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Abstract
Precision agriculture, as part of modern agriculture, thrives on an enormously growing 
amount of information and data for processing and application. The spatial data used for 
yield forecasting or the delimitation of management zones are very diverse, often of dif-
ferent quality and in different units to each other. For various reasons, approaches to com-
bining geodata are complex, but necessary if all relevant information is to be taken into 
account. Data fusion with belief structures offers the possibility to link geodata with expert 
knowledge, to include experiences and beliefs in the process and to maintain the compre-
hensibility of the framework in contrast to other “black box” models. This study shows 
the possibility of dividing agricultural land into management zones by combining soil 
information, relief structures and multi-temporal satellite data using the transferable belief 
model. It is able to bring in the knowledge and experience of farmers with their fields and 
can thus offer practical assistance in management measures without taking decisions out of 
hand. At the same time, the method provides a solution to combine all the valuable spatial 
data that correlate with crop vitality and yield. For the development of the method, eleven 
data sets in each possible combination and different model parameters were fused. The 
most relevant results for the practice and the comprehensibility of the model are presented 
in this study. The aim of the method is a zoned field map with three classes: “low yield”, 
“medium yield” and “high yield”. It is shown that not all data are equally relevant for the 
modelling of yield classes and that the phenology of the plant is of particular importance 
for the selection of satellite images. The results were validated with yield data and show 
promising potential for use in precision agriculture.
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Introduction

The dissemination of Precision Agriculture (PA) as an essential component of crop produc-
tion has become increasingly important in recent years. New and intelligent solutions are 
constantly being developed and sought with a view to sustainable agriculture, which must 
nevertheless increase its efficiency. PA is not a new development (Mulla 2013), but it is 
an important component for modern agriculture and its problems (IPCC 2014; DLG e.V. 
2017). Data-based PA applications rely on data from a variety of sources, such as proximal 
sensor techniques (Adamchuk 2011; Colaço and Bramley 2018), remote sensing (RS) and 
Geographic Information Systems (GIS) (Goswami 2012; Mauser et al. 2012; Mulla 2013). 
With the help of these data and the PA applications, the application of fertilizers (Sharma 
and Bali 2017; Colaço and Bramley 2018), plant protection (Mahlein et al. 2012; Šedina 
et al. 2017) or irrigation (Navarro-Hellín et al. 2016), for example, can be adapted to the 
needs of plants and soil.

In the spatial analysis of field data the partitioning of a field in Management Zones 
(MZ) is of great importance in many publications (Flowers et al. 2005; Pedroso et al. 2010; 
Gili et al. 2017) and applications. Within ideally stable zones homogeneity is expected and 
represented by similar level of plant vitality, yield potential and / or soil quality. MZs have 
been successfully delineated on the basis of spatial data such as yield maps (Brock et al. 
2005), soil attributes (Yao et al. 2014), electrical conductivity (EC) measurements (Cam-
bouris et al. 2006; Moral et al. 2010) and remotely sensed images (Song et al. 2009; Georgi 
et al. 2017).

However, the use of one type of data source poses risks. The data currently available 
may be unreliable or the information density needed for safe interpretation may be low. 
Therefore, data fusion methods are a valuable addition to the breadth of MZ delineation 
methods.

The most common scientific motivation for the development of data fusion methods 
is the classification of spatial data, such as RS imagery, elevation data or soil maps into 
surface units, such as cities, water bodies or forest. Successfully applied models for this 
type of data fusion are for example Bayesian techniques (Xue et  al. 2017), Neural Net-
works (Teimouri et al. 2016), Support Vector Machines (Park and Im 2016), Random For-
est (Crnojevic et al. 2014) and Dempster–Shafer Theory (DST) (Le Hegarat-Mascle et al. 
2002; Ran et al. 2008). DST belongs to the group of evidential reasoning, a generic evi-
dence-based multi-criteria decision analysis approach.

For this study, the authors applied an interpretation of the DST, namely the Transfer-
able Belief Model (TBM), developed by Smets and Kennes (1994). In its functionality and 
structure, the TBM is similar to the Bayes Model. However, it does not work with quanti-
fied probabilities, but with quantified beliefs. The specific rules and variables address the 
needs of agricultural issues much better. Wu et al. (2002) find the DST (consequently also 
the interpretation TBM) much more suitable than the Bayesian interference for mapping 
human thought processes and argumentations. The concept of evidence-based models is 
therefore very well suited for integrating expert knowledge into the process of geodata 
fusion. In agricultural practice, it is rarely an algorithm that interprets data and maps and 
makes decisions, but the farmer or his advisor. Each data source is evaluated with back-
ground knowledge and often many years of experience with a field. Different types of 
data are related to each other and their information content is enhanced. To illustrate and 
automate this way of decision making in a model, the authors present a fusion method for 
delineation of MZ using the TBM.
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The subject of this study is therefore the question of how remote sensing data can be 
combined with other GIS data to make a common statement about the yields of a field. 
However, this fusion also focuses on the question of how the knowledge and experience 
of the farmer himself can theoretically be integrated into this mathematical fusion process. 
Another objective is to find an alternative fusion method to the less comprehensible fusion 
methods in the field of machine learning.

The visual and numerical evaluation of satellite data and GIS data from many fields 
studied suggests that there are connections between the data mentioned and the yield maps. 
This leads to the scientific hypothesis that a mathematical approached data fusion with 
incorporation of the human estimation must be possible. The delineation method pre-
sented was developed in order to achieve the general goals of this study and to confirm this 
research hypothesis, but also to create an application for practical agriculture. The valida-
tion of the functionality of this method by the comparison of modelled yield zones and 
actual yield zones, derived from the yield data of the farmer, is at the same time the valida-
tion of the scientific hypotheses.

Since the possibility to put the application into practice as well should be given, the 
focus during development was on the requirements of the farmer. Since MZ represent the 
field-internal variability, the method presented was developed on one field and not across 
fields on the whole farm. The application models yield classes with relative values that can 
be used as MZ. A classified map is not only more understandable than continuous data, 
most agricultural machines with variable rate applications work on the basis of classes. 
Modeling classes involves the risk of information loss through generalization. However, 
they are better suited for setting up the model and for the usability of the end product.

