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Abstract 36 

Remote sensing of night light emissions in the visible band offers a unique opportunity to 37 

directly observe human activity from space. This has allowed a host of applications 38 

including mapping urban areas, estimating population and GDP, monitoring disasters and 39 

conflicts. More recently, remotely sensed night lights data have found use in 40 

understanding the environmental impacts of light emissions (light pollution), including 41 

their impacts on human health. In this review, we outline the historical development of 42 

night-time optical sensors up to the current state of the art sensors, highlight various 43 

applications of night light data, discuss the special challenges associated with remote 44 

sensing of night lights with a focus on the limitations of current sensors, and provide an 45 

outlook for the future of remote sensing of night lights. While the paper mainly focuses on 46 

space borne remote sensing, ground based sensing of night-time brightness for studies on 47 

astronomical and ecological light pollution, as well as for calibration and validation of 48 

space borne data, are also discussed. Although the development of night light sensors lags 49 

behind day-time sensors, we demonstrate that the field is in a stage of rapid development. 50 

The worldwide transition to LED lights poses a particular challenge for remote sensing of 51 

night lights, and strongly highlights the need for a new generation of space borne night 52 

lights instruments. This work shows that future sensors are needed to monitor temporal 53 

changes during the night (for example from a geostationary platform or constellation of 54 

satellites), and to better understand the angular patterns of light emission (roughly 55 

analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case 56 

that higher spatial resolution and multispectral sensors covering the range from blue to 57 

NIR are needed to more effectively identify lighting technologies, map urban functions, 58 

and monitor energy use. 59 

 60 

1. Introduction 61 

Human society has modified the Earth to such an extent, that the present geological era 62 

has been termed as the Anthropocene (Crutzen, 2002). Monitoring human activity from 63 

space has largely been directed at mapping land cover and land use changes, such as 64 

deforestation (Hansen et al., 2013). Remote sensing of artificial lights, on the other hand, 65 

provides a direct signature of human activity. Global images of the Earth at night are now 66 
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iconic, thanks to NASA media releases such as the “Bright Lights, Big City” (published in 67 

Oct 23rd, 2000, https://earthobservatory.nasa.gov/Features/Lights) or the “Earth at Night” 68 

(published in April 12th, 2017, https://earthobservatory.nasa.gov/Features/NightLights) 69 

and other communication channels (Pritchard, 2017). 70 

The availability of artificial lights is often associated with wealth and a modern society 71 

(Hölker et al., 2010a, Green et al. 2015). Brighter lights are strongly associated with 72 

increased security in the public consciousness, despite little evidence of a causal link. As a 73 

result, total installed lighting increased rapidly during the past centuries (Fouquet & 74 

Pearson 2006), and has continued to increase in most countries during recent years (Kyba 75 

et al. 2017). An example of recent lighting changes is shown in Figure 1. Nightscapes 76 

change when objects or areas are illuminated for the first time, as in new roads or 77 

neighbourhoods, or when lighting technologies change (Figure 1). As a result, economic 78 

development goes in tandem with lighting. 79 

Artificial lights at night can also provide insights on negative impacts, such as 80 

disasters (Molthan et al., 2012), and armed conflict (Román and Stokes, 2015). The 81 

importance of monitoring the Earth at night is also demonstrated by the growing 82 

recognition of artificial light as a pollutant (Navara and Nelson, 2007; Hölker et al., 83 

2010b), the development of new lighting sources (such as LEDs, which can increase 84 

ecological light pollution; Pawson and Bader, 2014), and the continuing growth in extent 85 

and radiance of artificially lit areas (Kyba et al., 2017). Light pollution can be defined as 86 

“the alteration of natural light levels in the night environment produced by the 87 

introduction of artificial light” (Falchi et al., 2011). Artificial light can alter species 88 

abundance or behavior due to changes in their circadian rhythms or due to their attraction 89 

to or repulsion from light (ecological light pollution; Longcore & Rich, 2004, Rich & 90 

Longcore, 2006), can decrease our ability to observe stars at night (astronomical light 91 

pollution), and also leads to negative health impacts to humans through the suppression of 92 

melatonin production and insomnia (Hölker et al., 2010b; Falchi et al., 2011, Lunn et al. 93 

2017). 94 

  95 

https://earthobservatory.nasa.gov/Features/Lights
https://earthobservatory.nasa.gov/Features/NightLights
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 96 

Figure 1: Lighting changes in Calgary, Alberta (Canada) between 24/12/2010 (top) and 97 

28/11/2015 (bottom). The neighborhood at left has converted from high pressure sodium 98 

to white LED lights, while the highway at right is newly illuminated with sodium lamps. 99 

The area has a roughly 7.5x3 km extent. Images based on astronaut photographs ISS026-100 

E-12438 and ISS045-E-155029. 101 

 102 

With the development of new space borne, airborne and ground sensors for 103 

quantifying light at night, new research opportunities are emerging (Kyba et al., 2015a; 104 

Hänel et al., 2018). The first comprehensive review on remote sensing of night lights was 105 

published by Doll (2008). Since that time, a variety of new sensors have become available 106 

(Figure 2; Table 1). More recent reviews on remote sensing of night lights have either 107 

focused solely on applications of the DMSP/OLS sensor (Elvidge et al., 2009c; Huang et 108 

al., 2014; Li and Zhou, 2017), on multi-temporal applications using DMSP/OLS and 109 

VIIRS/DNB (Bennett and Smith, 2017), on the various applications of night-time imagery 110 

(Li et al., 2016) and on the community of researchers active in this field (Hu et al., 2017). 111 

Since the recent review of Zhang et al. (2015b), new sensors, algorithms, and applications 112 

have emerged (Zhao et al., 2019). In this paper we therefore aim to provide a 113 

comprehensive review on the field of remote sensing of night lights, focusing on the 114 

visible spectral range, which is mostly related to artificial lights used by people to light the 115 

night so as to extend human activity hours. In our review we cover space borne, airborne, 116 

and ground based observations (recently reviewed in Hänel et al., 2018). We cover the 117 

historical development of this research area, the available sensors, the current state of the 118 

art algorithms for routine data processing, key applications, the differences to daytime 119 
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remote sensing, upcoming space-based night lights missions, and future research 120 

challenges. 121 

 122 

 123 

 124 

Figure 2: Space borne sensors with night-time lights capabilities, as a function of the year 125 

from which digital night-time images are available, and the spatial resolution of the 126 

sensor.  127 

2. Historical overview 128 

2.1 Earliest observations of night lights 129 

Historically, technological developments in the energy industry (such as the transition 130 

from candles to gas, and later on to kerosene and then to electricity) have led over the past 131 

centuries to a gradual decrease in the price of lighting services, and were associated with 132 

increases in lighting efficiency and in the consumption of light per capita (Nordhaus, 133 

1996; Fouquet and Pearson, 2006). The foundation of the Edison Electric Light Company 134 

can mark the modern era of lighting, and since the year 1800, the total consumption of 135 

light in the United Kingdom alone has grown by 25,600 times (Fouquet and Pearson, 136 
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2006). Walker (1973) reports that already in the 1930s sky illumination has started to 137 

preclude astronomical viewing from certain observatories (and see Rosebrugh, 1935), and 138 

as Bertrand Russell famously wrote in 1935, “In the streets of a modern city the night sky 139 

is invisible; in rural districts, we move in cars with bright headlights. We have blotted out 140 

the heavens, and only a few scientists remain aware of stars and planets, meteorites and 141 

comets.” (Russell, 1975). 142 

The Artificial Light at Night (ALAN) Research Literature Database 143 

(http://alandb.darksky.org/, accessed September 16th, 2019) which covers 2,545 144 

publications on the topic of light pollution (Figure 3; note however, that the ALAN 145 

database does not include all publications on light pollution or on remote sensing of night 146 

lights), has as one of its first papers that of Edison (1880). However, publications on light 147 

pollution were scarce until the mid-20th century (Figure 3; compare with Davies and 148 

Smyth, 2018). The first paper mentioning light pollution in its title (within this database) 149 

was only published in 1972, and it already suspected possible negative health impacts 150 

from exposure to artificial light at night (Burne, 1972). Other papers published in the early 151 

1970s on light pollution were more concerned with the negative impacts that artificial 152 

lighting has on the ability of astronomers on view the night sky (e.g., Riegel, 1973), and 153 

the front cover of Vol. 179 No 4080 of Science shows the dramatic increase of city lights 154 

in Los Angeles between 1911 and 1965, as observed from Mount Wilson. 155 

One of the first famous observations of cities’ lights from space is attributed to US 156 

astronaut John Glenn, who in his orbit of the Earth in February 20th, 1962, saw Perth as 157 

the “City of Lights”, thanks to local citizens and businesses who have turned on as many 158 

lights as they could as a sign of support for his mission (Biggs et al., 2012). In many ways, 159 

the subsequent development of remote sensing of night lights, can be compared to the 160 

general development of Earth observation using daytime images for environmental 161 

monitoring. However, as will be described below, remote sensing of night lights suffers 162 

from a lack of sensors, and consequently there is a temporal lag in the development of 163 

algorithms and customer-ready products. 164 

  165 

http://alandb.darksky.org/
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 166 
Figure 3: Cumulative number of papers on artificial lights in the Artificial Light at Night 167 

(ALAN) Research Literature Database (n = 2545) (http://alandb.darksky.org/, accessed 168 

September 16th, 2019). Also shown are papers where the title of the paper included the 169 

word pollution (n = 271), and papers published in remote sensing journals or where either 170 

one of the words “remote”, “sensing”, “satellite”, “DMSP”, “VIIRS”, “Luojia”, “SQM” 171 

appeared in the title of the paper or that Chris Elvidge was one of the co-authors (n = 380). 172 

The green line shows the yearly numbers of papers cited in our manuscript (n = 372).  173 

 174 
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2.2 Space borne sensors for measuring night lights 176 

During nighttime, most passive remote sensing applications have focused on the thermal or 177 

microwave spectral regions, measuring radiation related to heat emission (Weng, 2009). In 178 

the following sections we detail the various sensors and platforms from which remote 179 

sensing of night lights has been performed. 180 

2.2.1 DMSP/OLS 181 

The first American satellites for Earth observation, launched in the 1960s, were either 182 

aimed for weather monitoring (TIROS-1, launched on April 1, 1960; Rao et al., 1990) or 183 

for military reconnaissance – the Corona program (McDonald, 1995). The Defense 184 

Meteorological Satellite Program (DMSP), started in the mid-1960s as the meteorological 185 

program of the US Department of Defense, aiming to collect global cloud cover data day 186 

and night. The era of global satellite observation of electric lighting started in 1971 with 187 

the launch of the SAP (Sensor Aerospace vehicle electronics Package) instrument flown 188 

by the Defense Meteorological Satellite Program. The SAP collected global imaging data 189 

in a panchromatic band spanning from 500 nm to 900 nm and a long-wave infrared 190 

channel. The signal from the visible band was intensified using a photomultiplier tube. 191 

Dickinson et al. (1974) presented a November 1971 SAP image showing nighttime lights 192 

of Northern Europe and gas flares in the North Sea. The purpose of the low light imaging 193 

was to enable the detection of clouds in the visible using moonlight as the illumination 194 

source (see e.g. Figure 4). The requirement for this came from Air Force meteorologists. 195 

A second generation low light imager, known as the Operational Linescan System (OLS) 196 

was carried on DMSP Block 5D satellites, with a first launch in 1976. A series of nineteen 197 

OLS instruments have been flown and data collection continues to the present (2018). 198 

However, the overpass times vary, with some satellites in dawn-dusk orbits and others in 199 

day-night orbits (Figure 5). Only the day-night satellites provide nighttime data in 200 

sufficient quantities to produce global nighttime lights products. While the existence of 201 

DMSP system was acknowledged in 1972, the use of night-time images of the Earth 202 

within the remote sensing community was very limited until the 1990s (Figure 3). This is 203 

mostly because until 1992 DMSP/OLS images were written to film and were not available 204 

in digital form. The University of Colorado, National Snow and Ice Data Center operated 205 

a film archive. Nonetheless, early scientific papers using DMSP/OLS observations of 206 

artificial lights from space were already published in the 1970s, with regards to 207 

astronomical light pollution (Hoag et al., 1973; Walker, 1973) and concerning the ability 208 

to monitor various human activities such as cities’ lights, waste gas burning, agricultural 209 
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fires and fishing fleets who use lights (Croft, 1973, 1978, 1979; Welch, 1980) (Figure 6). 210 

Sullivan (1989) produced the first global map of DMSP nighttime lights by mosaicking 211 

hand selected DMSP film segments (Figure 7). In comparison, the Corona satellite 212 

program and its associated photos were declassified much later than the DMSP program, 213 

in 1995, and have since allowed the development of various applications (Dashora et al., 214 

2007). 215 

 216 

 217 

 218 

Figure 4: Lunar eclipse over North America on 2014/10/08, viewed by VIIRS DNB. At 219 

far right, the eclipse had not yet begun, and the instrument observed clouds illuminated 220 

by full moonlight. The next strip was taken with the moon partially eclipsed, and the dark 221 

strip when the moon was near to fully eclipsed. The final strip (at left) was taken one day 222 

earlier. Image prepared by Christopher Kyba based on image and data processing by 223 

NOAA's National Geophysical Data Center. Image available under a CC BY license at 224 

https://tinyurl.com/us-eclipse-20141008. 225 

  226 
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 227 
Figure 5: DMSP local times at the ascending equatorial crossing 228 

  229 
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 230 

Figure 6: DMSP colorized night lights. The white represents lights generated from 231 

electricity, the red shading shows fires, the pink shading indicates light from squid fishing 232 

boats, and the blue spots are gas flares from oil rigs. Each is one year's worth of data. The 233 

differentiation of fires, boats, electric lights and gas flares was all done by temporal 234 

analysis (do the lights stay constant and do they move). The instrument itself is not able to 235 

distinguish between them. Zoomed in areas are shown for northern Europe (b), Japan and 236 

Korea (c), western Africa (d), and northern South America (e). Source of dataset: 237 

https://sos.noaa.gov/datasets/nighttime-lights-colorized/  238 

  239 

https://sos.noaa.gov/datasets/nighttime-lights-colorized/
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 240 
Figure 7: Section of the first global map of DMSP nighttime lights, produced by 241 

mosaicking film segments by Woody Sullivan, University of Washington. 242 

  243 
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The launch of NOAA Advanced Very-High-Resolution Radiometer (AVHRR) 244 

weather satellites in the late 1970s (on TIROS-N in 1978 and on NOAA-6 in 1979; Rao et 245 

al., 1990), enabled the development of global 1km products for monitoring vegetation, 246 

surface temperature and land cover changes, with datasets going back to the early 1980s 247 

