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S U M M A R Y
Magnitude estimation is a central task in seismology needed for a wide spectrum of applications
ranging from seismicity analysis to rapid assessment of earthquakes. However, magnitude
estimates at individual stations show significant variability, mostly due to propagation effects,
radiation pattern and ambient noise. To obtain reliable and precise magnitude estimates,
measurements from multiple stations are therefore usually averaged. This strategy requires
good data availability, which is not always given, for example for near real time applications
or for small events. We developed a method to achieve precise magnitude estimations even in
the presence of only few stations. We achieve this by reducing the variability between single
station estimates through a combination of optimization and machine learning techniques on
a large catalogue. We evaluate our method on the large scale IPOC catalogue with >100 000
events, covering seismicity in the northern Chile subduction zone between 2007 and 2014.
Our aim is to create a method that provides low uncertainty magnitude estimates based on
physically meaningful features. Therefore we combine physics based correction functions with
boosting tree regression. In a first step, we extract 110 features from each waveform, including
displacement, velocity, acceleration and cumulative energy features. We correct those features
for source, station and path effects by imposing a linear relation between magnitude and the
logarithm of the features. For the correction terms, we define a non-parametric correction
function dependent on epicentral distance and event depth and a station specific, adaptive
3-D source and path correction function. In a final step, we use boosting tree regression to
further reduce interstation variance by combining multiple features. Compared to a standard,
non-parametric, 1-D correction function, our method reduces the standard deviation of single
station estimates by up to 57 per cent, of which 17 per cent can be attributed to the improved
correction functions, while boosting tree regression gives a further reduction of 40 per cent.
We analyse the resulting magnitude estimates regarding their residuals and relation to each
other. The definition of a physics-based correction function enables us to inspect the path
corrections and compare them to structural features. By analysing feature importance, we
show that envelope and P wave derived features are key parameters for reducing uncertainties.
Nonetheless the variety of features is essential for the effectiveness of the boosting tree
regression. To further elucidate the information extractable from a single station trace, we
train another boosting tree on the uncorrected features. This regression yields magnitude
estimates with uncertainties similar to the single features after correction, but without using
the earthquake location as required for applying the correction terms. Finally, we use our
results to provide high precision magnitudes and their uncertainties for the IPOC catalogue.
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1 I N T RO D U C T I O N

Magnitudes are key metrics for assessing the impact of earthquakes,
used for example for seismicity analysis or disaster response. These
tasks require a high precision of the magnitude scale as well as
quantified uncertainties. Current methods encounter uncertainty in
magnitude estimates from single stations, which are caused by site,
source and path effects and background noise. In this paper, we
aim to find and calibrate interpretable magnitude scales with low
uncertainties. We focus on reducing the variability of single station
estimates. The magnitude scales and calibration functions improve
magnitudes both in a fast assessment context when only data for
a single station might be available, and, assuming some degree of
independence between stations, for more accurate network wide
magnitude estimations.

Many different magnitude scales exist for a multitude of use
cases. An extensive overview can be found in Bormann (2012).
Here, we focus on magnitudes derived from simple waveform fea-
tures. The first magnitude of this kind was the local magnitude,
ML, as defined by Richter (1935), which was based on the peak
horizontal displacement recorded with a particular instrument, the
Wood–Anderson seismometer. ML has the advantage of a simple
definition, allowing for fast and robust determination. Uncertain-
ties typically are reduced by averaging measurements from mul-
tiple stations. On the downside, ML and similar magnitude scales
require distance-dependent correction functions, which need to be
calibrated for each region in order to take the local earth structure
into account. ML was first developed for crustal events in California
(Richter 1935). In subduction zones, where both crustal and inter-
face seismicity is present, a correction function based on hypocen-
tral distance only is inaccurate due to the different travel paths and
therefore anelastic and geometric focusing effects experienced for
crustal and deep events.

For ML, the amplitude reducing effects of (physical) attenuation
and geometric spreading are modeled empirically using a table of
attenuation values over distance. In order to reduce cumbersome
expressions, we will refer to the combined effect of (physical) at-
tenuation and geometric spreading simply by attenuation as both
will generally reduce the recorded amplitudes with the distance
traveled by the waves. This approach has been generalized in the
context of non-parametric models by Brillinger & Preisler (1984).
Savage & Anderson (1995) propose a simple 1-D model with linear
interpolation that can be fit to data using quadratic optimization. A
similar model, covering the same area as in this study, was applied to
strong motion data from 106 events in the Pisagua sequence 2014
by Bindi et al. (2014). More complex attenuation functions have
been proposed in the context of ground motion prediction. Dawood
& Rodriguez-Marek (2013) propose a 2-D attenuation function, by
modelling the attenuation per grid cell in a regular grid. They op-
timize the model parameters using 7242 measurements from 117
aftershocks of the Mw 9.0 Tohoku earthquake in 2011.

Reducing magnitude uncertainties is a major challenge for rapid
assessment of earthquakes. Zollo et al. (2006) propose a magni-
tude estimation based on early P- and S-wave peak displacement.
Lancieri & Zollo (2008) extend the work to a Bayesian approach
giving uncertainty estimates. Multiple studies (e.g. Festa et al. 2008;
Picozzi et al. 2018; Spallarossa et al. 2019) propose to incorporate
the early radiated energy, obtained as the squared velocity inte-
grated over time. As the quantitative results in these studies are
obtained in the context of early warning, they can not directly be
compared to the results of this study. Nonetheless the methods share

the idea of choosing appropriate features to minimize single station
uncertainties.

The classical method for local magnitudes follows a two step
procedure. It consists of a feature extraction and the application of a
hypocentral distance correction. To reduce uncertainties we extend
this procedure. In the first step, we define 110 physically motivated
features that can be easily derived from the single station waveform.
In the second step, we model the attenuation using a 2-D grid func-
tion, together with a station specific, adaptive 3-D source correction
function to account for the complex subduction zone geometry. One
set of calibration functions is derived for each feature. Finally, we
add a third step where we combine the single station features us-
ing boosting tree regression to obtain more precise estimates. All
steps are enabled by the large number of events present in the IPOC
catalogue for Northern Chile by Sippl et al. (2018).

Using a multistepped approach based on hand-crafted, physics-
inspired features instead of an end-to-end machine learning ap-
proach offers multiple benefits. First, the resulting scales are more
interpretable. This includes analysis of the correction functions,
comparison of the scales to each other and interpretation of the key
features for the boosting tree regression. Secondly, true magnitudes
are not known or even necessarily well defined, as most magnitude
scales, except e.g. MW and ME, are defined through measured fea-
tures rather than through independent physical source properties.
Therefore our approach uses bootstrapping by first creating high
quality single feature network-average magnitudes using extended
correction functions, and then applying boosting tree regression
with these magnitudes as labels and the corrected measurements as
features. Following our analysis we extend the IPOC catalogue with
well-calibrated magnitude values and their uncertainties.

2 M E T H O D S

2.1 Earthquake catalogue and stations

Our analysis is based on the earthquake catalogue of Sippl et al.
(2018). The catalogue covers the region of the northern Chile forearc
and contains 101 601 events. The events were extracted from 8 yr
of continuous seismic data between 2007 and 2014 using automatic
event detection and phase picking routines. The magnitudes range
from <2 up to 7.7 and the estimated magnitude of completeness for
ML is ∼2.8 (Sippl et al. 2018). All event hypocentres were double-
difference relocated, based on picked arrival times. The catalogue is
based on data from the IPOC network (CX, GFZ German Research
Centre For Geosciences & Institut Des Sciences De L’Univers-
Centre National De La Recherche CNRS-INSU 2006). Additional
seismic data were obtained from the GEOFON (GE, GEOFON Data
Centre 1993), CSN (C, C1, Universidad de Chile 2013), WestFissure
(8F, Wigger et al. 2016), Iquique (IQ, Cesca et al. 2009) and Minas
(5E, Asch et al. 2011) networks. A full map showing the detected
events and the stations used can be found in Fig. 1.

Sippl et al. (2018) use this catalogue to analyse the double seismic
zone of the northern Chile forearc. The catalogue events are classi-
fied into upper plate, plate interface, upper plane and lower plane,
based on their location. In addition the authors identify an interme-
diate depth cluster, which is used as a separate class. The catalogue
features some events belonging to none of the classes mentioned,
mostly events at the border of the study area. We removed these
events from our analysis as they are expected to have higher lo-
cation uncertainties, resulting in a total number of 96 185 events
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144 J. Münchmeyer et al.

Figure 1. Event distribution (from Sippl et al. 2018) and broadband station
location. Stations with strong motion data are denoted by an additional black
triangle. The sharp boundaries on the north, east and south side of the study
area are due to the event selection criteria in the original catalogue.

included in this study. For further information on the classification,
catalogue and study region we refer to Sippl et al. (2018).