The preparation of the data fusion with the TBM is so far very labour intensive. Both in 
terms of data formatting and the integration of expert knowledge. However, the method is 
transparent and the fusion logic understandable, in contrast to algorithms that work accord-
ing to the black box principle. The presented method can be individually adapted to indi-
vidual agricultural fields and their yield-relevant characteristics. The data used in the model 
can be weighted according to relevance, reliability, up-to-date status or completeness. After 
each individual fusion with an additional data set, the model output displays where the data 
sources contradict each other with regard to the parameter yield to be modelled and where 
they suggest the same interpretation. These conflict maps are another important advantage 
of the method for evaluating the result, but also the individual data sources. This study 
gives some examples how the combination of soil, relief and satellite data is possible for 
modelling three yield zones of a wheat field for PA application.

Materials and methods

Study area

The presented method for delineation of yield zones on the basis of evidential reason-
ing has been developed on field “200-01”, part of a 2000 ha farm near the village of 
Görmin, located 15 km SW of Greifswald in the North-Eastern Lowlands of Germany. 
Geologically, the region was shaped by repeated glacial processes during the Weich-
selian Glaciation and transformed into a hilly ground moraine landscape with repre-
sentative glacial features. Flat, hilly and undulating ground moraines alternate with hilly 
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terminal moraines, glacial valleys, lake basins, kettle holes, eskers and outwash plains 
(Bundesanstalt für Geowissenschaften und Rohstoffe 2006). The differences in topog-
raphy on a field basis are quite modest and represent relative flat terrain in the region 
(Fig. 1). Natural and artificial drainage systems impact the topography and consequently 
the soil inventory of the fields. All fields are characterized by a young morainic soil 
type.

Fig. 1   Field 200-01, central coordinate: 54°1′13.10″N, 13°16′39.25″E; mean elevation: 36.22 m above sea 
level; mean slope: 2.43°; field has three kettle holes, which are not cultivated. Soil type (a), fertility index 
“Ackerzahl” (b), topographic positioning index (c), digital elevation model (d)
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Data

In the process of delineation MZ with data fusion, 11 data source raster are processed 
and combined. These data sets entail soil and relief data, as well as satellite derived 
crop information.

Soil map

Soil information is based on the German “Bodenschätzung” (1:10,000) (BS) (Arbeits-
gruppe Boden 2005), a soil map edited in the 1930  s, which is kept updated, though 
not at the same spatial grid as the original data acquisition (50 × 50 m). The soil map 
contains soil polygons with information about parent material, integrated soil texture 
to a depth of 1 m and the soil development stage. Dobers et al. (2010) elaborate on the 
development and characteristics of the BS. The parameters “Bodenzahl” (BZ) and “Ack-
erzahl” (AZ) are quantitative assessments of soil fertility and an indicator for potential 
agricultural productivity. They are given in integers in a range from 0 to 100, where 100 
is the reference for the most fertile soil in Germany. The BZ is based on soil type and 
therefore productivity only, while the AZ takes other factors such as morphology and 
climatic characteristics into account. Figure 1 shows the BS of field 200-01 with soil 
type and AZ, which is the index used further in this study.

Digital elevation model

The digital elevation model (DEM) has a resolution of 5  m and is based on airborne 
LIDAR measurements (Amt für Geoinformation Vermessungs- und Katasterwesen 
2011). The elevation data was used to calculate the Topographic Positioning Index (TPI) 
(Jenness 2006) with the GIS software SAGA (Conrad et al. 2015). The TPI has gener-
ally six classes describing lands forms such as hilltop, upper slope, etc. and is dependent 
on the scales used in the calculation and classification process. Figure 1 shows the cal-
culated TPI for field 200-01.

Satellite data

The method was developed using a RapidEye images from April 2011 until July 2011. 
The RapidEye satellite system works with five spectral bands (blue, green, red, red 
edge, near infrared), where the near-infrared (NIR) is, in general, especially sensitive 
to the vitality of vegetation (Rees 2001; Basnyat et al. 2005). The return frequency at 
nadir is 5.5 days and the spatial resolution is 5 m. The radiometric calibrated and geo-
referenced scenes (Level 1B, Level 3A) were made available through the RapidEye sci-
ence Archive (RESA). Atmospheric correction was performed using ATCOR (Richter 
2010) for ERDAS Imagine 2014 (Leica Geosystems, Atlanta, Georgia, USA) and the 
images were geometrically aligned using an image to image co-registration algorithm 
developed in-house (Behling et al. 2014). Further preparations for the development and 
testing of the segmentation algorithm included coordinate transformation, cartographic 
projection, and clipping the scenes to the area of interest, which is at the farm-scale in 
this case.
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The Normalized Difference Vegetation Index (NDVI) was calculated and used for the 
method development. Numerous studies have shown a close connection between NDVI 
at a certain phenological stage of the grain and the biomass of the plants, which can be 
an indicator of the final yield (Benedetti and Rossini 1993; Ren et al. 2007; Knoblauch 
et al. 2017).

The satellite images available were selected according to their acquisition date. In the 
test region, suitable images for the method were acquired in spring approximately at the 
“Stem Elongation” phase of cereal, end of May/ beginning of June during and after “Head-
ing” and end of June during the (BBCH) development of fruit phase.

The NDVI raster have been divided into three classes to simplify the necessary interpre-
tation within the model. The two class boundaries are defined by the quantile value of the 
lower third (33% quantile) and the quantile value of the upper third (66% quantile). This 
results in three classes that have a stable number of pixels per class, regardless of the value 
range. If, on the other hand, a k-means approach is used, a few extreme values can lead to a 
spatially very small class that is difficult to interpret and makes little sense in terms of suit-
ability for agricultural machinery.

Phenological data

Phenological data was provided by The German Meteorological Service (DWD) accord-
ing to the BBCH-Codes (Hack et  al. 1992), which is a decimal code system to identify 
phenological development stages of a plant and the standard phenology-scale in Germany. 
Figure 2 draws data from three stations in 10–12 km distance from the test site. Phenol-
ogy was not measured directly on the test field, but in regular, though not weekly, DWD 

Fig. 2   Phenology data (BBCH Scale) acquired at three DWD stations near Görmin from April to August 
(green lines). The phenology at different stations is not always the same but shows slight differences in the 
development of plants at similar times. The stages of wheat phenology are numbered and described accord-
ing to the BBCH scale (right side); Acquisition dates of RapidEye images (red lines) (Color figure online)
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stations in the surrounding area. Coming from this official institution, these data are con-
sidered to be very reliable.

