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Abstract. Assessing and projecting the dynamic response of
glaciers on the Antarctic Peninsula to changed atmospheric
and oceanic forcing requires high-resolution ice thickness
data as an essential geometric constraint for ice flow models.
Here, we derive a complete bedrock data set for the Antarc-
tic Peninsula north of 70◦ S on a 100 m grid. We calculate
distributed ice thickness based on surface topography and
simple ice dynamic modelling. Our approach is constrained
with all available thickness measurements from Operation
IceBridge and gridded ice flow speeds for the entire study
region. The new data set resolves the rugged subglacial to-
pography in great detail, indicates deeply incised troughs,
and shows that 34 % of the ice volume is grounded below
sea level. The Antarctic Peninsula has the potential to raise
global sea level by 69± 5 mm. In comparison to Bedmap2,
covering all Antarctica on a 1 km grid, a significantly higher
mean ice thickness (+48 %) is found.

1 Introduction

Glaciers of the Antarctic Peninsula strongly differ from the
rest of Antarctica regarding their topographical and climato-
logical characteristics and their sensitivity to climate change.
The recent collapse of several ice shelves around the Penin-
sula and the subsequent speed up and mass loss of glaciers
feeding them (Rignot et al., 2004; Scambos et al., 2004;
Pritchard and Vaughan, 2007; Glasser et al., 2011; Rott et al.,
2011) demonstrated the high vulnerability of the region to
climate change. Over the last decades, glacier retreat in the
region was considerable (Cook et al., 2005) and the Antarc-

tic Peninsula and its surroundings are reported to have con-
tributed by almost 30 % to the cryospheric component of sea-
level rise since 1960 (Hock et al., 2009). Strong atmospheric
warming trends in recent years (Vaughan et al., 2003; Bar-
rand et al., 2013a) and changed oceanic conditions (Mered-
ith and King, 2005) are likely to be the main triggers of the
dynamic glacier mass loss.

Ice shelf disintegration and wide-spread surface lowering
in coastal areas as observed on the Antarctic Peninsula are
also relevant at larger scales for both the Greenland and the
Antarctic ice sheet (Pritchard et al., 2009, 2012). Understand-
ing the related processes is crucial for improved projections.
However, ice flow modelling requires accurate bedrock data
with a comprehensive coverage. Despite major advances in
airborne radio-echo sounding of ice thickness in polar re-
gions, the uncertainty in gridded bedrock data still limits
the application of state-of-the-art flow models for detailed
process studies. For the Antarctic Peninsula, a large num-
ber of ice thickness observations is provided by the repeated
surveys of Operation IceBridge (OIB) (e.g.Allen, 2013).
Ground-based thickness measurements are scarce and are
only available for a few individual glaciers (e.g.Farinotti
et al., 2013, 2014).

The glaciers of the Antarctic Peninsula are covered by the
first complete bedrock data set for Antarctica (BEDMAP,
Lythe and Vaughan, 2001). Le Brocq et al.(2010) enhanced
BEDMAP by including additional thickness measurements
and refined interpolation techniques. However, the grid spac-
ing of both data sets is only 5 km, which is too coarse for
resolving the mountain topography of the Peninsula with its
narrow subglacial valleys and a high ice thickness variability.
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With the rapid increase in the coverage of thickness measure-
ments, new initiatives have recently contributed to updated
bedrock maps for both Greenland (Bamber et al., 2013), and
Antarctica (Fretwell et al., 2013) at 1 km resolution. For the
Peninsula, Bedmap2 is a big step forward.Fretwell et al.
(2013) interpolated all available bedrock data supported by
synthetic ice thicknesses estimated from a simple relation
with surface slope.

Whereas for large-scale ice sheet modelling, the spatial
resolution provided by Bedmap2 might be sufficient, detailed
considerations of mass balance, ice flow and grounding-line
dynamics necessitate the application of models that are able
to cope with the high spatial variability of the governing pro-
cesses. For such models, a high-resolution bedrock topogra-
phy is an essential geometric constraint.

Over the last decades, several methods for indirectly in-
ferring ice thickness by combining information contained in
surface topography with ice dynamic modelling have been
developed and applied. Some studies have focused on thick-
ness distribution of individual glaciers in alpine environ-
ments (Budd and Allison, 1975; Oerlemans, 1997; Farinotti
et al., 2009; McNabb et al., 2012), and have also been ap-
plied at the mountain-range scale (Clarke et al., 2013). Other
papers have addressed the bedrock topography of a part of
Antarctica (Roberts et al., 2011), or for outlet glaciers of the
Greenland ice sheet (Morlighem et al., 2013a, 2014). Huss
and Farinotti(2012) have presented a data set of ice thick-
ness distribution for each of the world’s roughly 200 000
glaciers outside of the two ice sheets. The benefit of includ-
ing flow speed data into the calculation of ice thickness dis-
tribution has been demonstrated in a few papers recently (e.g.
Morlighem et al., 2011; McNabb et al., 2012) but has so far
not been exploited at the regional scale.

