifton, N., Aumer, R., Balco, G., 2016.
 Cosmogenic nuclide systematics and the CRONUScalc program. Quat. Geochronol.
 31, 160-187. doi: 10.1016/j.quageo.2015.09.005
- Martin, L.C.P., Blard, P.-H., Lavé, J., Braucher, R., Lupker, M., Condom, T., Charreau,
 J., Mariotti, V., ASTER Team, Davy, E., 2015. In situ cosmogenic ¹⁰Be production
 rate in the High Tropical Andes. Quat. Geochronol. 30, 54–68.
 doi:10.1016/j.guageo.2015.06.012
- Martin, L. C. P., Blard, P.-H., Balco, G., Lavé, J., Delunel, R., Lifton, N., Laurent, V.,
 2017. The CREp program and the ICE-D production rate calibration database: a fully
 parameterizable and updated online tool to compute cosmic-ray exposure ages. Quat.
- 1615 Geochronol. 38, 25-49. doi: 10.1016/j.quageo.2016.11.006
- Matmon, A., Fink, D., Davis, M., Niedermann, S., Rood, D., Frumkin, A., 2014.
 Unraveling rift margin evolution and escarpment development ages along the Dead
 Sea fault using cosmogenic burial ages. Quat. Res. 82, 281–295.
- 1619 doi:10.1016/j.yqres.2014.04.008
- McFadden, L. D., McDonald, E. V., Wells, S. G., Anderson, K., Quade, J., Forman, S. L.,
 1998. The vesicular layer and carbonate collars of desert soils and pavements:
 formation, age and relation to climate change. Geomorphology 24, 101-145. doi:
- 1623 10.1016/S0169-555X(97)00095-0
- McPhillips, D., Hoke, G.D., Liu-Zeng, J., Bierman, P.R., Rood, D.H., Niedermann, S.,
 2016. Dating the incision of the Yangtze River gorge at the First Bend using three-
- 1626 nuclide burial ages. Geophys. Res. Lett. 43, 101-110. doi:10.1002/2015GL066780

- Miller, G. H., Briner, J. P., Lifton, N. A., Finkel, R. C., 2006. Limited ice-sheet erosion and complex exposure histories derived from in situ cosmogenic ¹⁰Be, ²⁶Al, and ¹⁴C on Baffin Island, Arctic Canada. Quat. Geochronol. 1, 74-85. doi:
- 1630 10.1016/j.quageo.2006.06.011
- Muscheler, R., Beer, J., Kubik, P. W., Synal, H. A., 2005. Geomagnetic field intensity during the last 60,000 years based on ¹⁰Be and ³⁶Cl from the Summit ice cores and ¹⁴C. Quat. Sci. Rev. 24, 1849-1860. doi: 10.1016/j.quascirev.2005.01.012
- 1634 Niedermann, S., 2000. The ²¹Ne production rate in quartz revisited. Earth Planet. Sci.
 1635 Lett. 183, 361–364. doi:10.1016/S0012-821X(00)00302-2
- Niedermann, S., 2002. Cosmic-ray-produced noble gases in terrestrial rocks: Dating tools
 for surface processes. Rev. Mineral. Geochem. 47, 731–784.
 doi:10.2138/rmg.2002.47.16
- Niedermann, S., Graf, T., Marti, K., 1993. Mass spectrometric identification of cosmicray-produced neon in terrestrial rocks with multiple neon components. Earth Planet.
 Sci. Lett. 118, 65-73.
- Niedermann, S., Graf, T., Kim, J.S., Kohl, C.P., Marti, K., Nishiizumi, K., 1994. Cosmic ray-produced ²¹Ne in terrestrial quartz: The neon inventory of Sierra Nevada quartz
 separates. Earth Planet. Sci. Lett. 125, 341–355.
- Niedermann, S., Bach, W., Erzinger, J., 1997. Noble gas evidence for a lower mantle
 component in MORBs from the southern East Pacific Rise: decoupling of helium and
 neon isotope systematics. Geochim. Cosmochim. Acta 61, 2697–2715.
- Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., Arnold, J.R.,
 1989. Cosmic ray production rates of ¹⁰Be and ²⁶Al in quartz from glacially polished
 rocks. J. Geophys. Res. 94, 17907–17915. doi:10.1029/JB094iB12p17907
- Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J.,
 2007. Absolute calibration of ¹⁰Be AMS standards. Nucl. Instr. Meth. Phys. Res. B
 258, 403–413. doi:10.1016/j.nimb.2007.01.297
- Pavićević, M.K., Cvetković, V., Niedermann, S., Pejović, V., Amthauer, G., Boev, B.,
 Bosch, F., Aničin, I., Henning, W.F., 2016. Erosion rate study at the Allchar deposit
 (Macedonia) based on radioactive and stable cosmogenic nuclides (²⁶Al, ³⁶Cl, ³He,
 and ²¹Ne). Geochem. Geophys. Geosyst. 17, 410–424. doi:10.1002/2015GC006054
- Pavón-Carrasco, F.J., Osete, M.L., Torta, J.M., De Santis, A., 2014. A geomagnetic field
 model for the Holocene based on archaeomagnetic and lava flow data. Earth Planet.
 Sci. Lett. 388, 98-109.
- Phillips, F. M., 2016. Cosmogenic nuclide data sets from the Sierra Nevada, California,
 for assessment of nuclide production models: I. Late Pleistocene glacial
- 1663 chronology. Quat. Geochronol. 35, 119-129. doi:10.1016/j.quageo.2015.12.003
- 1664 Phillips, F.M., Argento, D.C., Bourlès, D.L., Caffee, M.W., Dunai, T.J., Goehring, B.,
- Gosse, J.C., Hudson, A.M., Jull, A.J.T., Kelly, M., Lifton, N., Marrero, S.M.,
 Nishiizumi, K., Reedy, R.C., Stone, J.O.H., 2016. Where now? Reflections on future
 directions for cosmogenic nuclide research from the CRONUS Projects. Quat.
- 1668 Geochronol. 31, 155–159. doi:10.1016/j.quageo.2015.04.010
- Phillips, W.M., McDonald, E.V., Reneau, S.L., Poths, J., 1998. Dating soils and alluvium
 with cosmogenic ²¹Ne depth profiles: case studies from the Pajarito Plateau, New
- 1671 Mexico, USA. Earth Planet. Sci. Lett. 160, 209–223. doi:10.1016/S0012-
- 1672 821X(98)00076-4