We use the catalogue to evaluate our method, as it is both consis-
tent and challenging, while offering a large amount of data. Con-
sistency is achieved by the low temporal variability in the station
coverage, a consistent tool chain and double difference relocated
hypocentres. It is a prerequisite for the consistent and low uncer-
tainty calibration of magnitude scales. The challenge arises from
the wide range of magnitudes and the different types of seismicity
present in the subduction zone.

For our analysis we mostly use the same seismic stations as Sippl
et al. (2018), but also incorporate data from strong motion stations.
A list of all 31 stations can be found in the Table F1.

In total we analyse ∼1 100 000 P picks and ∼650 000 S picks
from the catalogue. A further 450 000 S picks were predicted, using
the 1-D velocity model of Graeber & Asch (1999).

Fig. 2 shows the distribution of measurements across distance
and depth. Nearly all measurements were taken at distances below
400 km and depths shallower than 150 km, while few additional
measurements exist up to 500 km distance and 200 km depth. We
observe multiple peaks in the depth distribution, with two smaller
peaks around 5 and 30 km and one large peak around 110 km.
These are caused by the different types of seismicity present, namely
crustal events and events in the intermediate depth cluster. For fur-
ther details on the catalogue and seismicity in Northern Chile we

Figure 2. Distribution of the number of measurements binned by epicentral
distance and event depth.

refer to the original publication of the catalogue by Sippl et al.
(2018).

2.2 Feature extraction

The feature extraction process encompasses some common pre-
processing steps and the actual feature generation. A schematic
overview of the workflow for each waveform is shown in Fig. F1.
For each event we generate the features for all stations, for which
the catalogue contained at least one phase pick.

We generally use broadband records. We assume a clipped trace
if its peak value exceeds 80 per cent of the maximum output of
the digitizer, as estimated from its bit count. In this case we use
the strong motion record instead. A similar procedure is used by
Cauzzi et al. (2016). If no strong motion data is available, the record
is discarded. We also discard traces with gaps.

We remove the instrument response using the inventories pro-
vided by GEOFON. We apply a cosine taper in the frequency domain
with corner frequency parameters 0.005, 0.01, 30, 35 Hz before the
deconvolution. Whenever strong motion data is used, the data is
integrated to obtain velocity traces.

As the recorded signal is often below the noise level in the broad-
band records, we high-pass filter the data to increase the signal-to-
noise ratio (SNR), while retaining as much of the low frequency
information as is possible. We select the frequency interval flow, fhigh

with the lowest frequencies from a pre-defined set of candidates
(Table A1), such that the mean spectral amplitude ratio between the
30 s before the P pick and the 30 s after is at least 4. The data is then
high-pass filtered with the corner frequency flow. The frequency fhigh

is only used for frequency selection, but is discarded for the filtering
of the actual data. This strategy is applied as we observed sufficient
SNRs for high frequencies for all events. Therefore we only need
to identify the lowest band, where the SNR is still sufficient for
the following steps. More details on the applied filtering and the
distribution of selected frequencies can be found in Appendix A.
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Multifeature magnitude estimation 145

Figure 3. Example trace with extracted features denoted by circles. The
trace shows the vertical component from station PB01 for an Mw= 6.3 event
at a depth of 21 km and an epicentral distance of 193 km.

As a final step of the pre-processing, we detrend the filtered data
using the best linear fit in a 300 s window around the event.

The resulting velocity trace is differentiated to obtain the accel-
eration trace and integrated to obtain the displacement trace for the
vertical (Z), radial (R) and transverse component (T). We use the
absolute value of all horizontal components (NE) as well as the
absolute value of all components (ZNE) as additional traces where
we compute the absolute value from the vectorial sum of the single
components.

From each trace we export six values, as shown in Fig. 3. We
extract the peak values of the P and S wave. For the P wave peak
we search the waveform between the P pick and the S pick minus a
safety margin in order to avoid interference from the S waves. The
safety margin is taken to be 5 per cent of the measured or estimated
S wave traveltime, but always at least 0.5 s. For the S wave peak
we restrict the search window to the first 30 s after the S pick to
minimize the possibility of overlapping events.

In addition, we extract values from the P and S wave envelopes.
We calculate the signal envelope and low-pass filter it at 0.5 Hz. We
then export the values at 5 and 20 s after the P and S picks. The
envelope values for the P wave are not reported in case the time
difference between the P and S pick is less than the respective lag
times. We include the envelope values as we expect them to be less
influenced by the radiation pattern as well as distance uncertainties.
We chose delays of 5 and 20 s because the 5 s envelope value should
be representative of the energy in the direct arrival for moderately
sized events but less variable than the peak, while the 20 s value
represents a compromise between accessing, for most event-station
pairs, the late coda where the wavefield is fully diffusive but still
retaining signal levels well above the noise level for practically all
events. For further details on the choice of envelope times we refer
to Appendix B.

In addition to the features from the displacement, velocity and
acceleration traces, we export the energy and the peak value of a
simulated Wood–Anderson instrument. We calculate the energy as
the integral of the squared velocity trace. We export both the integral
over the time between P and S pick and the integral over the first
30 s after the S pick. For the Wood-Anderson instrument we report
the peak values from the P and S waves as before. All resulting
feature values are logarithmized with base 10.

We rescale the resulting energy features by a factor of 2/3. Fol-
lowing the analysis by Deichmann (2018b) the factor of 2/3 is
the theoretically derived scaling factor between ML and log E. The

different scaling of energy compared to the displacement scale is
further discussed in Section 3.

In total we extract 110 features, 22 from each component or
combination thereof. Of the 22 features half are from the P wave
and half from the complete waveform. The features are energy
and the simulated Wood–Anderson peak as well as the peak, 5 s
envelope and 20 s envelope values from displacement, velocity and
acceleration (see Table 1).

In our data set features might be incomplete due to missing
waveform data for single components or because the P envelope
values are later than the S arrival. All features are present in at least
98.8 per cent of the measurements. The only exceptions are the 5 s
P-wave envelope value with only 97.7 per cent availability and the
corresponding envelope value at 20 s with only 21.4 per cent. This
lower availability is expected, as the value can only be measured at
a significant distance to the event.

2.3 Correction terms and normalization

To correct the measurements for the source–receiver distance, sta-
tion bias and source conditions, we use a set of non-parametric
correction functions. The classical approach of Richter (1935) uses
a table of hypocentral distance correction values. We extend this
method by using a non-parametric 2-D correction function incor-
porating source–receiver distance and source depth, as well as by
adding a station correction and a station-specific source correction
term. The latter will be mostly affected by propagation effects re-
lated to 3-D heterogeneity, but could theoretically also incorporate
radiation pattern effects, if certain mechanisms are dominant in
some area.

Let E be the set of events and S be the set of stations. Let Es⊆E be
the subset of E measured at station s ∈ S. For station s ∈ S and event
e ∈ Es we model the difference between the measured feature Y e

s

and the corresponding event magnitude Me through an attenuation
function �, a station specific source correction term Ls and a station
correction Bs. With an error term εe

s we obtain:

Y e
s − Me = �(re

s , de) + Ls(pe) + Bs + εe
s , (1)

where re
s is the epicentral distance between event and station, de

the event depth and pe the hypocentre. We formulate a quadratic
minimization problem on the squared error objective function:

Objε = 1

n

∑
s∈S

∑
e∈Es

(εe
s )2 . (2)

Here n denotes the number of error terms or equivalently the number
of measurements for the feature. We now describe the definitions
of the different correction terms, as well as their normalization and
regularization. This will also lead to an extension of the objective
function for the quadratic optimization.

The attenuation function � is defined as a 2-D non-parametric
function on a grid of epicentral distances and depth values. We use
a grid G with 50 linearly spaced distance values between 20 and
500 km and 20 linearly spaced depth values between 10 and 200 km.
Values between the grid points are interpolated bilinearly between
the four adjacent values.

We enforce smoothing of the attenuation function by introducing
a penalty term derived from the 2nd order finite difference approx-
imation of the Laplacian with a regularization term

R� = 1

|G|
∑

(r,d)∈G

λr

(
∂2�

∂r 2

)2

+ λd

(
∂2�

∂d2

)2

. (3)
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146 J. Münchmeyer et al.

For clarity reasons we write the continuous version of the Laplacian
here, rather than its finite difference approximation. The factors λr

and λd are model hyperparameters describing the level of smooth-
ing. We use |G| to denote the cardinality of the set G, that is the
number of grid points.