Farm and yield data

For this study, field boundary, crop cultivation and yield data for the test field were pro-
vided by an agricultural company. The yield data was taken during harvest by a GPS con-
trolled harvester. Yield measure was taken approximately every 1 m within a tram line, if 
the sensor operated flawless, which is not always the case.

After acquisition, questionable yield measurements were removed for the most part, by 
applying filters on tresher speed (discarding of values < 2% and > 99%), swath width (dis-
carding of values < 4 m and > 9 m) and statistical outliers (e.g. grouping of point values 
and discarding of yield values with a difference of more than 2.5 times the standard devia-
tion of the group).

Kriging was performed on yield data with the software VESPER (Haas 1990; Whelan 
et al. 1996) with a local kriging and local variogram method, especially designed for yield 
map kriging with respect to local, rather than global prediction models. Kriged pixels with 
a high kriging variance, hence a large distance between interpolated pixel and original 
yield value, were deleted.

Method

Evidential reasoning

The Dempster–Shafer Theory (DST) of evidence is probably the best-known and most 
widely used theory in evidential reasoning fusion models. The DST is a mathematical the-
ory from the field of probability theory. It is used to assemble information from different 
sources with the so-called Dempster rule of combination to an overall statement, whereby 
the credibility of these sources is taken into account in the calculation. Evidence theory 
is used above all where uncertain statements from different sources have to be combined 
to form an overall statement. DST can quantify uncertainties and incompleteness of data. 
When modelling a parameter or classifying spatial objects, data fusion with a DST model 
can also be achieved with data sources that are not fully trusted individually or that have 
data gaps. The principle of evidential reasoning is therefore very relevant for agricultural 
problems. There is no doubt that each image or map is subject to a certain uncertainty com-
pared to the actual state of, for example, soil, crop and yield. This may be due to interpola-
tion, acquisition errors, coarse spatial or spectral resolution, and much more. Evidential 
reasoning is particularly useful when merging data sources of different spatial resolutions 
and units. It can also integrate information from older maps and current spatial data such as 
satellite images within a vegetation period. The processes in belief theory are understand-
able and comprehensible for the user, in contrast to black box methods from machine learn-
ing such as neural networks or support vector machines.

Fusion methods based on evidential reasoning should reduce uncertainties in the over-
all model and improve the classification result. Successful examples of the fusion of geo-
data with the DST have been achieved by Al Momani et  al. (2007), Mora et  al. (2013), 
Okaingni et al. (2017). All used satellite data, products thereof, digital elevation data and 
other geodata. The difference between these studies lies in the way a belief (the equivalent 
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of probability in Bayes’ model) is assigned to a pixel of a grid. In the DST, this transfer of 
belief to an expected class (e.g. “wheat”, “grassland”, “forest”) is called a mass function. In 
these studies, this mass function is derived differently using the methods of the Maximum 
Likelihood and Classification Tree Method and the pixel occurrence statistics.

The common element of these studies is the structure of the mass functions and the 
combination of these by Dempster’s rule of combination. Nevertheless, the mass function 
in the DST is associated with a kind of probability assessment or measurement (as in the 
Maximum Likelihood Method) and this is a disadvantage of the DST argue Smets and 
Kennes (1994). Their interpretation of the DST is called the Transferable Belief Model 
(TBM), which does not require underlying probability distribution, even though they may 
exist. It is a model for representing quantified beliefs based on belief functions and there-
fore a very suitable fusion method to work on agricultural problems, while supporting the 
expert knowledge of the user (e.g. farmer, farming consultants).

This knowledge and experience are a major key factor for success in agriculture as well 
as precision agriculture and cannot be replaced by algorithms and software applications. 
The latter may aid the farmer little or tremendously, but only in combination with expert 
knowledge.

Compared to other multi-source methods such as neural networks, probabilities and reli-
ability of data sources within the TBM do not need to be calculated in advance. In addi-
tion, the data sources do not need to be classified into end parameters beforehand, which 
would be difficult for the farmer as end user to achieve. For example, it would be difficult 
to divide a satellite image without experience into yield classes (the final parameter). As a 
solution, a pre-defined set of rules, as one example described in this study, can be used to 
support the farmer.

The transferable belief model

Hypotheses and masses of belief

The TBM is a model for representing quantified beliefs based on belief functions (Smets 
and Kennes 1994). In other words, it can represent an idea of reality with a number of 
hypotheses (Dobers 2008). As listed in Table 1, the term “hypothesis” is part of the fixed 
terminology in the TBM. In the following, the term “hypothesis” is used as part of this 
terminology and differs from and should not be confused with the research hypothesis. The 
hypotheses of the TBM are weighted by quantified beliefs, called masses of belief (MOB), 
by means of an interval between 0 and 1:

with

The whole set of hypotheses is called the frame of discernment Ω and the sum of all 
MOB assigned to the hypotheses is 1.

In this study, the hypotheses describe and include three classes of relative yield of a 
field. These yield classes can be used as MZ in practice and are described as follows: 
{1}—”Low yield”, {2}—”Average yield”, {3}—”High yield”.

(1)m ∶ 2� → [0, 1]

(2)
∑

A∈2�
m(A) = 1
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The theory of TBM states that the number of hypotheses may increase if additional 
knowledge is gained or a paradigm shift occurs. For example, if the TBM is used to 
improve the accuracy of soil maps, where the different soil types (e.g. clay or sand) corre-
spond to the hypotheses (Dobers 2005, 2008). However, the evaluation of the data sources 
consulted can provide evidence that further soil types are available that are not yet rep-
resented in the entire set of hypotheses Ω. This is the case, for example, when old soil 
maps are used as evidence and past soil processes, such as erosion or tillage, have uncov-
ered unmapped soil types. In the TBM, the case described corresponds to the “open-world 
assumption”. It is therefore assumed that there are other classes or hypotheses than those 
that have been defined. In this study, this “open-world assumption” does not have to be 
taken into account, since the three relative yield classes cover the entire range of possibili-
ties in a field. The “low yield” class therefore also includes areas in which no return is to be 
expected at all, which is very rarely the case. In the TBM, this is referred to as the “closed 
world assumption”.

Sources of evidence

The aim of this study is to use the TBM to combine various data sources in order to find 
the most realistic yield class per pixel and thus obtain an overall picture, a map. The data 
sources used are called sources of evidence (SOE). All available SOE available at time t 
form the evidence corpus. In this example, eleven data sources (Table 2, Online Fig. 9), 
SOE, are used to model the yield classes. In addition to the eleven selected SOE, it is pos-
sible to use many other SOE, which can provide information on the distribution of the 
yield classes.