1673 Pigati, J. S., 2004. Experimental developments and application of carbon-14 and in situ 1674 cosmogenic nuclide dating techniques. Doctoral dissertation, University of Arizona. 1675 Putnam, A.E., Schaefer, J.M., Barrell, D.J.A., Vandergoes, M., Denton, G.H., Kaplan, 1676 M.R., Finkel, R.C., Schwartz, R., Goehring, B.M., Kelley, S.E., 2010. In situ cosmogenic ¹⁰Be production-rate calibration from the Southern Alps, New Zealand. 1677 1678 Quat. Geochronol. 5, 392-409. doi:10.1016/j.quageo.2009.12.001 1679 Putnam, A. E., Bromley, G. R., Rademaker, K., Schaefer, J. M., 2019. In situ ¹⁰Be production-rate calibration from a ¹⁴C-dated late-glacial moraine belt in Rannoch 1680 Moor, central Scottish Highlands. Quaternary Geochronology, 50, 109-125. 1681 1682 Renne, P. R., Mundil, R., Balco, G., Min, K., Ludwig, K. R., 2010. Joint determination of ⁴⁰K decay constants and ⁴⁰Ar*/⁴⁰K for the Fish Canyon sanidine standard, and 1683 improved accuracy for ⁴⁰Ar/³⁹Ar geochronology. Geochim. Cosmochim. Acta 74, 1684 1685 5349-5367. 1686 Rittenour, T. M., Riggs, N. R., Kennedy, L. E., 2012. Application of single-grain OSL to 1687 date quartz xenocrysts within a basalt flow, San Francisco volcanic field, northern 1688 Arizona, USA. Quat. Geochronol. 10, 300-307. doi: 10.1016/j.quageo.2012.02.002 1689 Schäfer, J.M., Ivy-Ochs, S., Wieler, R., Leya, I., Baur, H., Denton, G.H., Schlüchter, C., 1690 1999. Cosmogenic noble gas studies in the oldest landscape on earth: surface 1691 exposure ages of the Dry Valleys, Antarctica. Earth Planet. Sci. Lett. 167, 215–226. doi:10.1016/S0012-821X(99)00029-1 1692 1693 Schimmelpfennig, I., Schaefer, J.M., Goehring, B.M., Lifton, N., Putnam, A.E., Barrell, 1694 D.A., 2012. Calibration of the in situ cosmogenic ¹⁴C production rate in New 1695 Zealand's Southern Alps. J. Quat. Sci. 27, 671-674. doi: 1696 10.1016/j.quageo.2011.05.002 1697 Sims, K.W., Ackert Jr, R.P., Ramos, F.C., Sohn, R.A., Murrell, M.T., DePaolo, D.J., 1698 2007. Determining eruption ages and erosion rates of Quaternary basaltic volcanism 1699 from combined U-series disequilibria and cosmogenic exposure ages. Geology 35, 1700 471-474. Small, D., Fabel, D., 2015. A Lateglacial ¹⁰Be production rate from glacial lake 1701 1702 shorelines in Scotland. J. Quat. Sci. 30, 509-513. 1703 Stolz, A., Dewald, A., Altenkirch, R., Herb, S., Heinze, S., Schiffer, M., Dunai, T., 2017. 1704 Radiocarbon measurements of small gaseous samples at CologneAMS. Nucl. Instr. 1705 Meth. Phys. Res. B 406, 283-286. 1706 Stone, J.O., 2000. Air pressure and cosmogenic isotope production. J. Geophys. Res. 105, 1707 23753-23759. doi:10.1029/2000JB900181 1708 Stone, J.O., Ballantyne, C.K., Fifield, L.K., 1998. Exposure dating and validation of 1709 periglacial weathering limits, northwest Scotland. Geology 26, 587–590. 1710 doi:10.1130/0091-7613(1998)026<0587:EDAVOP>2.3.CO;2 1711 Stone, J., Fifield, K., Beer, J., Vonmoos, M., Obrist, C., Grajcar, M., Kubik, P., Muscheler, R., Finkel, R., Caffee, M., 2004. Co-precipitated silver-metal oxide 1712 aggregates for accelerator mass spectrometry of ¹⁰Be and ²⁶Al. Nucl. Instr. Meth. 1713 1714 Phys. Res. B 223-224, 272–277. Strobl, M., Hetzel, R., Niedermann, S., Ding, L., Zhang, L., 2012. Landscape evolution 1715 1716 of a bedrock peneplain on the southern Tibetan Plateau revealed by in situ-produced cosmogenic ¹⁰Be and ²¹Ne. Geomorphology 153–154, 192–204. 1717 doi:10.1016/j.geomorph.2012.02.024 1718

1719	Stroeven, A.P., Heyman, J., Fabel, D., Björck, S., Caffee, M.W., Fredin, O., Harbor,
1720	J.M., 2015. A new Scandinavian reference ¹⁰ Be production rate. Quat. Geochronol.
1721	29, 104–115. doi:10.1016/j.quageo.2015.06.011
1722	Summerfield, M.A., Stuart, F.M., Cockburn, H.A.P., Sugden, D.E., Denton, G.H., Dunai,
1723	T., Marchant, D.R., 1999. Long-term rates of denudation in the Dry Valleys,
1724	Transantarctic Mountains, southern Victoria Land, Antarctica based on in-situ-
1725	produced cosmogenic ²¹ Ne. Geomorphology 27, 113–129. doi:10.1016/S0169-
1726	555X(98)00093-2
1727	Tschudi, S., Schäfer, J.M., Zhao, Z., Wu, X., Ivy-Ochs, S., Kubik, P.W., Schlüchter, C.,
1728	2003. Glacial advances in Tibet during the Younger Dryas? Evidence from
1729	cosmogenic ¹⁰ Be, ²⁶ Al, and ²¹ Ne. J. Asian Earth Sci. 22, 301–306.
1730	doi:10.1016/S1367-9120(03)00035-X
1731	Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino,
1732	M., et al., 2005. The ERA-40 re- analysis. Q. J. Royal Meteorol. Soc. 131, 2961-
1733	3012.
1734	Valet, J. P., Meynadier, L., Guyodo, Y., 2005. Geomagnetic dipole strength and reversal
1735	rate over the past two million years. Nature 435, 802-805.
1736	Vermeesch, P., 2007. CosmoCalc: An Excel add-in for cosmogenic nuclide
1737	calculations. Geochem. Geophys. Geosyst. 8(8). doi: 10.1029/2006GC001530
1738	Vermeesch, P., Baur, H., Heber, V.S., Kober, F., Oberholzer, P., Schaefer, J.M.,
1739	Schlüchter, C., Strasky, S., Wieler, R., 2009. Cosmogenic ³ He and ²¹ Ne measured in
1740	quartz targets after one year of exposure in the Swiss Alps. Earth Planet. Sci. Lett.
1741	284, 417–425. doi:10.1016/j.epsl.2009.05.007
1742	Ward, G. K., Wilson, S. R., 1978. Procedures for comparing and combining radiocarbon
1743	age determinations: a critique. Archaeometry 20, 19-31.
1744	Young, N. E., Schaefer, J. M., Briner, J. P., Goehring, B. M., 2013. A ¹⁰ Be production-
1745	rate calibration for the Arctic. J. Quat. Sci. 28(5), 515-526. doi: 10.1002/jqs.2642
1746	Young, N.E., Schaefer, J.M., Goehring, B., Lifton, N., Schimmelpfennig, I., Briner, J.P.,
1747	2014. West Greenland and global in situ ¹⁴ C production-rate calibrations. J. Quat. Sci.
1748	29, 401–406. doi:10.1002/jqs.2717
1749	Ziegler, L.B., Constable, C.G., Johnson, C.L., Tauxe, L., 2011. PADM2M: a penalized
1750	maximum likelihood model of the 0-2 Ma palaeomagnetic axial dipole moment.
1751	Geophys. J. Int. 184, 1069-1089. doi: 10.1111/j.1365-246X.2010.04905.x
1752	
1753	Appendix A
1754	
1755	A. Methods
1756	A1. Acid-etching and concentration of quartz separates