Here, we derive a new high-resolution ice thickness and
bedrock data set for all glaciers of the Antarctic Peninsula
north of 70◦ S. By combining simple ice flow modelling with
a large number of direct ice thickness measurements from
Operation IceBridge, gridded surface velocities and mass
balances, local glacier thickness is calculated from character-
istics of the glacier surface. This approach allows us to inter-
and extrapolate the scarce thickness observations relying on
physical relationships and thus to achieve a highly resolved
bedrock estimate. We present the ice thickness distribution of
the Antarctic Peninsula on a 100 m grid, discuss the implica-
tions for potential sea-level rise and compare the data set to
Bedmap2 (Fretwell et al., 2013).

2 Data

Our approach to derive ice thickness makes use of a variety of
data sets including surface topography, glacier outlines, sur-
face mass balance, ice thickness, and surface flow speed mea-
surements. Due to the availability of high-resolution input

data the study only addresses the Antarctic Peninsula north
of 70◦ S (Fig.1).

A 100 m digital elevation model (DEM) for the Antarctic
Peninsula (63–70◦ S) is provided byCook et al.(2012) based
on the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER). Several ASTER scenes acquired
over the last decade were stacked and artifacts were corrected
resulting in a consistent, smooth and void-filled terrain model
for the entire study region. The accuracy of the DEM quan-
tified by comparison to ICESat data is± 25 m (Cook et al.,
2012).

Based on this high-quality DEM,Cook et al.(2014) de-
rived ice flow catchments for 1606 glacier entities. The catch-
ments delimit dynamically connected regions from the high-
est point of the basin to the calving front or to the ground-
ing line (Fig. 1). We do not consider floating ice in the
present study. Catchment areas range between 0.3 km2 and
7000 km2. By intersecting the basin outlines with a detailed
vector data set of rock outcrop boundaries retrieved from
the SCAR Antarctic Digital Database Version 6.0 (www.add.
scar.org) we obtain an ice mask for each individual glacier.

Lenaerts et al.(2012) provide average surface mass bal-
ance for the period 1979–2010 based on simulations with
the Regional Atmospheric Climate MOdel (RACMO) on
a 27 km grid. RACMO was driven by ERA-Interim data and
validated against in situ mass balance measurements. The
Peninsula is identified as the region with highest accumula-
tion rates of the Antarctic continent (> 1500 kg m−2 yr−1).
However, only very few direct mass balance observations
(e.g.Turner et al., 2002) are available for validation in the
study region (Fig.1).

Between 2002 and the present numerous flight campaigns
from NASA’s Operation IceBridge (Allen, 2013) covered
the Antarctic Peninsula collecting radar-sounding data at
150 MHz using the Multichannel Coherent Radar Depth
Sounder (MCoRDS) (see alsoShi et al., 2010). OIB pro-
vides direct measurements of local ice thickness for 238 in-
dividual glaciers on the Peninsula (15 % of the total num-
ber). Almost 500 000 individual point observations are avail-
able along 8500 km of continuous tracks (Fig.1). The OIB
data yield ice thickness and bed elevation with a nominal
accuracy of 10 m (Gogineni et al., 2001). Actual data ac-
curacy depends on location, quality of bed reflections and
uncertainties in the dielectric properties of the ice. Based on
cross-over analysis of OIB flight lines on Russell Glacier,
Greenland,Morlighem et al.(2013a) found a standard ice
thickness error of 31 m. For the Antarctic Peninsula, similar
accuracies were confirmed through cross-validation with ter-
restrial ground-penetrating radar (GPR) on Starbuck Glacier
(Farinotti et al., 2014). A maximal deviation of 45 m (12 %
of local ice thickness) was found. In addition to OIB data,
this study also makes use of ice thickness measurements for
Flask and Starbuck Glacier (Fig.1) based on airborne and
ground-based GPR (Farinotti et al., 2013, 2014).

The Cryosphere, 8, 1261–1273, 2014 www.the-cryosphere.net/8/1261/2014/
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Figure 1. Antarctic Peninsula north of 70◦ S. Shading refers to sur-
face topography. Outlines of flow catchments larger than 200 km2

according toCook et al. (2014) are shown. Ice thickness mea-
surements available from all Operation IceBridge campaigns 2002–
2012 are indicated by dots colour-coded to thickness classes. Trian-
gles show surface mass balance observations (Turner et al., 2002).
Ice shelf margins are drawn according to the SCAR Antarctic Digi-
tal Database version 6.0. Red rectangles refer to detailed figures.

A comprehensive data set of annual ice flow speed on
a 450 m grid for the entire Antarctic Peninsula is provided
by Rignot et al.(2011). Surface velocities have been derived
based on satellite radar interferometry using fall 2007 and
2008 imagery from the Advanced Land Observing Satellite
(ALOS) PALSAR sensor. The uncertainty in inferred surface
speed is estimated at 3–10 m yr−1 for the Peninsula (Rignot
et al., 2011).

