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About this book

This volume contains the extended abstracts of contributions presented during GeoMod 2014 at the
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences (GFZ Potsdam), showing
the state of the art of the tectonic modeling community.

GeoMod is a biennial conference dedicated to latest results of analogue and numerical modelling
of lithospheric and mantle deformation. It started in 2002 in Milan as RealMod2002, then moved to
Lucerne (GeoMod2004), Florence (2008), Lisbon (2010), and Lausanne (2012).

GeoMod2014 took place from 31 August to 3 September 2014 with 138 participants from 25
countries on all continents. The scientific programme of GeoMod2014 was organized in seven
topical sessions listed below. The conference was followed by a 2-day short course on "Constitutive
Laws: from Observation to Implementation in Models" (including lectures, lab visits, and practical
exercises), as well as a 1-day hands-on tutorial on the ASPECT numerical modelling software.

GeoMod2014 focused on rheology and deformation at a wide range of temporal and spatial
scales: from earthquakes to long-term deformation, from microstructures to orogens and subduction
systems. For the first time, the discipline of volcanotectonics was included, while the (mantle)
geodynamics community was more strongly represented than in previous editions. The bridge to
field geology has traditionally been strong. At GeoMod 2014, fitting to the focus on rheology, the
rock mechanics community was also represented. We thank our sponsors DFG, GFZ Potsdam and
Geo.X, the conveners and all participants for contributing to a successful conference.
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Fluids and Deformations

Session Description: Fluids and Deformations
Conveners: Stephen Miller (U Bonn), Marcos Moreno Switt (GFZ)
This session is focused on the interactions between elastic and inelastic deformation, brittle failure
(earthquakes), how fluids affect and are affected by, coupled deformation, as well as the importance of
flow for numerous geodynamic processes. These include, but are not limited to, non-volcanic tremor
and slow-slip earthquakes, enhanced geothermal systems, post-seismic deformation, earthquake
swarms, and aftershocks. Although the interactions between fluids and deformation are conceptually
straightforward, complexity arises due to multiple feedbacks between crack nucleation, growth,
and coalescence combined with the initiation of fluid flow and an evolving pore-elastic/ fracture
stress state. Modeling these processes is numerically challenging because the underlying physics
require high-resolution simulations over a wide range of timescales. This session aims to understand
fluids and deformation of a wide range of space and time scales, using recent advances in numerical
modeling to compare with observations from experimentalists, geodesists, and geologists.
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Effect of Fluid Circulation on Intermediate-Depths
Subduction Dynamics: From Field Observations to
Numerical Modelling
S. Angiboust1,2, S. Wolf1, E. Burov1, P. Agard1, P. Yamato3

1ISTeP, Univ. P.M. Curie-Paris 6, Paris, France
2Lithosphere dynamics laboratory, GFZ Potsdam, Germany
3Laboratoire de Tectonique, Univ. Rennes 1, France
e-mail: samuel.angiboust@gfz-potsdam.de
session: Fluids and Deformation

A wide range of geophysical/petrological data
indicates that large amounts of water are released
in subduction zones during the burial of oceanic
lithosphere through metamorphism and associ-
ated dehydration reactions. Large volumes of
aqueous fluids are expected and observed in the
mantle wedge, just below the continental Moho.
Recent estimates suggest that the mantle wedge
is heterogeneously serpentinized (generally 20-
30%). This serpentinization is believed to cause
a significant weakening of the mantle wedge and
therefore may critically control the depth of in-
terplate seismogenic coupling. However, data
constraining mechanisms driving deep (50 km to
200 km) fluid circulation are lacking and fluid-
rock interaction processes remain weakly con-
strained at the km-scale.
We herein propose a new fluid migration al-

gorithm based on field relationships and ther-
modynamic modelling (PerpleX) where fluids are
free to migrate, driven by rock fluid concentration,
non-lithostatic pressure gradients and deforma-
tion. Oceanic subduction is then modelled using
a forward visco-elasto-plastic thermomechanical
code (FLAMAR algorithm) in which fluid trans-
port and rheological effect is implemented. After
15Ma of convergence between the two plates, we
show that deformation is accommodated along
a low-strength shear zone in the wall of the sub-
duction thrust interface, characterized by a weak
(10-25% serp.) and relatively narrow (between

3 km to 6 km) serpentinized front/channel.
Our results also show that dehydration associ-

ated with eclogitization of oceanic crust (60 km
to 75 km and serpentinite breakdown (110 km to
130 km) significantly weakens the mantle wedge
at these depths, thereby favoring underplating of
oceanic plate material in the deep mantle wedge
(Angiboust et al., 2012). Hydration of the subduc-
tion interface also significantly weakens the inter-
face and enables detachment and stacking of slices
from the downgoing slab. We finally show that
modelled geometries are in good agreement with
reconstructions derived from field structural ob-
servations made along the Western Alps eclogite-
facies ophiolitic belt, where large, coherent slices
were detached at c. 80 km depth in the Alpine
subduction zone (Fig. 1).
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Fig. 1.: Schematic view drawn from field and numerical modeling results of the subduction interface region
showing the detachment of large slices of oceanic lithosphere between 60 km and 80 km depths (Angiboust et
al., 2012).
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Abstract
Microbial analysis of water samples collected from two selected dumpsites within Ibadan metropolis
were carried out in order to ascertain the effects of leachates generated by dumpsite on groundwater
quality. Water samples were collected from surrounding wells and stream near Aba-Eku and
Ajakanga solid waste landfill in Southwestern part of Nigeria. The samples were analysed for
coliform count and Escherichia Coli through total plate count method. The result of the microbial
analysis reveals high presence of coliform in all the water samples while two wells around Aba Eku
dumpsite have E. Coli presence and none is detected in wells and stream around Ajakanga landfill.
High values of microbial counts are principal indicators of suitability of water for domestic purpose
and also sign of groundwater contamination in the surrounding wells. The sign of groundwater
contamination was noticed in many surrounding wells around the two dumpsites resulting in high
number of coliform bacteria. The presence of E. coli in wells 2 and 7 in Aba Eku requires control
measures before consumption.
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Abstract
Physiochemical and microbial analyses of water samples from hand-dug wells were carried out
around active dumpsite and or soil samples to ascertain the effect of wastes on the groundwater
and soil quality. Soil samples were collected up to depth of 100 cm with the aid of soil auger while
water samples were collected inside a 2L PVC bottle. Soil pH, EC, % OM, % OC values ranged
from 5.45–6.45, 5.03–6.63, 2.39–9.14 and 1.39–5.30. The mean values of soil pH, EC, % OM, % OC
are high when compared with control. For water samples, the parameters of interest for microbial
analysis are: coliform count and E. coli while parameters determined for physio-chemical analysis are:
pH, Total Dissolved Solid (TDS), Electrical Conductivity (EC), Hardness, Carbonate, Bicarbonate,
Chloride, Nitrate, Sulphate, Calcium, Magnesium, Potassium and Sodium ions. Microbial analysis
revealed severe pollution in all samples while most of physiochemical parameters indicated traceable
pollution which were below the World Health Organization (WHO) standard for human consumption
as well as the Nigerian Standard for Drinking Water Quality (NSDWQ) limits. However, Well 5
which is close to the landfill has high values for all analyzed parameters when compared with other
wells.
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Study of flow through porous and fractured
media is a very active research area, with many
different models and numerical tools available.
Most of these tools are designed to study coupled
processes of fluid flow, heat flow, and chemistry,
and results from these models have proven valid
in many real world applications.
However, the development of new engineering

techniques requires new tools to address more
complex scenarios. For example, fracking, en-
hanced geothermal systems, and CO2 /gas se-
questration and storage play a very important
role in the world’s energy and environmental re-
quirements. This tendency will likely steeply
increase in the future.