- 1757 Quartz concentrates were initially treated without heat in 100 ml 10% HNO₃, to
- 1758 dissolve any carbonate that was still present. This step was followed by several leaching
- 1759 steps in dilute HF/HNO₃ in Nalgene bottles. The quartz samples were gently rolled in

bottles placed on hot-dog rollers, kept at room temperature or heated up to 80°C. These
leaching steps remove feldspars, zeolites, and meteoric ¹⁰Be from quartz surfaces and
reduce contributions of nucleogenic ²¹Ne, which may be produced when alpha particles
are ejected from neighboring U/Th-rich minerals and react with ¹⁸O in the quartz (e.g.

1764 Niedermann, 2002).

Acid-etching continued until >25% of the original quartz mass was dissolved, and Al concentrations were <100 ppm, indicating most, if not all, Al-bearing minerals had been removed from the quartz samples. For samples that contained enough quartz mass, three separate aliquots were taken from each of the "purified" quartz samples. The aliquots were then used for ¹⁰Be, in-situ ¹⁴C, and ²¹Ne analyses (by AMS or noble gas mass spectrometry). Samples were also prepared for ²⁶Al AMS analysis; measurements are still pending.

1772 A2. Ne extraction and noble gas mass spectrometric analysis

1773 Prior to loading for mass spectrometric analysis, most quartz samples were ground to 1774 $\sim 100 \ \mu m$ in an agate mill in order to open part of the fluid inclusions, thereby reducing 1775 the contribution of trapped Ne. For 10SPC01 and 10SPC06 the 125-500 µm fraction was 1776 used without further crushing. Samples of 0.46 to 0.81 g (Table 1) were then washed in 1777 acetone, dried by heating at ~90°C overnight, wrapped in Al foil, and finally loaded into 1778 the sample carrousel above the extraction furnace. The carrousel was baked at 100°C for 1779 approximately one week. Noble gases were extracted by stepwise heating (at 400, 800, 1780 and 1200°C, with an additional 600°C step for samples SPICE-A3 and 10SPC07) for 20 1781 minutes each. In addition, aliquots of samples SPICE-A4 and -A8 were crushed in vacuo 1782 to determine the isotopic composition of Ne released from fluid inclusions; the crushed

- 1783 material was afterwards retrieved and used for stepwise heating extraction. After gas
- 1784 extraction by either heating or crushing, chemically active gases were removed in two Ti
- sponge and two SAES (ZrAl) getters, Ar, Kr and Xe were trapped in either an activated
- 1786 charcoal trap at 77 K or on a stainless steel frit at 50 K, and He and Ne were separated
- 1787 from each other in an activated charcoal cryogenic adsorber at 35 K. Noble gas
- 1788 concentrations and isotopic compositions were determined in a VG5400 sector field mass
- 1789 spectrometer, and were corrected for isobaric interferences, instrumental mass
- 1790 fractionation, and analytical blanks.
- 1791

1792 **Table SD1.** ⁴He and ²⁰Ne concentrations (cm³ STP/g), Ne isotope ratios and excess ²¹Ne 1793 (21 Ne_{ex}) concentrations (10⁶ at/g) for stepwise heating extractions of quartz samples from 1794 SP Flow, Arizona. Data from crushing extractions of samples SPICE-A4 and –A8 are 1795 shown as well. Error limits are 2 σ .

Sample	Т	⁴ He	²⁰ Ne	²² Ne/ ²⁰ Ne	²¹ Ne/ ²⁰ Ne	²¹ Ne _{ex}
Weight	$^{\circ}C$	$10^{-8} cm^3/g$	$10^{-12} \ cm^{3}/g$	10-2	10 ⁻²	$10^{6} at/s$
SPICE-A1	400	-	44.1	10.67	0.516	2.60
0.48040 g			±2.5	±0.19	±0.025	±0.32
	800	-	40.6	10.30	0.412	1.27
			±2.5	±0.22	±0.022	±0.25
	1200	-	0.43	9.1	0.71	0.047
			+0.56_0.43	±4.9	±0.55	±0.022
	Total	-	85.1	10.49	0.467	3.87
			±3.6	±0.15	±0.017	±0.41
SPICE-A2	400	-	37.4	10.50	0.477	1.82
0.47372 g			± 2.2	±0.23	± 0.020	±0.22
	800	-	31.3	10.76	0.576	2.35
			±2.1	±0.24	±0.038	±0.34
	1200	-	0.31	11.0	0.59	0.024
			+0.65_0.31	±5.3	$^{+0.98}_{-0.59}$	+0.063_0.024
	Total	-	69.0	10.62	0.522	4.17
			±3.1	±0.17	±0.021	± 0.40
SPICE-A3	400	0.0126	51.9	10.74	0.508	2.95
0.48278 g		±0.0014	± 2.8	±0.10	±0.021	±0.32
-	600	0.0286	4.67	10.87	0.92	0.786
		±0.0021	±0.72	±0.35	±0.11	±0.097
	800	0.0059	4.29	10.19	0.367	0.082
		±0.0013	±0.92	±0.53	±0.053	±0.059
	1200	0.0018	1.17	11.5	0.42	0.101
		+0.0045_0.0018	±0.66	±1.1	±0.24	±0.060
	Total	0.0489	62.0	10.73	0.528	3.82
		+0.0053-0.0034	±3.1	±0.10	±0.021	±0.34
SPICE-A4	Crushe	ed0.01505	5.84	10.41	0.315	-
1.00778 g	:	± 0.00092	±0.34	±0.34	±0.022	
0.80032 g	400	-	0.55	19.5	8.4	1.20
			±0.39	±6.5	±5.7	±0.16
	800	-	11.93	11.30	1.098	2.57
			± 0.87	±0.18	± 0.059	±0.21
	1200	-	7.28	10.63	0.328	0.063
			±0.60	±0.37	±0.032	±0.063
	Total	-	19.8	11.28	1.02	3.77
			±1.1	±0.30	± 0.22	±0.26