To account for source location specific systematic errors, we
introduce a source specific correction function Ls for each station
s. We randomly sample a set of events Ēs ⊂ Es and assign to each
of the events e ∈ Ēs a correction term le

s . The correction for a
single event is defined through the correction terms of the k nearest
neighbours:

Ls(e) = 1

k

∑
e′∈kNN(e,Ēs )

le′
s . (4)

Here kNN(e, Ēs) is the set of the k nearest neighbours of e in Ēs . For
our experiments we chose k = 10 and Ēs such that |Ēs |/|Es | ≈ 0.1.
As distance metric for the determination of the nearest neighbours
we use the euclidean distance between the hypocentres, but scale
the depth difference with a factor of 3, to account for the high
importance of the depth. We use the average over the set of neigh-
bours to obtain a smoothly varying function of position. As the
density of events is not uniform over the region, the nearest neigh-
bour based function can represent higher variability in regions with
many events, while being smoother in regions, where a high reso-
lution function would not be well constrained. The subsampling Ēs

from Es is necessary for performance reasons, as each element in
Ēs introduces an additional free parameter. We choose one subset
Ēs ⊆ Es for each feature and station.

The location correction is normed and regularized by:

RL = λL
1

|S|
∑
s∈S

1

|Ēs |
∑
e∈Ēs

le
s

2 (5)

∀s ∈ S :
∑

e∈Es
Ls(e) = 0 (6)

The factor λL is a hyperparameter to adjust the level of regulariza-
tion.

For each station s we add a station bias Bs to account for site
effects. We constrain the biases of all stations to sum up to zero:∑
s∈S

Bs = 0. (7)

The magnitude scale needs to be calibrated as the system would
otherwise be underdetermined. Specifically attenuation with depth
can not be extracted from the data, as the depth is only event but
not station specific as the distance. The Richter definition resolves
attenuation with depth by using hypocentral distance. Due to the sep-
aration of depth and distance in our approach, the standard Richter
definition of assigning magnitude 3.0 to a 1 mm displacement at
a distance of 100 km is not applicable. Therefore we calibrate our
scale against Mw, which also includes information on the attenuation
in depth direction.

We obtain a total of 155 Mw values from the Global CMT Project
(Dziewonski et al. 1981; Ekström et al. 2012). As we do not expect
a linear scaling between Mw and our magnitude scales for the full
range of magnitudes covered by Global CMT, we only used the 114
events with magnitudes between 5.0 and 6.0 in the calibration. For
incorporating the information into our model, let EMw

denote the
events for which a moment tensor solution is available. We then

define an objective by:

ObjMw
= λMw

1

|EMw
|

∑
e∈EMw

(Me − Me
w)2. (8)

The factor λMw
controls the trade-off between fitting to Mw and

smoothness of the correction functions. For our analysis we use
λMw

= 0.1.
We use a weak connection between Me and Me

w instead of setting
Me = Me

w for multiple reasons. First, we do not expect the features
to correspond 1:1 with Mw as they might depend on other param-
eters than the seismic moment, for example the stress drop, which
influences the high frequency content in particular. We investigate
this scaling in more detail in Section 3.1. Secondly, we only have
values for Mw for a small subset of the data set available. In conclu-
sion, enforcing equality to Mw might introduce perturbations into
the correction functions. The weak connection resolves the under-
determination of our system, while minimizing the perturbation on
the correction functions.

All correction functions and bias terms are optimized concur-
rently using quadratic optimization on the full objective:

min(Objε + ObjMw
+ R� + RL ). (9)

It consists of the primary objective, the calibration against Mw and
the regularization terms for � and L. It is additionally constrained
by the relations (6) and (7). The free parameters are the event
magnitudes Me, the values of grid G of the correction function �,
the correction terms {le

s }s∈S,e∈Ēs and the station biases {Bs}s ∈ S.
While the source-path correction term could in principle incor-

porate the whole attenuation function, we still decided to split the
attenuation into the distance-depth, the source-path and the station
term for multiple reasons. First, the source-path term is station spe-
cific, while the distance-depth term is universal for all stations. This
enables a by far better calibration of the attenuation with distance
and depth, especially for stations and ranges with only few mea-
surements. Secondly, we can formulate a sensible regularization
more easily: the distance-depth correction is forced to be smooth,
whereas the source-path correction is damped towards zero to en-
sure deviations from the generic distance-depth correction are only
introduced where clearly required by the data. Thus, the correction
functions are easier to interpret, as the station specific and the mean
attenuation effects are separated. For details on the interpretation
see Section 4.3.

2.4 Multifeature estimation

The methods proposed so far only use each feature separately, but
do not leverage combinations of features. As a framework for com-
bining multiple features for a joint magnitude estimate we state a
regression problem: Given all features of a single station estimate
a chosen target network magnitude. We use the term network mag-
nitude to refer to the average across all single station magnitude
estimates. We want to emphasize that the key point is estimating
network wide information from single station features. The target
magnitude scale can be chosen arbitrarily among the scales derived
using the calibration functions, for example the event magnitude
from peak displacement on the horizontal components. Due to the
limited amount of data, we do not use Mw as a target magnitude.

The regression problem has a canonical baseline, which is the
station magnitude estimate from the feature corresponding to the
target magnitude. If for example the target magnitude is the peak
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Multifeature magnitude estimation 147

displacement magnitude average over all stations, the baseline pre-
diction from a single station would be its peak displacement mag-
nitude estimate. The error level of this baseline is exactly the error
from the modeling obtained in the previous step. The task of the
regression problem is to estimate network wide information from
the combined features of a single station.

We use boosting trees (Friedman 2002) for regression, training
one common model for all stations. Boosting trees are a special class
of gradient boosting models and use decision trees as the underly-
ing classifiers. They are a rather popular regression technique for
non-linear problems. We use a non-linear approach to model com-
plex dependencies between the features. We show by quantitative
comparison to linear regression that those complex dependencies
are indeed present.

Boosting trees are better suited for our problem than other non-
linear approaches like support vector machines or neural networks.
Support vector machines suffer from long training times for our
problem size and are therefore intractable. Neural networks are
harder to train in the presence of missing values, as they represent
smooth functions. We tried multiple imputation techniques to allevi-
ate this problem, but were not able to achieve the performance level
of boosting trees using neural networks. Boosting trees can handle
this problem by learning a default action for splits at missing data
points [for details see Chen & Guestrin (2016), algorithm 3].

An additional upside of boosting trees is their interpretability
regarding feature importance. We can analyse the information gain
through splits at specific features to get a view of their internal
workings. This is in strong contrast to neural networks, where such
an interpretation is not simple.

As boosting trees rely on decision trees, their value range is
discrete. While this poses a theoretical limitation, the number of
values inside the range is high enough that the discretization is
barely observable. The residuals in the regression predictions are
still by far higher than those added by the discretization. This effect
is only causing higher approximation errors for events with high
magnitudes, as their number in the training set is limited.

2.5 Evaluation

We split our data into a training, a development and a test set with
the ratios 60:10:30. All measurements for one event are guaranteed
to be in the same split. The sets contain ∼670 000, ∼110 000 and
∼330 000 measurements and ∼58 000, ∼9 600 and ∼29 000 events.
We split randomly between the events, but keep the splits fixed for all
evaluation steps and across all features. All models are trained only
on the training set. This includes the correction functions as well as
the boosting tree for feature combination. We use the development
set for hyperparameter selection and report the scores on the test set.
An overview of hyperparameter values can be found in Tables B1
and B2. We discuss the choice of hyperparameters and give advice
for the adaptation to other data sets in Appendix B.

To evaluate the uncertainty of our models we are using the root
mean square error (RMSE) between station magnitude and event
magnitude. Using the definitions from Section 2.3 we define the
RMSE as:

RM SE =
√

1

n

∑
s∈S

∑
e∈E

εe
s

2. (10)

To compare the uncertainty of different scales with each other
we need to normalize the scales. This is necessary to ensure a fair

comparison, as the different scales show different slopes. We nor-
malize by dividing the RMSE by the difference between the 25th
and 75th percentile of the predicted magnitudes. We rescale all mag-
nitudes by multiplying by the 25th and 75th interquantile distance
of the Wood–Anderson magnitude on the horizontal components.
Thereby we obtain RMSE values that approximately resemble local
magnitude units. We chose these quantile values as all scales show a
relatively linear dependency with each other between those values.
We only use the scaling to compare the scales with each other. For
our experiments on the combination of multiple features we use the
plain RMSE, as we only compare the uncertainty between scales
with the same value range.

For the multifeature regression, we always report the RMSE be-
tween the predictions from the single station and the network mag-
nitude from the target feature. We do not optimize for the mean of
all multifeature predictions, as this would trivially converge against
a constant.

Our feature extraction is based on Obspy (Beyreuther et al. 2010).
The extraction is parallelized event wise and conducted on a com-
pute cluster. As no dependencies between events exist, paralleliza-
tion can easily be scaled to clusters of arbitrary size. To optimize
our models we used the Gurobi optimizer (Gurobi Optimization
LLC 2018) using a free academic license. Optimization took ∼3 hr
per model using 64 threads on four Intel Xeon E7-4870 CPUs and
required ∼120 GB of main memory. All boosting tree experiments
were conducted using XGBoost (Chen & Guestrin 2016) on four
Intel Xeon E7-4870 CPUs. Each training process took less than 30
min.