(Ehrlich et al., 1994). Similarly, a digital archive for DMSP data was established at the 248 

NOAA National Geophysical Data Center in 1992. In 1994, Chris Elvidge and Kimberly 249 

Baugh embarked on a program to produce global DMSP nighttime lights and fire products 250 

from digital DMSP data at NOAA’s National Geophysical Data Center (NGDC) in 251 

Boulder, Colorado. This team pioneered the development of global satellite observed 252 

maps of nighttime lights. Algorithms were developed to geolocate OLS images and screen 253 

out sunlit and moonlit data. The first NGDC test product was of the USA and had 29 254 

orbits as input. This product was clearly missing large numbers of lights from known 255 

cities and towns (Figure 8). To address the shortcoming regarding the large numbers of 256 

missing lights, the team realized they had no assurance that each area had cloud-free 257 

observations. This led to formal tracking of the numbers of observations and cloud-free 258 

coverages to ensure a comprehensive and standardized compilation of lighting features. A 259 

cloud detection algorithm was developed using the long wave infrared OLS data. The 260 

second NGDC product, made with 236 orbits with cloud screening is shown in Figure 9. 261 

For the global products, full years of data are used to ensure that there are multiple 262 

observations remaining after filtering out sunlit, moonlit and cloud data. Because fires are 263 

so readily detected by both DMSP and VIIRS, NGDC developed an outlier removal 264 

process tuned to filter out fires and retain areas with electric lighting (Baugh et al. 2010; 265 

Elvidge et al., 2017). One of the major shortcomings of the operational DMSP data 266 

collections is signal saturation in bright urban cores. In part, this is due to the fact that the 267 

visible band gain is gradually turned up as lunar illuminance declines. To produce a global 268 

nighttime lights product free of saturation, NOAA worked with the Air Force to schedule 269 

reduced gain OLS data (Elvidge et al., 1999). Global nighttime lights products were 270 

generated for seven years between 1996 and 2010 based on the preflight OLS calibration 271 

(Hsu et al., 2015). A sample of this data is shown in Figure 10. An additional shortcoming 272 

of the DMSP data is that its images are blurred, a phenomena termed as “blurring”, 273 

“blooming” or “overglow”. This is caused by scattering in the atmosphere (Sánchez de 274 

Miguel et al. 2019a), and discussed further in section 2.4.2. Abrahams et al. (2018) 275 

demonstrated that this blurring follows a Gaussian point-spread function, and developed 276 

an approach to deblur DMSP data. Other approaches for reducing and correcting the 277 
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“blooming” effect on DMSP data were suggested by Townsend and Bruce (2010), Hao et 278 

al. (2015) and Cao et al. (2019). 279 

 280 

 281 
Figure 8: NGDC’s first map of DMSP nighttime lights, produced from 29 orbits and no 282 

cloud screening. 283 

 284 

 285 
Figure 9: NGDC’s second generation DMSP nighttime lights product produced with 286 

cloud-screening from 236 orbits acquired in a six month period in 1995. 287 

  288 
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 289 
Figure 10: DMSP radiance nighttime lights for St. Louis, Missouri. 290 

 291 

Christopher Elvidge and his team NOAA-NGDC have led the development of the 292 

various annual products of DMSP/OLS (covering the years between 1992 and 2013), 293 

which have been widely used, and are freely accessible online at 294 

https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html . The two major 1km global 295 

products of DMSP/OLS include average visible stable lights, and average lights × 296 

percentage, and are further described below (Baugh et al., 2010), however a host of other 297 

products have also been developed with time from DMSP/OLS data, including Global 298 

Radiance Calibrated Nighttime Lights, global impervious surface area (Elvidge et al., 299 

2007a), global gas flare time series (Elvidge et al., 2009a), and more. By providing global 300 

time series of night lights, numerous papers have been published utilizing this unique 301 

source to study urbanization, socio-economic changes and threats to biodiversity (Bennett 302 

and Smith, 2017). False color composites of DMSP stable lights from different years have 303 

proven to be an effective way to visualize changes in artificial lighting and to follow 304 

patterns of urbanization, expansion of road networks, economic expansion or decline and 305 

damages to infrastructure as the result of armed conflicts (Figure 11). 306 

https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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 307 

Figure 11: False color composites of DMSP stable lights version 4, showing: (a) 308 

decrease in lights following the war in Syria; (b) expansion of roads in the United Arab 309 

Emirates (UAE); (c) the lit border between India and Pakistan; (d) urbanization in China; 310 

(e) economic decline in Ukraine and Moldova following the collapse of the Soviet Union; 311 

(f) temporal changes of oil wells in Nigeria. 312 

 313 

2.2.2 Landsat and Nightsat 314 

Environmental monitoring of the Earth has been dramatically boosted by the launch of the 315 

first Landsat satellite in 1972, and the ongoing continuation of Landsat missions (whose 316 
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entire archives became free to the public in 2009), and other civilian governmental 317 

satellites, offering medium spatial resolutions between 5 and 100 m at various spectral and 318 

temporal resolutions (Lauer et al., 1997; Roy et al., 2014). While Landsat satellites do 319 

acquire night-time images, these are mostly useful for their thermal information, as the 320 

optical sensors onboard the TM and ETM+ sensors were not designed for low light levels 321 

prevalent at night-time. However, the OLI sensor onboard Landsat 8, with its improved 322 

radiometric sensitivity, has been shown to be able to detect night-time lights from very 323 

bright areas such as gas flares and city centers (Levin and Phinn, 2016). Unfortunately, no 324 

sensor has been launched yet which offers operational multispectral monitoring of the 325 

Earth’s night lights at medium spatial resolution. Nonetheless, the requirements of 326 

radiometric, spectral, spatial and temporal resolutions for such a sensor (termed NightSat) 327 

have been defined in a series of papers (Elvidge et al., 2007b,c, 2010), and are discussed 328 

in section 4.8 of this review paper. While two panchromatic sensors designed for 329 

observing night lights and offering a spatial resolution of about 300m have been launched 330 

in joint missions of CONAE and NASA (the SAC-C HSTC in 2000, and the SAC-D HSC 331 

in 2011; Colomb et al., 2003; Sen et al., 2006), images from them are hardly available and 332 

few papers have utilized them (but see Levin and Duke, 2012). 333 

 334 

2.2.3 Remote sensing of night lights from the International Space Station 335 

Night-time astronauts photographs 336 

Astronaut photography from various NASA missions, including the Space Shuttle 337 

missions and the International Space Station (ISS), have long been used for observing a 338 

variety of environmental phenomena from low Earth orbits (Stefanov et al., 2017). The 339 

database of these photos is extensive, includes both daytime and nighttime photos, and is 340 

freely accessible via the Gateway of Astronaut Photography of the Earth 341 

(https://eol.jsc.nasa.gov/). The very first human acquired images from the Earth at night 342 

that we know of were the images taken by the astronauts of the Space Shuttle during 343 

Hercules/MSI mission (Simi et. al. 1995). For example a picture of Charlotte, US taken in 344 

1993 was used to find the major sources of light at night, with the result of identifying 345 

vertical signs near the roads toward the airport that were lit on both sides with lights 346 

directed upwards to illuminate the signs1. This pioneer and other works were lost during 347 

the pre-internet era. 348 

                                                             
1 Private communication. William Howard, 12 Aug 2015. 
 

https://eol.jsc.nasa.gov/
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From 2001 until the present, the crew of the ISS has been taking images of Earth, 349 

space, and activities upon the station using digital single lens reflex (DSLR) cameras. Their 350 

nighttime images are the oldest multispectral images of the visible wavelengths emitted by 351 

Earth at night. Most images of Earth and space were taken either for outreach purposes or 352 

for the astronaut’s pleasure, offering a unique perspective on our planet (Figure 12). 353 

Nevertheless, they comprise a unique and valuable dataset. Although there are technical 354 

challenges associated with radiometric calibration of such images (e.g. accounting for 355 

window extinction), work done at the Complutense University of Madrid over the last 356 

decade proves that calibration of ISS night light images is possible (Zamorano et. al. 2011, 357 

Sánchez de Miguel et. al. 2013a, 2018b; Sánchez de Miguel, 2015). One of the main 358 

problems of the astronaut photography is the motion blur produced by the orbital movement 359 

of the ISS. To solve this problem, astronaut Donald Pettit created a handmade device to 360 

compensate the movement of the ISS on the mission 006 (Pettit, 2009). Later, ESA created 361 

a special tripod called Nightpod (Sabbatini, 2014) used from the ISS030 to the ISS040 at 362 

least (precise date of decommissioning is unknown) (Figure 13). While DSLR cameras can 363 

be modified and have their IR-filter removed, so as to measure incoming light also in the 364 

infrared band (which is useful both for astrophotography purposes and for monitoring 365 

artificial lights sources which emit light in the near infra-red; Andreić and Andreić, 2010), 366 

the vast majority of astronaut night-time photography of the Earth, was limited to the visible 367 

range alone. 368 

  369 
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 370 

Figure 12: Night lights of the Levant, Astronaut photograph ISS053-E-50422, taken on 371 

28/9/2017, 00:10:11 GMT. At the bottom of the image the densely populated Delta of the 372 

Nile can be seen, while the center of the image covers Israel, the West Bank, Jordan and 373 

Lebanon. The consequences of the conflict in Syria are hinted in this photo, where Syria is 374 

mostly dark, in contrast with lit towns and cities in Turkey to the north. 375 

  376 
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 377 

Figure 13: The number of night-time ISS photos identified by the Cities at Night 378 

crowdsourcing project (http://citiesatnight.org/index.php/maps/). Note that in several ISS 379 

missions many night-time photos were taken, while in other mission hardly any night-time 380 

photos were taken. The data shown does not include the recent three years.  381 

 382 

  383 
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The greatest advantages of night-time astronaut photos over other sources, are in their 384 

moderate spatial resolution (often between 5 – 200 m), and in being the first to provide color 385 

space borne night-time images (Kyba et al., 2015a; Figure 14), of hundreds of cities 386 

globally, albeit without any ordered acquisition program (Figure 13). Various studies have 387 

shown the value of those photos for studying socio-economic properties of cities at finer 388 

spatial resolutions than available by the DMSP/OLS (e.g., Levin and Duke, 2012; Kotarba 389 

and Aleksandrowicz, 2016; Kuffer et al., 2018). Calibrated DSLR images from the ISS have 390 

been used for epidemiological studies (Garcia-Saenz et. al. 2018), energy use and lighting 391 

technology studies (Kyba et al., 2015), environmental impact studies (Pauwels, et. al. 2019) 392 

and ecological studies (Mazor et al., 2013). In some cases, researchers have used ISS images 393 

without using, or at least without explaining, a radiometric calibration. Two companies 394 

currently provide calibration on demand of ISS images: www.noktosat.com and Eurosens. 395 

The “Cities at Night” project team has occasionally produced radiance calibrated images for 396 

scientific collaborations, and a project based at the University of Exeter is currently working 397 

on a data processing pipeline to produce a public database of calibrated images. The first 398 

mosaic of high resolution ISS images was made by Schmidt (2015), covering the 399 

administrative boundaries of the country of the Netherlands, and low resolution mosaics 400 

were made using time lapses by Sánchez de Miguel and Zamorano (2012), covering large 401 

parts of the US, Europe and middle-east. 402 

  403 
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 404 

Figure 14: Berlin at day and night: (a) Landsat 8 OLI, April 2017, true color composite; 405 

(b) Astronaut photography from the International Space Station, ISS047-E-29989, March 406 

2016; (c) Luojia01 night-time image, August 25th, 2018; (d) VIIRS/DNB October 2016.  407 

 408 
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Citizen science: Cities at Night 409 

Currently, the astronaut photographs from the ISS are the largest online multispectral 410 

archive of night-time images of the Earth (https://eol.jsc.nasa.gov), with a unique potential 411 

for light pollution studies and to track changes in lighting technologies. However, these 412 

images lack precise location and georeferencing, and in addition, all the images of the Earth 413 

at night are mixed with images of astronomical and meteorological images, making it 414 

difficult to identify night-time images from the ISS, as they are often not tagged adequately. 415 

A citizen science program called “Cities at Night” was therefore launched with its major 416 

aim to provide an improved catalogue of night-time images from the ISS (Sánchez de 417 

Miguel et al., 2014). The project has three steps, classification/tagging to find the cities 418 

images called “Dark skies”, location of the cities called “Lost at Night” and georeferencing 419 

called “Night cities”. Thanks to the collaboration of more than 20,000 volunteers, the project 420 

has been able to tag more than 190,000 nocturnal images of mid and high spatial resolution 421 

(resolution from 5 - 200 m). The project was also able to locate more than 3000 images of 422 

cities with at least one control point and 700 images of cities with enough control points to 423 

be georeferenced (Sánchez de Miguel 2015). A fourth app had been created as a gamified 424 

version of “Dark Skies” called “Night Knights” with all the unprocessed answers of the 425 

project available from the beginning, but also some products (a large processed tagged 426 

catalogue of images with low precise location and smaller sample precise located images) 427 

have been released and are available of the web page of the project (Sánchez de Miguel et. 428 

al. 2018a). The images located by the volunteers and the researchers have already been used 429 

on several papers concerning light pollution monitoring (Sánchez de Miguel. 2015), 430 

epidemiological studies (Garcia-Saenz et. al. 2018) and ecological studies (Pauwels et. al. 431 

2018). Several groups have used the “Cities at Night” as training sample for computer vision 432 

proposes, including Minh Hieu (2016), Calegari et al. (2018) and Sadler (2018). Based on 433 

this catalogue it can be seen that ISS night-time photos are not representing all parts of the 434 

world, and are more common in the urban areas of North America, Europe, the Middle East, 435 

eastern China and Japan (Figure 15a).  436 

  437 

https://eol.jsc.nasa.gov/
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 438 

Figure 15: (a) The number of night-time ISS photos identified by the Cities at Night 439 

crowdsourcing project (http://citiesatnight.org/index.php/maps/), within 100x100 km grid 440 

cells;. (b) The number of all night-time Luojia-1 images acquired so far (n = 8675, May 441 

2019), as received from Wuhan University, with 250x250 km grid cells. 442 

  443 

http://citiesatnight.org/index.php/maps/
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Additional night-time sensors on the ISS 444 

Another source of images of the Earth at night from the ISS is dedicated instrumentation on 445 

the ISS. For example, the experiment LRO (Lightning and Sprites Observation) (Farges et. 446 

al. 2016) was able to produce around at least 100 night-time images of urban areas (see 447 