1835 7	Fable SD	1 (cont.)
--------	----------	------------------

Sample	Т	⁴ He	²⁰ Ne	²² Ne/ ²⁰ Ne	²¹ Ne/ ²⁰ Ne	²¹ Ne _{ex}
Weight	$^{\circ}C$	$10^{-8} cm^3/g$	$10^{-12} \ cm^3/g$	10 ⁻²	10 ⁻²	$10^{6} at/s$
SPICE-A5	400	-	44.0	10.59	0.447	1.78
0.48470 g			±2.5	±0.21	±0.025	±0.31
e	800	-	25.7	10.97	0.588	2.01
			± 1.7	±0.28	±0.037	±0.27
	1200	-	0.14	7	1.0	0.026
			+0.63 -0.14	+19_7	+3.6	+0.043 -0.026
	Total	-	69.8	10.72	0.500	3.80
			±3.1	±0.18	±0.023	±0.41
SPICE-A6	400	0.0096	50.4	10.60	0.492	2.66
0.48494 g		± 0.0017	± 2.7	±0.13	±0.026	±0.37
	800	0.857	10.2	10.56	0.635	0.92
		±0.043	± 1.1	±0.47	± 0.058	±0.15
	1200	0.262	0.39	10.3	0.55	0.068
		±0.014	+0.66_0.39	±5.4	±0.49	±0.024
	Total	1.129	61.0	10.59	0.516	3.56
		± 0.045	±3.0	±0.14	±0.024	±0.40
SPICE-A7	400	0.0062	64.2	10.54	0.466	2.94
0.47508 g		±0.0018	±3.4	±0.13	±0.025	±0.45
	800	0.674	6.54	10.45	0.699	0.71
		±0.034	±0.99	±0.76	± 0.078	±0.11
	1200	0.0120	0.56	10.3	0.28	0.035
		±0.0022	+0.66_0.56	±3.6	+0.45_0.28	+0.059_0.035
	Total	0.692	71.3	10.53	0.486	3.65
		±0.034	±3.6	±0.14	±0.024	±0.46
SPICE-A8	Crush	ed 0.0753	23.6	10.04	0.297	-
1.00802 g		± 0.0039	± 1.8	±0.17	±0.025	
0.80998 g	400	-	1.10	11.5	1.93	0.483
			± 0.40	±1.4	±0.61	± 0.080
	800	-	57.7	10.29	0.530	3.62
			± 3.1	±0.19	±0.017	±0.33
	1200	-	19.3	9.93	0.321	0.13
			±1.1	±0.24	±0.038	+0.20
	Total	-	78.1	10.22	0.498	4.11
			±3.3	±0.15	±0.020	±0.34
SPICE-A9	400	0.0148	55.8	10.68	0.498	3.03
0.46248 g		±0.0019	± 3.0	±0.15	±0.036	±0.56
	800	1.167	11.8	10.34	0.539	0.77
		± 0.059	± 1.2	±0.35	± 0.064	±0.20
	1200	0.0215	0.81	9.1	0.38	0.032
		±0.0029	±0.68	±2.5	±0.26	+0.054
	Total	1.203	68.4	10.60	0.504	3.80
		± 0.059	±3.3	±0.14	±0.032	± 0.60
Table SD1 (cont.)						
Sample	Т	⁴ He	²⁰ Ne	²² Ne/ ²⁰ Ne	²¹ Ne/ ²⁰ Ne	²¹ Ne _e
Weight	°C	$10^{-8} \text{ cm}^{3}/\text{g}$	$10^{-12} \text{ cm}^3/\text{g}$	10-2	10^{-2}	$10^{6} at/2$
SPICE-A10	400	-	28.3 89	10.39	0.444	1.12

0.48178 g			±1.7	±0.23	±0.034	±0.26
U	800	-	38.3	10.71	0.600	3.12
			±2.4	±0.20	±0.018	±0.24
	1200	-	0.85	8.5	0.36	0.013
			±0.65	±3.0	±0.27	+0.062 -0.013
	Total	-	67.5	10.55	0.532	4.24
			±3.0	±0.16	±0.018	±0.36
10SPC01	400	0.0034	4.07	10.21	0.53	0.26
0.52770 g		±0.0016	±0.71	±0.42	±0.10	±0.10
	800	0.246	36.9	10.43	0.686	3.86
		±0.012	±2.5	±0.16	±0.036	±0.42
	1200	0.0384	19.0	10.00	0.299	0.01
		± 0.0041	± 1.4	±0.17	±0.045	+0.230.01
	Total	0.288	60.0	10.28	0.553	4.12
		±0.013	±3.0	±0.12	±0.028	±0.43
10SPC06	400	0.0019	1.29	11.9	2.8	0.86
0.50342 g		± 0.0017	±0.65	±1.1	±1.3	±0.17
	800	0.195	22.6	10.37	0.754	2.79
		±0.010	± 1.8	±0.33	±0.030	±0.22
	1200	0.186	7.82	9.87	0.323	0.056
		±0.010	± 0.87	± 0.58	±0.039	+0.083_0.05
	Total	0.383	31.7	10.31	0.731	3.65
		±0.014	±2.1	±0.28	±0.073	±0.28
10SPC07	400	0.225	73.8	10.48	0.4446	2.95
0.73352 g		±0.012	±4.3	±0.12	± 0.0082	±0.23
	600	7.94	21.1	10.94	0.514	1.24
		± 0.40	±1.3	±0.15	±0.023	±0.15
	800	7.03	39.3	10.35	0.309	0.13
		±0.35	±2.5	±0.11	±0.020	0.21
	1200	1.172	10.11	10.56	0.395	0.269
		±0.059	±0.80	±0.21	±0.036	±0.099
	Total	16.37	144.3	10.52	0.4143	4.32
		±0.53	±5.2	± 0.07	± 0.0084	+0.35 -0.30

^a ²¹Ne_{ex} was calculated relative to the atmospheic ²¹Ne/²⁰Ne ratio of 0.002959 (Eberhardt et al., 1965). ²¹Ne_{ex} contributions from 1200°C steps are generally small and are not included in totals 1917 1918 1919

(Niedermann, 2002).