3 Methods

The basic approach to derive a bedrock data set covering the
entire Antarctic Peninsula on a fine grid (100 m resolution) is
the constraining of a simple model based on the shallow ice
approximation for ice dynamics with a variety of observa-
tional data. We invert local ice thickness from surface topog-
raphy, supported by comprehensive data sets of (i) surface
mass balance, (ii) point ice thickness and (iii) ice flow ve-

locity. We thus follow recent studies (see e.g.Sellier et al.,
2012; Clarke et al., 2013; Morlighem et al., 2013a; van Pelt
et al., 2013) that have proposed similar techniques for infer-
ring distributed ice thickness.

3.1 Modelling approach

The methodology applied in this study is based on the ap-
proach ofHuss and Farinotti(2012) which is further devel-
oped and adapted to glaciers on the Antarctic Peninsula (see
also,Farinotti et al., 2014). Based on surface mass balance,
ice volume fluxes along the glacier are determined and are
used to compute ice thickness based onGlen’s (1955) flow
law for ice deformation and assumptions on basal sliding.
Contributions of basal mass balance are neglected. As de-
scribed inHuss and Farinotti(2012), all calculations are per-
formed for a simplified 2-D shape of each individual glacier
that is obtained by evaluating glacier characteristics (area,
surface slope, length, width) for 10 m elevation bands of ice
surface topography.

Surface mass balance distribution is taken from RACMO
(Lenaerts et al., 2012). We perform a spatial downscaling of
the RACMO results from their coarse grid (27 km) to 100 m
resolution by deriving a local, elevation-dependent mass bal-
ance function and applying the relation to our fine grid using
the DEM of Cook et al.(2012). This function is obtained
from linear regression of mass balance vs. surface elevation
of the RACMO grid. For every location, the parameters of
the regression are estimated through ordinary least-square
fits considering a box of 10× 10 RACMO cells. The total
surface mass balance is conserved within<1 % of the origi-
nal RACMO data set over the study region.

According to mass conservation, ice volume flux along the
glacier can be derived by combining information on local
surface mass balanceb with the elevation change rate∂h/∂t .
From these variables we calculate an apparent mass balance
b̃ (Farinotti et al., 2009) as

b̃ = b · fRACMO − ρ ·
∂h

∂t
, (1)

with ρ the ice density andfRACMO a dimensionless fac-
tor accounting for a potential bias in RACMO mass bal-
ances.fRACMO is treated as a calibration parameter. Whereas
glaciers of the Antarctic Peninsula showed moderately nega-
tive values of∂h/∂t before the year 2000 (Kunz et al., 2012),
ice mass loss strongly increased over the last decade for
glaciers flowing into the embayment of the former Larsen
A and B Ice Shelves (e.g.Berthier et al., 2012). Unfortu-
nately, no complete and distributed data set documenting re-
cent surface elevation changes on the peninsula is yet avail-
able. Motivated by results of several studies (Scambos et al.,
2004; Pritchard et al., 2009; Berthier et al., 2012; Kunz
et al., 2012), we thus roughly parameterize surface eleva-
tion changes by prescribing a linear decrease of∂h/∂t from
0 m yr−1 at an elevation of 700 m a.s.l. to−10 m yr−1 at the
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Figure 2. (a)Surface mass balance and mass flux along Flask Glacier (see Fig.1 for location) according to RACMO (Lenaerts et al., 2012).
(b) Surface topography and calculated bedrock (mean of surface elevation bins). The glacier hypsometry is shown by bars.(c) Calculated
ice thickness distribution. The spacing of ice surface contours is 100 m. The bedrock elevation corresponding to sea level is indicated by the
solid dashed line.

calving front for glaciers flowing into the Larsen A and B
embayment, and to−1 m yr−1 for all other glaciers. The ef-
fect of these poorly constrained assumptions on calculated
thickness is assessed with sensitivity tests (see Sect.4).

By integratingb̃ from the maximum glacier elevation to
the terminus or the grounding line we obtain ice volume flux
qtot for each glacier (Fig.2a). In the case of an invariant po-
sition of the glacier terminus or the grounding line, this also
yields frontal ablation (calving, marine melting, flux into ice
shelf). By applying an integrated form of theGlen (1955)
flow law the ice thicknesshi for every elevation bandi is
calculated (see alsoHuss and Farinotti, 2012) as

hi =
n+2

√
qd,i

2Af
·

n + 2

(Fs,iρg sinαi)n
, (2)

with qd,i the deformational component of total ice flux nor-
malized by glacier widthw, n = 3 the exponent of the flow
law, g the acceleration of gravity,αi the elevation band aver-
age of surface slope, andFs,i = wi/(2hi +wi) a valley shape
factor (Nye, 1965). As h enters the calculation ofFs, Eq. (2)
is solved iteratively. The flow rate factorAf shows a strong
dependence on englacial temperatures (e.g.Cuffey and Pa-
terson, 2010), and is used as a second calibration parameter.

The deformational componentqd of the total ice fluxqtot
for each elevation bandi is computed by prescribing a frac-
tion of basal slidingfsl relative to surface velocity as

qd,i = qtot,i − qb,i = qtot,i ·

(
1−

fsl,i

(1− r) · fsl,i + r

)
, (3)

whereqb is the ice flux due to basal sliding, andr = (n +

1)/(n + 2) = 0.8 is the ratio between average deformational
flow speed and surface velocity of an ice column (see e.g.
Cuffey and Paterson, 2010).