Figure S1 in Farges et al., 2016); such imagery constituted the largest sample of medium 448 

spatial resolution (at about 400 m) images of Earth at night taken before the ISS026 mission. 449 

However, these images include sensitivity in the infrared regime, so they are difficult to 450 

compare to other images. Other instruments of similar science cases as ASIN recently 451 

arrived to the ISS might also be able to acquire some light pollution measurements. Since 452 

2011, the Japanese Space Agency (JAXA) has been using a series of highly sensitive 453 

cameras on the ISS for the study of transient luminous event (TLEs) such as lightning of 454 

sprites, or other projects (Yair et. al. 2013). In the first videos, the main goal was the 455 

detection of TLEs, but light emissions from the Earth were also obvious. The second 456 

generation of these cameras was installed in 2016, and there is currently an ongoing 457 

collaboration between the University of Exeter and JAXA to provide radiometric calibration 458 

of this data. 459 

 460 

2.2.4 VIIRS/DNB 461 

The two MODIS sensors, onboard the Terra and Aqua satellites (launched in 1999 and 462 

2002, respectively), with their 36 spectral bands, have led to the development of dozens of 463 

global products at various spatial and temporal resolutions, for monitoring vegetation, 464 

snow, fires, surface temperature etc. (Justice et al., 2002). Providing continuity to MODIS, 465 

the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor onboard the Suomi NPP 466 

(Murphy et al., 2001) was launched in October 2011, and has been fitted with a specific 467 

panchromatic sensor designed for measuring night time lights – the Day and Night Band 468 

(DNB) (Miller et al., 2012, 2013). The VIIRS/DNB presents a significant improvement 469 

over the DMSP/OLS sensor, in data availability (with daily images provided for free), in 470 

its higher spatial resolution (750 m, instead of about 3 km for the DMSP), in providing 471 

radiometrically calibrated data which is sensitive to lower light levels and does not 472 

saturate in urban areas, and in the reduced overglow (Elvidge et al., 2013a, 2017; Figure 473 

12). Therefore, global nighttime lights product generation has switched over from DMSP 474 

to VIIRS data in 2012, with the last annual products of DMSP produced for the year 2013 475 

(Elvidge et al., 2017). The first products made available based on VIIRS/DNB data 476 

provided global monthly composites of night lights, starting in April 2012 (available at 477 

https://eogdata.mines.edu/download_dnb_composites.html ), which have already allowed 478 

https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://eogdata.mines.edu/download_dnb_composites.html
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to advance our understanding on various topics, such as seasonal changes in night-time 479 

brightness (Levin, 2017), and detecting the negative impacts of military conflicts (Li et al., 480 

2017). A novel product released in 2019, is NASA's Black Marble nighttime lights 481 

product suite (VNP46A1), at a spatial resolution of 500 m (Román et al., 2018). This 482 

product provides cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray 483 

light-corrected radiances for estimating daily nighttime lights (NTL) (Román et al., 2018), 484 

thus enabling fine tracking of conflict affected displaced populations, damages to the 485 

electricity grid following disasters, and identification of events when and where people 486 

congregate (Román and Stokes, 2015). 487 

2.2.5 Commercial satellites and cubesats 488 

A new phase in space ushered in 1999 with the launch of Ikonos – the world’s first high 489 

spatial resolution commercial satellite, and the first to offer a 1 m panchromatic band from 490 

space (Belward and Skøien, 2015). Since then additional companies have joined in, and at 491 

present the state of the art Earth observation commercial satellites are Digital Globe’s 492 

WorldView 3 and 4 (launched in 2014 and 2016, respectively), offering a panchromatic 493 

band of 31 cm, and 28 additional spectral bands at various spatial resolutions of 1.24 m, 494 

3.7 m and 30 m. The first commercial satellite with high spatial resolution night-time 495 

capabilities (at 0.7 m), was the Israeli EROS-B satellite, which was launched in 2006, but 496 

only started offering night-time acquisition publicly in 2013 (Levin et al., 2014). The first 497 

commercial satellite to offer multispectral (red, green and blue) night-time lights images 498 

(at 0.92 m) was launched in 2017: the Chinese JL1-3B (Jilin-1) satellite (Zheng et al., 499 

2018). Such high spatial resolution satellites enable to study urban land use in finer details 500 

(as in Katz and Levin, 2016) and possibly to start and classify lighting sources. 501 

The current revolution in space borne remote sensing is that of using small satellite 502 

missions (Sandau, 2010). The first company offering global daily multispectral high 503 

spatial resolution (3 m) coverage of the entire Earth is Planet Labs, with its constellation 504 

of about 150 nano satellites (Strauss, 2017). In coming years, researchers may benefit 505 

from similar cubesats offering night-time capabilities (such as NITEsat, presented in 506 

Walczak et al., 2017). Various cubesats have been launched in recent years, such as the 507 

CUbesat MULtispectral Observing System (CUMULOS), and the multispectral 508 

AeroCube, demonstrating the capabilities these new sensors provide for night time 509 

imaging (Pack and Hardy, 2016; Pack et al., 2017, 2018, 2019). An example of a recently 510 

launched cubesat which publicly offers global images of many regions on Earth at night is 511 

LJ1-01 (Luojia-1). This satellite, Luojia-1, was built by Wuhan University and was 512 

launched in June 2018, providing night-time images at 130 m (Figure 14; Jiang et al., 513 
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2018; Li et al., 2018b, 2019; images can be downloaded freely from 514 

http://59.175.109.173:8888/app/login_en.html), with each image covering about 250×250 515 

km. So far, the acquired Luojia-1 images (n = 8675, as of May 2019) provide a complete 516 

and frequent coverage of China, as well as some additional areas such as south-east Asia 517 

and Europe. Recent studies have shown that Luojia-1 images are capable to accurately 518 

map urban extent and to monitor the construction of infrastructure at a moderate spatial 519 

resolution (Li et al., 2018b, 2019). Additional night-time sensors will also become 520 

available in coming years, such as TEMPO, a geostationary satellite which will offer two 521 

images per night over North America (Zoogman et al., 2017). 522 

 523 

2.3 Airborne remote sensing of night lights 524 

Topographic mapping using daytime aerial photos started back in World War I (Collier, 525 

1994). The first aerial night-time photos we are aware of were taken during World War II, 526 

showing anti-aircraft searchlights, bombs exploding and incendiary fires (Figure 16). In 527 

addition to space based observations, remote observation of night lights can be 528 

accomplished from aircraft, drone, and balloon-based platforms. However, proper imaging 529 

of city lights from aerial platforms began much later. Such platforms allow higher spatial 530 

resolutions, and do not require the intensive testing for use in space. While there were 531 

some efforts to map urban night-time lights at fine spatial resolutions using airborne 532 

sensors such as the hyperspectral AVIRIS (over Las Vegas; Kruse and Elvidge, 2011), a 533 

panchromatic camera (over Berlin, at 1 m; Kuechly et al., 2012), or using a multispectral 534 

camera (at 10 cm over Birmingham or 1 m over Ottawa; Hale et al., 2013, Xu et al. 2018), 535 

dedicated aerial campaigns cannot provide continuous global monitoring of urban areas. 536 

Another flight over Berlin with a multispectral camera was performed in 2014, but the 537 

radiometric calibration of the data is not yet complete (Kyba et. al. 2015a, Sánchez de 538 

Miguel 2015). Nighttime imagery from aircraft has been frequently taken, but less 539 

frequently published. For example, flights over London (Royé 2018), Amsterdam, 540 

Friesland, and Deventer (http://nachtscan.nl/) have produced night imagery without 541 

leading to research publications. Aerial data from the state of Upper Austria is available 542 

online (https://doris.ooe.gv.at/themen/umwelt/lichtverschmutzung.aspx), but a report 543 

about the flight is available only in German (Ruhtz et al. 2015). In some cases, night light 544 

images have been acquired chiefly for artistic purposes (Laforet and Pettit 2015), in still 545 

others, there is not sufficient information to allow radiometric calibration. 546 

http://59.175.109.173:8888/app/login_en.html
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 547 

Figure 16: A vertical aerial photograph taken during a raid on Berlin on the night of 2-3 548 

September 1941. The broad wavy lines are the tracks of German searchlights and anti-549 

aircraft fire. Also illuminated by the flash-bomb in the lower half of the photograph are 550 

the Friedrichshain gardens and sports stadium, St Georgs Kirchhof and Balten Platz. 551 

  552 
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Few hyperspectral flights have been taken at night-time, perhaps because the 553 

instrumentation is much more complex. However, there have been a few cases, for example 554 

over Los Angeles (Stark et. al. 2011) and Las Vegas (Metcalf 2012), the ESA-Desirex and 555 

CM flights over Madrid performed by the Instituto Nacional de Técnica Aerospacial in 2008 556 

(Moreno Burgos et al. 2010, Sorbino et. al. 2009, Sánchez de Miguel 2015), and the flights 557 

over Tarragona-Reus-La Bisbal de Falset (Cataluña, Spain) in 2009 (Tardá 2011). The main 558 

limitation of these datasets is the low signal to noise that hyperspectral instruments produce 559 

in some areas of the city. Although the spatial resolution is limited compared to 560 

photography, it can reach up to 5 meters. The most promising aspect of hyperspectral flights 561 

is the potential to unambiguously identify the light source technology. This has been 562 

demonstrated, for example, by Metcalf (2012). 563 

Some experimental projects have made observations using drones (Sánchez de 564 

Miguel 2015, Fiorentin et. al. 2018, Regean 2018), and new studies are starting to explore 565 

the potential of acquiring data on night time lights from drones, given the flexibility in 566 

deploying them at different times during the night, the ability to acquire multi-angular 567 

images (Kong et al., 2019), and their potential for providing some near-sensing validation 568 

to space borne measurements. To some extent, the limited use of drones for remote 569 

sensing of night lights may be due to regulations restricting the use of drones at night over 570 

urban areas. However, the potential of drones is clearly seen by their use in the film 571 

industry, for example in TV productions like “España a ras de cielo” (RTVE 2013; 572 

http://www.rtve.es/alacarta/videos/espana-a-ras-de-cielo/espana-ras-cielo-espana-573 

noche/4692661/) and “Bron/Broen” (SVT 2011). Balloons offer a more flexible platform 574 

for night imagery, as the regulations are not as strict as for drones. Pioneering experiments 575 

were performed by the Daedalus team (Ocaña et. al. 2016), where they combined 576 

detection of meteors with observation of night light emissions. These tests were mainly 577 

performed as technological demonstrations. The Far Horizons Project of the Adler 578 

planetarium of Chicago has also made several balloon flights. The purpose of these was to 579 

test the camera of a cubesat that will be launched in the future to monitor the conversion 580 

of street lamps in Chicago from sodium vapor lamps to white LEDs (Walczak et. al. 581 

2017). 582 

 583 

  584 
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2.4 Ground based measurements of night sky brightness 585 

A major gap in the remote sensing of night lights, stretching back to the time that 586 

DMSP/OLS data first became available, has been the lack of field data to “ground truth” the 587 

observations. Most optical remote sensing is mainly obtained done during the day with very 588 

different illumination conditions, as the only light source is the Sun, and atmospheric 589 

corrections are performed to derive the surface reflectance of objects, which can be ground 590 

truthed using field or lab measurements using a spectrometer (Vermote et al., 1997). At 591 

night-time, we are not interested in surface reflectance but in the emission of artificial lights; 592 

however, there are many relevant light sources in the visible band that can be equally 593 

important under some conditions such as city lights, gas flares, volcanos, lightning, 594 

moonlight, starlights or airglow. In addition, the dynamic range of the phenomena observed 595 

goes from 0.01 nW/cm2/sr to more than 1000 nW/cm2/sr (for sensors with higher spatial 596 

resolutions sensors than VIIRS/DNB, the radiance from upward directed sources will be far 597 

larger). The factors that make observing night lights challenging (see Section 4) also 598 

complicate acquiring ground reference data. For example, changing lights and changing 599 

atmospheric factors such as aerosols and water vapor mean that even aerial data acquired 600 

several hours before or after a satellite overpass cannot be directly compared. One indirect 601 

solution to the problem has been to compare ground based night sky brightness 602 

measurements to either the light observed from space directly, or else to models of diffuse 603 

sky brightness based on night lights data. 604 

The brightening of the night sky by artificial light emissions is referred to as 605 

“skyglow”, and is one of the most familiar forms of light pollution (Rosebrugh 1935, Riegel 606 

1973, Kyba & Hölker 2013, Aubé 2015). Generally speaking, the artificially illuminated 607 

clear sky is brightest in the direction of nearby light sources, and darkest either at zenith or 608 

slightly displaced from zenith in the direction of undeveloped areas (Figure 17). The main 609 

source of skyglow is light emitted towards the horizon, because the path length to space is 610 

longest in this direction, greatly raising the scattering probability (Falchi et al. 2011). It is 611 

important to note that remote sensing of night lights is usually done towards nadir, so these 612 

emissions are not generally imaged during night light observations (however see Kyba et 613 

al. 2013b). Observations of night sky brightness therefore complement remote sensing of 614 

night lights in two ways: first, they can be used as a ground truth, and second, they provide 615 

indirect information about light emissions at angles that are not directly imaged from space. 616 

  617 
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 618 
 619 

Figure 17: All-sky luminance map based on a photograph taken 15 kilometers outside of 620 

Berlin’s city limits (30 km from the city center). Photograph and image processing by 621 

Andreas Jechow. The dashed line shows 40o from zenith (equivalently 50o elevation). A 622 

natural starlit sky has a luminance near 0.2-0.3 mcd/m2 (Hanel et al 2018). 623 

  624 
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The influence of cloud cover on the surface light environment is important for 625 

understanding the ecological impacts of skyglow (Rich & Longcore 2006, Kyba et al. 2011, 626 

Kyba & Hölker 2013). In areas with little or no artificial lighting, clouds darken the night 627 

sky, while in areas with artificial lighting they make it considerably brighter. Some locations 628 

can experience both at once, in different viewing directions (Figure 18, Jechow et al. 2018a). 629 

Atmospheric scattering is biased towards blue light on clear nights (Kocifaj et al., 2019), 630 

but clouds scatter at all wavelengths. For this reason, the artificially illuminated clear night 631 

sky is far bluer than the overcast night sky, or in other words the “amplification” of light 632 

caused by clouds is far stronger in the red (Kyba et al. 2012, Aubé et al. 2016). At the 633 

moment, understanding of the light environment on overcast and partly cloudy nights 634 

remains poor (Jechow et al. 2018a). While local models exist (e.g. Solano Lamphar & 635 