The principle problem for the general applicab-
ility of all these techniques relates to uncontrolled
and unexpected effects of fluid-triggered rock de-
formation. For example, induced seismicity can
disturb the population, with possible infrastruc-
ture damage or unplanned flow paths that may
lead to aquifers and soil pollution.

Therefore, there is need for new tools that con-
sider the full coupling between rock deformation
and fluid flow that use state-of-the-art fluid flow
and rock deformation models. Desired fluid flow
models should include saturated and unsaturated
porous media and multiphase-multicomponent
flow with local and nonlocal thermal equilibrium.

They are few tools available that are capable
of solving such models and, to the best of our
knowledge, none of these models include the case
for non-local thermal equilibrium. Such models
are necessary to address real world problems like
the stimulation stages in enhanced geothermal
systems or fracking (Figure 1).

Rock deformation models should include poro-
elasto-plastic rheology with thermal stresses and
hardening-weakening effects, and include damage
models when cycled loading-unloading is of in-
terest (Figure 2). Another important factor for
real world cases is seismic risk assessment, and
is such cases a simulation tool should be able to
adequately assess mechanistic seismic hazard, in-
cluding expected maximum magnitude (Figure ).
Numerical implementation of these models re-

quires state of the art numerical schemes capable
of dealing with complex geometries while main-
taining high accuracy and numerical resolution.
Finite differences, finite volumes and mixed

finite elements are well suited for fluid flow simu-
lations in complex domains, while finite elements
and mesh free methods have been applied for rock
deformation simulations (Figure 4).
Solutions of these coupled models using ad-

vanced numerical schemes at high resolution is
computational expensive and requires very long
computational times. Graphical Processor Units
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Fig. 1.: Results of a geothermal system simulation. Fresh cold water is injected in a hot fractured porous rock
which is saturated with saline water. Figures on top show the pressure of the system while on bottom are the
corresponding mass fraction diagrams

Fig. 2.: Comparison of two damage models with experimental data cycling compression test. A) Damage operator
as a function of effective plastic strain. b) Double surface damage-yield functions model.

Proceedings of GeoMod2014 (31.08.–05.09.14, Potsdam, DE, doi: 10.2312/GFZ.geomod.2014.001) 398



B. Galvan, S. Hamidi, T. Heinze, M. Khatami, G. Jansen, S. Miller Fluids and Deformation

Fig. 3.: Propagation of acoustic emissions during fluid
injection in a drained specimen. Results form poro-
elasto-plastic model simulation. Black curve represent
fluid front as solution of saturation equation. Blue
dots are numerical acoustic emissions. Following ex-
perimental data from Stanchits et al. 2011.

(GPUs) resend a new programming paradigm
that allows shorter computational times in com-
parison to CPU programming. However, for cor-
rect and efficient implementation of numerical
algorithms in GPUs it is necessary to manage
different memory protocols and specialized pro-
gramming techniques, which adds additional com-
plexity to the problem. In addition, usage of
distributed GPU clusters for numerical simula-
tions and even the implementation of well-known
numerical algorithms, is a very new research area.

Under these circumstances of complex physical
models and high numerical resolution, post pro-
cessing may become a bottleneck. Fast analysis
of the data requires fast and informative post
processing techniques, and real time visualization
techniques might allow rapid analysis of large
data sets. In particular, for 3D simulations, visu-
alization plays an important role. The question
is how to present 3D information in the most
informative way while maintaining computation-
ally efficiency (Figure 5). Particularly for GPU
systems, communication from GPUs to CPUs to
apply rendering techniques slows down the en-
tire computation, so new rendering algorithms
appropriate for GPUs must be developed.

Fig. 4.: Shear bands for strain for uniaxial experiment
simulation. Simulation of poro-elasto-plastic model
using mesh free methods.

Fig. 5.: Visualization of 3D stress tensor using glyphs.
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The description and representation of complex
geometries, as they are encountered in real world
cases, is a complicated task. Some tools rely on
third party programs to create a suitable numer-
ical representation of the geometry of the case
under study. In other cases an over-simplification
of the geometry is required. These procedures
may result in limited applicability or usage of the
simulation tool.

Tactile devices that allow a more intuitive and
faster interaction with computational tools may
increase the use of scientific simulation programs.
Programming of a general multifunctional mod-
eling tool for lithospheric fluid-rock processes is
a very complex task. In this talk, we present
different steps that we have taken toward this
goal. This includes the development of new phys-
ical models, application to real cases and imple-
mentation of these models using advanced nu-
merical schemes. We also describe some pro-
gramming techniques for object oriented imple-
mentation in CPU, GPU and cluster of GPUs,
pre-processing using tangible devices and visu-
alization techniques for CPU and GPU based
programs.
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Fluid-rock interactions play an essential role
in many earth processes, from a likely influence
on earthquake nucleation and aftershocks, to en-
hanced geothermal system, carbon capture and
storage (CCS), and underground nuclear waste re-
positories. Coupled thermal-hydraulic-chemical
models (THC) are important for investigating
these processes. Our objective is to develop
algorithms for coupling the fluid processes to
the rock mechanics that control rock deforma-
tion and fracture. To that aim, we present a
two-dimensional numerical simulation of a fully
coupled non-isothermal non-reactive solute flow
flexible for field as well as laboratory scales.

In THC models, two-way interactions between
different processes (thermal, hydraulic and chem-
ical) are present. Fluid flow influences the per-
meability of the rock especially if chemical reac-
tions are taken into account. On one hand solute
concentration influences fluid properties while, on
the other hand, heat can affect further chemical
reactions.
The flow process of the model includes a non-

linear Darcian flow for either saturated or unsat-
urated scenarios. The governing equation for the
saturated case is:

∂

∂t
(φρ) +∇ (ρv) = Q (1)

where ρ is the mass density of the fluid, φ the rock
porosity, Q the source/sink term and v Darcy
velocity:

v = −κ
µ

(∇P − ρg) (2)

where κ is the permeability, µ the dynamic viscos-

ity of the fluid and g the gavitational acceleration.
For the variably saturated systems in laboratory
scale, Richards’ Approximation is used (Kolditz,
2002) and the relative permeabilities are derived
from van Genuchten relations (van Genuchten,
1980). Permeability and porosity of rock are
stress and pressure dependent (Rutqvist et al.,
2002). Additionally, the gravitation effects can be
switched on and off depending on the simulation
case.
The non-reactive mass transport is described

as (Ackerer et al., 1999) :

φ
∂Cm
∂t

+ v∇Cm −∇ (Dm∇Cm) = 0 (3)

with Cm mass fraction and Dm molecular diffu-
sion coefficient.
The thermal part of the simulation models

heat transfer processes for either local thermal
nonequilibrium or equilibrium cases. For the
former one, conservation of energy for fluid and
rock is expressed as (Shaik et al., 2011):

φcp,fρf
∂Tf
∂t

+ v∇Tf − λf∇2Tf +QT = 0 (4)

(1− φ) cp,rρr
∂Tr
∂t
− λr∇2Tr −QT = 0 (5)

QT = hA (Tf − Tr) (6)
where T is temperature, cp thermal capacity, λ
thermal conductivity, QT heat transfer between
rock and fluid, h heat transfer coefficient and
A heat transfer area. Assuming local thermal
equilibrium, we can rewerite the temparature
equation (Kolditz, 2002):

cpρ
∂T

∂t
+ cp,fρfφv∇T − λ∇2T = 0 (7)
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cp = φcp,fρf + (1− φ) cp,rρr (8)

λ = φλf + (1− φ)λr (9)

Estimating heat production from a naturally
fractured geothermal systems remains a complex
problem. Previous works are typically based on a
local thermal equilibrium assumption and rarely
consider the salinity. The dissolved salt in fluid
affects the hydro- and thermodynamical behavior
of the system by changing the hydraulic proper-
ties of the circulating fluid. For studying such a
system, we consider a given fracture network sat-
urated with saline water and inject high pressure
fresh water into it. We compare the results of
different assumptions (e. g. local thermal equilib-
rium an non-equilibrium) with field observations
(Figure 2).
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Fig. 1.: The Henry saltwater intrusion problem describes the steady state solution of a diffused saltwater front
in an initially saturated fresh water confined aquifer. Results of the simulation for κ = 1× 10−12 m2 and
Dm = 1.886× 10−6 m2 s−1 .