								Error-	
					Blank			weighted	
	Oversta	PD a addad		2-	corrected ¹⁰ Be	2-	2-	mean ¹⁰ Be	2σ
	Quartz mass	⁹ Be added	¹⁰ Be/ ⁹ Be	2 σ uncertainty	concentration	2 σ uncertainty	2σ uncertainty	concentration	uncertaint
Sample ID	(g)	in spike (10 ¹⁹ atoms)	$(10^{-13})^{a}$	$(10^{-13})^{a}$	$(10^5 \text{ at/g})^{\mathbf{b}}$	$(10^5 \text{ at/g})^{\mathbf{b}}$	(%)	$(10^5 \text{ at/g})^{c}$	$(10^5 \text{ at/g})^{\circ}$
SPICE-A1	2.1608	````	1.15	0.10	(10° at/g) 8.86	0.78	8.8	(10 al/g)	(10 al/g)
		1.691	1.13						
SPICE-A2	2.0707	1.687		0.10	9.11	0.85	9.3	0.506	0.76
SPICE-A3	2.0711	1.651	1.09	0.09	8.49	0.76	8.9	8.58 °	0.76
SPICE-A3 °	2.0559	1.691	1.07	0.09	8.67	0.76	8.8		
SPICE-A4	2.1188	1.689	1.07	0.09	8.37	0.76	9.1	8.48 °	0.77
SPICE-A4 °	2.0803	1.695	1.07	0.09	8.59	0.78	9.1		
SPICE-A5	2.1358	1.694	1.06	0.09	8.24	0.76	9.2		
SPICE-A6	2.1112	1.691	1.03	0.09	8.08	0.75	9.3	8.28 °	0.76
SPICE-A6 °	2.0919	1.695	1.07	0.09	8.49	0.77	9.1		
SPICE-A7	2.0676	1.700	1.11	0.10	8.94	0.80	9.0		
SPICE-A8	2.1340	1.693	1.11	0.10	8.63	0.79	9.1		
SPICE-A8 °	2.1391	1.689	1.11	0.10	8.56	0.79	9.3	8.60 °	0.79
SPICE-A9	2.0503	1.702	1.05	0.09	8.52	0.78	9.2		
SPICE-A10	2.0525	1.696	1.05	0.09	8.44	0.77	9.2		
Process blanks									
Blank ^d		1.696	0.0155	0.0081					
Blank ^d		1.704	0.0235	0.0097					
Blank ^e		1.695	0.0175	0.0094					
Blank ^e		1.697	0.0304	0.0137					

Table SD2. Measured cosmogenic ¹⁰Be concentrations in SPICE quartz samples and associated laboratory blanks. All AMS 1921 1922 measurements were made at the University of Cologne.

1923 1924 Note: ¹⁰Be concentrations in this table are not scaled to sea level and high latitude (SLHL). <u>All uncertainties are</u> 25. A spike of approximately 250 microgram of ⁹Be were added to each sample. Natural amounts of ⁹Be were not measured in SP flow quartz samples.

1925 1926 ^{a 10}Be/⁹Be values are normalized using the standards of Nishiizumi et al. (2007). Standards and their nominal values used in these AMS measurements are KN01-6-2 (¹⁰Be/⁹Be =

5.35x10⁻¹³) and KN01-5-1 (¹⁰Be/⁹Be = 2.709x10⁻¹¹). Uncertainties in our ¹⁰Be/⁹Be measurements include uncertainty in the number of counts and any scatter in the standards. The 1927 1928 AMS standardization parameter 07KNSTD in the online calculator of Balco et al. (2008) indicates internal ¹⁰Be/⁹Be normalization to the Nishiizumi et al. (2007) standard, and is used with ¹⁰Be/⁹Be data from CologneAMS in the online calculator.

1929 ^b Blank subtractions are between 1.7% to 2.2 % of the total ¹⁰Be measured. Uncertainties in the blank corrected ¹⁰Be concentrations include the propagated uncertainties in the total

1930 number of ¹⁰Be atoms in the sample and the uncertainty in the ¹⁰Be atoms in the blank, estimated from the mean and standard deviation of the pair of blank measurements included in each sample batch. The uncertainty in the number of ¹⁰Be atoms in the sample includes an estimated 1% (1 s.d.) uncertainty in the mass of ⁹Be added to the sample, propagated

- with the uncertainty in the AMS ¹⁰Be/⁹Be measurement.
- 1931 1932 1933 1934 1935 1936 ^c Error-weighted (pooled) means and standard deviation of the means of duplicate AMS measurements are calculated for samples –A3, -A4, -A6, and –A8 after Wilson and Ward (1978).
- ^d Processed alongside samples SPICE-A1 through SPICE-A5.
- ^e Processed alongside samples SPICE-A6 through SPICE-A10.

							Blank-corrected	
	Mass			2σ		2σ	¹⁴ C	2σ
	sample		$^{14}C/^{12}C$	uncertainty	^{14}C	uncertainty	concentration	uncertainty
Sample ID	(g)	μg C ª	(10 ⁻¹³) ^b	(10 ⁻¹³) ^b	$(10^5 \text{ atoms})^{\circ}$	(10^5 atoms)	$(10^5 \text{ at/g})^{d}$	$(10^5 \text{ at/g})^{d}$
SPICE-A1	1.001	6.89	10.70	0.37	3.70	0.12	3.18	0.33
SPICE-A2	0.989	7.67	8.90	0.28	3.42	0.10	2.94	0.32
SPICE-A3	0.957	4.67	11.30	0.53	3.55	0.12	3.18	0.33
SPICE-A4	0.984	6.82	10.40	0.33	3.39	0.12	2.93	0.33
SPICE-A5	0.994	6.76	10.00	0.33	3.33	0.12	2.84	0.32
SPICE-A6	0.972	7.47	8.89	0.31	3.59	0.14	3.17	0.34
SPICE-A7	0.983	7.51	9.54	0.35	4.36	0.14	3.92	0.33
SPICE-A8	0.999	12.01	7.24	0.22	2.99	0.12	2.48	0.32
SPICE-A9	1.061	7.63	8.55	0.29	2.65	0.12	2.01	0.31
SPICE-A10	0.978	4.77	12.50	0.50	3.27	0.10	2.82	0.33
10SPCO6	1.052	8.69	9.07	0.30	3.95	0.14	3.27	0.31
10SPCO7	1.071	7.07	9.85	0.34	3.49	0.12	2.79	0.30

Table SD3. Measured cosmogenic ¹⁴C concentrations in SPICE quartz samples and associated laboratory blanks. All AMS measurements were made at the University of Cologne.

	Mass of					
	synthetic			2σ		2σ
Process	quartz		$^{14}C/^{12}C$	uncertainty	^{14}C	uncertainty
blanks	(g)	μg C ^a	(10 ⁻¹³) ^b	$(10^{-13})^{b}$	$(10^3 \text{ atoms})^{\circ}$	(10^3 atoms)
CGN 40	3.054	6.33	0.86	0.13	27	4
CGN 47	1.003	18.03	0.53	0.06	48	6
CGN 48	0.996	9.32	0.57	0.08	27	4
CGN 49	2.999	12.03	0.72	0.07	44	4
CGN 106	0.495	13.12	0.87	0.08	57	6
CGN 107	1.015	19.76	0.75	0.06	74	6
CGN 108	1.000	10.34	0.89	0.12	46	6
CGN 109	3.014	4.97	2.09	0.31	52	8
CGN 124 ^{d,e}	2.047	13.06	1.12	0.09	73	3
CGN 130 ^{d,e}	3.542	5.53	2.13	0.33	59	5

Note: ¹⁴C concentrations in this table are not scaled to sea level and high latitude (SLHL). All uncertainties are 2 σ .