Parts of Antarctica are known to be warm-based and ex-
hibit significant basal motion (e.g.Kamb, 2001; Joughin
et al., 2009). Related to comparably maritime climate condi-
tions, glaciers on the Antarctic Peninsula can be assumed to
show considerable basal sliding close to their grounding line
but no or limited basal melting and englacial temperatures
of −10 to−15◦C in their accumulation areas (Zagorodnov
et al., 2012). For the Peninsula,Morlighem et al.(2013b) in-
ferred fractions of basal sliding relative to surface flow speed
of between about 50 % and 90 % based on modelling. Rely-
ing on these findings, we prescribefsl = 0.5 above the me-
dian glacier elevation, and parameterizefsl as a linear func-
tion with altitude increasing tofsl = 0.9 at the calving front
or the grounding line. The impact of these assumptions on
calculated thickness and volume is assessed with sensitivity
tests (Sect.4).

Kamb and Echelmeyer(1986) recommend smoothing the
basal shear stressτi = Fs,iρg sinαi over a distance of about
10 times the local ice thickness to account for the influence
of longitudinal stress gradients on ice flow. We smoothτ ac-
cordingly and re-introduce it into Eq. (2). Convergence for
h, Fs andτ is reached after about five iterations. The proce-
dure provides mean glacier thickness in 10 m surface eleva-
tion bands along a longitudinal glacier profile (Fig.2b).

The Cryosphere, 8, 1261–1273, 2014 www.the-cryosphere.net/8/1261/2014/
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We then extrapolate calculated mean elevation band thick-
ness from the simplified 2-D shape of the glacier (Fig.2b)
to the 100 m grid by inversely weighting the distance to the
closest rock outcrop, and including surface slopeα of each
grid cell proportional to(sinα)−n/(n+2) (based on Eq.2). Lo-
cal slopes are filtered with a thresholdαcutoff = 1.5◦ because
sinα tends to zero for small values. Furthermore, unrealis-
tic ice thicknessesh larger thanhmax =

z
(ρw−ρ)/ρw

, with z the
surface elevation according to the DEM andρw the density
of sea water, are corrected tohmax. We thus assume the entire
glacier to be grounded within the catchment boundary. This
correction affects 1.8 % of the total area. Gridded ice thick-
ness is finally smoothed to remove local noise due to surface
roughness. The extrapolation procedure results in a fully dis-
tributed estimate of ice thickness for each individual glacier
catchment (see Fig.2c for an example).

3.2 Model calibration and validation

To validate model results against observed surface flow ve-
locities we solve Eq. (2) for qd and take the derivative. This
yields average flow speedui for each glacier elevation band
i as

ui =
2Af

n + 1
· (Fs,iρg sinαi)

nhn+1
i + ub,i, (4)

with ub,i the basal velocity obtained from the prescribed frac-
tion of basal slidingfsl,i . Annual surface motion of each grid
cell is then approximated by redistributingui based on local
thickness and slope proportionally to(ρg sinα)nhn+1 (based
on Eq.4).

The parametersfRACMO (Eq. 1) andAf (Eq. 2) are cal-
ibrated to optimally match all point observations of OIB
ice thickness available for the Antarctic Peninsula, and dis-
tributed surface flow velocity. Both parameters are poorly
constrained a priori and are thus suitable to tune the model.
Whereas loweringfRACMO results in reduced mass turnover
and smaller ice thickness, lower values forAf lead to stiffer
ice and increase calculated thickness. Hence, similar results
regarding mean thickness could be achieved with various
combinations of the two parameters. It is therefore essential
to utilize two independent sets of measured data to determine
physically meaningful values forfRACMO andAf which are
assumed to be constant for the whole domain in our case.

We vary fRACMO in the range[0.1,1.0], andAf within
[0.005,0.075] bar−3 yr−1 and calculate ice thickness distri-
bution for each of the 1606 glacier catchments of the Antarc-
tic Peninsula with 285 combinations of the two parame-
ters. Measured and calculated point OIB thicknesses are then
compared and the mean misfit over all data is evaluated.
Calculated surface velocity is resampled to the 450 m grid
of the observations and a point-to-point comparison is per-
formed for catchments> 25 km2 and ice surface elevations
> 100 m a.s.l. We do not integrate small glaciers into this
evaluation due to possible uncertainties in measured flow

speeds, and exclude areas close to sea level as the shallow
ice approximation is not suitable to reproduce flow speeds in
the vicinity of the grounding line.

Average misfits close to zero are found for several pa-
rameter combinations when considering OIB thickness data
or measured ice flow speeds alone (Fig.3). For the two
observational variables, error fields in the parameter space
are however almost perpendicular to each other resulting in
a unique optimal combination offRACMO = 0.71 andAf =

0.025 bar−3 yr−1. This combination matches the average ice
thickness for all OIB data points as well as the spatially dis-
tributed flow velocity (Fig.3).