14 hr 97 hr 180 hr 264 hr 347 hr 430 hr 488 hr

7 MPa

0 MPa

1.
5

km
de

pt
h

0.02

0
1 km width

Fig. 2.: Results of a geothermal system simulation. Fresh cold water is injected in a hot fractured porous rock
which is saturated with saline water. Figures on top show the pressure of the system while on bottom are the
corresponding mass fraction diagrams.
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Introduction

An earthquake swarm is defined as a sequence
without a single, dominant event (Yamashita,
1998). Field observations and numerical simula-
tions suggest that fluid flow is an important com-
ponent in the generation of earthquake swarms
(Hainzl, 2004). In West Bohemia / Vogtland,
earthquake swarms coincide with degassing of
CO2 originating from the mantle. Young Qua-
ternary volcanism with a magmatic body associ-
ated with a local Moho updoming is the assumed
source for the CO2 that propagates through a
pre-existing and re-stimulated fracture network
(Weinlich et al., 1999). The fluids are suggested
as a main trigger for earthquake activity in the
region (e. g. Spicak & Horalek, 2001, Weise et al.,
2001, Bräuer et al. 2003).

Earthquake swarms over the last decades con-
centrated in the Novy Kostel area (Czech Re-
publik) within a region of several square kilo-
meters. The earthquake swarms, with a max-
imum magnitude of 4.5, include several thousand
micro-seismic events with hypocenters ranging
between 6.5 km and 11 km, with some deeper
around 13 km, and occur along a steeply dipping
fault plane (Fischer & Horalek, 2003). Registered
swarms occurred in 1985/1986, 1997, 2000, 2008
and 2011, during which previously ruptured areas
were reactivated (Fischer et al., 2014).

Several numerical models have been applied to
the West- Bohemian earthquake swarms, includ-
ing a poro- elasto plastic finite element model to
calculate stresses and strains (Kurz et al., 2003).

These studies demonstrated that the regional
stress field is insufficient to cause earthquake
swarms, but when combined with fluid migra-
tion they show reasonable rates of deformation
capable of earthquake swarms. Statistical ap-
proaches can reproduce the seismic pattern of the
2000 swarm (Hainzl, 2004), where a brittle patch
surrounded by an elastic half- space is loaded by
fluid migration and stress changes. The spatio-
temporal distribution of the seismic events is
shown to be dominated by stress triggering, with
fluid migration acting as the initiator. Linear dif-
fusion models (Parotidis et al., 2005) focused on a
single fluid source to determine overall diffusivity.

In this work we develop and apply a model to
simulate the flow of supercritical CO2 through a
fracture network assuming non- linear diffusion
with a stress and pressure dependent permeability
and porosity (Rutqvist et al., 2002). We solve the
diffusion-advection equations for the temperature
of the rock and CO2, assuming local equilibrium.
Stresses are calculated with a full poro-thermo-
elasto- plastic rheological model taking harden-
ing, softening and damage effects into account.
Plastic deformation of rocks is modeled using the
Griffith and Mohr-Coulomb criteria. Cohesion
and internal friction angle are mobilized in terms
of a cohesion weakening and frictional strengthen-
ing model (CWFS) (Hajiabdolmajid et al., 2002).
The mobilized values for friction angle, cohesion
and dilatancy angle are calculated as functions
of the effective plastic stresses and a damage
variable is calculated as a functions of plastic
strain. Our theoretical model is implemented in
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Fig. 1.: Comparison of experimental and simulated
stress- strain response curve of an uniaxial compression
cycling test of a concrete specimen. Experimental
data taken from (Sinha et al., 1962).

a numerical scheme using finite differences on a
staggered grid to simulate the dynamic behavior
during loading and fluid injection. The numerical
results of the model show very good agreement
with laboratory results (figure 1). Coincidence
was achieved for stress – strain relationships, volu-
metric and inelastic strain, fracture propagation
and stress drop during fluid injection.
Estimating the seismic moment of a fracture

generation or -propagation is of great interest
in numerical simulations. Most published mod-
els are able to reproduce important features and
behavior of the seismic events like the propaga-
tion of the seismic cloud from the borehole, the
Kaiser- Effect and also give reasonable values for
magnitudes and the overall distribution of the
events. They are mainly tested at shale gas fields
or geothermal sides.
We present an approach based on continuum

mechanics to derive the seismic magnitude using
the deviatoric strain as an indicator for rupture
processes. A peak- detection algorithm is used
to identify rapid changes that are then marked
as seismic events. This method works very well
on laboratory scale for dry and hydraulic fractur-
ing (figure 2). In this work we apply the same
mechanism to field scale to match the seismic
characteristics of the earthquake swarm in the

Fig. 2.: Numerical simulation of a confined compression
experiment. Acoustic emissions are simulated using
the deviatoric strain as a marker. Simulation results
of acoustic emission fit to experimental observations
(cf. Stanchits et al., 2011).

Vogtland / West Bohemia.
We numerically simulate the flow of hot, over-

pressured CO2 rising from below in a region from
5 km to 15 km depth mainly taking place in
a preexisting fracture network (figure 3) which
evolves during high pressure flow. We compare
the results to field observations and the seismic
measurements during the swarm activity, paying
special attention to the seismic characteristics of
the region.

References

Yamashita, T. (1998). Simulation of seismicity
due to fluid migration in a fault zone. Geophys-
ical Journal International, 132, p. 674-686.

Hainzl, S. (2004). Seismicity patterns of earth-

Proceedings of GeoMod2014 (31.08.–05.09.14, Potsdam, DE, doi: 10.2312/GFZ.geomod.2014.001) 405



T. Heinze, S. Hamidi, B. Galvan, S. Miller Fluids and Deformation

"/users/krypton/heinze/soultz12/StrainDev-5-0.txt" matrix

Fig. 3.: Deviatoric strain of a fracture network obtained
from a numerical simulation of a compressive envir-
onment. Dimensions are 2 km x 2 km.

quake swarms due to fluid intrusion and stress
triggering . Geophysical Journal International,
159, p.1090-1096.

Weinlich, F.H., Bräuer, K., Kämpf, H., Strauch,
G., Tesar, J. Weise, S.M. (1999). An act-
ive subcontinental mantle volatile system in
the western Eger rift, Central Europe: Gas
flux, isotopic and compositional fingerprints.
Geochimica et Cosmochimica Acta, 63(21), p.
3653-3671.

Spicak, A., Horalek, J. (2001). Possible role of
fluids in the process of earthquake swarm gen-
eration in the West Bohemia/Vogtland seismo-
active region. Tectonophysics, 336, p.151-161.