Kocifaj 2016), global models of skyglow on overcast nights are not available, relatively few 636 

observations of cloudy sky radiance have been published, and local models of skyglow on 637 

overcast nights have not been validated with experimental data. 638 

 639 

  640 



33 

 641 

 642 

Figure 18: Night-time hemispheric photo at Emily Bay, Norfolk Island, Australia (April 643 

6th, 2018, 21:52 local time). The upper image shows the raw image, while the bottom 644 

image presents sky brightness as calculated by the Sky Quality Camera software. The 645 

bright light at the east (azimuth 112͐͑͐
͑͒
, left side of the image) is the moon rising over the 646 

horizon. Notice the difference between bright clouds above artificial light sources, and the 647 

dark clouds above dark areas. Photo taken by Noam Levin. 648 

  649 
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2.4.1 Current status of ground based observations of the artificially illuminated night 650 

sky 651 

Hänel et al. (2018) recently reviewed the commonly used techniques for observing the 652 

night sky brightness and skyglow, so only a brief summary is provided here. There are 653 

three basic techniques: point observations with broadband radiometers (most common), 654 

multispectral all-sky photographic observations, and point observations with 655 

spectrometers (most rare). Of the three techniques, Hänel et al. (2018) concluded that all 656 

sky imaging techniques “provide the best relation between ease-of-use and wealth of 657 

obtainable information on the night sky” (see e.g. Jechow et al. 2017a,b, 2019). However, 658 

Hänel et al. noted that a combination of the different techniques is ideal, as point 659 

observations can be used for long-term tracking, while being occasionally supplemented 660 

with all-sky photography. Note that both point observations taken in multiple directions 661 

(Zamorano et. al 2013) and image mosaicking (Duriscoe et al. 2007) can also be used to 662 

acquire information about the full sky dome. 663 

In the past, night sky brightness observations were mainly performed by 664 

professional observatories and institutionally affiliated scientists (e.g. Walker 1970, Zhang 665 

et al. 2015a). The recently introduction of low-cost night light radiometers, starting with 666 

the Sky Quality Meter (SQM), has greatly expanded the number of surveyed sites, and 667 

enabled the active participation of citizen scientists. The SQM instrument enables 668 

monitoring night-time brightness in a rapid fashion, either along transects while walking, 669 

biking (Katz and Levin, 2016) or attached to a car (Xu et al., 2018), or temporally, 670 

allowing to monitor temporal changes in night sky brightness (Pun et al., 2014; den Outer 671 

et al., 2015). In addition to instrumental observations, citizen scientists are able to make 672 

visual observations of night sky brightness by examining stellar visibility. The most 673 

widespread of these projects is “Globe at Night” (Walker et al. 2008), which has been 674 

running since 2006. While visual observations have lower precision than instrumental 675 

observations (Kyba et al. 2013a), they have the advantage of correctly accounting for 676 

spectral changes in night sky brightness due to changing lighting technology (Sánchez de 677 

Miguel et al. 2017, Kyba et al. 2018a). Other instruments and methodologies such as the 678 

TESS-W photometers (which is growing to provide a global monitoring network, with 679 

freely available data via http://tess.stars4all.eu/; Zamorano at al., 2019), the Sky Quality 680 

Camera software, and the Loss of the Night app are further discussed by Hänel et al. 681 

(2018) and by Jechow et al. (2019b). The Sky Quality Camera software allows one to use 682 

a DSLR camera (which has been properly calibrated) with a fish-eye lens, to measure 683 

http://tess.stars4all.eu/
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hemispherical night-time brightness (Jechow et al. 2018b, 2019), to estimate cloud cover, 684 

and to create night sky brightness images with or without bright stars and the Milky Way 685 

(Figure 18).  686 

2.4.2 Direct comparison of night sky brightness observations to light observed from 687 

space 688 

In many space-based night light images, it is possible to see a fuzzy haze that surrounds 689 

cities, extending into areas which are unlikely to contain lights (such as forests or offshore 690 

regions). This diffuse light in DMSP/OLS and VIIRS/DNB images has often been referred 691 

to as “blooming” (e.g. Amaral et al. 2005, Ou et al. 2015), likely due to its visual similarity 692 

to the phenomena of CCD blooming in digital photography. However, a recent study 693 

suggests that rather than being an instrumental error, it is likely that the instruments are 694 

actually correctly observing light scattered by the atmosphere, or in some cases light 695 

scattered by the atmosphere and then reflected from the ground. 696 

When Kyba et al. (2013a) found that citizen science observations of skyglow were 697 

highly correlated with DMSP observations, they hypothesized that this correlation arises 698 

because the point spread function of the DMSP acts as a de facto approximate atmospheric 699 

radiative transfer model. A similar correlation between DMSP-OLS and night sky 700 

brightness was verified on a smaller spatial scale by Zamorano et. al. (2016). However, 701 

using an intensive night sky brightness survey around the city of Madrid, Sánchez de Miguel 702 

(2015) demonstrated a strong correlation between diffuse light in space-based images from 703 

instruments with different intrinsic spatial resolutions. By comparing SQM ground based 704 

measurements using SQMs, with VIIRS/DNB imagery and ISS astronaut photos, Sánchez 705 

de Miguel et al. (2019a) have recently demonstrated that the diffuse light observed around 706 

cities is not an instrumental error, but is actually a direct observation of the component of 707 

urban skyglow that scatters upward, i.e., artificial sky brightness. Sánchez de Miguel et al. 708 

(2019a) also mention additional components of diffuse light in night-time imagery which 709 

remain to be quantified, such as albedo, natural airglow, sea fog, and real blooming. 710 

2.4.3 Comparison of night sky brightness observations to radiative transfer models 711 

Observations of night sky brightness can in principle be used to extract information about 712 

light emissions that are not available through direct observations. For example, there is 713 

considerable debate about what fraction of light from cities is emitted towards the horizon 714 

(Luginbuhl et al. 2009), which is difficult or impossible to directly observe from space 715 

(Kyba et al. 2013b), but may be inferred from night sky brightness data (Kocifaj 2017). 716 

Falchi et al. (2016) produced models of night sky brightness under three different 717 
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assumptions of the upward angular distribution function: Lambertian, emissions peaking at 718 

30o, and strong emissions towards the horizon. Because light is additive, it is possible to fit 719 

for the linear combination of models that most closely matches the data. In the case of Falchi 720 

et al. (2016), the data were SQM observations at zenith from a number of academically 721 

affiliated and citizen scientists, notably including Ribas (2016), Zamorano et al. (2016), and 722 

Globe at Night. A similar procedure could in principle be used with all-sky camera data. 723 

The conditions under which skyglow models are accurate remains an open question. 724 

The global model of Falchi et al. (2016) does not consider shadowing by mountains, for 725 

example, so it is likely that errors are larger in mountainous regions. Ges et al. (2018) 726 

compared the predictions of Falchi et al. (2016) to SQM observations made along a transect 727 

from Barcelona out to sea. They found extremely good agreement with the model under 728 

atmospheric conditions similar to those upon which the model is based, but disagreement 729 

of up to 50% on a night with better optical conditions. In particular, they found that on a 730 

night with low aerosol load, the sky was darker than predicted near Barcelona, while far out 731 

to sea the sky was brighter than predicted. 732 

There is a need for further comparison of models to observations, and direct 733 

comparisons of models to each other (e.g. Aubé & Kocifaj 2012). As skyglow models are 734 

used to make lighting policy recommendations (e.g. Aubé et al. 2018), it is important to 735 

verify that their predictions are correct. Bará (2017) recently examined how dense 736 

observations should be in order to provide reliable data on zenith night sky brightness. He 737 

concluded that observations on a 1 km grid provide sufficient resolution for interpolation 738 

between the points to accurately represent night sky brightness. A major challenge for 739 

comparing models to observations occurs in areas where natural light sources such as 740 

airglow and stars are brighter than the artificial component of night sky brightness (Bará et 741 

al. 2015). Finally, the shifting spectrum of skyglow due to the change to LED technology 742 

poses a challenge for both observations and modeling, and is discussed in detail in section 743 

4.5.  744 

 745 
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3. Applications of remote sensing of night lights 746 

In this section, we aim to provide a brief overview of some of the most common 747 

applications of night lights data made using the existing and historical sensors. The aim is 748 

to demonstrate the breadth of existing study, and to refer the reader to historical, key, and 749 

review papers about each topic. Readers should understand that for each topic, a 750 

considerably larger base of scholarship exists, and that not all applications of night lights 751 

are reviewed here. For example, we do not review studies on whether lighting benefits 752 

public safety (and/or the perception of safety), and on whether there is correspondence 753 

between higher night-time brightness, and decreased crime rates and car accidents 754 

(Painter, 1996; Marchant, 2004, 2017; Peña-García et al., 2015; Steinbach et al. 2015). 755 

Where relevant, we highlight some of the main challenges in the applications, and how 756 

these may be addressed with future sensors. These challenges and opportunities are then 757 

addressed in more detail in the following section. 758 

3.1 Mapping urbanization processes 759 

Our world has been rapidly urbanizing in recent decades. As of 2014, more than 54% of 760 

the global population live in urban areas, and by 2100, 70%–90% of the world’s 761 

population, which is projected to increase by another three billion, will live in urban 762 

regions (United Nations, 2014). Due to broad impacts of the concentrated human activities 763 

and associated built environment, cities are now a major factor shaping the Earth system 764 

and are considered agents of global change (Mills, 2010). Cities worldwide now occupy 765 

only about 2% of the global land surface (Akbari, 2009), but produce more than 90% of 766 

the world gross domestic production (GDP) (Gutman, 2007), consuming more than 70% 767 

of the available energy (Nakićenović, 2012), and generating more than 71% of 768 

anthropogenic greenhouse gas emissions (Hoornweg et al., 2011). There is therefore an 769 

urgent need for timely and reliable information on the extent of urban areas to support 770 

sustainable urban development and management (Ban et al., 2015).  771 

 Due to the fact that cities are brightly lit during the night, urban areas can be easily 772 

identified in nighttime light remote sensing data. Indeed, one of the first uses of NTL data 773 

from DMSP/OLS was to delineate urban extents, and DMSP/OLS data is one of the 774 

earliest datasets available for mapping our urbanizing planet (Zhu et al., 2019). The 775 

panchromatic nature of DMSP/OLS NTL data first encouraged researchers to find an 776 

optimal threshold to separate urban areas from their backgrounds (e.g. Imhoff et al. 1997; 777 

Small et al. 2005). However, it turned out that it is not straightforward to find a single 778 
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optimal threshold that can accurately delineate both large cities and small cities 779 

simultaneously (Zhou et al., 2015). While a larger threshold might be good for delineating 780 

large cities but tends to overlook small towns, a smaller threshold can bring back small 781 

towns but often leads to overestimating the extents of large cities. Such a situation 782 

becomes even more complicated due to the overglow effect in DMSP/OLS, and due to the 783 

use of different types of lighting together with different street lighting standards in 784 

different countries (Small 2005). Optimal thresholds vary across space and a scheme of 785 

dynamic thresholds is required for large-scale and temporal dynamic urban extent 786 

mapping (Zhou et al. 2014; Elvidge et al. 1997b; Imhoff et al. 1997; Small, Pozzi, and 787 

Elvidge 2005; Elvidge et al. 2009b; Cao et al. 2009).  788 

 Due to the saturation of DMSP/OLS within urban areas, these images lack textural 789 

information, making it very hard to map urban patterns within cities. However, with the 790 

improved radiometric performance of VIIRS/DNB, new methods are being developed, 791 

demonstrating for example the ability to map local urban centers (Chen et al., 2017). The 792 

newer VIIRS/DNB nighttime light data is also better than DMSP/OLS data in mapping 793 

urban extents (Shi, et al., 2014), and attention has been given to determine dynamic 794 

thresholds for mapping using ancillary information (He et al. 2006; Cao et al. 2009; Zhou 795 

et al. 2014; Liu et al. 2015). Recently, researchers have started to look into the potential of 796 

integrating DMSP/OLS with the Moderate Resolution Imaging Spectroradiometer 797 

(MODIS) (Guo et al., 2015; Lu and Weng, 2002; Zhang et al., 2013, Ouyang et al., 2019) 798 

or Landsat at a finer spatial resolution (Zhang et al., 2015b; Goldblatt et al., 2018), to 799 

improve the accuracy and performance of regional and global urban extent mapping, 800 

developing spectral indices such as the vegetation adjusted NTL urban index (VANUI) 801 

(Zhang et al., 2013).  802 

  The long historical archive of DMSP/OLS NTL data not only allows static urban 803 

extent mapping but also has high potential in characterizing urban extent dynamics at 804 

regional and global scales (Small and Elvidge, 2013). For example, Yi et al. (2014) 805 

utilized multitemporal DMSP/OLS NTL annual composites to study urbanization 806 

dynamics in Northeast China, Liu et al. (2012) and Ma et al. (2012, 2015) explored 807 

urbanization in all of China, Álvarez-Berríos et al. (2013) examined South America, 808 

Pandey et al. (2013) examined India, Zhang et al. (2014) examined the conterminous 809 

United States, and Castrence et al. (2014) in Hanoi, Vietnam, and Zhang and Seto (2011) 810 

did this for the entire globe. In a recent paper, Zhou et al. (2018) developed a new method 811 

to generate temporally and spatially consistent global urban mapping, finding that global 812 

urban area has increased from 0.23% in 1992 to 0.53% in 2013. 813 
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 814 

3.2 Estimating GDP and mapping poverty 815 

The connection between artificial lighting and urban areas described above has motivated 816 

many researchers to examine the possibility of using night lights data as an indicator of 817 

economic activity. Night-time light has been found to be positively correlated with Gross 818 

Domestic Product (GDP) or Gross Regional Product (GRP) at different spatial scales 819 

(Elvidge et al. 1997; Forbes 2013; Li et al. 2013a). However, there are also considerable 820 

differences in per capita light emissions observed for countries with similar GDP (e.g. 821 

Henderson et al. 2012, Kyba et al. 2017; Levin and Zhang, 2017; Figure 19). The strength 822 

of incorporating night lights data into economic analyses is therefore in: (1) estimating 823 

GDP at finer levels of spatial resolution than are available through official statistics, (2) 824 

estimating GDP change (as opposed to levels) at high temporal frequency (e.g., in Bennie 825 

et al., 2014; Figure 20), and (3) estimating GDP in areas with poor or no reporting 826 

(Henderson et al. 2012). 827 

  828 
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 829 

Figure 19: Mean VIIRS radiance values in July 2014 at the country level (averaging all 830 

cities within a country), as a function of national GDP per capita. Based on data from 831 