3 R E S U LT S

We report the average RMSE for all extracted features and com-
ponents in Table 1. We can see that differences in RMSE depend
more on the feature and less on the component. Nonetheless we see
differences between the components as well. For the peaks of the
P wave the average normalized RMSE over all feature classes (i.e.
displacement, velocity and acceleration) is 0.216 on the Z compo-
nent and 0.239 on the T component. In between are the ZNE, R
and NE components (in this order). This matches the characteristics
of the P wave as a longitudinal wave, which is expected to have
smaller amplitudes on the transverse than on the vertical and radial
components. The effect is also observable for the envelope values,
although the combinations of components tend to perform similarly
or even better in this case.

For the peak amplitude measurements of the full waveform all
components achieve nearly identical RMSE values. For the enve-
lope values, the differences are more pronounced, especially for
the 20 s envelope values. The best scoring component at 20 s is
ZNE with 0.162 normalized RMSE and the worst Z with 0.183
normalized RMSE. We suspect that taking the absolute value of all
components effectively reduces noise and thereby improves enve-
lope performance.

We see major differences regarding the normalized RMSE be-
tween the different feature classes. For the peaks of the full trace
the lowest average RMSE across all components occurs for velocity
(0.163), followed by acceleration (0.172), Wood–Anderson (0.197)
and displacement (0.198). Energy (0.134) achieves a better score
than all peak values.

Envelope values behave differently for different features. For
displacement, the envelope derived scales show considerably higher
RMSE on most components. In contrast the best 20 s velocity
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148 J. Münchmeyer et al.

Table 1. Normalized RMSE (in local magnitude units) for all analysed features and components on the test set. The second column indicates whether the
features are extracted from the full wave (P+S) or the P wave (P) only. The third column indicates if peak or envelope values are used. The best combination of
peak or envelope, wave and component for each feature class is highlighted in bold. The columns denotes the components, where NE is the absolute value of
all horizontal components and ZNE the absolute value of all components. The rightmost column indicates the average normalization factor applied. The norm
factor does not vary significantly between different components of the same feature and is therefore only given as average across the components. We note
that measurement for the 20 s envelope value on the P wave are only possible for the ∼ 30 per cent of the event-station pairs with sufficiently large distances to
achieve at least 20 s separation between P and S arrivals. They are thus skewed towards larger magnitudes.

Z R T NE ZNE ∅ Norm factor

Displacement Full Peak 0.191 0.195 0.195 0.194 0.190 1.01
Env 5s 0.241 0.243 0.243 0.232 0.225 1.01
Env 20s 0.279 0.266 0.264 0.248 0.241 1.28

P Peak 0.270 0.285 0.302 0.297 0.290 1.39
Env 5s 0.322 0.328 0.347 0.330 0.320 1.47
Env 20s 0.263 0.259 0.295 0.254 0.252 1.48

Velocity Full Peak 0.147 0.164 0.162 0.163 0.155 0.94
Env 5s 0.172 0.199 0.201 0.195 0.184 0.91
Env 20s 0.132 0.138 0.138 0.129 0.120 1.02

P Peak 0.183 0.191 0.194 0.194 0.191 1.03
Env 5s 0.141 0.162 0.168 0.158 0.144 1.06
Env 20s 0.143 0.149 0.155 0.144 0.138 1.13

Acceleration Full Peak 0.160 0.171 0.170 0.172 0.165 0.98
Env 5s 0.169 0.193 0.196 0.190 0.179 0.94
Env 20s 0.128 0.132 0.133 0.125 0.117 1.03

P Peak 0.181 0.187 0.187 0.189 0.187 1.01
Env 5s 0.137 0.146 0.150 0.142 0.132 1.01
Env 20s 0.119 0.124 0.125 0.120 0.116 1.02

Wood-Anderson Full Peak 0.195 0.195 0.197 0.193 0.188 1.02
P Peak 0.292 0.308 0.332 0.320 0.301 1.58

Energy Full 0.124 0.134 0.134 0.132 0.122 0.75
P 0.144 0.160 0.165 0.160 0.147 0.81

and acceleration envelope values have a 23 per cent and 29 per cent
lower RMSE than the respective best peak scales. Scales derived
from features on the P wave show a higher normalized RMSE in
all cases. The increase is up to 69 per cent for the Wood–Anderson
instrument compared to the full wave.

The lowest normalized RMSE value over all are the 20 s envelope
values of acceleration and velocity on the ZNE component (0.120
and 0.117). The best peak derived feature is velocity on the Z
component with 0.147. The best combination of peak or envelope,
wave and component for each feature is highlighted in Table 1.

3.1 Relations between the scales

We now compare the scales obtained from the peak values of
the ZNE components for the different feature classes and energy
(Fig. 4). As reference scale we use peak displacement, as this scale
shows no saturation effects. We denote the scale by MA as proposed
by Deichmann (2018a). The scatter visible in the plot reflects both
systematic effects of earthquake physics and the uncertainties of
both MA and the other scale under considerations.

As all scales are bound to Mw between 5.0 and 6.0, they match
between those values. They deviate outside this range. The Wood–
Anderson based magnitude scales 1:1 with the displacement mag-
nitude for magnitudes below 6.0 and slowly saturates above. Un-
surprisingly, it shows the lowest variance in comparison with the
displacement scale. The velocity magnitude scales 1:1 with dis-
placement for small magnitudes and increases more slowly MA >

5.0. The acceleration shows a similar behavior as the velocity, but
nearly completely saturates above MA > 6.0. The saturation ef-
fects for velocity and acceleration have previously been observed
by Katsumata (2001) and are due to the shifted frequency spectra.
Interestingly, the variance of the acceleration magnitude is highest

Figure 4. Comparison of the different magnitude scales, all relative to
the scale based on displacement (MA). All scales are based on the ZNE
component on the full waveform, using the peak values except the energy
scale. The identity line has been added in black for comparison.

among the scales, suggesting a high variability of peak acceleration
compared to peak displacement.

The energy magnitude grows slightly stronger than MA below
4.0 and scales nearly 1:1 above, exhibiting scatter similar to the
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Multifeature magnitude estimation 149

Figure 5. Estimated magnitudes from different features in comparison to
Mw from Global CMT and additional solutions. Comparisons to Global
CMT are shown as circles, comparisons to our moment tensor solutions
as triangles. All magnitudes were determined from the peak values of the
ZNE component of the full waveform (except energy). The identity line has
been added added in black for comparison. We report R2 scores as a further
orientation.

velocity magnitude. Below 2.0, the energy magnitude compared to
ML approximately follows a 4:3 scaling. Combined with the factor
of 2:3 in the definition of our energy features, this scaling provides
empirical evidence for the 2:1 scaling between ME and ML derived
by Deichmann (2018b). For large magnitudes this scaling only holds
true compared to ML, caused by the Wood–Anderson response, but
not for MA.

We compare the magnitude scales to Mw using 155 moment
tensor solutions from the Global CMT project and 507 further so-
lutions we determined using regional moment tensor inversion (see
Appendix C). Fig. 5 shows the relation between Mw and the scales
generated from different features. Due to the calibration used, all
scales match Mw fairly well between 5.0 and 6.0. Strong differences
can be seen outside this range, especially for larger events. Satu-
ration effects cause velocity and acceleration magnitudes to both
underestimate large events. The saturation effect also causes them
to overestimate smaller events, as the saturation already affects the
calibration magnitude range M5–M6. The Wood–Anderson magni-
tude shows a saturation effect only above M ∼6.5.

Figure 6. Residual analysis for displacement magnitudes on the NE com-
ponents. Three plots show the dependency of RMSE on depth, MA and
epicentral distance. MA refers to the peak displacement magnitude on the
horizontal components. All traces represent running square means. The av-
eraging window widths are 20 km (epicentral distance), 10 km (depth) and
0.2 m.u. (MA). The bottom-right plot shows the distribution of the residuals
in comparison to a normal distribution as a Q–Q plot.

The trends of MA and energy magnitude match Mw approximately
over the whole range of magnitudes. The energy magnitude exhibits
more scatter, possibly related to varying source properties, for ex-
ample stress drop, although ambient noise could also affect the
measurements, of course. Deichmann (2018a) proposed MA as a
non saturating alternative to ML. Our empirical results support this
proposal.

3.2 Residual distribution

We analyse the the residuals as a function of depth, MA, hypo-
and epicentral distance (Fig. 6). While residual variations do not
depend strongly on depth, we observe a near doubling of residuals
with distance and presumably a weak increase with MA. The increase
with distance can be easily understood, as the SNR decreases with
distance.