Weise, S.M., Bräuer, K., Kämpf, H., Strauch, G.,
Koch, U. (2001).Transport of mantle volatiles
through the crust traced by seismically released
fluids: a natural experiment in the earthquake
swarm area Vogtland/NW Bohemia, Central
Europe. Tectonophysics, 336, p.137-150.

Bräuer, K., Kämpf, H., Strauch,. G., Weise,
S.M. (2003). Isotopic evidence (3He/4He, of
fluid-triggered intraplate seismicity. Journal of
Geophysical Research. 108(82).

Fischer, T., Horalek, J. (2003). Space-time distri-
bution of earthquake swarms in the principal
focal zone of the NW Bohemia/Vogtland seis-
moactive region: period 1985–2001. Journal of
Geodynamics. 35, p. 125-144.

Fischer, T., Horalek, J., Hrubcova, P., Vavrycuk,
V., Bräuer, K., Kämpf, H. (2014). Intra-
continental earthquake swarms in West- Bo-
hemia and Vogtland: A review. Tectonophys-
ics, 611, p.1-27.

Kurz, J.H., Jahr, T., Jentzsch, G. (2003). Geody-
namic modelling of the recent stress and strain
field in the Vogtland swarm earthquake area
using the finite element method. Journal of
Geodynamics. 35, p. 247-258.

Parotidis, M., Shapiro, S.A., Rothert, E. (2005).
Evidence for triggering of the Vogtland swarms
2000 by pore pressure diffusion. Journal of
Geophysical Research, 110.

Rutqvist, J., Wu, Y.S., Tsang, C.F., Bodvarsson,
G. (2002). A modeling approach for analysis
of coupled multiphase fluid flow, heat trans-
fer, and deformation in fractured porous rock.
International Journal of Rock Mechanics &
Mining Sciences, 39, p.429-442.

Hajiabdolmajid, V., Kaiser, P.K., Martin, C.D.
(2002). Modelling brittle failure of rock. Inter-
national Journal of Rock Mechanics & Mining
Sciences, 39, p.731-741.

Sinha, B.P., Kurt, H. Gerstle, Tulin, L.G. (1964).
Stress- Strain Relations for concrete under cyc-
lic loading. Journal of the American Concrete
Institute, 61(2), p.195-211.

Stanchits, S., Mayr, S., Shapiro, S., Dresen, G.
(2011). Fracturing of porous rock induced by
fluid injection. Tectonophysics, 503, p.129-145.

Proceedings of GeoMod2014 (31.08.–05.09.14, Potsdam, DE, doi: 10.2312/GFZ.geomod.2014.001) 406



Modelling of fractured reservoirs: fluid-rock interactions
within fault domains
Antoine Jacquey1, Mauro Cacace1,3, Guido Blöcher1, Magdalena Scheck-Wenderoth1,2

1Helmoltz Centre Potsdam, GFZ German Research Center for Geosciences, Potsdam, Germany
2RWTH Aachen, Germany
3Potsdam University, Potsdam, Germany
e-mail: ajacquey@gfz-potsdam.de
session: Fluids and Deformation

The presence of a major fault can have signi-
ficant impacts on the hydraulic and mechanical
properties of the hosting rock. Different domains
in terms of fluid and mechanical properties can
be identified within a faulted region such as a low
permeability fault core, a damage zone usually
extending on both sides of the core where rocks
are highly fractured and permeability increases
and poorly fractured or intact rocks situated far
away from the fault core [4, 7, 12], see figure 1.
During geothermal operations, injection and pro-
duction of fluid can induce significant pore pres-
sure changes which impact the stress field thus
affecting the reservoir rocks. In this context, the
elastic and hydraulic properties of the porous rock
can be altered by deformation of the pore and
bulk volumes which in some cases may comprom-
ise the productivity of the geothermal system [3,
5]. Therefore special interest is given to porosity
and permeability temporal evolutions as main
properties controlling fluid transport processes
within such systems.

The presence of fractures, their density, aper-
tures and interconnectivity play a major role in
affecting poroelastic processes within fault zones.
While for a non fractured rock hydraulic proper-
ties will depend only on changes in pore volume
as induced by elastic deformation of the pores,
closure of fractures can induce important nonlin-
earities on the stress-strain relations [9]. Typical
distributions are schematically shown in figure 1
for permeability (b) and Young’s modulus (c).

Fig. 1.: Fault zone configuration - example of the per-
meability and Young’s modulus distributions [4]
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Different behaviors in these two properties nicely
illustrate how fractures may significantly impact
processes occurring in these domains.

The aim of this project is to deepen current un-
derstanding of fundamental processes controlling
fluid-rock interactions in fault zones. In a first
step poroelastic formulations are derived which
are based and validated on laboratory experi-
ments on undamaged and damaged samples [2,
1, 8]. Porosity and permeability relations are the
major focus of this project and their evolution is
linked with the stress field or with pore pressure
changes. An important interest will be given to
the continuity of the formulations at the interface
between two zones of the fault region. These for-
mulations, implemented in a simulation software
will be used in a future step to simulate a faul-
ted geothermal system at the reservoir scale thus
abling to analyze fluid-rock interactions within
the fault and the impact of major fault zones on
the system productivity.
Simulations are conducted using the open-

source 3-D finite element method-based simu-
lator OpenGeoSys [14, 16, 15, 10] which offers
the possibility of solving coupled processes within
a hybrid approach combining discrete fractures
and continua models for fractured porous rocks.
Porosity and permeability relations previously
defined and validated have been implemented in
the simulator.

The current results of the project will be presen-
ted, including porosity and permeability relations
for undamaged samples. From [1], experimental
data for porosity of two kinds of sandstone are
presented. The availability of these data lead
to first consider for this project these two sand-
stones: Flechtinger sandstone, a Lower Permian
(Rotliegend) sedimentary rock from an outcrop
near Flechtiner, Germany [11] and Bentheimer
sandstone, a Lower Cretaceous sedimentary rock
from an outcrop near Bentheim, Germany [6].
Unlike the Bentheimer sandstone which is very
homogeneous (95% quartz, 3% kaolinite and
2% orthoclase), Flechtinger sandstone is com-
posed of quartz (55 – 65%), rock fragments of vol-
canic origin (20 – 25%) and feldspars (15 – 20%).
Different models [1, 13, 8] for sandstones have

been investigated and compared to the laborat-
ory measurements. From [13], porosity changes
depend on the mean effective stress:

φ = (φ0 − φr) eAσ
′
M + φr (1)

Where φ0 and φr are the initial and residual
porosity (at high stresses), σ′M the mean effective
stress and A a coefficient.And from [1], porosity
changes depend on drained experiment quantities
such as the drained volumetric strain (equation
(2)) or the drained bulk compressibility (equation
(3)):

φ =
V 0
φ − eV V 0

b + eu
V

(
V 0

b − V 0
φ

)
V 0

b − eV V 0
b

(2)

dφ = − ((1− φ0)C − Cu
s ) dpe (3)

Where V 0
φ and V 0

b are initial pore and bulk
volumes, eV and eu

V the volumetric strains un-
der drained and unjacketed conditions. C is the
dreained bulk compressibility, Cu

s the unjacketed
solid compressibility and pe the Terzaghi effective
pressure.