Before data fusion, each SOE must be interpreted. At this point, the expert knowledge 
is integrated into the model. Each class or value range defined for each SOE is inter-
preted with respect to the hypotheses in Ω—the available hypotheses of each unit are thus 
assigned to the SOE. For example, when interpreting a soil map, one might expect “low 
yield” in the very sandy soil class due to lower fertility. The hypothesis of “high yield” 
could be attributed to highly fertile loess soils. However, several hypotheses can also be 
assigned to an SOE class. If, for example, the class of loess soils lies in a strong depression, 
the expert could define both “high yield” and “low yield” as hypotheses due to possible 
waterlogging in wet years. If a class of an SOE cannot be clearly interpreted with regard to 
the hypotheses, the entire set of hypotheses can also be assigned. This would be the case, 
for example, if a topographical map were interpreted and the “level” class could not pro-
vide any significant conclusions about the level of yield. The fact that the TBM allows this 
multiple assignment distinguishes it from the classical probability theory, in which the sin-
gletons of Ω must be weighted individually. In the TBM, the MOB (i.e. the quantification 
of belief) can also be assigned to subsets of Ω.

Reliability

Every SOE is assigned a reliability r with a value between 0 and 1. For example: the expert 
might find the soil map more reliable (e.g. 0.9) then the elevation data, because in his1 experi-
ence the soil map does reflect the real yield potential distribution more likely than the elevation 

1  Or her.



812	 Precision Agriculture (2020) 21:802–830

1 3

Ta
bl

e 
2  

S
el

ec
tio

n 
of

 u
se

d 
so

ur
ce

s o
f e

vi
de

nc
e 

to
 m

od
el

 y
ie

ld
 z

on
es

D
at

a 
so

ur
ce

D
es

cr
ip

tio
n

O
rig

in
al

 sp
at

ia
l r

es
ol

ut
io

n
U

sa
ge

So
ur

ce

Sa
te

lli
te

 im
ag

e 
(9

 
sc

en
es

 fr
om

 9
 d

at
es

 
in

 to
ta

l)

R
ap

id
Ey

e 
m

ul
ti-

sp
ec

tra
l d

at
a 

(P
ro

du
ct

 
Le

ve
l 3

A
), 

N
D

V
I

5 
m

U
se

d 
as

 S
O

E 
in

 th
e 

TB
M

R
ap

id
Ey

e 
Sc

ie
nc

e 
A

rc
hi

ve
, 2

01
1 

(8
, 9

, 2
0,

 
21

 A
pr

il;
 2

1 
M

ay
; 3

,6
,2

8 
Ju

ne
, 1

6 
Ju

ly
)

So
il 

m
ap

“B
od

en
sc

hä
tz

un
g”

 w
ith

 q
ua

nt
ifi

ed
 

de
sc

rip
tio

n 
of

 so
il 

qu
al

ity
 / 

yi
el

d 
po

te
n-

tia
l (

“A
ck

er
za

hl
”)

50
 m

O
rig

in
al

 d
at

a 
fro

m
 th

e 
19

30
 s 

as
 d

es
cr

ib
ed

 
in

 A
rb

ei
ts

gr
up

pe
 B

od
en

 (2
00

5)

D
ig

ita
l e

le
va

tio
n 

m
od

el
C

on
ve

rte
d 

to
 a

 T
op

og
ra

ph
ic

al
 In

de
x 

(T
PI

) 
m

ap
5 

m
(A

m
t f

ür
 G

eo
in

fo
rm

at
io

n 
Ve

rm
es

su
ng

s-
 

un
d 

K
at

as
te

rw
es

en
 2

01
1)

Y
ie

ld
 m

ap
s

D
er

iv
ed

 fr
om

 G
PS

-tr
ac

ke
d 

ha
rv

es
te

r i
n 

to
ns

 p
er

 h
ec

ta
re

Ir
re

gu
la

r p
oi

nt
 d

at
a 

(1
.5

–1
0 

m
)

U
se

d 
fo

r v
al

id
at

io
n

G
PS

-T
re

sh
er

 o
f f

ar
m

er
, 0

6 
A

ug
us

t 2
01

1



813Precision Agriculture (2020) 21:802–830	

1 3

map. Contrary, the expert could also argue, because of the low spatial resolution or early date 
of acquisition of the soil map (e.g. 1930s), he assigns a lower reliability (e.g. 0.6). The reliabil-
ity of the SOE alters the MOB given for every pixel by multiplication.

Fusion and Dempster’s rule of combination

With a minimum of two SOE, both assigned with MOB and reliabilities, the MOB can be 
combined using Dempster’s Rule of Combination (Shafer 1976, 2016), which mathematically 
is a cross product. Any two independent mass functions m1 and m2 are combined to a single 
function m1,2:

where

An example from this study applies Dempster’s combination rule as follows:
SOE 1, the soil map, is combined with SOE 2, the topographic positioning index TPI. For 

one pixel x, the class of SOE 1 is class 3 and for SOE 2 is class 2 (Table 3).
The expert is 80% convinced (MOB = 0.8) that in class 3 SOE 1 “low yield” or “high 

yield” can be expected. However, it gives SOE 1 only 70% confidence (r = 0.7) to be the 
appropriate source to make a reliable statement about the yield level. Following the same pat-
tern, the expert assigns the hypotheses, beliefs and reliability for SOE 2, Class 2.