The plausibility of the inferred values offRACMO and
Af is verified by considering independent data sets.De-
poorter et al.(2013) estimate annual mass losses in the
Larsen C embayment due to calving and marine melting of
about 43 Gt yr−1 (average over 2003–2009). By summing up
frontal mass fluxes of all contributing glaciers and including
RACMO-based accumulation on the shelf (corrected with
fRACMO) we find a total flux of 57 Gt yr−1, overcompensat-
ing estimated ablation by about one third. Without correct-
ing the RACMO mass balance field (fRACMO = 1.0) accu-
mulation in the Larsen C embayment would be much higher
(79 Gt yr−1), which would result in a strongly positive mass
budget when combined with the mass loss data byDepoorter
et al.(2013). A tendency towards a positive bias of RACMO
for the Antarctic Peninsula is also indicated by comparison to
the sparse in situ accumulation observations (see compilation
in Turner et al., 2002). Due to inconsistencies at the temporal
and spatial scale a direct comparison is however difficult.

According toCuffey and Paterson(2010), our calibrated
value for Af corresponds to the viscosity of ice at tem-
peratures of between−5 to −10◦C, which is conceivable
compared to the direct measurements byZagorodnov et al.
(2012). These rather rough considerations do not prove the
validity of the calibrated parameter values but indicate that
they are in a reasonable range, and that our assumptions on
basal sliding (fsl, seeMorlighem et al., 2013b) are appropri-
ate.

We compare the average of point-to-point differences of
measured and calculated ice thicknesses and surface flow
speeds for each glacier individually to observations (Fig.4).
Although this is not a real validation as the bulk data have
been used for constraining the model parameters (Fig.3),
valuable information on the performance of our approach
at the spatially distributed scale is provided. The average
of point thicknesses for individual glaciers is predicted with
a mean relative error of 19 % and a root-mean-square er-
ror (RMSE) of 102 m (Fig.4a). The agreement of calcu-
lated glacier-specific flow speed with observations is rela-
tively poor (mean relative error of 50 %). However, if aver-
aged over glacier size classes, mean surface velocities are
well captured (Fig.4b). This indicates that our approach re-
produces the general flow field but shows a lesser perfor-
mance at the local scale.

www.the-cryosphere.net/8/1261/2014/ The Cryosphere, 8, 1261–1273, 2014
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Figure 3. Averaged absolute misfit with OIB thickness data in m
(black contours and grey shading) and ice flow velocity in m yr−1

(red contours) for different combinations offRACMO andAf (see
Eqs.1 and2). The optimal parameter combination is indicated by
the blue cross.

Observed and simulated thickness is also compared lo-
cally. The RMSE over all OIB point measurements is 255 m.
There is a tendency of the model to overestimate measured
thicknesses of< 500 m and to underestimate it at locations
with > 1000 m of ice (Fig.5). The relative errors decrease
with ice thickness.

3.3 Incorporating Operation IceBridge data

OIB thickness data represent the best and most direct in-
formation on bedrock elevation. Despite the generally good
agreement of measured and modelled point thicknesses at
the glacier-specific scale (Fig.4a), the model results may
deviate by several 100 m from observations for certain OIB
flight lines (Figs.5 and 6a). We thus incorporate the local
OIB data into the ice thickness distribution given by the cal-
ibrated model (Fig.2c). FollowingFarinotti et al.(2014) the
point-based misfit is spatially interpolated for each glacier
with OIB data using an inverse distance averaging scheme
that results in a 2-D correction field (Fig.6b). This spatial
correction map is then superimposed on the initially mod-
elled thickness distribution. Although this final adjustment
can only be performed for 15 % of the glaciers, the coverage
in terms of catchment area is high (71 %) as OIB data are
available for most of the large glaciers.

As a final step, the corrected ice thickness distributions
of all individual glaciers are combined into a single high-
resolution grid. As the glacier-specific calculations are inde-
pendent from each other, results do not necessarily agree at
ice divides. We therefore apply a moving window that av-
erages ice thickness smoothly for 1 km wide bands along
the ice divides and corrects local thickness differences. The
bedrock topography is then obtained by subtracting calcu-
lated thickness from the surface DEM. Gridded ice thickness
and bedrock are available at 100 m resolution from the Sup-
plementary Online Material (SOM).

4 Uncertainty analysis

The uncertainty in inferred ice thickness distribution and
bedrock topography is composed of several elements. These
are separately assessed and combined in order to provide an
estimate of (1) the overall uncertainty in ice volume and sea-
level equivalent, and (2) the local uncertainty.