The validity of new poroperm relations is tested
by simulating isothermal hydrostatic tests with
increasing pore pressure on 3-D cylindrical rock
samples under the same conditions as the laborat-
ory experiments (see figure 2). In such configura-
tion, the confining pressure is equal to the pore
pressure. Experimental results from a drained
hydrostatic test are used for some of the mod-
els in order to obtain poroperm relations fitting
laboratory measurements [9]. An acting pres-
sure from 0.1MPa up to 70MPa is considered
with an increasing rate of 10MPah−1. In these
conditions the porosity decreases with increasing
acting pressure due to changes in pore and bulk
volumes.

Figure 3 shows the porosity evolution depend-
ing on the acting pressure for an undamaged
sample of Flechtinger sandstone (sub-figure 3 a)
and Bentheimer sandstone (sub-figure 3 b). For
an acting pressure of 70MPa, a decrease of
8,1% and 1,4% for the Flechtinger sandstone
and for the Bentheimer sandstone are respect-
ively observed. Two different domains are iden-
tified: under a certain acting pressure (20MPa

Proceedings of GeoMod2014 (31.08.–05.09.14, Potsdam, DE, doi: 10.2312/GFZ.geomod.2014.001) 408



A. Jacquey, M. Cacace, G. Blöcher, M. Scheck-Wenderoth Fluids and Deformation

Fig. 2.: Simulation setup of the hydrostatic test and
initial properties of the two sandstones

for Flechtinger sandstone and 10MPa for Ben-
theimer sandstone) the porosity decreases non-
linearly and linearly above this acting pressure.
These two domains can be identified in the poros-
ity computed with models from [1] but the model
from [13] gives a better precision for the porosity
in the considered acting pressure range. These
results show that the porosity of the Flechtinger
sandstone is more sensitive to a change of pore
pressure than the porosity of the Bentheimer
sandstone.
Permeability changes are linked to porosity

changes and pore shape changes using the Kozeny-
Carman permeability derived from the Hagen-
Poiseuille equation. Following this approach, per-
meability changes can be expressed as a function
of porosity changes and a Kozeny-Carman coeffi-
cient [9]:

k = A
φ3

(1− φ)2 (4)

Where A is a parameter which depends on the
geometry of the pore and φ is the porosity. In
[2], this poroperm relation has been evaluated
for the Flechtinger sandstone and validated by
comparison with experimental measurements of
permeability. Figure 4 shows the computed per-
meabilites computed with equation (4). With
this model, the permeability decrease shows the
same evolution trend as for the porosity. A de-

(a) Flechtinger sandstone

(b) Bentheimer sandstone

Fig. 3.: Normalized porosity evolution for the two men-
tioned sandstones

crease of 27% and 8% for the Flechtinger and
Bentheimer sandstones permeability respectively
are observed for an acting pressure of 70MPa.
Such decrease can have significant impacts on
fluid flow and accordingly also on a geothermal
system productivity.

Different models have been tested for porosity
and permeability changes under increasing pore
pressure after being implemented in the finite
element method-based simulator OpenGeoSys.
Models for porosity which depend on measure-
ments made in laboratory under drained condi-
tions show a good trend but are strongly depend-
ent on the available experimental data. In future
work, changes for mechanical properties such as
the bulk compressibility will be investigated for
undamaged samples to generalize these porosity
relations for different kind of sandstones. Then
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(a) Flechtinger sandstone

(b) Bentheimer sandstone

Fig. 4.: Normalized permeability evolution for the two
mentioned sandstones

in next steps, the study of damaged sandstones
will be performed in parallel with laboratory ex-
periments with different fractures densities to
complete the fault zone model.
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Temperature plays a crucial role for many pro-
cesses affecting the lithosphere, from fluid-rock
interactions on the micro scale to the rheology-
dependent deformation of an entire lithospheric
plate. The thermal field of the lithosphere is con-
trolled by heat transport mechanisms – namely
conduction, advection, and convection – with di-
verse relative importance at different scales. We
compare differently detailed 3D structural models
from the Central European Basin System (CEBS)
to assess the sensitivity of temperatures to (1) the
heat transport mechanisms considered, (2) the
configuration of the lithosphere in terms of 3D
distribution of thermal and hydraulic properties
and (3) fault-controlled groundwater flow. Based
on the analysis of differently scaled models, we
propose a strategy for modelling the geothermal
field of sedimentary basins from the lithospheric
to the local (reservoir) scale (Scheck-Wenderoth
et al., 2014). This workflow has a hierarchical
structure and shows how the results of larger scale
simulations can be used as input and boundary
conditions for smaller and more detailed models.
The general applicability of this workflow and
the resulting 3D temperature distributions make

it of interest for a broad range of geoscientific
studies including thermo-mechanical modelling
of lithospheric deformation or geothermal utilisa-
tion.

3D thermal models of the entire CEBS (e. g.
Scheck-Wenderoth & Maystrenko, 2013; Fig. 1, 2)
have shown that conduction is the dominant heat
transport mechanism on the lithospheric scale.
The thermal field is thus strongly controlled by
the distribution of thermal conductivities caused
by compositional and thickness variations of the
highly conductive lithospheric mantle and crys-
talline crust as well as the insulating sedimentary
cover. Among the sediments, rock salt plays
an exceptional role because of its strongly vary-
ing thicknesses in the region and its very high
thermal conductivity, which together produce
strong (even though short-wavelength) thermal
anomalies. Variable thicknesses of the upper
crystalline crust induce thermal anomalies of lar-
ger wavelengths related to the large amount of
radiogenic heat produced by these felsic rocks.
Finally, the depth distribution of the thermal
lithosphere-asthenosphere boundary (LAB) con-
trols the basin-wide temperature distribution as
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Fig. 1.: 3D structural model of the CEBS used for purely conductive thermal simulations (Scheck-Wenderoth
& Maystrenko, 2013). The selected surfaces are relevant for the thermal field. The lithosphere-scale model
covers an area of about 1000x1800 km with a horizontal resolution of ~4 km. It resolves eight sedimentary
units (including a layer of mobilised Upper Permian Zechstein salt), two layers of the crystalline crust and the
lithospheric mantle (after Maystrenko & Scheck-Wenderoth, 2013).
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Fig. 2.: Results of the 3D thermal model of the CEBS
with modelled temperature at 3 km and 30 km depth
(below sea level; Scheck-Wenderoth & Maystrenko,
2013).

it represents the depth of commencing partial
melting of the mantle and thus an isotherm (of
~1300 ◦C). Knowing the depth of this isotherm
thus provides a suitable lower boundary condition
for thermal models of entire sedimentary basins.

The same factors (thermal conductivity, radio-
genic heat production, and depth of the LAB)
decide upon the distribution of temperatures on
the regional scale, such as over the subsurface of
the federal state of Brandenburg (e. g. Noack et
al., 2012). For this reason, it is essential to con-
sider information on the configuration of the deep
crust and upper mantle also on the regional scale.
However, local deviations of modelled temper-
atures from measured (borehole) temperatures
also provide indications for moving fluids. Mod-
elling the coupled transport of heat and fluid
is numerically far more expensive and requires
higher resolution of the subsurface geology and
hydrogeology. Therefore, only models of a lim-
ited size can be studied with such simulations.
Accordingly, the influence of fluid flow on the
regional thermal field was successfully assessed
for the area of Brandenburg down to a depth of