Levin and Zhang (2017). Note that GDP on its own is not enough to explain night-time 832 

brightness differences of urban areas between countries. Additional variables include 833 

albedo, whether countries have natural gas and oil resources, and lighting standards, 834 

among other factors.  835 

 836 

 837 

An example of the first point above is disaggregating National GDP data to spatial 838 

grids. This was first carried out to produce 5 km resolution GDP map for 11 European 839 

Union countries and the United States (Doll et al. 2006), and it was further used, 840 

supported by ancillary data including a population density map (Landscan), to produce a 841 

global GDP map at 1 km resolution, showing that Singapore has the highest GDP density 842 

(Ghosh et al. 2010). Similarly, night-time lights can be used as a proxy of GDP for 843 

estimating wealth, allowing regional economic phenomenon such as inequality (Elvidge et 844 

al. 2012; Xu et al. 2015) and poverty to be mapped (Elvidge et al. 2009b; Wang et al. 845 

2012; Yu et al. 2015; Jean et al., 2016). Henderson et al. (2016) showed that physical 846 

geography (such as climate, biomes, topography, etc.) has a strong influence on the spatial 847 
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distribution of economic activity, however, that there are differences between developed 848 

and developing countries in the relative importance of agriculture and trade variables, to 849 

explain spatial variability in night-time lights. 850 

An example of an application of the third point above is in correcting the statistical 851 

GDP or GDP growth rate data for developing countries. This is based on econometric 852 

models which regard the real GDP (or GDP growth rate) as a linear combination of 853 

statistical GDP (or GDP growth rate) and estimated GDP (or GDP growth rate) derived 854 

from night-time light images (Chen and Nordhaus 2011; Henderson et al. 2012; 855 

Henderson et al. 2011). Based on this framework, economists have concluded for example 856 

that China’s real GDP growth rate is higher that the values from official statistics (Clark et 857 

al. 2017). 858 

 859 

3.3 Monitoring disasters 860 

Disasters can affect night light emissions through damage to and interruption of electric 861 

utility services. For example, tropical storms and hurricanes, heavy rains that cause flash 862 

or longer-term basin-wide flooding, damaging straight-line winds or tornadoes, 863 

widespread ice storms, fires, and earthquakes, frequently interrupt utility services for 864 

varying lengths of time. Outages can also occur from poorly maintained or damaged 865 

infrastructure, industrial accidents, or regional conflicts (see section 3.4). Disruptions can 866 

be on the order of hours for small, isolated events, to days, weeks, or even months, for 867 

particularly strong or long-lasting impacts such as those from major hurricanes (Román et 868 

al. 2018, 2019; Figure 20) or earthquakes (Kohiyama et al. 2004). For meteorological 869 

events, lingering cloud cover can impact the ability to reliably detect changes following 870 

natural disasters (Zhao et al., 2018). Therefore, monitoring of nighttime lights is 871 

particularly well-suited to assessment of impacts from major events over longer-time 872 

scales, or for non-meteorological events (e.g. failed infrastructure, earthquakes) where 873 

cloud cover may be less prevalent. 874 

  875 
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 876 

Figure 20: Temporal changes in monthly VIIRS night-time brightness, demonstrating 877 

various patterns (each of the sites was normalized between its own minimum and 878 

maximum values). 879 

Aleppo, Syria: dramatic decrease in night-time lights due to the war in Syria. 880 

El Zaatari refugee camp, Jordan: influx of refugees from Syria makes this refugee camp 881 

one of the largest cities in Jordan. 882 

Dubai, UAE: A global city and a business hub in the Middle East, with a growing 883 

economy. 884 

San Juan, Puerto Rico: Hurricane Maria (September 20th, 2017) led to power outages 885 

throughout Puerto Rico. 886 

Caracas, Venezuela: In 2014 Venezuela entered an economic recession, with a decrease in 887 

its GDP, evident in a decrease of night lights in its capital city. 888 

Juliaca, Peru: A seasonal pattern is evident in night-time lights, commonly attributed to 889 

seasonal changes in albedo related to vegetation and snow cover. 890 

  891 
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Gillespie et al. (2014) demonstrated the use of DMSP/OLS annual to monitor the 892 

damage and recovery of areas affected by the December 2004 earthquake and the tsunami 893 

which followed it, in Sumatra, Indonesia. Such applications have expanded with the 894 

advantages of VIIRS/DNB night-time imagery. VIIRS/DNB has been used to capture 895 

power outage and recovery from severe storms, for example. False color composites of 896 

pre- and post-event lights were used by Department of Defense and other partners in their 897 

response to Hurricane Sandy (Molthan et al. 2012). Cao et al. (2015) used comparisons of 898 

pre- and post-event emissions to identify loss and recovery of nighttime lights in 899 

Washington D.C. area from a derecho event (a wide-spread straight-line wind event), as 900 

well as following Hurricane Sandy, when Department of Energy utility reports were used 901 

as validation. Cole et al. (2017) combined nighttime light information, population data, 902 

and utility information to model likely future outages and affected populations, and 903 

documented outages and recovery following Hurricane Sandy in the northeastern states. 904 

Miller et al. (2018) used a long-term pre-event nighttime light composite and cloud-free 905 

scenes following Hurricane Matthew as a false color composite, in order to estimate 906 

outages. This work compared favorably to reported utility outages, and nighttime lights 907 

imagery also captured unique physical phenomena associated with the cyclone. 908 

Zhao et al. (2018) investigated outages and recovery from earthquakes, major 909 

tropical cyclones, and floods with validation of outages against SAR-derived damage 910 

proxy estimates and flood mapping. They adopted the methodology of Cole et al. (2017) 911 

to derive a “percent of normal” condition as the ratio of a post-event scene to pre-event 912 

normal. For long-term outages in Puerto Rico following 2017’s Hurricane Maria, Zhao et 913 

al. found a strong correlation between percent of normal light (low values) and reported 914 

outages (R2=0.94), though obtaining cloud-free pre-event and post-event scenes were 915 

difficult. Finer-scale observations of nighttime lights and change have been developed 916 

from the NASA Black Marble Nighttime Light (NTL) composite and ancillary data layers 917 

(Zhang et al. 2015c, Wang et al. 2018), using spatial downscaling to estimate a 30 m 918 

product for changes on neighborhood scales (Román et al. 2018; Figure 21). These and 919 

other analyses demonstrate the utility of night lights in specifically examining impacts to 920 

electrical infrastructure, as opposed to other damage that may be more readily assessed via 921 

daytime sensing (e.g. flooding, structural damage). 922 
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 923 

 924 

 925 

Figure 21: After making landfall as a category 4 storm on October 10, 2018, Hurricane 926 

Michael knocked out power for at least 2.5 million customers in the southeastern United 927 

States, according to the Edison Electric Institute. The images show where lights went out 928 

in Panama City, Florida, comparing the night lights before (top) and after (bottom) the 929 

hurricane (October 6th and 12th, 2018, respectively). 930 

  931 



45 

3.4 Monitoring armed conflicts 932 

In addition to the environmental disasters discussed above, human-caused disasters also 933 

have strong impacts on night light emissions. Remote sensing of night lights therefore 934 

provides an opportunity to monitor conflicts, where data is often scarce and governmental 935 

reports may be biased (Witmer, 2015). High spatial resolution daytime images have been 936 

proved effective to achieve this purpose (American Association for the Advancement of 937 

Science 2013; Prins 2007), but building a link between conflicts and these remote sensing 938 

images sometimes requires human skills of image interpretation. Since there is a direct 939 

link between night-time lights and a number of socioeconomic parameters, dramatic 940 

decreases in night-time brightness may serve as an indicator for damage to infrastructure 941 

caused by armed conflicts. In addition to reductions in population size and Gross 942 

Domestic Product (GDP), decreases in light emissions also provide a warning that 943 

civilians are likely lacking a stable electricity supply, which is essential for both basic 944 

living and operation of hospitals. 945 

A pioneering study in this topic examined the war effect in Chechnya and Georgia by 946 

using monthly DMSP/OLS composites (Witmer and O'Loughlin 2011), which were used 947 

to examine movement of refugees and burning oil fields caused by the wars A more 948 

comprehensive examination of global conflicts was undertaken by Li et al. (2013b) using 949 

time series of annual DMSP/OLS composites. These authors used 159 countries as 950 

research samples, and found that wars lead to a sharp reduction of night-time lights, that 951 

peace agreements are followed by restoration of night-time brightness levels, and that war-952 

torn countries have larger fluctuations of night-time lights than peaceful countries. 953 

Since that time, night-time light images have been employed to evaluate the violent 954 

conflicts in Syria (Li and Li 2014; Li et al. 2017; Figure 11a), Iraq (Li et al. 2018a; Li et 955 

al. 2015) and Yemen (Jiang et al. 2017) following the Arab Spring, showing that affected 956 

regions in these countries experienced dramatic reductions in light emissions after the 957 

conflict began (Figure 20). Examining all Arab countries following the onset of the Arab 958 

Spring, Levin et al. (2018) found that reductions in night-time brightness correlated with 959 

decreases in the number of tourists (using Flickr photos as indicator of visitation), with 960 

increases in asylum seeker numbers, and with increases in the numbers of deaths from 961 

conflicts. Levin et al. (2019) have also suggested that reductions of night-time lights may 962 

serve as an indicator of risk to UNESCO World Heritage Sites from armed conflicts. As is 963 

the case with environmental disasters, the development of NASA’s daily Black Marble 964 
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product provides another step forward towards fine temporal monitoring of the effects of 965 

wars on internally displaced populations (Roman et al., 2018).  966 

 967 

3.5 Holiday and ornamental lights, and political, historical, and cultural 968 

differences in lighting 969 

While disasters are evident from a temporal reduction in light emissions, lighting 970 

associated with holidays can result in a temporary increase. The uniformities and 971 

variations between nighttime light signatures can provide new insights into how energy 972 

behaviors, motivated by social incentives and economic activity, vary across national and 973 

cultural boundaries (Figure 22). Temporal fluctuations in electricity demand may 974 

represent changes in individual and macro-scale energy behaviors, such as during major 975 

cultural events such as Christmas, New Year, and the Holy month of Ramadan. During the 976 

Christmas and New Year holidays in the USA, the patterns of total lighting electricity 977 

usage (units of Watt · hr) derived from nighttime radiance were shown to uniformly 978 

increase across US cities with diverse ethnicity and religious backgrounds (Román and 979 

Stokes, 2015). Román and Stokes suggest that this shows that in addition of being a 980 

religious holiday, Christmas and New Year are also celebrated as a civic holiday across 981 

the US through holiday lighting (Figure 23). Patterns of energy service demand observed 982 

through nightlight images during the Holy month of Ramadan can also indicate different 983 

religions as well as cultural observance practices. In the Middle East, cities with Muslim-984 

majority population exhibit lighting peaks during and slightly after the 30 days of 985 

Ramadan compared to non-arab cities in Israel (Román and Stokes, 2015). Seasonal 986 

variations in nighttime lights have also been used to track patterns in ambient population 987 

(mainly tourists) in Greece (Stathakis and Baltas, 2018).  988 

Lighting for cultural or celebratory purposes (such as light festivals; Giordano and Ong, 989 

2017) may result in particularly bright emission signals compared to more functional 990 

lighting such as for streets and parking lots. For example, floodlighting of churches or 991 

other cultural objects often misses the facade, and can therefore be brightly visible on 992 

Suomi-NPP VIIRS DNB images (eg. Kyba et al. 2018c). Architectural lighting is often 993 

used to highlight significant buildings, and such lighting may only be on when special 994 

events are held or at certain times of the night (Meier 2018). This may present a challenge 995 

for night lights analyses, with the inconsistent temporal pattern contributing to the 996 

variability of night lights datasets (Coesfeld et al. 2018).     997 
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Administrative borders offer the possibility to observe clear contrasts between 998 

different countries or regions, an area where the high resolution color photographs from 999 

the ISS can be quite useful (Figure 22). The persistence of different lighting technologies 1000 

in the former East and West Berlin and the extraordinary drop of light at the border 1001 

between North and South Korea are well known examples. However, there are also large 1002 

national differences between per capita light emissions in wealthy cities and countries 1003 

(Kyba et. al 2015a, Sánchez de Miguel 2015; Levin and Zhang, 2017). The root causes 1004 

behind these differences are in some cases not well understood (and may be related to 1005 

different lighting standards between countries), and night lights data may therefore play a 1006 

useful role in some investigations based on the social sciences. 1007 

 1008 

 1009 

 1010 

 1011 

Figure 22: Lighting differences between countries across borders, as seen from the ISS: 1012 

China - North Korea - South Korea (ISS038-E-38280), US - Mexico (ISS030-E-213358), 1013 

East and West Berlin (ISS035-E-17202). 1014 

  1015 
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 1016 

Figure 23: City lights shine brighter during the holidays in the United States when 1017 

compared with the rest of the year, as shown using a new analysis of daily nighttime data 1018 

from the VIIRS instrument onboard the NASA/NOAA Suomi NPP satellite (Roman and 1019 

Stokes, 2015). Dark green pixels are areas where lights are 30 percent brighter, or more, 1020 

during December. Because snow reflects so much light, only snow-free cities were 1021 

analyzed. Holiday activity is shown to peak in the suburbs and peri-urban areas of major 1022 

Southern US cities, where Christmas lights are prevalent. In contrast, most central urban 1023 

districts, with compact dwelling types affording less space for light displays, experience a 1024 

slight decrease or no change in energy service demand. The calculation is based on the 1025 

relative change in lights between the Christmas holiday vs. the rest of the year. It is a 1026 

simple ratio between the latter vs the former. 1027 

  1028 
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3.6 Astronomy 1029 

Astronomy is perhaps the oldest remote sensing discipline, with its goal to obtain 1030 

information about objects at vast distances through observation of emitted, absorbed, 1031 

scattered, or reflected light. Nearly all visible band astronomy is undertaken at night, 1032 

because light scattered by sunlight in Earth’s atmosphere outshines most celestial objects. 1033 

The artificial light emitted by cities is similarly scattered by the atmosphere, and as a 1034 

result one third of humans (including nearly 80% of North Americans) are no longer able 1035 

to see the Milky Way from their homes (Falchi et al. 2016). This is an immense cultural 1036 

loss (Gallaway, 2010). It also raises the cost of doing professional astronomy, as 1037 

historically important and easily accessible sites such as Mount Wilson Observatory can 1038 

no longer be used for research (Teare, 2000), and even remote sites are increasingly 1039 

threatened by light pollution (Krisciunas et al. 2010, Aubé et al. 2018). Studies of night 1040 

sky brightness and its changes are therefore important for amateur and professional 1041 

astronomy. 1042 

Remote observation of upward light emissions is crucial for the study of artificial 1043 

night sky brightness on large scales. These data can be used with radiative transfer models 1044 

to predict night sky brightness on clear nights (Cinzano et al. 2001, Falchi et al. 2016). 1045 