With this defined interpretation, the fusion process of SOE can now begin and Dempster’s 
Rule of Combination applied:

The hypothesis that receives the highest value of MOB after cross-counting is the hypoth-
esis (or hypotheses) that both SOEs agree with. Unless the SOE support opposing hypoth-
eses—as in this example—and a conflict arises. The hypothesis with the highest MOB value 
is the empty set {∅}. From here the TBM offers two ways: the open and the closed world 
acceptance. As already explained, the latter is chosen in this study. In this case {∅} is ignored 
and all remaining MOB values are normalized to a sum of 1. From the height of the MOB 
of {∅} the weight of conflict (woc) is calculated. It is later a measure for the contradiction 
between the data sources. After the normalization there is a new distribution of the MOB and 
a new hypothesis, which gets the highest MOB: m{1} = 0.34, m{2,3} = 0.37, m{Ω} = 0.29. 
The woc is given by

(3)m1,2(A) =
(

m1 ⊗ m2

)

(A) =
∑

B∩c=A
m1(B)m2(C)

(4)A,B,C ∈ 2� ≠ �

(5)woc = log

�

1
∑

m
�

�̄
�

�

Table 3   Example of the assignment of hypotheses, masses of belief and reliability to one pixel x

Parameter SOE 1 (class 3) SOE 2 (class 2)

Expected hypotheses/yield 
zone

“low yield”, “average yield” = {2,3} “very low yield” = {1}

MOB 0.8 0.6
reliability r 0.7 0.9
Ω “low yield”, “average yield”, “high yield”= {1,2,3}
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In the example, the maximum belief lies with the hypotheses set {2,3}. One can also 
calculate the degree of belief of a hypothesis or set of hypothesis (A). Bel(A) is defined as 
the sum of all masses that support A

The degree of plausibility function Pl(A) quantifies the total amount of belief that might 
support A:

Consequently, Bel({1}} = 0.24 and Pl({1}) = 0.63, because {1} is also part of Ω. Plau-
sibility can be interpreted as “the pessimistic assumption”. Total Ignorance is represented 
by m(Ω) = 1, hence bel(A) = 0—In this case, one has no useful indication of a realistically 
modelled hypothesis and must assume that any hypothesis or combination of all is possible.

The result of this SOE combination can then further be combined with another SOE and 
so on, until all data sources are integrated in the model. Because the combination is multi-
plicative, the order in which the SOE are combined is irrelevant.

The simplicity in which evidence is considered, weighed and combined is a tremendous 
asset of DST and TBM, because it is comprehensible not only for developers of applica-
tions, but for users (e.g. farmers) too. Contrary to other current models, it is not a black box 
and very transparent (Fig. 3).

Application of the TBM

In this study, the TBM was used to model yield zones, or MZ by fusion of the spatial soil 
information, elevation and satellite-derived NDVI images. Each data source—already clas-
sified as described above—was interpreted with regard to the expected yield zone(s), which 
are represented by the hypotheses. Following the workflow of Fig. 4, the data was prepared 
for and combined with the TBM.

Pre‑processing

The TBM is applied on field basis. Therefore, SOE are clipped (with a “crop” function) to 
the same extent and—if needed—resampled to a resolution of 5 m (pre-classified images 
with the method ‘nearest neighbour’).

(6)Bel(A) =
∑

�≠X⊆A
m(X)

(7)Pl(A) = Bel(𝛺) − Bel
(

Ā
)

=
∑

X∩A≠�
m(X)

Fig. 3   Example for Dempster’s rule of combination for values set in Table 3
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Interpretation

Each SOE and each unit/class of SOE must be interpreted prior to data fusion with 
respect to the yield classes expected. This interpretation is given a quantified convic-
tion, the MOB. During the development phase of this model, a MOB of 1 was defined 
for almost all classes of the SOE for reasons of simplification. However, some test runs 
of the data fusion also provided indications that a gradation of the MOB for the NDVI 
maps is reasonable, which were subsequently adjusted. The interpretations are stored 
in a lookup table (Table 4) and one can create each field individually or use them for 
all fields, but then lose individuality. For better results, individual interpretation of the 

Fig. 4   Workflow for the fusion process
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data on a field basis is recommended, as in practice the farmer also evaluates each field 
individually.

The presented method is supposed to be driven by expert knowledge and in this case 
resulted from literature research, empirical comparison of SOE and yield data and many 
conversations within the work group, including a farmer and a farming consultant. Still, a 
machine learning approach to derive most likely hypotheses could be possible to generate a 
rule set to begin with. Existing yield records can give indications of which hypotheses are 
likely to occur in the units of the SOE.

Fuzzy boundaries  For the TBM, the SOE must be classified in advance so that the interpre-
tation remains comprehensible. Geodata to which hard limits are assigned, however, do not 
reflect the reality of yield distribution. On the other hand, the conversion of continuous data 
into narrow classes and a large number of classes in order to almost map the actual continu-
ity is difficult to handle, at least for a human interpreter.

To resolve these hard boundaries, a distance-dependent fuzzy function is applied to 
the class boundaries. Adapted from Dobers (2008), the overlapping class solution (OCS) 
assumes, that within a buffer b outside of one class boundary (e.g. polygon boundary), 
two classes are possibly valid. Consequently, if the SOE is transferred to a spatial polygon, 
every polygon feature overlaps into the neighbouring feature. Within b, the MOB would 
decrease form 1 (on the boundary) towards 0 (distance b into the neighbouring feature. 
Class boundaries are thus respected and softened through a weighting.

Output layers

The model produces several output layers, which can be converted to raster for visualisa-
tion and validation, as described in Table 5.

Validation

For validation, the concept of stratified sampling was applied. As described in Webster 
and Oliver (1990), the sample points for validation were randomly distributed within reg-
ular grid cells, dividing the target raster area. Yield values are based on point measure-
ments. For each sample point, the relative yield value and the corresponding class labels (= 
hypotheses) were extracted.

The result was plotted as a box plot, depicting relation and separability between each 
class. In addition, two statistical tests were applied: (a) the Kruskal–Wallis-Test and (b) the 
Pairwise T-Test (class ID vs. relative yield value). The result with a p value < 2.2e−16 con-
firmed the general separability of the classes, even if run based on different sample points.

The Pairwise T-Test applied compares each test series with one another and tests if there 
are statistically significant differences. This test normally requires normally distributed 
data, which is not necessarily given in this case. However, this condition may be violated 
if the number of sample points is high (Bartlett 1935) and the variance of the test series is 
comparable.

In addition to the statistical tests, the modeled yield classes (1–3) were compared to an 
interpolated yield map, classified into three classes divided by the 33% (1/3) and 66% (2/3) 
Quantile. The sampling scheme followed a 5 × 5  m grid, coherent with the SOE raster 
resolution. The pixel-wise comparison provided a measure of accuracy, roughly indicat-
ing the quality of each fusion result. Roughly and best compared in relation to the range of 
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all accuracy values (9–57%), because the pre-classification of the validation basis can be 
chosen quite randomly (e.g. rigid thresholds, k-means classification). Therefore, the final 
quality assessment of a fusion result was a combination of the physical properties of the 
box plot (indicators implying a high separability of classes 1, 2, 3), a visual analysis of the 
box plot and the accuracy.