Varying residuals could also be caused by implicit frequency
dependencies of the correction terms. The increased RMSE for
larger magnitude values could be caused by the lower dominant
frequency of large events, compared to the small events compos-
ing the majority of the training events. Lower frequency waves
might encounter less physical attenuation and scattering, therefore
experience reduced amplitude decay with larger distances. As site
response might be frequency dependent, we expect a weak distance
dependence in the station term. On the other hand, this effect is
offset by the source-path correction, as it is station specific. While
frequency effects can not be accounted for by the linear single-
feature model, we expect the boosting tree regression to mitigate
them, as it has access to spectral information through the combined
use of displacement, velocity and acceleration features.

We observed different RMSE values for different types of seis-
micity. We used the classification from Sippl et al. (2018) to classify
events into upper plate, plate interface, upper plane, lower plane
and intermediate-depth cluster events. The lowest RMSE for peak
displacement on the combined horizontal components occurs for
crustal and intermediate depth events, a 0.02 higher RMSE for
lower plane and plate interface events and another 0.01 for upper
plane events. Results are similar for other features.
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Table 2. Test set RMSE for models based on the combinations of multiple
features. Separate columns represent different feature sets. A plus sign in-
dicates that further information was added, a minus sign indicates that all
features of the respective type were removed. Unadjusted refers to the plain
features, on which no correction terms have been applied. Please note that
the RMSE values are not normalized, therefore comparisons of absolute
values are only valid inside each column, but not between the columns.

Features Displacement NE Acceleration Z

Single (Baseline) 0.196 0.159
All + Timing 0.103 0.097
All 0.105 0.099
All - Env 0.113 0.108
All - P wave 0.110 0.103
All - Env - P Wave 0.121 0.112
Only Z component 0.111 0.101
Only velocity 0.122 0.115
Unadjusted + Timing 0.162 0.162
Unadjusted 0.177 0.176
Unadjusted P wave 0.203 0.199

The Q–Q plot in Fig. 6 shows that the residual distribution de-
viates from a normal distribution, as it exhibits heavy tails. Those
likely indicate measurement errors, caused by overlapping events,
instrument issues or wrong frequency selection, causing low SNR.
We observe a general positive skewness of outlier residuals, that
is, magnitudes are more likely to be grossly overestimated than un-
derestimated. This holds true for all stations except AP01, LVC,
PINT and S100 that exhibit a negative skewness. In the appendix,
we give a further analysis of the residuals for each station (Fig. F2),
possible time dependency (Fig. F3) and the effect of different SNR
thresholds (Appendix D).

3.3 Multifeature magnitude estimation

For the experiments with multifeature magnitude estimation, we use
the peak horizontal displacement and the peak vertical acceleration
as target scales. We choose horizontal displacement because of
its similarity to the standard ML for smaller magnitudes and no
observed saturation effects and we choose vertical acceleration as a
challenging benchmark, as it already has a low RMSE.

A single boosting tree predictor is trained on the multifeature
sets for all stations simultaneously (Table 2). We achieve the best
results for both target scales using the full feature set with additional
features measuring temporal information, that is the difference be-
tween P and S pick time and the time at which each feature was
extracted relative to the P pick. For horizontal displacement we are
able to reduce the RMSE by 47 per cent; for vertical acceleration
the reduction is 39 per cent. The smaller improvement for acceler-
ation is likely caused by the already lower RMSE of this feature.
To elucidate the effect of different features on prediction quality,
we removed certain features from the full feature set. The RMSE
still improves significantly with respect to the single feature for all
tested combinations, although of course the prediction accuracy de-
creases somewhat (see top part of Table 2). To evaluate the benefit
of combining features from velocity, displacement and acceleration,
we conducted an experiment solely on velocity features. The result-
ing RMSE is 16 per cent higher than for the full feature set. The
information gain from including features from the displacement,
velocity and acceleration traces can be explained with the different
frequency bands effectively covered by the features. While accel-
eration covers the higher frequency ranges, displacement covers
mostly the lower frequencies. Hanks & McGuire (1981) discuss

Table 3. RMSE for different subsets of the correction functions. Full refers
to the complete correction function, as described in Section 2.3. Distance-
depth only contains the � term and the station corrections, but not the source
corrections. Distance in addition reduces the � function to a 1-D function
using hypocentral distance.

Corrections Displacement NE Acceleration Z

Full 0.196 0.159
Distance–depth 0.227 0.202
Distance 0.237 0.221

the relations between acceleration, velocity and displacement and
argue that their values are affected differently by attenuation and
that their peaks are expected to occur at different times in the wave-
form. This gives a further explanation for the information gains
from incorporating all three feature classes.

We additionally trained a boosting tree on the plain features from
step one, without applying the correction functions from step two.
In addition, we removed all features based on the radial and trans-
verse components, as they can only be obtained if the epicentre
location is known. It therefore uses no information about the lo-
cation or time of the event, but only information gained from the
single station. We experiment with both, a feature set with and
without temporal information. In particular, the S–P arrival time
difference represents a strong constraint on the hypocentral dis-
tance, which controls the dominant term of the correction function.
For horizontal displacement both reduced feature sets still clearly
outperform the (corrected) single feature baseline. The reduction
in RMSE is 17 per cent with timing and 10 per cent without timing
(Table 2, bottom part). For acceleration the RMSE is nearly iden-
tical with timing and 11 per cent higher without. We conclude that,
when properly combined, the uncorrected features are already com-
petitive with the single corrected features. As is natural, boosting
tree regression on the corrected features clearly outperforms the
uncorrected features.

To use our method in an early warning context, the system needs
to deliver its estimate rapidly. Therefore we run an additional ex-
periment using only the uncorrected data from the P wave. This
information is available at the time of the S arrival. For the dis-
placement magnitude, the RMSE is only 4 per cent worse than the
single feature after applying corrections. For acceleration the RMSE
is 25 per cent higher.

We want to emphasize that the complete feature set can be made
available only 30 s after the S arrival. All P wave features are already
available at the moment of the S arrival. While this is interesting
for fast magnitude estimates, its applicability to early warning is
limited. This is caused by the catalogue consisting mostly of small,
non-hazardous events and the relatively far source station distance
of up to 500 km. Applicability to early warning would need to be
assessed on an appropriate catalogue.

4 D I S C U S S I O N

4.1 Influence of different correction functions

We conduct an ablation study to quantify the impact of different
correction terms on the residuals. We compare the full model to
a model without source correction and a model without source
correction and only a 1-D hypocentral distance correction. Similarly
to Section 3.3, we conduct the analysis for horizontal displacement
and vertical acceleration. The results are shown in Table 3.
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Both features incur an improvement from both the 2-D correc-
tion as well as the source correction. The improvement from the
2-D source correction is around 4.2 per cent for displacement and
8.6 per cent for acceleration. The effect of the source correction is
by far greater, with an additional improvement of 14 per cent for
displacement and 21 per cent for acceleration. The combined im-
provement is 17 per cent for displacement and 28 per cent for accel-
eration with respect to a classic distance-only dependent correction
function.

We next analyse the spatial distribution of residuals with and
without source correction. Fig. 7 shows the residuals for station
PB01. Without source correction they show clear spatial depen-
dencies, while with source correction there is no pattern visible.
Without source correction, there are strong azimuthal dependen-
cies. This suggests that the residuals are dominated by path effects,
which are similar across a wide distance range with the same az-
imuth, while being less affected by the properties of the physical
source such as radiation pattern.

Changing the correction terms alters the resulting magnitude
calibration. While removing the source correction only has a minor
impact, switching from a 2-D to a 1-D correction, introduces a
depth dependent offset between the scales. Unlike for distance- and
source corrections, the depth is an inherent property of the event
not improved by averaging. Therefore, the magnitude calibration is
performed essentially for each depth level. For depth levels without
events in the training set, strictly no magnitude could be determined
except by interpolation or extrapolation. This also implies that the
calibration of the 2-D correction could be more fragile, requiring
careful testing of the performance with the test and validation sets
(see also the Section 4.2).

Fig. 8 compares the distance and depth correction functions ob-
tained with and without the source correction. The correction func-
tion without the source correction is significantly rougher, suggest-
ing that the depth and distance correction function derived without
a source correction term represents a biased estimate influenced by
the particularities of the event distribution. Concurrent optimization
of source correction and distance and depth correction therefore
does not only yield a good source correction, but also improves the
smoothness of the distance and depth correction. This suggests that
it captures the actual average attenuation in the study region rather
than the specifics of the data set.

4.2 Stability of the correction functions

We estimate the level of overfitting in our model by comparing
the RMSE on the training and test sets. A high level of overfitting
suggests that the model is not well constrained and poses an issue to
interpretability. On average the RMSE on the test set is 2.7 per cent
larger than on the train set. This increase is fairly constant across
the different features, varying from 1.0 to 3.9 per cent. The only
exception are 20 s P wave envelope values, probably because there
are far less measurements. Their RMSE on the test set is on average
8.3 per cent higher. To assess the significance of the increases in
RMSE, we evaluated the uncertainty of the RMSE values under the
assumption that errors are uncorrelated and identically distributed.
In this case the standard deviation of the RMSE is simply the RMSE
divided by the square root of the number of samples, which comes
out at around 0.1 per cent of the RMSE. Therefore all differences in
the RMSE discussed here are significant. While these results show
that the source correction functions are slightly underdetermined,

the ablation study in Section 4.1 shows that this does not negatively
impact their predictive performance.