6 km (below sea level; Noack et al., 2013), thereby
using well-constrained lower boundary conditions
derived from lithosphere-scale thermal models of
the CEBS.
On the local scale, groundwater flow and the

corresponding temperature and pressure distri-
butions might be influenced by the existence of
faults and the related variations in hydraulic prop-
erties (Cherubini et al., 2014). Permeable faults
may focus fluid flow and cause local convective
instabilities along the fault area. Furthermore,
3D models show that free (density-driven) con-
vection can occur locally, namely where the per-
meability and the thickness of geological layers
are large enough and the hydraulic gradients low
(e. g. Kaiser et al., 2011). To numerically re-
produce such local processes related to coupled
heat and groundwater transport along faults or
the development of stable convective cells, even
higher-resolved 3D models are required provid-
ing a high degree of detail on the distribution of
hydraulic properties. Again, results from larger
scale models can be exploited to extract suitable
thermal and hydraulic boundary conditions for
local high-resolution models.
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Fig. 3.: 3D geological model of Brandenburg (Noack et al., 2013) used for 3D coupled fluid and heat simulations
(e. g. Cherubini et al., 2014); a) stratigraphic layers; b) aquitards (white) and aquifers (black).
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Fig. 4.: 3D flow field around a permeable fault zone (Cherubini et al., 2014). Grey-shaded is the impervious
Permian Zechstein salt layer. The Gardelegen fault zone is presented by its temperature distribution in the
background. Groundwater flow is directed from the surrounding aquifers towards the fault zone (velocity
vectors).
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Introduction

Digital rock physics combines modern micro-
scopic imaging with numerical simulation for ana-
lysis of the physical and hydrological properties
(e. g., Saenger et al., 2011). Recent technology de-
velopments of X-ray microcomputed tomography
(micro-CT) as well as computational capacity for
numerical simulation enable us to apply digital
rock physics to realistic rock samples. Using
digital pore models (Fig. 1), we study porous
flow, fluid-solid interaction, interfacial phenom-
ena, elastic and inelastic deformation, and min-
eral precipitation within real pore space. Since
it allows us to estimate hydrological and elastic
properties under several subsurface conditions
(e. g., pressure), we can conduct virtual laborat-
ory experiments in various reservoir conditions
(e. g., Saenger et al., 2010; Tsuji et al., 2012; Jiang
et al., 2014).

Here we mainly show the application of digital
rock physics for Carbon dioxide Capture and Stor-
age (CCS). In CCS projects, CO2 injected into
the subsurface reservoir can be trapped accord-
ing to several mechanisms, including structural
and stratigraphic trapping, capillary trapping,
dissolution, and chemical reaction (or mineral
precipitation). The behavior of CO2 inside pore
space can be characterized as two-phase flow in a
porous media system, which is usually influenced
by interfacial tension, pore structure, pressure,
wettability, and etc. Therefore, we believe that
digital rock physics significantly contributes to
reveal multi-phenomena in porous medium oc-

Fig. 1.: Three-dimensional pore geometry of Berea sand-
stone reconstructed from scanned micro tomographic
image. Gray indicates the pore space.

curred in the CCS project.
To characterize properties of CO2 injection

reservoirs, we can apply digital rock physics to
geophysical properties (e. g., seismic velocity).
We usually use rock physics models (analytical
models; Tsuji and Iturrino, 2008) or empirical
relations (Tsuji et al., 2011) in order to estimate
physical properties from seismic velocity. Using
rock physics models, for example, we predict pore
pressure distribution from high-resolution seis-
mic velocity derived from waveform tomography
(Tsuji et al., 2014). However, the analytical mod-
els (e. g., differential effective medium theory) can
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be applied only for the limited or simplified pore
geometry (e. g., crack). The digital rock physics
can construct the relationship between elastic
properties and subsurface properties by consider-
ing realistic pore geometry and various reservoir
conditions. Here we also show our recent studies
of digital rock physics to construct the relation-
ship between elastic properties and subsurface
properties under several conditions (Tsuji et al.,
2012).

To predict long-term CO2 behavior within the
reservoir in CCS projects, we use reservoir simula-
tion. A key parameter in the reservoir simulation
is "relative permeability". Although the hydro-
logical properties are significantly influenced by
mineral precipitation due to CO2 injection (e. g.,
change of pore space) and dissolution, it is diffi-
cult to estimate time evolution of these proper-
ties. The elastic properties (e. g., P-wave velocity)
derived from time-lapse seismic survey are also
influenced by mineral precipitation. Using digital
rock approach, we can simulate mineral precipit-
ation and estimate time-evolution of (1) hydrolo-
gical properties (e. g., relative permeability) for
reservoir simulation and (2) elastic properties for
geophysical monitoring. Recently we have de-
veloped numerical calculation methods to model
carbonate precipitation during long-term CO2
storage (Jiang and Tsuji, in revision).

Digital rock model

The digital rock model used in this study was ex-
tracted from images of a cylindrical core of Berea
sandstone obtained by multi-slice micro-CT scan-
ner (Fig. 1). Berea sandstone is well-sorted sand-
stone with relatively large size of grain. The
resolution of the scanned images is 3.2 µm. Total
data sets are composed of 396 slices with interval
of 5 µm. In the image data, each pixel corres-
ponds to CT value, which is proportional to the
density of the material. To identify and label
the pore and grain phases within the images,
the segmentation process is carried out by us-
ing a single grayscale threshold method to match
typical porosity of Berea sandstone (~21%). Con-

sequently, these segmented 2D pixel images are
linearly interpolated to generate voxel-based 3D
volume with 3.2 µm (Fig. 1).

Two-phase LBM modeling

The fluid velocity field within the 3D pore
spaces is calculated using the two-phase lattice
Boltzmann method (LBM). In this study, we
show the results using the color gradient model
(Tölke et al., 2006) to treat the multi-phase prob-
lem. No-slip boundary conditions are imposed
at all solid nodes including the precipitated min-
erals via a half-way bounce-back scheme. To
increase the computation efficiency, we applied
the graphics processor unit (GPU) parallel com-
puting technique (e. g., Jiang et al., 2014). The
advantages of GPU computing, including large
memory bandwidth and low cost, make it suitable
for conducting large-scale computation on a small-
scale GPU-based cluster (Tölke and Krafczyk,
2008). Using this technique, we can conduct two-
phase LBM simulation for the largest grid size in
the world (~10003; Fig. 2). The two-phase LBM
simulation was often applied to the pore-scale
model in order to characterize fluid flow within
one pore throat with micrometer scale. Due to
the GPU utilization, however, size of the digital
rock is approaching to laboratory-scale (~centi-
meter scale). Therefore, the GPU computation
could bridge a gap between pore-scale phenomena
and laboratory-scale phenomena.

We estimate hydrological properties under sev-
eral reservoir conditions (e. g., interfacial tension)
from CO2 behavior within pore space (Fig. 3).
The relative permeability decreases with increas-
ing IFT because of growing capillary trapping in-
tensity (Fig. 3). In extremely low IFT conditions,
the capillary trapping phenomenon disappears,
and the curvatures of the relative permeability
curves diminish (Jiang et al., 2014). The relat-
ive permeability estimated for several reservoir
conditions is crucial information in reservoir sim-
ulation.
The elastic properties (e. g., P-wave and S-

wave velocities) of CO2 saturated rock sample
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Fig. 3.: Non-wetting fluid invasion simulation of (a) low interfacial tension case and (b) high interfacial tension
case (Jiang et al., 2014). The solid phase is shown in light gray, and the wetting fluid is transparent. The
non-wetting white fluid is injected from left to right. The size of the calculated cube is 1.024mm.

obtained via LBM (Fig. 3) are calculated by
applying staggered finite-difference time-domain
(FDTD) method (Saenger et al., 2011; Fig. 4). By
using different frequency of source Ricker wave-
let, we can estimate frequency dependence of
elastic properties. Seismic velocity and quality
factor can be estimated under several reservoir
conditions (e. g., interfacial tension). We further
obtain the relationships between seismic velocity
and CO2 saturation in drainage and imbibition
processes.