Both satellite imagery and the derived night sky brightness maps are used by the public to 1046 

find locations for astronomical tourism (Collison et al. 2013, Hiscoks & Kyba 2017), and 1047 

photometric indicators of visual night sky quality can be derived from ground based 1048 

hemispherical photos (Duriscoe, 2016). The global spectral shift due to adoption of white 1049 

LEDs is a major challenge for astronomy, both because the blue component of white light 1050 

produces more skyglow (section 2.4), and because many current ground and space-based 1051 

sensors are not sensitive to blue light (section 4.5, Figure 24). Ground based observations 1052 

of night sky brightness are therefore crucial for calibrating skyglow models, and are 1053 

necessary for long-term monitoring due to changes in lighting practice (Kyba, 2018a, 1054 

Hyde et al. 2019). A related topic is studies using ground based instruments to measure the 1055 

impacts of cloud cover on night sky brightness (eg. Kyba et al., 2011, 2012; Jechow et al., 1056 

2017b, 2019a), but in this case the aim is usually to better understand the ecological 1057 

impacts of this form of global environmental change (see next section). 1058 

 1059 

  1060 
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 1061 

Figure 24: Spectral response of the most popular sensors and most popular spectra, from 1062 

top to bottom. (a) the spectral response of the Nikon D3s Cameras used by the astronauts 1063 

at the ISS; (b) a typical spectra of a Metal Halide lamp, popular on architectural lights; (c) 1064 

a High pressure sodium light, popular until 2014 on streelighting; (d) LEDs of 5000K 1065 

(blue), 4000K (cyan), 2700K (grey) and PC-Amber(amber), popular on street lighting; (e) 1066 

representative spectral response of DMSP/OLS(black) and SNPP/VIIRS/DNB(blue). 1067 

Sources: Sánchez de Miguel 2015, Tapia Ayuga et. al. 2015, Sánchez de Miguel et. al. 1068 

2017, Elvidge. et. al 1999 and Liao et. al. 2013. 1069 

  1070 
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3.7 Using night lights to estimate threats to ecosystems 1071 

Plants, animals, microorganisms, and entire ecological systems are affected by artificial 1072 

light pollution, due to changes in behavior, physiology (including circadian rhythms), 1073 

timing of activities, and disorientation, among many other reasons (Rich & Longcore, 1074 

2006; Navara & Nelson, 2007; Gaston et al., 2013, Russart & Nelson, 2018).  As this is a 1075 

very active area of research in biology and ecology (Davies & Smyth, 2018), many 1076 

researchers make use of night lights data. For example, several studies have used the 1077 

mosaics of DMSP/OLS stable lights (as one of several variables), to globally map the 1078 

human footprint in terrestrial areas (Sanderson et al., 2002; Venter et al., 2016) as well as 1079 

to map the human impact in marine areas (Halpern et al., 2008, 2015). In a similar fashion, 1080 

night lights were used to globally map impervious surface area (Elvidge et al., 2007a) and 1081 

to estimate human population at fine spatial resolutions (Bhaduri et al., 2002), as both 1082 

impervious surface and population density are known to negatively impact biodiversity.  1083 

Using a calibrated set of DMSP/OLS images (1992-2010), Gaston et al. (2015) 1084 

demonstrated that protected areas were indeed darker (DN < 5.5) than unprotected areas; 1085 

however, they found that natural darkness has been eroding in many protected areas, and 1086 

especially so in Europe, South and Central America, and in Asia, where there was a 1087 

significant increase in mean nighttime lighting in 32-42% of all protected areas. In a 1088 

following study, Koen et al. (2018) have found that areas with high species richness 1089 

terrestrial and freshwater mammals, birds, reptiles, and amphibians, are suffering from 1090 

encroachment of artificial lights. Marcantonio et al. (2015) used VIIRS/DNB data to show 1091 

that a 10% reduction in light emissions near nature parks in Italy could lead to a 5–8% 1092 

increase in the area suitable for high biodiversity. Social media (such as geotagged Flickr 1093 

photos) has also been used in conjunction with night-time lights to estimate visitation of 1094 

protected areas and the impact of human activity on them (Levin et al., 2015). 1095 

While most artificial lighting originates from land areas, marine ecosystems are not 1096 

devoid of light pollution. As of 2010, Based on DMSP/OLS data (as of 2010), about 22% 1097 

of the world’s coastlines (except Antarctica) were subjected to light pollution based on 1098 

DMSP/OLS data, with 54% of Europe’s coastlines under light pollution, followed by Asia 1099 

(34%) and Africa (22%) (Davies et al., 2014). Field experiments using an underwater 1100 

spectrometer in the Gulf of Aqaba have observed artificial light in the blue band down to a 1101 

depth of 25 m near the coast, and up to 5km from the coast at a depth of 5m depth at 5 km 1102 

from the coast (Tamir et al., 2017). 1103 
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3.8 Using night lights examine ecological light pollution 1104 

Studies which attempted to quantify the relationship between light pollution and presence 1105 

or behaviour of species have mostly focused on specific organisms, such as sea turtles and 1106 

birds (e.g. Van Doren et al., 2017). Using VIIRS/DNB data, La Sorte et al. (2017) showed 1107 

that nocturnally migrating birds are attracted to urban lit areas, affecting their migration 1108 

behaviour. In a follow-up study, Cabrera-Cruz et al. (2018) have shown that light 1109 

pollution experienced by nocturnally migrating birds, is especially high during the 1110 

migration season for species with smaller ranges. Recently, Horton et al. (2019) combined 1111 

VIIRS/DNB with weather surveillance radar data to examine the exposure of migratory 1112 

birds to light pollution, in order to provide data for targeted conservation actions. They 1113 

found, for example, that over half of all migratory birds typically pass a single radar 1114 

location within a single week, which suggests that targeted and relatively short term 1115 

“lights out” campaigns for floodlit buildings could potentially greatly reduce the impact of 1116 

light pollution on migratory birds.  1117 

Sea turtles represent one of the most studied groups, for which the negative impacts 1118 

of artificial lights have been well known for decades (e.g. Witherington and Martin, 2000). 1119 

Kamrowski et al. (2012, 2014) used DMSP/OLS imagery to identify which nesting sites of 1120 

sea turtles along the Australian coastline are exposed to light pollution, and in which of 1121 

these sites there was an increase in light pollution. Using finer spatial resolution imagery 1122 

(ISS photographs and SAC-C), Mazor et al. (2013) have shown that nesting of sea turtles 1123 

along the Mediterranean coast of Israel was negatively correlated with night-time 1124 

brightness, and Weishampel et al. (2016) obtained similar results using DMSP data for 1125 

nesting sea turtles in Florida, which was also confirmed by VIIRS data (Hu et al. 2018a). 1126 

Given the differences between the light perceived by animals and humans (mostly 1127 

horizontal light) and the light measured from space (mostly upwards reflected light; Katz 1128 

and Levin, 2016), new ground based methods are developed to measure night-time 1129 

brightness for ecological studies, e.g., using sky quality meters (Kelly et al., 2017) or 1130 

hemispheric cameras (Pendoley et al., 2012). Jechow et al. (2019b) recently provided an 1131 

overview of how a DSLR camera with a fisheye lens can be used for characterizing night 1132 

time brightness over a full sphere, by taking two vertical plane photos. Such an approach 1133 

is especially useful for studies on ecological light pollution, because the field of view of 1134 

various species differs both in the horizontal as well as in the vertical plane. 1135 

Remote observations of night lights have also been used to examine the influence of 1136 

light on bats, all of which are nocturnal, and many of which are extremely sensitive to 1137 

artificial light. In a nationwide study of bats in France, Azam et al. (2016) combined 1138 
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VIIRS/DNB data with landcover data to examine the relative effects of impervious 1139 

surface, intensive agriculture, and light emission. They found that agriculture was the 1140 

strongest negative influence on all four species tested, and that light emission also had a 1141 

negative influence on 3 of the 4 species tested, and in all cases a stronger negative 1142 

influence than impervious surface. Hale et al. (2015) used higher resolution (1 m) data 1143 

from nighttime aerial photography and maps of tree cover together with observations of 1144 

bats to examine how light modulates the impact of gaps in tree cover for bat flights. They 1145 

found that the negative impact of light increases as crossing distance between trees 1146 

increases. In a recent study, Straka et al. (2019) found that the lamp spectra also has 1147 

important and species-dependent effects, using land cover data and a 1 m resolution map 1148 

of light emission from Berlin (Kuechly et al. 2012) together with surveys of bat activity. 1149 

3.9 Epidemiology 1150 

In modern societies, exposure to artificial light is suspected as a contributing factor to 1151 

some diseases (e.g. some cancers, obesity, and depression), through disruption of the 1152 

circadian rhythm (Lunn et al. 2017) or sleep disturbance, as well as suppression of the 1153 

hormone melatonin, which is related to ambient light intensities (Haim and Portnov, 2013; 1154 

Cho et al., 2014). Space-based night light data allows studies of population exposures to 1155 

artificial outdoor light, which can then be compared to data from either cohort studies or a 1156 

set of patients and healthy controls. The “Light at Night hypothesis” for breast cancer was 1157 

first proposed by Stevens (1987), who noted that if dim light is a risk factor, brightly lit 1158 

communities could be expected to have higher levels of breast cancer. The first empirical 1159 

analysis linking DMSP/OLS night lights data with breast cancer (BC) incidence was 1160 

Kloog et al. (2008), which examined 147 urban localities in Israel. The study revealed a 1161 

statistically significant association between ALAN and BC but not with lung cancer, 1162 

which was used in the study as a negative control. Follow-up studies confirmed adverse 1163 

effects of ALAN on BC and prostate cancer in worldwide cohorts (Kloog et al., 2009; 1164 

2010). Other studies investigated DSMP-derived ALAN data in conjunction with different 1165 

health phenomena, including hormone-dependent cancers (Bauer et al., 2013; Rybnikova 1166 

et al., 2015, 2016b; Portnov et al, 2016; James et al., 2017; Kim at al., 2017; Rybnikova et 1167 

al., 2018), obesity (Rybnikova et al., 2016a; Rybnikova and Portnov, 2016; Koo et al., 1168 

2016), and sleep quality (Koo et al., 2016). These studies, carried out in different regions 1169 

and population cohorts, provide mutually complementing evidence about significant 1170 

associations between ALAN and a wide of range of adverse health phenomena.  1171 
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A major question for this research is the extent to which remote observations of 1172 

light match individual exposures. Kyba & Aronson (2015) argued that if ALAN is a cause 1173 

of disease (rather than a correlate), then estimated risk factors should increase with 1174 

increasing spatial resolution of remotely sensed data. Rybnikova and Portnov (2017) then 1175 

compared results obtained from DMSP and VIIRS-DNB satellite images, and detected a 1176 

stronger ALAN-BC association when using the higher spatial resolution VIIRS-DNB 1177 

images. Recent studies have used even higher resolution multi-spectral images taken from 1178 

the ISS. Both Garcia-Saenz et al. (2018) and Rybnikova and Portnov (2018) used ISS 1179 

image data to conclude that exposures to short wavelength (blue) ALAN appear to have 1180 

stronger effects on hormone-dependent cancer incidence than exposures to green and red 1181 

light spectra. This conclusion is consistent with results of laboratory and small cohort 1182 

studies, which emphasize potential health risks associated with short wavelength 1183 

illumination (Lunn et al. 2017). Keshet-Sitton et al (2016) also demonstrated increased 1184 

risk of breast cancer based on ground-level measurements rather than remote observations. 1185 

Further work in this area will greatly benefit from improvements in resolution, coverage, 1186 

and multispectral information from space-based sensors, as well as confirmation of the 1187 

relevance of the data through ground-based measurements of a representative sample of 1188 

individual exposures (Kyba & Spitschan 2019). 1189 

 1190 

3.10 Lighting technology 1191 

For some applications, identification of lighting technology as well as their dynamics on 1192 

short time scales is desirable. To discriminate lamp types using airborne or spaceborn 1193 

systems, high spatial and spectral resolution is necessary (Figure 24). The ideal system 1194 

would be to use a hyperspectral imaging spectrometer at low altitudes. Few studies with 1195 

limited spatial coverage exist, such as the first ever performed over 1998 in Las Vegas, USA 1196 

(Elvidge et al. 2005, Alamús et al. 2017, see section 2.3 for more). Elvidge et al. (2010) 1197 

showed that it was in principle possible to discriminate light sources with multispectral 1198 

sensors, using detailed spectral field measurements and a modeling approach for the pre 1199 

LED technologies. This was later demonstrated in practice with an aerial survey over 1200 

Birmingham, UK. In that study, Hale et al. (2013) used a standard DSLR camera and 1201 

supportive field measurements, and achieved a high success rate of distinguishing between 1202 

different vapor lamps, although the technique used was fully phenomenological. Sensor 1203 

requirements for satellite based surveys were proposed (Elvidge et al. 2007 b,c) but few 1204 

attempts have been performed. Using the hyperspectral data of a flight over Las Vegas 1205 
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Metcalf (2012) and Tarda et. al. (2013) were able to determine different lighting 1206 

technologies, Sánchez de Miguel (2015) used ISS images, and Zheng et al. (2018) were also 1207 

able to distinguish high-pressure sodium (HPS) lamps from white LEDs using the new Jilin-1208 

1 satellite. However, there are fundamental limitations for multispectral sensors to 1209 

distinguish between similar color light sources, like fluorescents/compact fluorescents and 1210 

LEDs of same color temperature or HPS lamps and PC-Amber LEDs (Sánchez de Miguel 1211 

et al. 2019b). It should also be noted that most of the research undertaken thus far has been 1212 

done without radiometric calibrations of any kind or atmospheric corrections.  1213 

Ground-based measurements provide more freedom regarding temporal and spectral 1214 

resolution (section 2.4). Several studies have used calibrated RGB cameras to track lighting 1215 

remodelling from vapor lamps to LEDs (Kollath, 2016, Barentine, 2018), or short term 1216 

dynamics like the switching off of specific lights to assess their contribution to skyglow 1217 