^a Amount of carbon in carrier added, the carrier was added as CaCO₃ (fragments of a '¹⁴C-dead' Iceland spar; Fülöp et al. 2015)

^b ¹⁴C/¹²C values are normalized using the OX-II standard (N.I.S.T designation SRM 4990 C). Uncertainty quoted is the counting uncertainty.

^c The ¹⁴C concentration is calculated from the ¹⁴C/¹²C concentration determined by AMS multiplied by the ¹²C content of the sample (i.e. carrier + sample). The amount of C provided is the sum of carbon in the carrier and any carbon in the sample. The carbon amount is determined on a calibrated capacitance manomenter (calibrated with accurately weighed amounts of carrier), after cryogenic separation of CO₂ from other gases.

^d Blank subtractions are between 1.7% to 2.2% of the total ¹⁴C measured. Uncertainties in the blank corrected ¹⁴C concentrations include the propagated uncertainties in the total number of ¹⁴C atoms in the sample and the uncertainty in the ¹⁴C atoms in the blank, estimated from the mean and standard deviation of all blank measurements.

	²¹ Ne, ¹⁰		²¹ Ne and ¹⁰ B	²¹ Ne and ¹⁰ Be	¹⁴ C	¹⁴ C	¹⁰ Be	¹⁰ Be		¹⁴ C	¹⁴ C	¹⁴ C	¹⁴ C	¹⁴ C
	Be, and ¹⁴	²¹ Ne, ¹⁰ Be	e (over past 72	(over past 72	(over past 25	(over past 25	(over past 72	(over past 72	¹⁴ C (over past 25	(over past 25	(over past	(over past	(over past	(over past
	C	, and ¹⁴ C	ka)	ka)	ka)	ka)	ka)	ka)	ka)	ka)	8270 yr)	8270 yr)	8270 yr)	8270 yr)
	St	C.	Sf	C.C.	Sf	C.C.	Sa	C		G	Sf	C.C.	Sa	G
	scaling	St scaling	scaling	Sf	scaling	<i>Sf</i>	scaling	Sa seeling		Sa sooling	scaling	Sf	scaling	Sa
	factor for fast	scaling factor for	factor for fast	scaling factor for	factor for fast	scaling factor for	factor for fast	scaling factor for	Sa	scaling factor for	factor for fast	scaling factor for	factor for fast	scaling factor for
	and	neutron	and	neutron	and	neutron	and	neutron	scaling factor	neutron	and	neutron	and	neutron
	slow	spallation	slow	spallation	slow	spallation	slow	spallation	for fast and	spallation	slow	spallation	slow	spallation
Sample ID	muons ^a	a	muons ^b	b	muons ^c	c	muons ^b	b	slow muons ^c	c	muons ^d	d	muons ^d	d
SPICE-A1	1.993	3.515	1.506	3.861	1.498	3.602	1.506	4.021	1.498	3.582	1.490	3.522	1.490	3.498
SPICE-A2	1.965	3.445	1.496	3.777	1.488	3.524	1.496	3.931	1.488	3.505	1.480	3.446	1.480	3.423
SPICE-A3	1.968	3.452	1.497	3.786	1.489	3.533	1.497	3.941	1.489	3.513	1.481	3.454	1.481	3.431
SPICE-A4	1.962	3.436	1.495	3.766	1.486	3.515	1.495	3.920	1.486	3.495	1.479	3.437	1.479	3.414
SPICE-A5	1.959	3.430	1.494	3.758	1.485	3.507	1.494	3.911	1.485	3.488	1.478	3.430	1.478	3.406
SPICE-A6	1.938	3.379	1.486	3.697	1.478	3.451	1.486	3.847	1.478	3.432	1.471	3.375	1.471	3.352
SPICE-A7	1.959	3.430	1.494	3.758	1.485	3.507	1.494	3.911	1.485	3.488	1.478	3.430	1.478	3.406
SPICE-A8	1.939	3.380	1.486	3.698	1.478	3.452	1.486	3.848	1.478	3.433	1.471	3.376	1.471	3.353
SPICE-A9	1.968	3.452	1.497	3.786	1.489	3.533	1.497	3.941	1.489	3.513	1.481	3.454	1.481	3.431
SPICE-A10	1.959	3.430	1.494	3.758	1.485	3.507	1.494	3.911	1.485	3.488	1.478	3.430	1.478	3.406
10SPC01	2.031	3.609	1.520	3.974										
10SPC06	1.958	3.427	1.493	3.755	1.485	3.504			1.485	3.485	1.477	3.427	1.477	3.403
10SPC07	1.946	3.399	1.489	3.721	1.481	3.473			1.481	3.454	1.473	3.396	1.473	3.373

Table SD4. St, Sf, and Sa scaling factors calculated for calibration sites on the SP lava flow.

Note: -- indicates a sample which was not analysed for the respective nuclide, and thus needs no scaling factor.

^a The scaling factors were determined using CRONUSCalc (Marrero et al., 2016). Scaling factors are time independent.

^b The scaling factors were determined using the mmc1 Matlab code of Lifton et al. (2014). Scaling factors are time-dependent. Sf scaling factors for ²¹Ne and ¹⁰Be and Sa scaling factors for ¹⁰Be are integrated over the past 72 ka. There is no option for calculating Sa scaling factors for ²¹Ne. Sf and Sa scaling factors for ¹⁴C are integrated over the past 25 ka, the time at which ¹⁴C reaches 95% saturation.

^c Sf and Sa scaling factors for ¹⁴C are integrated over the past 25 ka, the time at which ¹⁴C reaches 95% saturation. ^d Sf and Sa scaling factors for ¹⁴C are integrated over the past 8270 a, based on the integration time equations 7 and 9 from Blard et al. (2019).