We investigate how well the parameters of the correction func-
tions are constrained by the given measurements. We therefore par-
tition the set of events randomly into ten equal-sized, disjoint subsets
and calibrate a model for each of those. Due to the source correction
the changed numbers of events and measurements also change the
number of model parameters. To ensure that the model differences
are not dominated by changing the subset of events used for cali-
bration with Mw, we always add the events with Mw to the subsets.
We analyse models for peak horizontal displacement.

Results show that the station bias terms are robust. For stations
with more than 2000 measurements in the complete data set, stan-
dard deviation between the ten sets is below 0.01. For stations with
few measurements (<2000), we observe standard deviations up to
0.036. We emphasize that these deviations apply between the sliced
sets containing less than 200 measurements each for these stations.
On the full set this implies that we expect uncertainty of the station
biases to be below 0.01 for all stations. Biases, uncertainties and
number of measurements for each station are shown in Fig. F4.

The distance and depth correction is also very robust, albeit with
a higher level of uncertainty than the station biases (see Fig. F5).
At distances below 250 km and depths shallower than 100 km the
standard deviation is still always below 0.05. Much higher standard
deviations occur at large distances and depths, as data are very
sparse there. Standard deviations of more than 0.1 solely occur for
distances above 400 km and depths below 175 km. We want to
emphasize that uncertainties on the final model are likely to be even
smaller by a factor around 3, as it has been trained on ten times the
data.

To assess the stability of the source correction, we evaluate the
standard deviation between the ten subsets for 100 000 randomly
chosen measurements. The mean standard deviation is 0.027. The
90th percentile is 0.039. The parameter uncertainties in the model
are clearly below the random effects in the measurements.

In order to analyse the stability of the boosting tree scales we split
the data set event-wise into three equal sized partitions A, B and C.
We train one boosting tree on A and another one on B, both using
the full feature set including timing. We compare the predictions
of the boosting trees on C and also compare them to the non-
boosting predictions on C. The target scale is again the horizontal
peak displacement of the full wave. The event magnitude, averaged
across all stations, differs between the non-boosting predictions and
the boosting trees by 0.062 (0.063 for tree B) in quadratic mean. The
two boosting tree scales only differ by 0.015 in this measure, even
though they are trained on completely disjoint sets. The significantly
smaller difference between the boosting scales suggests that the
boosting trees are actually reducing estimation errors on the event
magnitude. This does not hold true for the largest events (>6.0),
as only relatively few of these events occurred in the observational
period. We experience higher differences between boosting and non-
boosting scales for those events, which are likely caused by sparse
training data. Boosting tree scales should therefore not be used for
the largest events.

4.3 Analysis of the correction functions

To analyse the different correction functions, we first need to em-
phasize the interconnections between them. Without regularization,
the full distance correction could be incorporated into the source
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Figure 7. Spatial distribution of residuals at station PB01 for displacement magnitude on the horizontal components with and without source correction. The
location of the station is denoted by a cross. While the source correction uses the 3-D location, we reduced the picture to 2-D for simplicity. The circles indicate
the distance to the 10th nearest neighbour with a correction term to visualize the adaptive window size.

Figure 8. Comparison of the correction functions for displacement on the
horizontal components with and without source correction terms.

correction function, only requiring an offset to calibrate the correc-
tion function. We chose our regularization constants in a way that
penalizes putting distance corrections into the source correction
function. Nonetheless both interact and separation of the effects
is not fully possible. In addition our stations and events are not
uniformly distributed. Therefore, the distance correction function,
being a mean across all stations and events, incorporates effects
from the average paths, which do not necessarily reflect the average
ground structure.

We compare the absolute values of the distance and depth cor-
rection functions between the different displacement, velocity and
acceleration features. Due to different units, absolute values are not
comparable between displacement, velocity and acceleration. Ab-
solute differences in the correction function represent differences
in the magnitude of the signal. For peaks from the full wave the
signal level is similar for the R and T component, but around 0.15
orders of magnitude smaller on the Z component. For the P wave the
signals are strongest on the Z and R component and about 0.1 orders
of magnitude smaller on the T component. The envelope derived
values are on average 0.4 orders of magnitude smaller after 5 s and
0.5 after 20 s.

Fig. 9 shows the comparison of four selected normalized correc-

Figure 9. Distance and depth correction functions for selected features on
the Z component. All corrections are shifted to 0 at a distance of 50 km and
a depth of 30 km, to better visualize the relative differences. The shifts are
denoted in brackets behind the title.

tion functions. We focus on different features rather than compo-
nents, as we observed no major differences between the different
components. Comparing the peak displacement of the complete
waveform with the peak P wave displacement, we see that the peak
displacement shows a stronger attenuation with both distance and
depth. The peak acceleration shows the strongest decay with dis-
tance, while being only weakly dependent on depth at near offsets.
For far offsets (>∼250 km), deeper events actually are less atten-
uated then shallower events (opposite the pattern for amplitude).
This effect could arise from a dominant importance of physical
attenuation over geometric spreading.

In contrast, the 20 s envelope displacement amplitudes only
shows a relatively weak dependence on distance. This lower at-
tenuation stems probably from the fact that the envelope is made of
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Figure 10. Section through the source correction terms for peak horizontal
displacement of the stations WF05 and WF23 at 20.8◦S, the latitude in the
middle of the two stations. The positions of the stations are marked by red
triangles. For orientation, events inside 20.8 ± 0.2◦S are shown by black
dots. Note that in areas without any seismicity, the correction term will
be effectively controlled by the nearest seismicity, even if that is far from
the point under consideration. While the source-specific correction term in
those areas is likely to be biased, this normally does not matter, because
hardly any seismicity occurs in these poorly constrained areas in any case.

multiply scattered waves; the theory of coda normalization predicts
that energy will be distributed equally through all space and degrees
of freedom after an asymptotically long time after the event (Sato
et al. 2012). The remaining decay with distance stems most likely
from the fairly short time window of 20 s used. This window is
necessary to account for the many small events in the catalogue, for
which the envelope values tend to fall below the noise quickly.

Fig. 10 shows sections through the source correction terms of
the stations WF05 and WF23 at 20.8◦S. The two stations are both
located approximately 150 km from the coastline, with a distance of
only about 40 km between each other. The source correction terms
for the two stations are quite similar, which is consistent with the
explanation that the source correction terms indeed capture large-
scale path effects. The source correction terms also exhibit tectonic
features. The most prominent is the sudden change for shallow
earthquakes around 69◦W. In addition the source corrections resolve
the slab, which can be seen as a diagonal boundary in the corrections,
approximately matching the slab determined by Sippl et al. (2018).

By comparing sections at different latitudes, we observed that
the resolution of structural features becomes worse for sections fur-
ther away from the station. As the source correction measures both
source and path effects, for large distances it is dominated by ag-
gregated path effects. Therefore the resolution of structural features
gets worse. In contrast, the similarity between the corrections for
nearby stations stays similar, as the paths get even more similar. We
inspected many sections through the source correction volumes of
different stations. All sections showed the clear change for shallow
earthquakes around 69◦W and an imprint of the slab geometry. In
general, the sections for stations located close to each other were
mostly very similar.

4.4 Insights into multifeature estimation

As boosting trees use decision trees as their base classifiers, they
inherently lead to a ranking of features regarding their feature im-
portance. Feature importance is derived from the information gain
of the splits using this feature. We analyse the feature importance
for the two target scales used in Section 3.3 (Table 4).

While we are not able to state the reason for the importance of this
features with certainty, we provide some intuition. P wave features
on the vertical and radial components are least affected by local

Table 4. Top 10 features in the boosting regression ordered by importance.
The columns denote whether the feature is from peak (no annotation) or en-
velope, if the feature is from the P wave, the trace it was exported from, and
the component. NE refers to the horizontal components, ZNE to the com-
bination of all components. We abbreviate displacement (DISP), velocity
(VEL) and acceleration (ACC).