During the model development, all possible 2047 combinations of fusing 11 sources 
of evidence (Online Fig. 9) with each other and with varying number of SOE (1–11) were 
fused. Following this process is a combination matrix, listing an accuracy index, which 
is either the actual accuracy, if the statistical tests mentioned above were negative, or the 
actual accuracy plus 100, if the statistical tests were positive. This way, the results can be 
distinguished in a fast manner.

Results and discussion

In order to explain the TBM and its application in agricultural questions, five combinations 
of the eleven SOE are presented. These examples can be used to show the success of the 
method, but also to generate information on how to work with the TBM and where it has 
weak points. Table 6 lists the five examples presented here, together with the number of 
data sources considered and the corresponding figure reference.

Meaningful results are indicated by a good separability of the three modelled yield 
classes in the corresponding box plots. The statistical tests must support the separability. 
The calculation of the accuracy has a lower priority in the ranking of the results, since it 
can only be a guideline and not the “true” accuracy. On the one hand, the yield measure-
ments in this study were not collected manually with absolute reliability, but the data from 
the thresher is trusted. Secondly, the yield map itself was classified before the 1:1 calcula-
tion of the accuracy and it is difficult to say which class boundaries would reflect a zoning 
on the field with absolute reliability.

If that accuracy is accepted it is first and foremost a relative measure, analyzing the evo-
lution of the values calculated after each fusion from the respective result is very revealing. 
With fusion steps that bring a gain in information, the accuracy value increases. If another 
data source does not bring relevant or even false information into the model, the accuracy 
decreases after such a fusion. This is the case with result R1 (Fig. 5) and the last iterative 
step.

R1 shows the case when all eleven available SOE are combined, without regard to their 
individual relevance, but with the aim of combining as much information as possible. 
Figure 5b is the normalized result of the TBM fusion and shows a map with three yield 
classes. The corresponding box plot (Fig. 5d) implies that the three yield classes can be 
effectively separated. The distribution of the three classes can also be seen visually in the 
yield map (Fig. 5c). Looking at the non-normalized result (Fig. 5a), the occurrence of the 
conflict areas that occurred during the last iteration step of the fusion can be traced. In 
these conflict areas the class of the empty set appears. If one adds up all weights of con-
flict (Fig. 5f) that occur during the fusion steps, one can see in which areas in the field 
there are large uncertainties in the modelling and in which areas the data sources agree. 
The distribution of conflicts is slightly comparable with the modeled yield classes, where 
the highest sums of conflicts are mostly associated with zones of lower yield. If the soil 
map indicates good fertility conditions, but the crop growth is limited by other factors, 
such as weather or short-term nutrient deficiency, the soil map conflicts with the satellite 
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derived NDVI mapping the actual growth. If the soil map indicates less fertility, but the 
farmer takes measures to compensates the preconditions by precision agriculture actions, 
the growth would reflect positively in the NDVI SOE and therefore contradict with the soil 
SOE. Conflicts are not thus not a measure for the unfitness of the model, but an indicator 
for the relevance of each SOE concerning the modeled parameter.

R1 and also all other presented results are strongly fragmented and the classes are often 
not connected as a unit. This effect is a product of the high-resolution satellite images 
which, during the growing season, also record the stripped patterns through the lanes or 
rows of wheat. For agricultural practice, a kind of standardization of the result would have 
to be made at this point. This could be a multiple median filter, as applied to similar data in 
Georgi et al. (2017). Or a resampling of the satellite images to a coarser spatial resolution. 
With these methods, of course, information is lost, which is why the authors in this study 
have refrained from smoothing the results for purely scientific reasons.

The interim results of the data fusion provide information on how additional data 
sources affect the final outcome of the fusion and which data sources are particularly 
appropriate. Figure 6 shows the box plots of the validation of the intermediate results of 
the fusion process of result R1, as well as the course of the accuracy. It is noticeable that 
after the first five fusion steps there are still pixels in the result for which the TBM does 
not model concrete classes but assumes several hypotheses (Fig. 6a–d). The reason for this 
is the preliminary interpretation of the SOE, as described in the lookup table (Table 4). 
In this case (R1) SOE1 (soil map) and SOE 2 (TPI) are almost exclusively represented 
by multiple hypotheses. The more satellite data are added, which here are basically only 
assigned with the hypotheses {1}, {2} and {3}, the more the pixels with the diffuse classes 
disappear, which do not make a clear statement. This is of course desirable in this method, 
since the result is more user-friendly, especially when using yield classes or MZ in GIS 
systems or machine software. In contrast, the areas with multi hypotheses also offer more 
flexibility and room for interpretation of the result. At this point the farmer himself can 
decide whether in his experience a class {1,2} is to be assigned to a rather low or rather 
medium yield.

Figure 6a–i also shows that the spread of the modelled yield classes {1}, {2} and {3} 
increases steadily during the fusion steps 1–10 and the result is improved, especially from 
the 5th fusion onwards. The same trend is indicated by the trend of accuracy (Fig. 6I.). 
Only the last fusion with the final result (Fig. 6j) does not provide any improvement, the 
separability of the classes in the box plot decreases again. The SOE added is a NDVI map 
from 16.7.2011, during which the wheat is already too ripe. The plant patterns on the satel-
lite image correlate much less strongly with the yield at this time.

R1 is an example of a large data basis for the TBM, which is mostly not the case and 
not always necessary. It was found—on the basis of the combination matrix—that the relief 
information does not add significant information regarding yield on this specific field and 
is dispensable in this case. The result R4, which is part of R1 and the result of the first 
fusion of soil and relief information (Fig. 6 and Online Fig. 10) supports this finding by a 
box plot with lack of separability, especially class 2 and 3, as well as a relatively low accu-
racy compared to other fusion results (Fig. 6I.). For the delineation of MZ on this field, 
remote sensing data is clearly necessary.

The acquisition of optical satellite images is highly dependent on cloud-free conditions 
and, while the importance of each satellite image is dependent on the acquisition date and 
the according phenological phase. Depending on the current phenology, the reliability 
of each individual satellite image can be adjusted. The values used in this example were 
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determined in several test loops, during which results of fusions with all possible reliability 
combinations were validated with the yield data.

The reliabilities for each NDVI data set reflect the correlation between final yield and 
certain phenological phases. The most relevant NDVI input layers are taken on the 28th 
June (development of fruit2/ripening2), 03rd and 06th June (heading) and 20th April (stem 
elongation2).