<u>q</u> u	lartz.											
(a) Scaled with St scaling factors												
		2σ		2σ		2σ		2σ		2σ		2σ
Sample ID	²¹ Ne/ ¹⁰ Be	Uncertainty	²¹ Ne/ ¹⁴ C	Uncertainty	¹⁴ C/ ¹⁰ Be	Uncertainty	21 Ne/ 10 Be _{sp}	Uncertainty	21 Ne/ 14 C _{sp}	Uncertainty	$^{14}C_{sp}/^{10}Be_{sp}$	Uncertainty
SPICE-A1	4.29	0.61	1.39	0.21	3.08	0.43	4.41	0.76	1.68	0.36	2.63	0.61
SPICE-A2	4.49	0.63	1.63	0.25	2.76	0.41	4.61	0.80	1.98	0.45	2.33	0.58
SPICE-A3	4.37	0.58	1.38	0.20	3.17	0.45	4.49	0.74	1.65	0.35	2.73	0.64
SPICE-A4	4.37	0.53	1.48	0.20	2.96	0.44	4.49	0.71	1.79	0.39	2.51	0.62
SPICE-A5	4.45	0.65	1.54	0.25	2.90	0.44	4.58	0.81	1.87	0.44	2.45	0.62
SPICE-A6	4.25	0.64	1.29	0.21	3.28	0.48	4.37	0.79	1.54	0.34	2.83	0.67
SPICE-A7	4.35	0.70	1.07	0.17	4.07	0.53	4.47	0.85	1.23	0.24	3.64	0.75
SPICE-A8	4.69	0.61	1.90	0.30	2.47	0.41	4.82	0.79	2.39	0.62	2.02	0.57
SPICE-A9	4.39	0.82	2.17	0.48	2.03	0.37	4.52	0.95	2.90	1.00	1.56	0.52
SPICE-A10	4.66	0.60	1.73	0.26	2.70	0.41	4.78	0.78	2.11	0.49	2.27	0.57
10SPC06			1.28	0.17					1.53	0.30		
10SPC07			1.78	0.25					1.82	0.35		

Table SD5. Local production-rate ratios and production-rate ratios for total reference ²¹Ne and spallogenic ¹⁰Be_{sp} and ¹⁴C_{sp} in SP-flow quartz.

(b) Scaled with Sf scaling factors							(c) Scaled with <i>Sa</i> scaling factors		
		2σ		2σ		2σ			2σ
Sample ID	$^{21}Ne_{sp}/^{10}Be_{sp}$	Uncertainty	$^{21}Ne_{sp}/^{14}C_{sp}$	Uncertainty	$^{14}C_{sp}/^{10}Be_{sp}$	Uncertainty	Sample ID	${}^{14}C_{sp}/{}^{10}Be_{sp}$	Uncertainty
SPICE-A1	4.41	0.76	1.64	0.34	2.94	0.65	SPICE-A1	3.08	0.68
SPICE-A2	4.61	0.80	1.93	0.41	2.61	0.62	SPICE-A2	2.73	0.64
SPICE-A3	4.49	0.74	1.61	0.33	3.04	0.68	SPICE-A3	3.19	0.71
SPICE-A4	4.49	0.71	1.74	0.36	2.81	0.66	SPICE-A4	2.94	0.69
SPICE-A5	4.58	0.81	1.82	0.41	2.74	0.66	SPICE-A5	2.87	0.69
SPICE-A6	4.37	0.79	1.51	0.32	3.15	0.72	SPICE-A6	3.30	0.69
SPICE-A7	4.47	0.85	1.21	0.23	4.01	0.80	SPICE-A7	4.20	0.84
SPICE-A8	4.82	0.79	2.30	0.56	2.28	0.61	SPICE-A8	2.38	0.64
SPICE-A9	4.52	0.95	2.74	0.88	1.79	0.55	SPICE-A9	1.88	0.58
SPICE-A10	4.78	0.78	2.05	0.45	2.54	0.61	SPICE-A10	2.66	0.64
10SPC06			1.49	0.27			10SPC06		
10SPC07			2.15	0.45			10SPC07		

Supplementary Material – photographs of SPICE sample sites.

Figure S1. Photographs of sample site SPICE-A1.

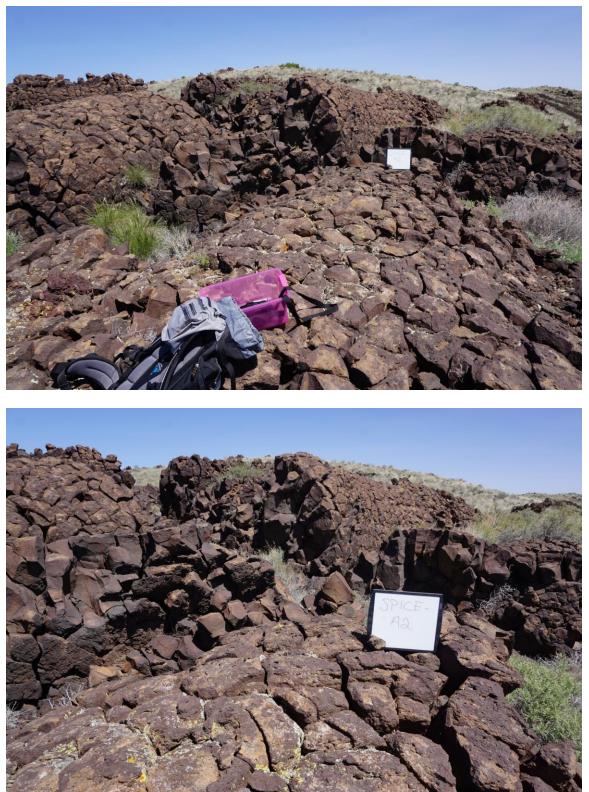


Figure S2. Photographs of sample site SPICE-A2.

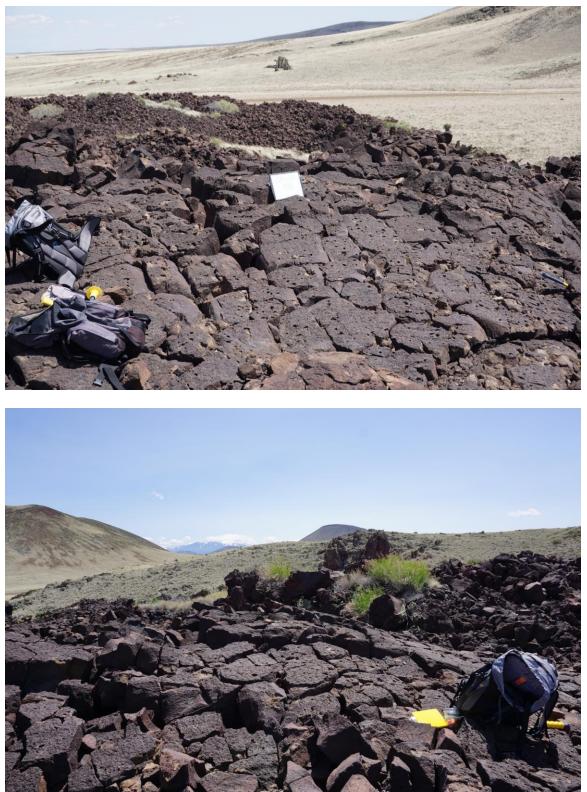


Figure S3. Photographs of sample site SPICE-A3.