DISP NE ACC Z

P VEL Z P VEL Z
P VEL R P VEL R

5 s P DISP Z 5 s P DISP Z
P VEL T P VEL T

5 s P ACC R 5 s P ACC R
5 s ACC T P ACC Z
5 s P DISP R 5 s ACC T

P ACC Z 5 s P DISP R
5 s P DISP T 5 s P DISP T

ACC Z VEL Z

site conditions. As shown before, the vertical component features
from P waves have the lowest RMSE values among the P wave
components. The envelope values are less affected by the radiation
pattern as well as uncertainties in the location or correction func-
tions. Both P wave features and envelope values have worse signal
to noise ratios than features from the full waveform, making them
less precise scales using only single features, while the combina-
tion of those features can likely be used to better separate signal
from noise. We attribute the dominance of velocity features to two
factors. In contrast to acceleration features, velocity features show
less saturation, as discussed earlier. In addition, as our underlying
data are velocity traces, velocity is not affected by artifacts from
integration that occur for displacement.

To verify the presence of complex interactions, we compare the
boosting tree to a simple linear regression. We use the full parameter
set without timing information and the same target scales. Similar
to boosting trees, linear feature combination significantly reduces
RMSE. For displacement the RMSE is 0.133 (0.103 for the boosting
tree) and for acceleration it is 0.120 (0.097). Although parts of the
gain can be achieved with linear regression, a significant part of the
improvement from the boosting tree is due to its capability to model
non-linear relationships and complex interactions between multiple
parameters.

4.5 Magnitudes for the IPOC catalogue

Following our analysis, we provide well calibrated magnitude val-
ues for the IPOC catalogue. For each event we provide magnitude
estimates from both the Wood–Anderson instrument and the peak
displacement on the horizontal components. The former is chosen
for its close resemblance of the standard local magnitude ML, while
the second offers a non-saturating alternative, which we refer to as
MA as proposed by Deichmann (2018a).

We additionally report uncertainty values for the magnitude es-
timates. We derive those uncertainties from the residuals between
the stations. The detailed procedure for uncertainty estimation is
described in the Appendix E.

We apply multiple steps to further increase the quality of the
published scales. After calibrating and applying the correction func-
tions, we remove all outliers. Outliers are defined as measurements
with a residual of at least twice the global RMSE. We recalibrate the
correction functions on the set without outliers. Due to overfitting,

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/1/142/5571095 by G

eoforschungszentrum
 Potsdam

 user on 06 N
ovem

ber 2019



154 J. Münchmeyer et al.

we can not use a global boosting tree for the full data set. We there-
fore randomly split the data set event wise into three equal sized
sets A, B and C. We train one boosting tree on each pair of these
sets and use it to produce predictions on the last set. The analysis in
Section 4.2 suggests that these predictions are consistent between
the different boosting trees. This is especially the case, as, contrary
to Section 4.2, the training sets of the trees are not even disjoint.
Following the results from Section 4.2, we use the non-boosting
estimates for events with magnitude >6.0. For events with magni-
tude <5.5 we use the boosting tree scales. We interpolate linearly
for events of magnitude between 5.5 and 6.0 to obtain continuously
defined scales.

To enable in-depth analysis we provide the full set of extracted
features and magnitude predictions on station level in csv format.1

We additionally provide our code to calibrate correction functions
and train boosting tree models.2 For convenience we also provide
the calibrated correction functions for each feature in the data set.

5 C O N C LU S I O N

In this study, we proposed and evaluated a three step procedure
to evaluate magnitude scales based on many different features and
reduce their uncertainty. In the first step we extracted a multitude of
features from the seismic traces of single stations for over 100 000
events. In the second step we calibrated correction functions for
each extracted feature. The correction functions consist of station
biases, a 2-D non-parametric distance and depth correction and
a 3-D source correction. We show that these correction functions
reduce RMSE by up to ∼ 23 per cent in comparison to a classical
1-D non-parametric correction function. About three quarters of the
gain can be attributed to the source correction, while the remaining
gain stems from the 2-D distance and depth correction.

In the last step we use a boosting tree to combine multiple fea-
tures. This further reduces uncertainties by up to ∼ 50 per cent. By
analysing the feature importance, we show that key features are de-
rived from the velocity on the Z component, especially from the P
wave. The analysis also highlights the importance of envelope de-
rived features. In conclusion of our analysis, we provide calibrated
magnitude values MA and peak Wood-Anderson based magnitude
values (similar to standard ML but with a richer calibration func-
tion) and their estimated uncertainties for the catalogue of Sippl
et al. (2018).

The results from multifeature estimation, especially the results
from the experiments with uncorrected features, give a hint at the
wealth of information contained in a single trace. This information
is not incorporated in the standard ML, using only the peak displace-
ment. It could however be of major interest for reliable magnitude
estimates in the context of early warning. Promising tools for infor-
mation extraction might be convolutional neural networks, which
have lately been shown to be beneficial for multiple seismological
tasks, including earthquake localization (Kriegerowski et al. 2018),
phase picking and polarity determination (Ross et al. 2018). Lomax
et al. (2019) use convolutional neural networks for earthquake mon-
itoring, including rough magnitude estimations. Our results suggest
that these estimates can be refined significantly.

This study did not focus on frequency dependency, but rather
investigated effects on a broad frequency band. We pursued this

1http://doi.org/10.5880/GFZ.2.4.2019.004
2https://github.com/yetinam/magnitude-calibration

approach to capture the wide magnitude range present in the cat-
alogue. We acknowledge that attenuation functions are frequency
dependent, as shown for example by Dawood & Rodriguez-Marek
(2013) for the Japan subduction zone. This possibly is the cause of
the increased RMSE values for larger magnitudes in our estimates,
which will be based on longer period data less affected by physi-
cal attenuation. Incorporating frequency dependency into the model
could also open up a perspective of applying the model to ground
motion prediction.

While we applied the method to a catalogue of ∼100 000 events,
our analysis in Section 4.2 suggests that our method can also be
applied to significantly smaller data sets. All correction terms are
already well defined with 10 000 events and we expect the boosting
tree to work as well. For catalogues with more measurements per
event, we even expect a by far lower required number of events.
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A P P E N D I X A : H I G H PA S S F R E Q U E N C Y
S E L E C T I O N

Table A1 shows the candidate intervals for high pass filtering. The
last line indicates the fall-back filter, which is used for all events
for which the minimum SNR of 4 is not attained with any of the
other filters. For velocity (acceleration) the SNR is larger than 2
in 96 per cent (98 per cent) of the waveforms, whereas for displace-
ment this is only true for 70 per cent. Therefore in some cases,
particularly for features based on displacement, some of our data
might be strongly affected by ambient noise. We nonetheless do not
remove these measurements, as the information that the feature is
close to noise is still valuable.

The distribution of chosen high pass frequencies by event mag-
nitude is shown in Fig. A1. As expected, for larger events lower
frequencies are chosen. Especially for the largest events, only the
lowest frequencies are chosen.

Table A1. Intervals for high-pass filtering.

flow [Hz] fhigh [Hz]

0.001 0.3
0.1 0.5
0.3 1.0
0.5 1.5
0.75 –

Figure A1. Distribution of applied high pass frequencies by event magni-
tude. Strong motion records were not high pass filtered and are therefore
denoted with a high pass frequency of 0 Hz.
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A P P E N D I X B : C H O I C E O F
H Y P E R PA R A M E T E R S A N D E N V E L O P E
T I M E S

In this section we give some advice on the selection of hyperpa-
rameters and envelope delays. As the experiments, both feature
extraction and calibration of the correction functions, are compu-
tationally expensive, a grid search for hyperparameter selection is
intractable. Hyperparameters therefore need to be tuned by hand.
Therefore, we explain the significance of and interaction between
the different hyperparameters. For practical applications we suggest
to start with the hyperparameters used in this study.

λr and λd determine the smoothness of the distance-depth cor-
rection function. We settled for a higher value of λr as we expect a
generally lower lateral than vertical variability in ground structure.
Both values might need to be increased in the presence of fewer data
points and the other way around. λd should be increased, if less Mw

values are available for the calibration of attenuation with depth.
The choice of suitable values can be assisted by plots, as in Fig. 9.

λL controls the level of deviation from the distance-depth correc-
tion that is caused by the source-path correction. It interacts with the
number of neighbours k chosen for averaging and the subsampling
rate |Ēs |/|Es |. In general, a low number of neighbours k or a high
subsampling requires a higher λL, as the number of free parameters
is increased and the parameters are less constrained by the data.

k determines the smoothing of the source-path correction. A
higher value will generally cause a smoother function, while a lower
value will cause a rougher function. In contrast a higher subsam-
pling rate (at constant k) will cause a rougher function, a lower
subsampling rate a smoother function. The choice of subsampling
rate will most likely be governed by the available computational
capacities. We experienced a superquadratic increase in runtime
and memory consumption with the subsampling rate. If the com-
putational capacities turn out to be limiting factors, we recommend
slowly increasing the subsampling rate and observing the effect on
RMSE.

λMw
determines the trade-off between the deviation from the pre-

scribed Mw values and the smoothness of the correction functions.
A higher value λw will lead to a smaller deviation from Mw, but

Table B1. Hyperparameters used for the correction functions.