The two calibration parameters were determined as the op-
timal combination to match OIB thickness and surface flow
velocity data (Fig.3). To investigate the robustness of the pa-
rameter set to reduced data availability and its validity for
different sub-regions of the Peninsula, we divided the study
area into four sectors separated by the main topographical
divide into a western/eastern part, and the circle of 66◦ S
latitude into a northern/southern part. We then re-calibrated
fRACMO andAf only using thickness and velocity data from
one of the four sectors (NW, NE, SW, SE) with the same ap-
proach as described in Sects.3.2and3.3. The so determined
parameters are optimal for the respective sector but their per-
formance is inferior when applied to the entire study area. By
re-calculating the complete bedrock topography with the sec-
torally calibrated parameters we obtained a range of the over-
all ice volume due to parameter estimation uncertainty and
the spatial representativeness of the data used for calibration.
Based on the same procedure, we also included an estima-
tion uncertainty for (i) basal sliding by varyingfsl,i (Eq. 3)
by ± 20 %, and (ii) increasing/decreasing∂h/∂t (Eq. 1) by
a factor of 2.

The results of these experiments indicate an uncertainty in
calculated total ice volume of± 9.7 %. Parameter combina-
tions obtained by calibration solely on the northern (south-
ern) sectors indicate slightly smaller (bigger) thicknesses.
The sensitivity of overall ice volume on the assumptions on
basal sliding is relatively small (± 1.2 %), and the depen-
dence on the tested range of∂h/∂t is minor (± 0.3 %). The
modest impact of assumptions on basal sliding on total vol-
ume is attributed to the fact that changes infsl are partly
compensated by the re-calibrated flow rate factorAf .

For estimating the local uncertainty in calculated ice thick-
ness two approaches are combined. (i) We statistically eval-
uate the skill of the reference result to reproduce point
OIB data based on the optimal parameters. Uncertainty (± 1
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Figure 4. Validation of calculated glacier-specific(a) mean ice thickness (average over all OIB data points) and(b) mean surface flow
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Figure 5. Relative model error for classes ofn OIB ice thickness
measurements. The solid line shows the median, the box includes
50 % of the data points, and the bars indicate the range between the
10 % and the 90 % quantile.

standard deviationσ ) is calculated for 100 m classes of mod-
elled thickness.σ is between 46 and 41 % of local thick-
ness providing a first order uncertainty estimate at an arbi-
trary unmeasured location. (ii) As we include direct infor-
mation from OIB data into our final result, the thickness
accuracy will be higher in the vicinity of OIB flight lines.
Farinotti et al.(2014) accounted for this fact by construct-
ing a distance-dependent uncertainty function, derived from
resampling experiments of GPR data from Starbuck Glacier.
Here, we adopt this function in normalized form, assuming it
to be representative for the entire study region.

Whereas approach (i) yields an uncertainty relative to local
ice thickness, approach (ii) provides a correction function for

this estimate with values in the range[0,1] being small close
to OIB measurement locations and maximal at distances of
15 km or more from the next thickness sounding. By multi-
plying the uncertainty grids from the approaches (i) and (ii),
an error map for the entire study region is created, provid-
ing information on local ice thickness and bedrock uncer-
tainty in both absolute and relative terms (Fig.7, see SOM
for uncertainty map of the entire Antarctic Peninsula). On
average, the local thickness uncertainty is± 95 m but val-
ues for deep troughs with no nearby OIB measurements can
reach± 500 m. Fortunately, some direct data are available
for many large glaciers considerably reducing the total un-
certainty (Fig.7).

5 Results and discussion

Our high-resolution bedrock for the Antarctic Peninsula
reveals complex subglacial structures with deeply incised
troughs and a high ice thickness variability at short spa-
tial scales (Fig.8). Despite the steep mountain relief a con-
siderable fraction of the ice is grounded below sea level:
23 300 km2 (24 % of the total) in terms of surface area, and
12 000± 2600 km3 (34 %) in terms of ice volume (Table1).
According to our data set, the mean ice thickness of the
Antarctic Peninsula north of 70◦ S is 364± 35 m. For some
outlet glaciers, thicknesses of more than 1500 m are found
(e.g. Crane, Flask, Lurabee, Fig.1) and the bedrock is partly
located up to 1000 m below sea level. This is also supported
by OIB data (see Fig.6a). The total ice volume in the study
area is 35100± 3400 km3 (Table1).

To evaluate the potential sea-level rise contribution of
the Antarctic Peninsula we use an ocean surface area of
3.62×108 km2. Average glacier density for every grid cell is
obtained by combining calculated ice thickness with results
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Figure 6. (a) Observed and calculated bedrock elevation of Flask
Glacier (Fig.1) along several OIB flight lines (separated with verti-
cal dotted lines).(b) Interpolated thickness correction field obtained
by comparing local ice thickness measurements (black dots) to cal-
culated thickness.

Table 1.Number of glacier basinsn, surface areaA, calculated total
ice volumeV , volume grounded below sea levelV<0, and sea-level
equivalent (SLE) for the entire Antarctic Peninsula and sub-regions
west/east of the main topographic divide, and north/south of 66◦ S.