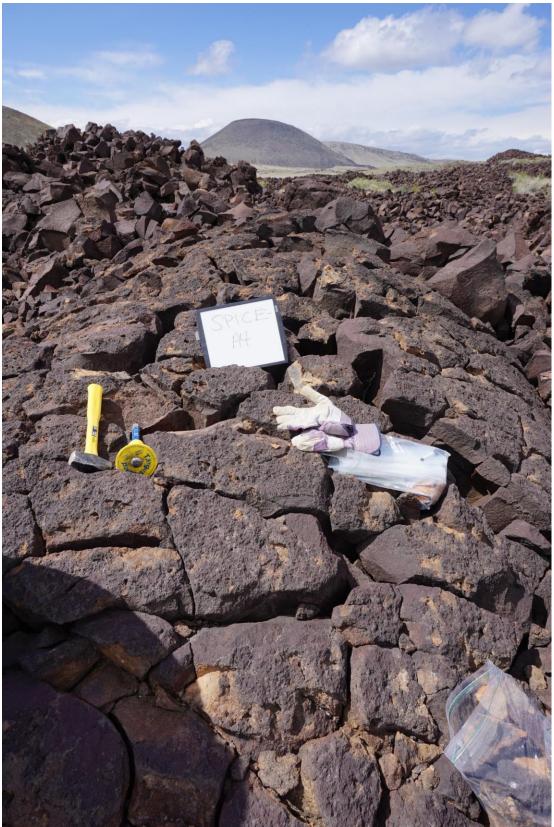


Figure S4. Photographs of sample site SPICE-A4.

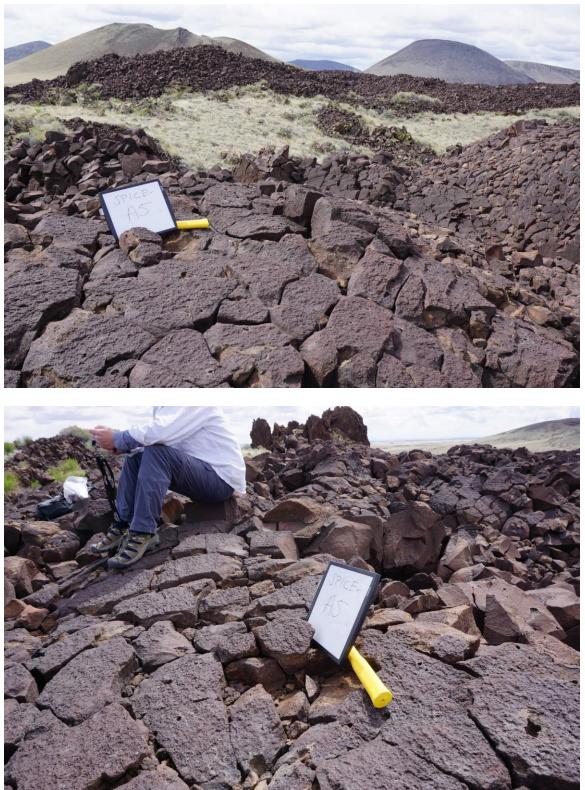


Figure S5. Photographs of sample site SPICE-A5.

Figure S6. Photographs of sample site SPICE-A6.

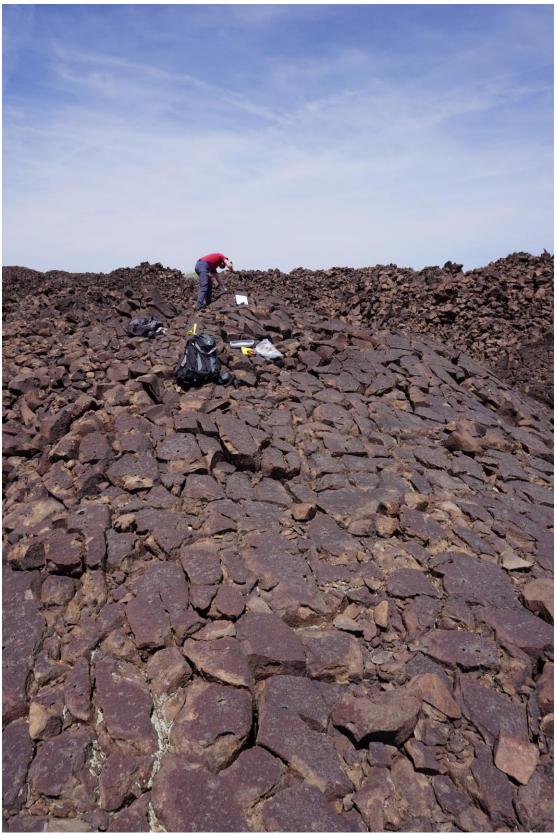


Figure S7. Photographs of sample site SPICE-A7.

Figure S8. Photographs of sample site SPICE-A8.

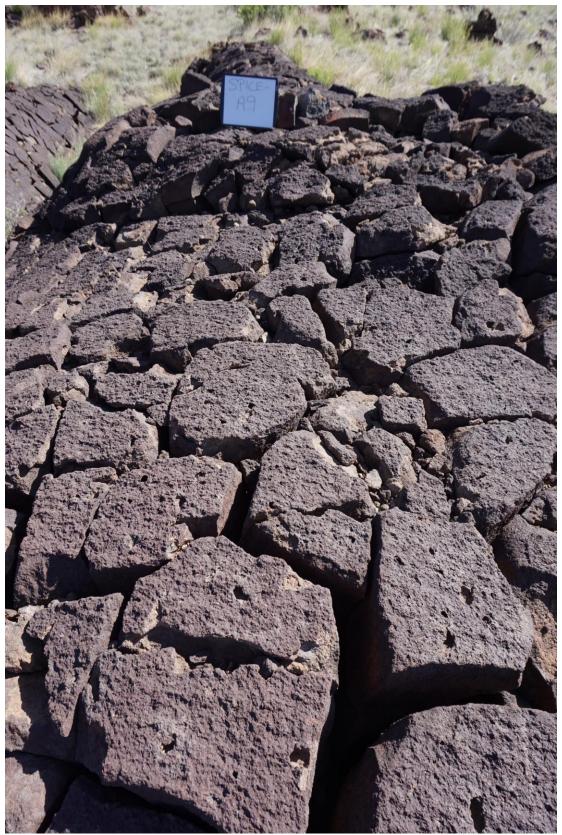


Figure S9 (a and b). Photographs of sample site SPICE-A9.

Figure S10. Photographs of sample site SPICE-A10.

Figure S11. Photographs of sample site 10SPC01.

Figure S12. Photographs of sample site 10SPC06.

Figure S13. Photograph of sample site 10SPC07.