Suitability of multi‑temporal satellite images

When modelling the yield, it therefore makes sense to use only certain satellite images of 
selected recording times. During the early phenological phases of cereal, the growth pat-
terns reflect the basic spatial differences of soil, nutrients and water supply. These patterns 
are often very well visible in multispectral satellite data (Georgi et al. 2017).

The NDVI as an indicator of plant vitality highlights where more or less plants with 
more or less vitality grow in the field (e.g. because more or less seeds have developed and/
or soil conditions are different). The number and density of the plants should correlate 
with the final yield, since the ability of the cereal crop to enter the phenological tillering 
phase depends on the germination capacity and the amount of plants from the seed (Geisler 
1983). The latter plant distribution is exactly what NDVI can represent. A high distribu-
tion of weeds can mislead this impression, but it is not assumed that there are many weeds 
in field 200-01—especially not at the beginning of the growth phase and the conventional 
agricultural methods applied. Thus, satellite data recorded in spring around the tillering 
and the stem elongation phase are very suitable for an early assessment of the plant growth 
of wheat. Consequently, these data are suitable for an early estimation of the yield differ-
ences (Marti et al. 2007), which also indicates the result R4, in which only the soil infor-
mation and a satellite image data set from April were used for the TBM.

However, the yield of plants such as wheat does not consist of above-ground biomass, 
but of storage organs, which is why yield measurement with RS can only be indirect. In 
addition, these yields are dependent on the meteorological conditions in critical growth 
conditions (Knoblauch et  al. 2017) and for modelling yield zones additional RS data 
throughout the growing season is crucial.

Table 5   Output layers of the TBM and their descriptions

Name of layer Description of value in a raster cell

Winning hypothesis The hypothesis or hypotheses with the maximum 
belief

Normalized The hypothesis or hypotheses with the normalized 
maximum belief (without the empty set)

Weight of conflict The measure of conflict between the SOE being fused
Maximum of belief The maximum belief as numeric value
Most plausible hypothesis The hypothesis with the highest plausibility
Maximum plausibility Highest plausibility as numeric value

2  Phase name according to the BBCH scale in English.
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A very positive influence on the TBM result in this study was a satellite image taken on 
May 21 at the beginning of the phenological heading phase. In this phase, the leaf coverage 
of wheat is at its maximum (Geisler 1988).

Some studies have shown the highest correlation between NDVI and yield in this 
phase (Knoblauch et  al. 2017), Field 200-01 correlates most strongly during the milk 
development stage of grain development (BBCH 71–77), which is also described by 
Marti et  al. (2007). However, a high leaf area index (LAI) can also have a negative 
effect. If the crop is too homogeneous, the NDVI is saturated and the differences in 
vitality in the field are no longer visible. In this case, other vegetation indices would 
have to be used. If this is not the case, yield modelling can use the direct relationship 
between plant density and yield as one of many influencing factors on yield (Geisler 
1988).

The most positive impact on the fusion process has the NDVI at 28 June. During 
milk-grain stage, where the wheat grains reached a maximum volume, whereas the 
grain, the spike and the top most leaves are green and synthetically active (Geisler 
1988). As mentioned, wheat yield cannot be assessed by RS directly, but grain growth is 
based on cell multiplication and assimilation rate in the plant. Grain-growth important 
assimilation is driven by the photosynthetic activity of the top most plant parts, which is 
precisely the plant parts most visible to RS and the reason why the NDVI is sensitive to 
potential prospective yield differences in a field.

Finally, when the ripening process advances and the overall vitality is decreasing 
after milk-grain stage (Geisler 1988), remote sensing information decreases in rele-
vance. The Mid-July image in this study does not show significant correlation with the 
final yield map.

Combination of only relevant SOE

The result R1 and the explanations on the relevance differences in satellite imagery imply 
that only certain relevant SOEs are preferable for the TBM. If only relevant evidence 
sources (Table  6, SOE as basis for R2) are used under exactly these aspects, the result 
R2 shows a high separability of the box plot classes as well as a relatively high accuracy 
(56.7%). R2 is thus the best possible result of all combinations and would be recommended 
for use in practice. The accuracy increases during the fusion process and all intermediate 
results are statistically positively validated (Online Fig. 11).

It is also possible to model yield zones without GIS data and only with satellite data 
(Table 6, Online Fig. 12). The corresponding result R5 also achieves a good result with 
good separability of the individual classes (Online Fig.  12) and an accuracy of 55.4%. 
However, the result is not quite as accurate as R2 and the soil information adds more value 
to the fusion process.

Early yield zone prediction

The most optimal result R2 integrates satellite data that are recorded late in the season. 
Early detection of vitality structures can also be detected in spring. The fusion with an 
early satellite image from 20 April with the soil information can give an early estimate 
of the yield zones (Fig.  8). However, the TBM result is strongly dominated by zones 
to which the TBM has assigned multiple hypotheses. From this and resulting from the 
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geometric structure of the soil map and the fuzzy boundary function, the result R3 
is difficult to interpret (Fig.  8a). The separability of the box plot classes is very high 
(Fig.  8b), but the accuracy is only 14.37%. If one tests whether one of the modelled 
multiple hypotheses corresponds to the actual yield class of the yield map per pixel (e.g. 
{1} [yield map] in {1,2} [TBM]), the accuracy increases to 85.4%. The sources of evi-
dence find a result that is not wrong, but that cannot be used in practice. One solution is 
to use another TBM product, the most plausible hypothesis (Table 5, Fig. 8c). Thus, the 
hypothesis with the highest plausibility is presented instead of the hypothesis per pixel 
that received the most belief during the application of Dempster’s Rule of Combination. 
This is the hypothesis that appears most frequently in the cross calculation, whether as 
a single hypothesis or as part of a hypothesis set. The result (Fig. 8c) is clearer, more 
comprehensible and achieves an accuracy of 51.6% in the validation with the yield map.