Mineral precipitation modeling:
Time-evolution of hydrological and
elastic properties

In CCS project, the injected CO2 would be pre-
cipitated. The carbonate precipitation process is
represented as a two-component system of Ca2+

and CO2−
3 . The rate of precipitation is controlled

by both changes in Ca2+ and CO2−
3 concentration

in the fluid. Here, considering the equilibrium
conditions, we only calculate one-component fluid
with calcite for convenience (Yoo et al., 2013; Ji-
ang and Tsuji, in revision). The calcite deposition
within the pore space is calculated by using an
advection–reaction formulation solved by finite
volume method (FVM); we model the precipit-
ated rock by transferring the fluid node to solid
node according to the calcium concentration level.
The clogging model updates the solid phase ac-
cording to precipitation process and consequently
changes the geometry and porosity of the sample
rock. Then fluid solver is called to recalculate
the flow field based on the evolved pore micro-
structures. Our calculation shows that deposition
location depends on not only the fluid velocity
field but also the rock structure. To validate
our method, the carbonate precipitation simula-
tion is carried out on a beads pack model and
compared with laboratory experiment (Yoo et al.
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Fig. 2.: Example of CO2 behavior within pore space of
Berea sandstone using two-phase lattice Boltzmann
method. The left is inflow side. White indicates the
injected CO2. This grid size is 1000x1000x1000.

2013). Since the simulation results are in consist-
ent well with the experiment data, our method
can simulate realistic mineralization process.
The calculated permeability variation due to

the carbonate precipitation demonstrates that
evolution of pore structure significantly influences
the absolute permeability, while it only affects
the relative permeability of non-wetting phase at
low water saturation conditions. Because the non-
wetting phase occupies most of the pore spaces
at low wetting saturation conditions, the move-
ment of non-wetting fluid is suppressed due to
the increased capillary pressure associated with
mineralization. Whereas, for high wetting sat-
uration conditions, the relative permeability is
less influenced because the non-wetting fluid in-
side the pore turns to separated droplets and it
is possible for those droplets to pass the pore
throat. These observations can be used in the
long-term reservoir simulation to estimate future
CO2 behaviors.
The elastic properties obtained via FDTD to

the mineralized digital rock samples demonstrate
that elastic properties are much influenced by the
mineralization features. The relationship between
seismic velocity and porosity derived from our
mineralization simulation is different from that

Fig. 4.: Elastic deformation of the LBM-derived CO2
saturated rock (Fig. 3). Elastic wave propagates from
bottom to top. Color shows the velocity distribution.

derived from other mineralization methods (i. e.,
CT threshold adjacent method; Jiang and Tsuji,
in revision). This information related to the time-
evolution of elastic properties can be used in
geophysical monitoring for the injected CO2.
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GeoMod2014 - Conference Outline

Time 31. August 1. September 2. September 3. September
08:45 - 09:00 - Welcome - -

09:00 - 11:00 - (Seismo-)tectonics
(orals)

Volcanism and
Volcanotectonics
(orals)

Rheology (orals)

11:00 - 13:00 - (Seismo-)tectonics
(posters)

Volcanism and
Volcanotectonics
(poster)

Rheology (poster)

13:00 - 14:00 - Lunch break Lunch break Lunch break

14:00 - 16:00 - Tectonics and
Surface processes
(orals)

Geodynamics
(orals)

Fluids and
Deformations
(orals)

16:00 - 18:00 - Tectonics and
Surface processes
(poster)

Geodynamics
(posters)

Fluids and
Deformations
(poster)

18:00 - 21:00 Ice Breaker
Party

- - -

19:00 - 22:00 - Joint Conference
Dinner

-

GeoMod2014 - Short course on "Constitutive Laws: from Observation to Implement-
ation in Models" by Onno Oncken, Mathias Rosenau, Fabio Corbi, Georg Dresen Erik Rybacki,
Stephan Sobolev, and Sascha Brune
Thursday 4 September: 09:00 - 18:00
Friday 5 September: 09:00 - 14:00

GeoMod2014 - Hands-on tutorial on "ASPECT: a next-generation geodynamic
modelling software" by Anne Glerum and Juliane Dannberg
Thursday 4 September: 09:00 - 18:00: Tutorial
Friday 5 September: 09:00 - 18:00: ASPECT Strategy Workshop (for Advanced Users) - voluntary
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GeoMod2014 Conference Programme (31 August - 3 September)

Sunday 31 August 2014

18:00 - 21:00: Ice Breaker Party at the ’Theaterschiff Potsdam’ (Schiffbauergasse 9b,
14467 Potsdam)

Monday 1 September 2014

08:45 - 09:00: Welcome by Prof. Dr. Dr. h.c. Reinhard Hüttl and Prof. Dr. Onno
Oncken

09:00 - 11:00: (Seismo-)tectonics Orals (chairs: B. Kaus, O. Oncken)
• 09:00 - 09:30: Kelin Wang: Thermal Expressions of Stick-slip and Creeping Subduction
Megathrusts (keynote)
• 09:30 - 10:00: Bertrand Maillot: The long-term Evolution of Fold-and-Thrust Belts:
Consistency of Numerical Approaches and Physical Experiments (keynote)
• 10:00 - 10:20: Tasca Santimano et al.: Smart or Beautiful? Accretionary wedge evolution
seen as a competition between minimum work and critical taper
• 10:20 - 10:40: Lorenzo Bonini et al.: The role of pre-existing frictional weaknesses on
the propagation of extensional faults
• 10:40 - 11:00: Ylona van Dinther et al.: Seismo-thermo-mechanical modeling of subduc-
tion zone seismicity

11:00 - 13:00: (Seismo-)tectonics Posters (chairs: B. Kaus, O. Oncken)

13:00 - 14:00: Lunch break

14:00 - 16:00: Tectonics and Surface processes Orals (chairs: F. Graveleau, N. Hovius)
• 14:00 - 14:30: Ritske Huismans: Interaction and feedback between surface processes and
mountain building (keynote)
• 14:30 - 15:00: Stéphane Dominguez: Joint analogue modelling of marine and terrestrial
geological processes: state of the art and new developments (keynote)
• 15:00 - 15:15: Utsav Mannu et al.: Dynamic Modelling of Accretionary Prisms and
Stratigraphy of Forearc basins
• 15:15 - 15:30: Karen Leever: 3D Analogue Modelling of the Effect of Fan Sedimentation
on Accretionary Wedge Dynamics – the Magdalena Fan case, South Caribbean Margin,
Colombia
• 15:30 - 15:45: Frank Zwaan, Guido Schreurs: 4D Transfer Zone Modeling in Continental
Rift Systems
• 15:45 - 16:00: Sergei Medvedev, Ebbe H. Hartz: Evolution of topography of post-
Devonian Scandinavia: Effects and rates of erosion

16:00 - 18:00: Tectonics and Surface processes Posters (chairs: F. Graveleau,
N. Hovius)
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Tuesday 2 September 2014

09:00 - 11:00: Volcanism and Volcanotectonics Orals (chairs: O. Galland, E. Holohan)

• 09:00 - 09:30: Rikke Pedersen: Surface deformation simulations of volcanic and tectonic
processes in Iceland (keynote)

• 09:30 - 10:00: Olivier Roche, Yarko Niño: Mechanisms of entrainment of a granular
substrate by pyroclastic density currents: insights from laboratory experiments and models,
and implications for flow dynamics (keynote)
• 10:00 - 10:15: Rosanne Heistek et al.: Temporal changes in mantle wedge geometry and
magma generation processes in the Central Andes: towards linking petrological data to
thermomechanical models