Reg. n A V V<0 SLE
(km2) (103 km3) (103 km3) (mm)

NW 707 16 389 3.9± 0.5 1.1± 0.4 7.8± 0.8
NE 248 19 024 6.2± 0.8 3.0± 0.6 10.6± 1.0
SW 387 31 883 13.8± 1.2 5.0± 0.5 28.0± 2.1
SE 264 29 131 11.2± 0.9 2.9± 1.1 22.4± 1.3

Tot. 1606 96 428 35.1± 3.4 12.0± 2.6 68.8± 5.2

of a firn densification model (Ligtenberg et al., 2011) driven
by RACMO at 5.5 km resolution (seeLigtenberg, 2014, for a
description). Over the glacier volume analysed, a mean den-
sity of 852 kg m−3 is found. For ice grounded above sea level
we calculate the contributing ice mass by using local glacier
densities. For ice grounded below sea level only the mass
between the ice-equivalent surface and the elevation corre-
sponding to flotation level effectively contributes to sea-level
rise (see alsoFretwell et al., 2013). Floating ice has a small
positive effect on sea level due to dilution of ocean waters
(Jenkins and Holland, 2007) which is however not accounted
for here.

The Antarctic Peninsula north of 70◦ S has the potential to
raise global sea level by 0.069±0.005 m, which is negligible
compared to the entire Antarctic ice sheet (58 m,Fretwell
et al., 2013). However, considering the short response time
of glaciers on the Peninsula (e.g.Barrand et al., 2013b), it
needs to be taken into account in decadal-scale projections.
Compared to other glacierized mountain ranges around the
globe, the contribution potential of the Antarctic Peninsula is
on a par with Arctic Canada and is significantly higher than
that from e.g. Alaska, the Russian Arctic, Patagonia or High
Mountain Asia (Huss and Farinotti, 2012).

The regional distribution of glacier area and volume is
compiled in Table1. North of 66◦ S (sectors NW and NE)
the Peninsula is characterized by a large number of glaciers,
smaller average thicknesses and a sea-level rise contribution
potential of 27 % relative to the whole study area. The largest
average ice thickness is found in the southwest dominated by
wide and flat glaciers (Seller/Fleming) that are based below
sea level over much of their area. Glacier catchments in the
southeast have the largest average size and are still buttressed
by the Larsen C Ice Shelf. They exhibit slightly less volume
related to higher average surface slopes.

In comparison to Bedmap2 (Fretwell et al., 2013), our
new bedrock for the Antarctic Peninsula provides a ten times
higher resolution and significantly more details on the sub-
surface topography. We capture many features of small-scale
variability that were lost in the 1 km grid of Bedmap2 such as
narrow subglacial troughs or smaller ice thicknesses around
rock outcrops.

Fretwell et al.(2013) state a total sea-level rise potential
of 0.2 m for the Peninsula, which is substantially more than
our estimate. Their evaluation is however based on a much
larger area and is not directly comparable. We compared the
new high-resolution bedrock data set to Bedmap2 for the
study region by resampling our thicknesses to a 1 km grid
and cropping it with the rock mask of Bedmap2. According
to our data set, mean ice thickness is 124 m (+48 %) higher
than for Bedmap2. Hence, the difference is beyond the er-
ror bounds of the present assessment. The larger ice thick-
ness might be explained with extrapolation from the sparse
and non-representative ice thickness observations into un-
measured regions in the creation of Bedmap2, and with the
smoothing introduced by the too-coarse grid resolution.
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Figure 7. (a)Absolute, and(b) relative ice thickness uncertainty maps for a region around Crane/Starbuck/Flask Glacier (Fig.1). OIB flight
lines are indicated. Contours (500 m interval) refer to ice thickness.

Figure 8. Inferred(a) ice thickness distribution and(b) bedrock elevation of the Antarctic Peninsula.
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Figure 9. Comparison of Bedmap2 (Fretwell et al., 2013) to the new bedrock data set around Crane/Starbuck/Flask Glacier (Fig.1). Ice
thickness according to(a) Bedmap2,(b) this study, and(c) the difference(a − b). A profile along A–B–C is shown in Fig.10.
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Figure 10. Comparison of bedrock elevation according to
Bedmap2 and this study along the profile A–B–C (see Fig.9).

A detailed comparison of Bedmap2 with the new data
set in a region characterized by several large outlet glaciers
demonstrates the considerable differences at the local scale
(Fig. 9). Bedmap2 correctly indicates the location of the
biggest subglacial valleys as they are relatively wide (3–
5 km) and covered by at least some OIB data (Fig.9a). How-
ever, their maximum depth is often strongly underestimated,
and smaller troughs, such as Starbuck Glacier with observed
thicknesses of up to 1000 m (Farinotti et al., 2014), are al-
most completely missing (Figs.9b and10). Furthermore, the
new bedrock map indicates systematically higher ice thick-
ness in the interior of the Peninsula. Local differences be-
tween the data sets can reach 1000 m and show a high spatial
variability (Figs.9c and10).