Hyperparameter Value

{20 km + 9.8 km∗i|i ∈ {0, 49}}
G ×

{10 km + 10 km∗i|i ∈ {0, 19}}
λr 103 km4

λd 102 km4

λL 10
λMw 10−1

k 10
|Ēs |/|Es | 10−1

Table B2. Hyperparameters used in the boosting experiments. We use the
naming conventions from XGBoost. We only denote parameters that were
changed from the defaults for XGBoost version 0.80.

Hyperparameter Value

Depth 11
Epochs 250
Eta 0.1

increases the roughness of the correction functions. As the calibra-
tion with Mw is mostly required for the calibration of the depth-
dependent attenuation, we generally recommend small values for
λMw .

A good measure for the suitability of hyperparameters is the
difference between the RMSE on the training and development sets.
In general we recommend a slightly higher RMSE on the training
set, indicating some level of overfitting. No overfitting at all suggests
that the model is regularized to strongly, while strong deviations
between the training and development performance suggest that
overfitting negatively impacts performance on the development and
test set.

For the envelope delays we chose 5 and 20 s. The 5 s value
is intended to capture the early high energy portion of the event,
but providing a more stable measurement than the peak. We tried
putting the second value as late as possible to approach the diffusive
regime and thereby minimize the effects of the radiation pattern and
distance uncertainties. As most of our events are small, we can not
resort to the classical rule of assuming a diffusive regime after
twice the S wave travel time, as this value is below noise level for
most measurements. Therefore we need to find a sensible trade-
off between diffusiveness and SNR. Whereas we did not carry out
systematic testing, we confirmed 20 s as a good choice by comparing
the value of the envelope at this time to the noise level 5 s before
the P pick, as measured by the envelope value. We found that the
noise exceeds the signal in only ∼ 3 per cent of cases. In addition
we expect the boosting tree to appropriately handle low SNR 20 s
envelope values.

The proper choice of envelope delays will usually depend on the
data set. In our case we had a favorable data set for long envelope
delays, as most IPOC stations are low noise hard rock stations.
To choose appropriate values we recommend first to visually in-
spect the signal envelopes for a subsample of the measurements and
second to look at the SNRs for multiple candidate delay times. It
is possible to include more than two envelope times. We did not
conduct experiments with more than two envelope times, due to
computational constraints.

A P P E N D I X C : D E T E R M I NAT I O N O F
M O M E N T M A G N I T U D E S F O R
M O D E R AT E - S I Z E E A RT H Q UA K E S

The global CMT catalogue only covers earthquakes above moment
magnitude 5–5.5 reliably. In order to extend our database of events
with Mw, additional moment magnitudes were determined with
regional moment tensor inversion with the approach of Nabelek
(1984) and Nábělek & Xia (1995). We constrained moment tensors
to be deviatoric (i.e. no isotropic component), used the period band
between 10 s and 35 s and assumed quality factors (inverse attenua-
tion) of 225 for P and 100 for S waves for the calculation of Green’s
functions. Scalar moments were converted to moment magnitudes
using the relation of Hanks & Kanamori (1979). At the utilized long
periods, physical attenuation effects only play a minor role.

A P P E N D I X D : E F F E C T O F S N R
T H R E S H O L D I N G

No explicit SNR threshold is imposed but an implicit threshold
exists because the data set is assembled based on pre-existing picks,
which require a reasonable visibility of at least the P wave. We
analysed the impact of imposing an additional threshold on the SNR
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Figure D1. RMSE and resulting uncertainties for the single feature magni-
tude scale from displacement on the vertical component at different signal-
to-noise thresholds.

on the RMSE and the resulting uncertainties (Fig. D1), initally using
the vertical displacement magnitude as an example. We obtain the
noise level for this analysis as the peak value in the 30 s before
the P pick, with an additional safety window of 1 s. For each SNR
threshold we calculate the RMSE using only measurements with a
higher SNR and estimate the uncertainty on the mean. We estimate
the uncertainty as the RMSE divided by the square root of the
number of stations for each event minus one. As a higher SNR
threshold causes a lower number of measurements, the average
uncertainty can increase, even if the RMSE falls.

As we see in D1, the RMSE falls for SNRs of up to ∼2 and grows
afterwards. The growth can be explained by the fact that measure-
ments with a higher SNR are more often from events with higher
magnitudes, which exhibit an increased RMSE in general (Fig. 6).
In contrast to the RMSE, the uncertainty does not show any decreas-
ing behavior, but a steady growth due to the decreasing number of
measurements. We observe similar behavior for velocity and ac-
celeration. This means that the general quality of our estimates is
highest if we do not impose a further SNR threshold. In addition
we expect the boosting tree regression to act as denoising, as it is
able to combine multiple features representing different frequency
spectra.

A P P E N D I X E : D E T E R M I NAT I O N O F
M A G N I T U D E U N C E RTA I N T I E S

To obtain magnitude values and uncertainties for each event, we
combine the measurements from multiple stations. As the results
from multiple stations might not be independent, the stated uncer-
tainty of the magnitude estimate could be erroneous if it is calcu-
lated by ignoring possible correlations. Figs E1 and E2 show the
correlations between the residuals at pairs of stations and their de-
pendency on interstation distance. Interestingly correlation shows
a strong dependence on distance and especially gets negative for
distances above ∼100 km. The negative values are partially caused
by analysing the residuals with respect to the mean rather than the
(unknown) true value. This effect alone causes some apparent nega-
tive correlation, but for truly independent errors this would be much
smaller than observed.

Determining the optimal estimator and the effective sample size
has been discussed by Eaton (1992). Unfortunately, the suggested
method uses the inverse of the correlation matrix, which is unstable
regarding minor variations of the covariance matrix. This is espe-
cially problematic, as we do not have access to the actual correlation
matrix, but only to an empirical covariance matrix. In addition we

Figure E1. Empirical correlation of the residuals for peak horizontal dis-
placement as a function of interstation distance. Each dot represents a pair
of stations. Station pairs with less than 500 common events are discarded.

Figure E2. Empirical correlation of the residuals for peak horizontal dis-
placement for station pairs. Station pairs with less than 500 common events
are discarded.

are missing some elements of the matrix, for stations with too few
events in common. Therefore, the proposed method is not applica-
ble.

Nonetheless we want to present two main results from Eaton
(1992). First, a growing correlation does not always reduce effec-
tive sample size, but can actually increase it. Secondly, negative
correlations in general increase the effective sample size.

Following these observations we adapt a simply ad hoc proce-
dure. The mean observed correlation between pairs of stations is
close to zero (−0.1). Therefore, we use the mean of all stations as
the event magnitude and the standard deviation between the sin-
gle station estimates divided by the square root of the number of
contributing stations minus one as the event magnitude standard
deviation. Even though this does not represent the optimal way,
following the discussion above we believe to achieve reasonable
uncertainty estimates using the method.
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A P P E N D I X F : S U P P L E M E N TA RY
M AT E R I A L

Table F1. Seismic networks and stations used. Stations including strong motion records are printed in bold. The stations are identical to those used by Sippl
et al. (2018) except that station PB17 from the CX network was removed because it showed non-documented gain changes over time and for the different
components.

Network Stations

MINAS (5E) S110
CSN (C) AP01 GO01 TA01
IPOC (CX) CAR3 HMBCX MNMCX PATCX

PB01 PB02 PB03 PB04 PB05 PB06
PB07 PB08 PB09 PB10 PB11 PB12

PB13 PB14 PB15 PB16 PSGCX TAIQ
GEOFON (GE) LVC
Iquique (IQ) PINT
WestFissure (8F) WF05 WF17 WF23

Figure F1. Schematic overview of the pre-processing and feature extraction workflow. The split into the different components is not visualized to keep the
figure simple. Featurize refers to the process of extracting the peak and envelope values from the traces.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/220/1/142/5571095 by G

eoforschungszentrum
 Potsdam

 user on 06 N
ovem

ber 2019



Multifeature magnitude estimation 159

Figure F2. Residual distribution for different stations for displacement on
the horizontal component. The middle bar denotes the median, the boxes
show the quartile ranges, the whiskers show the 5th and 95th percentiles.
Most stations have residuals of similar magnitudes, while a few show sig-
nificantly higher residuals, e.g. AP01, TAIQ, PB10 and PB15.

Figure F3. Development of residuals for displacement on the horizontal
component for station PB01 over time. The lines show running mean and
standard deviation over 500 consecutive events. While we observed slight
changes in the station bias over time, we were not able to ensure that these
changes are not caused by measurement artifacts.

Figure F4. Station bias for peak displacement on the horizontal component.
The bias is shown for ten suboptimizations, each containing 10 per cent of
the events. Boxes indicate quartiles. The blue bars show the total number of
measurments per station.

Figure F5. Standard deviation of the distance and depth correction function
grid points for peak displacement on the horizontal component. Standard
deviation is calculated across the subsets of a 10-fold split of the full data
set.
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