(Cleaver, 1943; Jechow, 2018b). Ground-based measurements can provide a wider temporal 1218 

range than space based sensors (section 4.3), and also fill in the blind spot of the lack of 1219 

sensitivity to blue light from LEDs (section 4.6, Kyba et al. 2017). High frequency data, for 1220 

example as measured using ground based SQM, can be used to remotely sense the 1221 

contributions of different lighting types (streetlights, vehicles, residential light) due to their 1222 

differing temporal patterns (Bará et al., 2018). Systems used in urban science show 1223 

promising results at the cross section to remote sensing as shown by the “pulse of the city” 1224 

studies with ground-based measurements, using a hyperspectral camera by unraveling 1225 

aggregate human behavior patterns (Dobler, 2015), lighting types (Dobler, 2016) or 1226 

temporal profiles using RGB images (Meier, 2018). In addition, the combination of several 1227 

remote sensing techniques (AstMON, SQM, ISS images and Hyperspectral spectrograph 1228 

[SAND] plus energy statistics) was used to trace the temporal evolution and population of 1229 

the lighting technologies used in Madrid for an average night (Sánchez de Miguel, 2015). 1230 

 1231 

3.11 Mapping fires, gas flares, and greenhouse gas emissions 1232 

Wildfires are a major force shaping natural ecosystems, and their ignition and 1233 

propagation are influenced by both natural and anthropogenic factors. Whereas during the 1234 

industrial period the global fire regime has shifted from one driven primarily by rainfall, 1235 

to one driven by human influence on fire (ignition and suppression), in the future climate 1236 

change may play a decisive role in global fire regime (Pechony and Shindell, 2010). Fire 1237 

management therefore requires mapping fire in space and in time. It has long been known 1238 

that visible light data from DMSP had a capability to detect biomass burning and natural 1239 
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gas flaring (Croft 1973, 1978; Figure 6b). In the mid-1990s a nightly biomass burning 1240 

algorithm was developed for DMSP low light imaging data and regionally implemented 1241 

(Elvidge et al., 1996). This involved a lit pixel detection algorithm and masking of 1242 

persistent lights from cities, towns and gas flares. Later on, as the distribution of 1243 

DMSP/OLS data was lowered to three hours, it was perceived that DMSP/OLS data can 1244 

be used for operational fire monitoring (Elvidge et al., 2001b), and that active fire 1245 

mapping using DMSP/OLS was able to detect more fires than MODIS (Chand et al., 1246 

2007). 1247 

A high correlation was identified between the total lit area of a country and total 1248 

carbon dioxide (CO2) emission (Doll et al., 2000), and even better results were obtained 1249 

using the VIIRS/DNB (Ou et al., 2015). The first global satellite estimates of flared gas 1250 

volumes came from DMSP, with flaring sites identified manually based on circular 1251 

haloes of glow present in the DMSP annual cloud-free nighttime lights (Elvidge et al., 1252 

2009a). With the advent of VIIRS, these capabilities have been substantially enhanced 1253 

based on the nighttime detection of fires and flares in three spectral ranges: near infrared 1254 

(NIR), shortwave infrared (SWIR) and midwave infrared (MWIR). The VIIRS Nightfire 1255 

(VNF) algorithm detects the presence of sub-pixel infrared emitters, such as fires and 1256 

flares in six spectral bands and uses Planck curve fitting to derive temperature, source 1257 

area, and radiant heat using physical laws (Elvidge et al., 2013b), which is an 1258 

improvement over satellite fire products which use one or two spectral bands (Elvidge et 1259 

al., 2013c). Daily VNF datasets are available for download from 1260 

https://www.ngdc.noaa.gov/eog/viirs/. The VNF data has been successfully used to map 1261 

and classify industrial heat sources (Liu et al., 2018), as well as to conduct annual surveys 1262 

of natural gas flaring locations and estimate flared gas volumes (Elvidge et al., 2015a). 1263 

The advantage of VNF over both DMSP and traditional MWIR fire products is the ability 1264 

to calculate variables such as temperature using physical laws. However, Elvidge et al. 1265 

(2019) recently showed that the VIIRS/DNB retains a capability to detect combustion 1266 

sources too small to trigger detection in VNF. These results indicate that more complete 1267 

compilations of IR emitters could be achieved by adding a DNB fire product to 1268 

complement VNF and other satellite derived fire products, as recently reviewed by 1269 

Chuvieco et al. (2019). 1270 

 1271 

https://www.ngdc.noaa.gov/eog/viirs/
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3.12 Monitoring fisheries 1272 

The earliest reporting on nighttime satellite detection of fishing boats using massive 1273 

lighting to attract catch, traces back to DMSP data (Croft, 1978; Figure 6c). From 2000 to 1274 

2012, NOAA provided regional near real time DMSP file transfer services to fishery 1275 

agencies in Japan, Korea, Thailand, and Peru, where the boat detections were analyzed 1276 

locally. However, an automatic algorithm for reporting boat locations was never 1277 

developed for DMSP. The situation changed with VIIRS due to the large sizes of the 1278 

images, making it impractical for most users to download the images for local analysis. In 1279 

2014, NOAA initiated the development of a VIIRS boat detection (VBD) algorithm. The 1280 

initial algorithm was optimized for low moon conditions (Elvidge et al., 2015b) and 1281 

produced high numbers of false detections from moonlit cloud and lunar glint features. 1282 

This problem was resolved by adding a module which screens moonlit areas for lights 1283 

found in DNB that are missing from the corresponding long wave infrared image based 1284 

on a cross-correlation analysis. VBD is now produced globally with a nominal four-hour 1285 

temporal latency, and is available online at https://eogdata.mines.edu/vbd/. In addition, 1286 

NOAA provides near real time email and SMS alerts for VBD detections occurring in 1287 

marine protected areas (MPAs) and fishery closures in Indonesia, Philippines and 1288 

Thailand. The alerts now cover 989 individual areas, spanning 648,865 km2, with 82,101 1289 

detections in 2017. VBD data have been successfully used to rate compliance levels in 1290 

fishery closures in the Philippines and Vietnam (Elvide et al., 2018), and to map core 1291 

fishing areas in the Philippines (Geronimo et al., 2018). 1292 

 1293 

4. Research challenges, limitations of current sensors, 1294 

and outlook for the future  1295 

4.1 Challenges of night light sensing and the differences between day vs. 1296 

night sensing in the visible band 1297 

There are many challenges associated with observations of visible band light at night, and 1298 

the remote sensing of socioeconomic parameters on the basis of such data. The most 1299 

obvious of these are the dramatically reduced radiance and extreme dynamic range of 1300 

night scenes in comparison to daytime remote sensing. Consider the scene in Figure 14. 1301 

During daytime, the light source is the sun, shining from above the atmosphere. In a cloud 1302 

free scene, rooftops, treetops, and open grassland or water areas are illuminated equally, 1303 
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and their radiance in the scene depends on their albedo. The typical dynamic range of the 1304 

data is perhaps a factor of 50. 1305 

During the night, both celestial and artificial light sources are present. Areas 1306 

appearing black in the night image are lit by natural sources like airglow and starlight, 1307 

about 8 orders of magnitude fainter than direct sunlight. Streets are lit by reflected light 1308 

from lamps, about 4 orders of magnitude fainter than direct sunlight (Hänel et al. 2018). 1309 

Comparing the histograms of radiance over Berlin from a Landsat day-time image and a 1310 

VIIRS/DNB night-time image, it can be observed that radiance at night was about 5 orders 1311 

of magnitudes lower than at day time, and that the distribution at radiance at night-time is 1312 

different, skewed towards dark areas, whereas during daytime it is distributed more 1313 

normally (Figure 25). Whereas within Landsat 8 night-time images of Berlin, Las Vegas 1314 

and other cities, the brightest sources mostly emitted light within the visible bands, bright 1315 

sources of gas flares also emitted significantly in bands 6 and 7 of Landsat 8 (Levin and 1316 

Phinn, 2016). 1317 

 1318 

 1319 

 1320 

Figure 25: Histograms of top of atmosphere radiance for the images of Berlin of VIIRS 1321 

and day-time Landsat OLI shown in Figure 14. 1322 

  1323 
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Some lamps (e.g., no cut-off or semi cut-off) radiate a portion of their light upwards 1324 

without reflection (Cha et al., 2014), and can therefore have radiances approaching an 1325 

order of magnitude of sunlight. Nighttime sensors that target to capture the radiance of all 1326 

elements in an urban scene at high spatial resolution would therefore require an enormous 1327 

instrumental dynamic range. In practice, this is never the case. At high spatial resolution, 1328 

unlit areas are usually underexposed (as shown by Levin et al., 2014, using an EROS-B 1329 

image), and lamps shining directly upward saturate the sensor. The problem of high 1330 

dynamic range is reduced considerably at lower spatial resolution (as in Figure 14), 1331 

because even in urban areas, most of the scene consists of areas that are not artificially lit 1332 

(e.g. rooftops and treetops). 1333 

In daytime scenes, radiances change throughout the day due to changing solar 1334 

illumination, atmospheric conditions and viewing geometry between the sensor, the target 1335 

and the sun: the Bidirectional Reflectance Distribution Function (BRDF; Schaaf et al., 1336 

2002). In most cases, surface radiances themselves are not of interest, but rather derived 1337 

quantities like reflectance within a spectral window, surface emissivity or surface 1338 

temperature. At night, in many cases it is the radiance itself that we are interested in, but 1339 

this value can be highly variable. Coesfeld et al. (2018) discusses the sources of these 1340 

radiance changes, and their discussion is summarized and expanded upon here. 1341 

We begin with a hypothetical scenario to demonstrate the complexity of the spatial 1342 

distribution of night lights. Imagine a very long wall that is 30 meters tall, with a single 1343 

lamp mounted at 5 meters height, 5 meters away from the edge of the wall (Figure S1), 1344 

which radiates in all directions. It can be immediately seen that when imaged from the left, 1345 

the lamp is invisible, while when imaged from zenith or from the right, the lamp can be 1346 

seen directly, as can the light reflected from the ground surface and the wall. If a space 1347 

based instrument observes this scene on multiple days from multiple directions, the total 1348 

radiance will change in an on-off fashion. Now consider the case where instead of 1349 

radiating in all directions, the lamp shines all of its light directly on the wall (e.g. a well-1350 

directed floodlight). In this case, the radiance would go as 1-H(θ-π/2)cosθ, where θ is the 1351 

angle between the observing direction and the normal of the wall, and H is the Heaviside 1352 

step function. Viewed from the left, from directly above, or any view direction parallel 1353 

with the wall’s direction, the wall would appear to be black. When viewed from the right, 1354 

the observed radiance would increase with both increasing nadir angle and increasing 1355 

angular viewing distance from the wall’s direction.  1356 
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The scenarios described above were hypothetical, but are representative of two 1357 

extremely common situations: first, screening (i.e. blocking) of artificial light by 1358 

buildings, trees, or other objects, and second, radiation from vertical surfaces such as 1359 

floodlit facades, light escaping windows, and illuminated signs. The imaging direction 1360 

thus has a major impact on the radiance observed at night. Since this effect is determined 1361 

by the local geometry, a general correction is not possible. At high spatial resolutions 1362 

(Figure 26), the effect is quite obvious. At low spatial resolutions, the effect may be 1363 

minimized to some extent due to averaging many local conditions, surface geometries 1364 

such as hillsides or long parallel streets which can make the effect visible even at a spatial 1365 

resolution of 750 meters. 1366 

 1367 

 1368 
Figure 26: Visibility of lit facades depends on perspective. The top image is a crop of an 1369 

photograph taken from the South, so North facing facades are visible. The bottom image 1370 

was taken from the North, so the South faces of buildings therefore appear dark. Photos 1371 

taken by Alejandro Sanchez de Miguel and the Freie University"at Berlin during the EU 1372 

COST Action ES1204 LoNNe. Figure and caption reproduced from Coesfeld et al. (2018), 1373 

available under a Creative Commons Attribution license (CC-BY 4.0). 1374 

  1375 
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Both DMSP/OLS and Suomi NPP/VIIRS DNB are wide-view sensors, with swath 1376 

widths greater than 3000 km, which means they can accumulate angular observations 1377 

varying in a large range. Angular observations sometimes are not preferred, because they 1378 

often cause variation across geography that makes mosaicking or comparison over time a 1379 

big challenge. However, angular information has been proved to carry valuable structural 1380 

information and ironically is critical to normalize observations to the standard viewing-1381 

illuminating geometry, as seen in MODIS (Schaaf et al. 2002) and MISR (Multi-angle 1382 

Imaging SpectroRadiometer) (Diner et al. 1989). Due to the variation in street layout and 1383 

building height, nighttime light is also expected to vary accordingly (Kyba et al. 2015a). 1384 

Angular observations from both DMSP/OLS and VIIRS/DNB may thus provide structural 1385 

and vertical information about urban areas, especially in the east-west direction, given the 1386 

characteristic scanning geometry of sun-synchronous sensors. Such information still 1387 

remains under-utilized up to date, however preliminary results indicate that measured 1388 

radiance is lower at nadir and increases towards the edge of the scan (Bai et al., 2015). In a 1389 

recent paper, Li et al. (2019b), have confirmed that the viewing angle of VIIRS/DNB 1390 

affects the amount of measured night-time brightness, and that building height should be 1391 

incorporated to understand the relationship between the satellite viewing zenith angle and 1392 

emitted night-time lights. A different group (Li et al. 2019c) have approached the problem 1393 

from the other direction, using ground based all-sky imagery from Google Street View to 1394 

examine how much light can escape to space, and how this is affected by changes in 1395 

vegetation. Future research is required to extract this invaluable information from both 1396 

DMSP/OLS and Suomi NPP/VIIRS DNB, and to remove angular effects from night-time 1397 

products.  1398 

 1399 

4.2 Uncertainties due to moonlight, aerosol/cloud contamination, and 1400 

seasonal vegetation effects 1401 

Uncertainties originating from angular, diurnal, and seasonal variations in atmospheric 1402 

and surface optical properties are also a primary source of measurement error in the 1403 

nighttime lights (NTL). As demonstrated by Roman et al. (2018), characterizing these 1404 

uncertainties is extremely crucial as a long-term record of NTL cannot be constrained 1405 

directly from at-sensor top-of-atmosphere (TOA) radiances. The uncertainties can be 1406 

separated into (1) environmental factors, such as moon light, cloud/aerosols, and surface 1407 

albedo (interferes with the observed signal), and (2) errors stemming from seasonal 1408 
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variations in vegetation or in snow cover and associated surface properties, which can 1409 

significantly affect estimates of seasonal and long-term trends (Figure 20). 1410 

Key to characterizing these factors is an accurate estimation of the surface 1411 