• 10:15 - 10:30: Francesco Maccaferri et al.: The gravitational unloading due to rift
depression: A mechanism for the formation of off-rift volcanoes in (continental) rift zones

• 10:30 - 10:45: Lola Chanceaux, Thierry Menand: Solidification effects on sill formation:
an experimental approach

• 10:45 - 11:00: Max Gallagher, Ben Kennedy et al.: Megatsunami generation from caldera
subsidence

11:00 - 13:00: Volcanism and Volcanotectonics Posters (chairs: O. Galland,
E. Holohan)

13:00 - 14:00: Lunch break

14:00 - 16:00: Geodynamics Orals (chairs: F. Funiciello, S. Sobolev)

• 14:00 - 14:30: Anne Davaille: Plumes to Plate Tectonics: Insights from Laboratory
Experiments (keynote)
• 14:30 - 15:00: Bernhard Steinberger et al.: On the relation between plate tectonics,
large-scale mantle flow and mantle plumes: Some recent results and many open questions
(keynote)
• 15:00 - 15:15: Paul J. Tackley et al.: Influence of Melting on the Long-Term Thermo-
Chemical Evolution of Earth’s Deep Mantle

• 15:15 - 15:30: Maria V. Chertova et al.: 3-D numerical modeling of subduction evolution
of the western Mediterranean region

• 15:30 - 15:45: Tobias Baumann, Boris Kaus, A. Popov: Constraining the rheology of the
lithosphere through geodynamic inverse modelling

• 15:45 - 16:00: Elisa Calignano et al.: Strain localization during compression of a laterally
heterogeneous lithosphere

16:00 - 18:00: Geodynamics Posters (chairs: F. Funiciello, S. Sobolev),
Methods and Materials Posters (chairs: M. Frehner, M. Rosenau)

19:00 - 22:00 Joint conference dinner in Potsdam on the ship ’Belvedere’ (Lange
Brücke 6, 14467 Potsdam)
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Wednesday 3 September 2014
09:00 - 11:00: Rheology Orals (chairs: G. Dresen, H. Sone)

• 09:00 - 09:30: Yuri Fialko: Numerical models of ductile roots of mature strike-slip faults
(keynote)
• 09:30 - 10:00: Laurent Montési: Localization processes on Earth, Mars, and Venus
(keynote)
• 10:00 - 10:20: Suzon Jammes et al.: Localization of deformation in a polymineralic
material
• 10:20 - 10:40: Sebastian P. Müller et al.: Rheology of bubble- and crystal-bearing magma:
new analogue experimental data and an effective-medium model
• 10:40 - 11:00: Maria A. Nikolinakou et al.: Modeling stress evolution around a rising
salt diapir

11:00 - 13:00: Rheology Posters (chairs: G. Dresen, H. Sone)

13:00 - 14:00: Lunch break

14:00 - 16:00: Fluids and Deformations Orals (chairs: S. Miller, M. Moreno)
• 14:00 - 14:30: Boris Galvan et al.: Towards a general simulation tool for complex
fluid-rock lithospheric processes: merging pre-processing, processing and post-processing in
state-of-the-art computational devices (keynote)
• 14:30 - 15:00: Takeshi Tsuji: Digital rock physics: Insight into fluid flow and elastic
deformation of porous media (keynote)
• 15:00 - 15:15: Thomas Heinze et al.: Numerical Modelling of earthquake swarms in the
Vogtland / West- Bohemia
• 15:15 - 15:30: Samuel Angiboust et al.: Effect of Fluid Circulation on Intermediate-
Depths Subduction Dynamics: From Field Observations to Numerical Modelling
• 15:30 - 15:45: Magdalena Scheck-Wenderoth, Judith Sippel et al.: Heat transport
mechanisms at different scales – a 3D modelling workflow
• 15:45 - 16:00: Antoine Jacquey et al.: Modelling of fractured reservoirs: Fluid-rock
interactions within fault domains

16:00 - 18:00: Fluids and deformations Posters (chairs: S. Miller, M. Moreno)

The posters will be presented during the entire conference. Each poster session starts with a 1-2
min. short presentation of all participating posters.
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GeoMod2014 - Short course on "Constitutive Laws: from Observation
to Implementation in Models"

Thursday 4 September 2014

Morning Session: Onno Oncken, Mathias Rosenau, and Fabio Corbi
• 09:00 - 10:00: Onno Oncken: Observing deformation kinematics and localization: Ob-
servations from the field, geophysical imaging, and geodetic monitoring

• 10:00 - 10:15: Coffee Break
• 10:15 - 11:00: Mathias Rosenau: Rheology of rock analogues 1: Elastoplasticity and its

application in seismotectonic simulation
• 11:00 - 11:15: Coffee Break
• 11:15 - 12:00: Fabio Corbi: Rheology of rock analogues 2: Viscoelasticity and its

application in seismotectonic simulation
• 12:00 - 13:00: Visit to the GFZ Analogue Lab

13:00 - 14:00: Lunch break

Afternoon Session: Georg Dresen and Erik Rybackii
• 14:00 - 15:15: Rheology of the lower crust : Reconciling laboratory data and field
observations

• 15:15 - 15:30: Coffee Break
• 15:30 - 16:45: Visit to the GFZ rock mechanics lab
• 16:45 - 17:00: Coffee Break
• 17:00 - 18:00: Rock fracture processes and stick slip sliding –What do we learn from

analyzing nanofemto seismicity?

Friday 5 September 2014

Morning Session: Stephan Sobolev and Sascha Brune

• 09:00 - 10:00: Stephan Sobolev: Rheology and geodynamic modeling: key controls in
plate tectonics and beyond

• 10:00 - 10:15: Coffee Break
• 10:15 - 11:30: Sascha Brune: Rock rheology in numerical models: PC exercises and

application to rift dynamics
• 11:30 - 11:45 Coffee Break
• 11:45 - 12:30: Stephan Sobolev: Rheology and cross-scale modeling: towards under-

standing of great earthquakes
• 12:30 - 13:00: Discussion

13:00 - 14:00: Lunch and end of the short course
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GeoMod2014 – Hands-on tutorial on"ASPECT: a next-generation
geodynamic modelling software" by Anne Glerum and Juliane
Dannberg
Thursday 4 September 2014
08:30 - 9:00: Registration

• 09:00 - 10:00: Tutorial 1: First Steps – Compiling and Running ASPECT, Lecture:
How to run and visualize simple models
• 10:00 - 11:15: Lecture ASPECT – A next-generation geodynamic modelling software,
Tutorial 2: Convection in a 2D box
• 11:15 - 11:30: Coffee Break
• 11:30 - 13:00: Tutorial 3: Using the adaptive mesh refinement and spherical shell

geometry Lecture: How to run and visualize simple models

13:00 - 14:00: Lunch break
• 14:00 - 15:15: Tutorial 4: Using the adaptive mesh refinement and spherical shell
geometry and using the function parser

• 15:15 - 15:30: Coffee Break
• 15:30 - 17:00: Tutorial 5: Averaging at the example of subduction and using a “sticky

air” layer
• 17:00 - 18:00: Voluntary: Installing ASPECT on personal computers

18:30: Joint Dinner (to be payed by the perticipants)

Friday 5 September 2014
09:00 - 18:00: ASPECT Strategy Workshop for Advanced Users: Perspectives for

Modelling with ASPECT
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