Comparison of selected results

The comparison between R1 and the 9th fusion result of R1, R2 and R5 shows a great 
visual similarity (Fig. 9). The classified NDVI map from June 28 also shows similar pat-
terns, which is also due to the high weighting of the reliability of this data source in R1, R2 
and R5 and increases the dominance of this data source. In the validation step R2 turns out 
to be the most optimal result, but Fig. 9 shows that several results of the TBM are usable 
in practice and it may be the case that there is not one correct result. Even if the yield 

Table 6   Overview of TBM combinations presented in this study

Result Number of SOE Names of SOE Iterative step Figures

R1 11 (all SOE) 1. Soil Quality (“Ackerzahl”)
2. TPI (Relief Index)
3. NDVI 08 April 2011
4. NDVI 09 April 2011
5. NDVI 20 April 2011
6. NDVI 21 April 2011
7. NDVI 21 May 2011
8. NDVI 03 June 2011
9. NDVI 06 June 2011
10. NDVI 28 June 2011
11. NDVI 16 July 2011

1 Figs. 5, 6 and Online 
Fig. 102

3
4
5
6
7
8
9

10
R2 5 1. Soil Quality (“Ackerzahl”)

2. NDVI 20 April 2011
3. NDVI 21 May 2011
4. NDVI 03 June 2011
5. NDVI 28 June 2011

1 Fig. 7 and Online Fig. 11
2
3
4

R3 2 1. Soil Quality (“Ackerzahl”)
2. NDVI 20 April 2011

1 Fig. 8

R4 2 1. Soil Quality (“Ackerzahl”)
2. TPI (Relief Index)

1 Online Fig. 10
(Iteration 1)

R5 4 1. NDVI 20 April 2011
2. NDVI 21 May 2011
3. NDVI 03 June 2011
4. NDVI 28 June 2011

1 Online Fig. 12
2
3
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structures can already be seen on the satellite image from 28 June, it is advisable to com-
press the information by several data sets. After all, it is not certain that a satellite data set 
is available at the desired time or whether it is dominated by clouds. The penultimate

intermediate results of the fusion of R2 and R5 Online Figs. 11 and 12) show that there 
is a well validated result even without this data set, although it is less accurate.

The comparison of all results with each other shows small and less small differences 
and thus also the nature of the TBM. The model is very flexible and can be fully adapted to 
the individual characteristics of a field and the farmer’s experience. However, this requires 
a high degree of preparation and definition of several parameters by the user. The user has 
full control over the model and can easily understand the values and the calculation. The 
parameters hypothesis, mass of beliefs and reliability can be adjusted in such a way that 
little or no pixels with multiple hypotheses appear in the result. This reduces the scope for 
interpretation and could also lead to incorrect classification if the classes of the sources of 
evidence are interpreted very rigidly.

11
7

8
9

10

Yi
el

d 
in

te
rp

ol
at

ed
 (t

/h
a)

Hypotheses

{ 1 } { 2 } { 3 }

{ 1 } low yield

{ 2 } average yield

{ 3 } high yield

TBM result R2 
(normalized)

Fig. 7   Result R2, Normalized resulting hypotheses (left), validation box plot (right)

7
8

9
10

11

Hypotheses

Yi
el

d 
in

te
rp

ol
at

ed
 (t

/h
a)

{ 1 } { 2 } { 3 } { 1 ,2 } { 2,3 } { 1,2,3 }

{ 1 } low yield

{ 2 } average yield

{ 3 } high yield

{ 1,2 } low-average yield

{ 2,3 } average-high yield

{ 1,2,3 } all possible yield

TBM result (normalized)
Soil  x  NDVI 20 April

Maximum plausible hypotheses
Soil  x  NDVI 20 April

{ 1 } low yield

{ 2 } average yield

{ 3 } high yield

{ 1,2 } low-average yield

{ 2,3 } average-high yield

{ 1,2,3 } all possible yield

{ 1,3 } low & high yield

(a) (b) (c) 

Fig. 8   Result R3, normalized resulting hypotheses (left), validation box plot (middle), maximum plausible 
hypotheses (right)



826	 Precision Agriculture (2020) 21:802–830

1 3

Conclusions and outlook

This study presents a method for data fusion based on evidential reasoning in the agri-
cultural context. With the Transferable Belief Model, satellite data and GIS data can be 
fused independently of their unit and spatial resolution to model yield zones. These yield 
zones can then be used as management zones in precision farming applications, because 
they represent vitality differences in the field, which can be addressed by precision farming 
measures. The TBM calculates with quantified beliefs, not probabilities, because probabili-
ties are very difficult to determine in an agricultural context. The beliefs allow the expert 
knowledge and experience of the user—e.g. a farmer or a consultant—to be integrated into 
the model. The calculation of the quantified beliefs is easy to understand and transparent. 
A wheat field in north-eastern Germany was used to show how the method works and what 
values the parameters influencing the TBM could have. The method leaves the farmer a lot 
of freedom in decision making and does not risk patronizing him with an intransparent, fin-
ished solution. In practice, however, the determination of this large number of parameters 
can be an obstacle to the successful implementation of the method. A further development 
of the method could therefore be to automatically develop a standard ruleset on the basis 
of past yield maps and the data used as sources of evidence. The farmer could then still 

Fig. 9   Comparison of Results R1, R2, NDVI at 28 June, R1 at fusion iteration 9 and R5 (only satellite 
data), as well as the classified yield map
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adapt this standard rule set individually but would not have to work without reference. An 
analysis of a large amount of yield data in similar habitats and the existing GIS data as well 
as the large archive of remote sensing data could be a reliable data basis for such a ruleset. 
Especially if the farmer does not have his own yield data. Data mining algorithms would be 
very effective for the analysis.

The study presents only one field in 1 year as a development environment, but the 
method has to be tested on many fields, in various years and in different natural areas 
before being introduced into practice. The ongoing AgriFusion project (Spengler and Heu-
pel 2017) is also further developing the TBM method, also on fields in other regions of 
Germany.

For practical relevance, it is important to generate an output format that can be used 
for agricultural machinery. The hitherto fragmented raster data dominated by pixels could 
be smoothed with a filter function and then converted into coherent vector polygons. This 
study aims to demonstrate the principle, relevance and feasibility of the method.

In the context of “big data” development, the TBM offers endless possibilities for data 
fusion. Many yield-relevant data can be integrated into a TBM, such as electrical conduc-
tivity maps, nutrient distribution, water balance maps, and remote sensing data from other 
satellite sensors or drones. This further development is particularly important in years with 
heavy cloud cover to guarantee the recording of remote sensing data. In terms of yield 
expectations as well as in modelling yield potential, yield data from previous years can also 
be used as source of evidence in order to improve the accuracy of the results.

Based on this and other studies, the approach of evidential reasoning as part of Preci-
sion Farming applications is quite relevant for further development and implementation in 
practice. The method adapts organically to the complexity of plant growth and yield devel-
opment and integrates exactly the valuable knowledge that farmers have generated over the 
years.
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