A number of factors that were not included in the uncer-
tainty assessment (Sect.4) as their effect on calculated ice
thickness is difficult to quantify, hamper the reliability of our
high-resolution bedrock map to a certain degree. The model
parameters are assumed to be constant over the entire study
region, i.e. to not show any spatial variability depending on
geographic location or local climate. This is, of course, an
important simplification. For example, ice temperatures, and
thus the flow rate factorAf , are likely to show variations

along the glacier and to be different for the maritime north-
ern tip of the Peninsula compared to the more continental
south of the study region. Also,fRACMO is assumed to be the
same for every glacier although the bias in the downscaled
RACMO data set is poorly constrained in the spatial domain.
The apparent mass balancẽb (Eq. 1) is determined by the
glacier’s current dynamic imbalance.∂h/∂t shows a high
spatio-temporal variability over the Antarctic Peninsula (e.g.
Berthier et al., 2012) and was only crudely approximated. As
the unambiguous calibration of the model was only possible
with reducing the degrees of freedom, the above effects were
not taken into account. The regionally constrained calibra-
tion experiments however indicate that these simplifications
have rather small effects on the final result.

The chosen approach strongly relies on the ice surface
topography and its uncertainties, particularly regarding sur-
face slope. According toCook et al.(2012) the ASTER-
based 100 m resolution DEM has an uncertainty of± 25 m.
Sensitivity tests for individual glaciers showed that perturb-
ing the DEM with the stated uncertainty has a relatively
small effect on calculated total ice volume (less than 3 % de-
pending on the chosen glacier). Simplifications of the three-
dimensional geometry to the 2-D shape used for calculating
semi-distributed ice thicknesses (see Fig.2b) have the po-
tential to introduce additional uncertainties in particular re-
garding branched glacier systems. However, quantifying the
effect of this factor inherent to our approach was not possi-
ble.

The inferred ice thicknesses and bedrock elevations
strongly depend on uncertainties in OIB data. In fact, we
make the rather strong assumption that all thickness measure-
ments are accurate, i.e. that the bedrock reflector has been
correctly detected and that the uncertainties in converting
travel times of the electromagnetic waves into thicknesses
are small. Direct comparison of OIB thickness with ground-
based GPR on Starbuck Glacier indicates good agreement of
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the two independent measurement approaches. Median and
maximal deviations are contained within 3.7 % and 11.7 %
of the local ice thickness, corresponding to 27 m and 45 m,
respectively, indicating that OIB also captures the bottom
of deep glacial troughs (Farinotti et al., 2014). In the case
of an unfavourable alignment of the profiles (e.g. along nar-
row subglacial valleys), a systematic underestimation due to
reflections from valley side-walls however seems possible.
Given the large number of measurements used we assume
that random errors cancel out each other and only affect our
bedrock map locally.

As the calculated ice thickness locally disagrees with di-
rect observations based on OIB (Fig.5) we apply a cor-
rection grid to tie our final bedrock map to the measure-
ments (Fig.6b). Although this procedure might locally vi-
olate mass conservation according to our simple modelling
approach, we argue that forcing the final solution to fit all di-
rect measurements is more suitable than forcing the solution
to obey mass conservation calculated through one particu-
lar model. Potential future improvements of the bedrock es-
timate for the Antarctic Peninsula might be directed towards
more strictly enforcing mass conservation and including spa-
tially distributed surface velocity data as an immediate con-
straint into the ice thickness determination (see e.g.McNabb
et al., 2012; Morlighem et al., 2014).

6 Conclusions

In this study, we further developed and applied a method
to infer the complete bedrock topography of the Antarc-
tic Peninsula north of 70◦ S with a resolution of 100m×
100 m. Our approach allows including all available infor-
mation provided by various spatially distributed data sets in
order to compute thickness distribution of each individual
glacier of the Peninsula. Using downscaled RACMO sur-
face mass balances we determined mass fluxes along each
glacier and inverted them using the flow law for ice and
assumptions on basal sliding to obtain local ice thickness.
500 000 point thickness measurements from Operation Ice-
Bridge were used to calibrate, validate and locally adjust the
modelled thickness distribution. Furthermore, we used grid-
ded ice surface velocities for the entire study region to con-
strain our result. The combination of these observational data
with considerations of ice flow dynamics allows us to extrap-
olate to unmeasured catchments based on physical relations.
This is a significant advantage compared to direct extrapo-
lation approaches and makes it possible to increase spatial
resolution by one order of magnitude.

Our new data set depicts the subglacial topography with
great detail. Deeply incised valleys are captured and the
rugged topography can be resolved. One third of the total
volume is grounded below sea level reinforcing the high vul-
nerability of the region to changes in the system such as the
break-up of ice shelves. According to our results, the Antarc-

tic Peninsula has the potential of raising global sea level by
69± 5 mm. In comparison to Bedmap2 we find significantly
higher mean ice thicknesses (+ 48 %). This systematic dif-
ference is attributed to the higher resolution of our new data
set better rendering the shape of glacial troughs, and to the
approach used to calculate thickness in regions not covered
with direct measurements.

The bedrock data set derived in the present study might
be useful for calculating the future response of glaciers
of the Antarctic Peninsula using ice dynamic models and,
hence, to better understand the processes triggering their
rapid changes. This may offer new possibilities for studying
cryospheric glacier contribution to sea-level rise.

The Supplement related to this article is available online
at doi:10.5194/tc-8-1261-2014-supplement.
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