Bidirectional Reflectance Distribution Function (BRDF, or reflectance anisotropy), a 1412 

quantity that is governed by the angle and intensity of illumination – whether that 1413 

illumination be solar or lunar (e.g., Miller and Turner, 2009) or from airglow emissions – 1414 

and by the structural complexity of the surface. Roman et al. (2018) considered the semi-1415 

empirical RossThickLiSparse Reciprocal (RTLSR, or Ross-Li) BRDF model (Román et 1416 

al., 2010; Roujean et al., 1992; Schaaf et al., 2011, 2002; Wang et al., 2018) to correct the 1417 

effects of contamination through an external illumination in the NTL. This modeling 1418 

approach is advantageous as it has been shown to capture a wide range of conditions 1419 

affecting the VIIRS/DNB on a global basis. Similarly the RTLSR model also allows 1420 

analytical inversion with a pixel-specific estimate of uncertainty in the model parameters 1421 

and linear combinations thereof (Lucht and Roujean, 2000). Finally, the scheme is also 1422 

flexible enough that other kernels can be easily adopted should any become available and 1423 

should they be shown to be superior for a particular scenario. 1424 

Similar to day light sensing in visible band, NTL radiances also suffer from biases 1425 

stemming from clouds and aerosols. A scene with opaque clouds can block the NTL 1426 

radiance completely, whereas thinner and transparent or semi-transparent atmosphere 1427 

blocks the radiance partially and scatters the light creating a fuzzy appearance (Elvidge et 1428 

al., 2017). The vector radiative transfer modeling of the coupled atmosphere-surface 1429 

system (Vermote and Kotchenova, 2008) can be used to compensate for aerosols, water 1430 

vapor, and ozone impacts on the NTL radiances (Román et al., 2018). This correction 1431 

mitigates errors stemming from poor-quality TOA retrievals, especially across regions 1432 

with heavy aerosol loadings and at Moon/sensor geometries yielding stronger forward 1433 

scatter contributions. 1434 

Seasonal variations such as those resulting from vegetation artifacts can also 1435 

introduce challenges in the retrieval of satellite-derived NTL due to the canopy-level 1436 

foliage along the ground-to-sensor geometry path. This effect occurs predominantly in 1437 

urban areas where vegetation such as deciduous broadleaf canopies is present. The impact 1438 

of this obstruction of surface light by the cyclical canopy results in reduction in the 1439 

magnitude of NTL at city-wide scales (Levin, 2017; Levin and Zhang, 2017; Figure 20). 1440 

This occlusion effect has been shown to be directly proportional in magnitude to the 1441 

density and vertical distribution pattern of the canopy. Román et al.(2018) proposed to use 1442 
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gap fraction to correct the vegetation effect. These seasonal changes may be viewed as a 1443 

noise (when aiming to estimate socio-economic properties from NTL) or as a signal (when 1444 

aiming to estimate light pollution from NTL). 1445 

 1446 

4.3 Challenges related to temporal sampling  1447 

In addition to the seasonal changes mentioned above, night lights are dynamic throughout 1448 

the course of individual nights (Figure S2). Observations of night sky brightness show 1449 

typical decreases of typically around 5% per hour (Kyba et al. 2015b, Falchi et al. 2016), 1450 

with larger decreases earlier at night. The decrease in light emission can also be seen 1451 

through horizontal imaging (Dobler et al. 2015, Meier 2018). Many municipalities 1452 

intentionally dim or turn off street lights at late hours (Green et al. 2015), and these switch 1453 

offs can produce very obvious signals in night sky brightness data (Puschnig et al. 2014, 1454 

Sánchez de Miguel 2015, Jechow et al. 2018b). The typical spectra of artificial light 1455 

emissions also appears to shift as the night progresses (Kyba et al. 2012, Aubé et al. 1456 

2016). This is presumably due to changes in the fraction of lights coming from different 1457 

types of lamps. Observations of low resolution ground spectra or sky spectra could 1458 

therefore potentially be used to differentiate the relative contributions of light sources at 1459 

different times (Bará et al. 2018). 1460 

Orbital platforms with a (relatively) fixed overpass time, such as DMSP (early 1461 

evening) or VIIRS DNB (~1:30am) have limited ability to view such temporal changes. 1462 

Depending on the application, this may be a disadvantage (they do not get the full picture 1463 

of light use) or an advantage (the observed radiance values are more consistent). Platforms 1464 

with a non-fixed orbital time can fill in the gaps to some extent (Kyba et al. 2015a), but 1465 

such imagery is then taken on different dates. Only a geostationary platform could allow 1466 

continuous, or at least repeated, tracking of radiance changes throughout the full night 1467 

(e.g. Zoogman et al. 2017). With routine and growing numbers of observational passes 1468 

from Suomi-NPP, JPSS-1 (now NOAA-20) and subsequent JPSS series of satellites, 1469 

nighttime light observations will become even more frequent, providing opportunities for 1470 

multiple cloud-free observations per night and greater temporal frequency to quantify the 1471 

stability of light sources, their magnitude, and time to restoration following a disaster 1472 

event. 1473 

Outside of the tropics, there is an important interaction between imaging time and 1474 

the seasons in which an orbital platform can acquire data about artificial lights. This is of 1475 

particular importance for many cities in Europe. In Berlin, for example, astronomical night 1476 



64 

does not occur in the period between May 19 and July 27. If the satellite overpass time is 1477 

displaced from midnight, this period is even longer. For a satellite with a 21:00 overpass 1478 

time, Berlin would be illuminated by twilight from early April until the start of September. 1479 

Restricting the available night window to the period September-March means that nights 1480 

with snow cover will make up a much larger fraction of the dataset, especially at higher 1481 

latitudes or elevations. Annual products for high latitude countries (e.g. Canada, Sweden, 1482 

Norway, Finland, Iceland) are therefore likely to be biased upwards due to snow cover if 1483 

the satellite overpass time is too far from midnight (Elvidge et al. 2001a). 1484 

 1485 

4.4 Long-term instability of some light sources  1486 

Many light sources in countries with stable electricity emit relatively similar amounts of 1487 

light from night to night. Coesfeld et al. (2018) reported that the distribution of radiances 1488 

in the DNB monthly composite data for urban and suburban locations and airports was 1489 

near normal, with a standard deviation of about 13-19%, depending on whether all months 1490 

or only autumn months were considered. Other light sources such as ship ports, stadiums, 1491 

and power plants had larger variations, while some other light sources are much more 1492 

dynamic (Coesfeld et al., 2018). Wildfires appear only during the time they are active, and 1493 

oil flares are not stable from year to year (Coesfeld et al., 2018). Large construction sites 1494 

may be brightly lit for relatively long periods (Kuechly et al. 2012), and eventually 1495 

replaced by less brightly lit buildings. Greenhouses are among the brightest objects on 1496 

Earth, but may only lit during a portion of the year (Coesfeld et al., 2018). Special events 1497 

such as large-scale outdoor concerts or light festivals (Figure S3) can also produce 1498 

considerable light only for short periods. All these types of unstable lights pose a 1499 

challenge for defining monthly and annual trends in light emissions. 1500 

 1501 

4.5 Global spectral shift due to transitions to LEDs 1502 

The world is in the midst of a “lighting revolution” due to the development of light 1503 

emitting diode (LED) technology (Pust et al. 2015). This is the fourth such revolution in 1504 

the history of outdoor lighting: previous generations switched from oil to gas, gas to the 1505 

first electric lights (arc lamps and incandescents), incandescent to high intensity discharge 1506 

lamps (Riegel, 1973, Jakle, 2001, Isenstadt et al. 2014). Each new technology has not only 1507 

allowed for an increase in light emission, but has also dramatically changed lighting 1508 
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spectra, and allowed new forms of illumination. The global transition to LED lights 1509 

therefore has dramatic implications for remote sensing of night lights. 1510 

From a remote sensing perspective, there are two main consequences of the change 1511 

towards LEDs. First, the “white” LEDs used for lighting outdoor areas have a broadband 1512 

spectra, in dramatic contrast to the “line” type spectra of vapor lamps (Elvidge et al. 2010, 1513 

Aubé et al. 2013; Figure 24). Much of the world was lit by orange colored high pressure 1514 

sodium lamps at the start of the 21st century, and existing broadband monitoring 1515 

instruments designed for 20th century lights can therefore easily mistake a change in 1516 

spectrum for a decrease in emitted light (Kyba et al. 2015, Sánchez de Miguel et al. 2017). 1517 

For similar reasons, the spectral change affects the perception of artificial lights by 1518 

animals, and therefore the ecological impacts of such light (Longcore et al. 2018). Future 1519 

research should be thus directed on examining the impacts of the transition of artificial 1520 

lighting to LEDs on various topics, including ecological light pollution, human health, 1521 

crime and car accidents, preferably using a before-after-control-impact (BACI) design, as 1522 

in Plummer et al. (2016) and Manfrin et al. (2017). 1523 

The second major consequence of the introduction of LEDs is a change in 1524 

illumination practices. For example, LEDs are more easily dimmed than vapor lamps, so 1525 

lighting may become more temporally dynamic. Streetlights based on LEDs are less likely 1526 

to directly emit light into the atmosphere, and may potentially result in less total emissions 1527 

through more careful direction of the light (Kinzey et al. 2017). The most important 1528 

change, however, may turn out to be a shift in the “typical” source of light observed from 1529 

space, away from street lighting and towards lights emitted for advertising or artistic 1530 

purposes (Kyba, 2018b). This spectral shift will likely affect the ability to existing sensors 1531 

such as VIIRS/DNB to quantify artificial lights from space, given that it is not measuring 1532 

incoming light in the blue band (Figure 24). Modelling work recently done by Bará et al. 1533 

(2019) indicates that for certain transition scenarios (from HPS to LED), the VIIRS may 1534 

detect reduction in artificial zenithal sky brightness, even if sky brightness in reality 1535 

increases, due to the loss of the HPS line in the near-infra red, and the inability of the 1536 

VIIRS to detect blue light. The emission of blue light from LED sources therefore requires 1537 

future night-time sensos to include the blue channel (which is not covered by DMSP/OLS, 1538 

VIIRS/DNB or Luojia-1), however blue light is scattered more (Kocifaj et al., 2019), and 1539 

thus atmospheric haze removal techniques should be developed for night-time imagery, 1540 

for future products.  1541 

 1542 
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4.6 Challenges in calibrating ground and space borne measurements  1543 

While night light remote sensing has benefited various applications, there are certain 1544 

research gaps that need to be overcome in order to transform this data to be more 1545 

quantitative. While in traditional optical remote sensing satellite images are 1546 

atmospherically corrected to derive their reflectance values (Clark and Roush, 1984), it is 1547 

not so clear which units should be used in night light imagery. The DMSP/OLS imagery 1548 

products are distributed as stable lights or average lights x percent (DN values between 0 1549 

and 63). Often these products are used to calculate the total lit area or the total lights, 1550 

however, these data are not in luminance units. Photometry is the measurement of the 1551 

intensity of electromagnetic radiation in photometric units, like lumen/lux/etc, or 1552 

magnitudes. Radiometry is the measurement of optical radiation, with some of the many 1553 

typical units encountered are Watts/m2 and photons/sec/steradian. The main difference 1554 

between photometry and radiometry is that photometry is limited to the visible spectra as 1555 

defined by the response of the human eye (Teikari 2007). Of relevance for such 1556 

measurements, are the photopic and scotopic bands. Human photopic vision which allows 1557 

color vision, takes place under daytime conditions as well as under artificial illumination, 1558 

and is based on the properties of cone photoreceptors in the human retina. Human scotopic 1559 

vision on the other hand, takes place under dark conditions, using the retinal rods alone, 1560 

when humans perceive the world in “grey scale”, and in comparison to photopic vision, 1561 

scotopic vision is shifted towards shorter wavelengths, mostly between 454 and 549 nm 1562 

(Elvidge et al., 2007b). 1563 

 In recent years there have been some attempts to calibrate fine spatial resolution 1564 

images to photometric units. Hale et al. (2013) used ground measurements of incident lux 1565 

along linear transects to calibrate their aerial night light images into illuminance units. A 1566 

different approach has been used by Cao and Bai (2014), who examined the temporal 1567 

variability in light as measured by the VIIRS/DNB from various features which they 1568 

expected to emit uniformly in different nights. Another approach for field mapping of 1569 

night lights that can be used for calibrating aerial or space borne night light imagery is 1570 

using ground networks of instruments such as the Sky Quality Meter (SQM, manufactured 1571 

by Unihedron, measuring the brightness of the night sky in magnitudes per square arc 1572 

second; http://www.unihedron.com/projects/darksky/), however ground networks aimed at 1573 

monitoring light pollution are fairly recent (den Outer et al. 2011; Pun and So 2012; 1574 

Zamorano et al., 2019). In an interesting study using Extech EasyView 30 light meters to 1575 

map night brightness along a 10-m sampling grid on the Virginia Tech campus, brightness 1576 

was measured twice: First with the light meter pointing upward to catch direct light from 1577 

http://www.unihedron.com/projects/darksky/
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the light fixtures at 30 cm from the ground, then with the light meter pointing down to 1578 

measure reflected light (Kim, 2012). Most ground networks of SQM are directed to 1579 

measure zenith night sky brightness. In a study comparing the correspondence between an 1580 

EROS-B night-time image, and ground measurements done with SQMs in three directions 1581 

(downwards, horizontally and upwards), Katz and Levin (2016) have shown that the 1582 

lowest correspondence was with ground measurements directed upwards (representing sky 1583 

glow), whereas the strongest correspondence was found with ground measurements 1584 

directed downwards (representing street light reflected by the surface). Thus, in addition 1585 

to the inconsistency in the photometric units used for calibrating aerial night lights images, 1586 

there is a gap with regards to how should one measure light on the ground so that it best 1587 

corresponds with what an airborne or a space-borne captures. 1588 

 1589 

4.7 Consistent nightlight time series across different platforms and 1590 

sensors 1591 

Although the signal of change in the DMSP/OLS NTL time series is larger than the error 1592 

signal and also large enough to render the error signal (noise) unimportant (Zhang and 1593 

Seto, 2011), to facilitate accurate change analysis with NTL time series it is necessary to 1594 

calibrate first to minimize differences caused mainly by satellite shift (Zhang et al., 2016). 1595 

The challenge to achieve successful radiometric calibration of remote sensing imagery 1596 

obtained at different times is to find invariant ground targets that can be used as references 1597 

for reliable comparison over time. As the first attempt, Sicily, Italy was chosen as the 1598 

reference site to calibrate the reference image F121999 and other images individually 1599 

(Elvidge et al., 2009). These models were then applied to calibrate the entire time series 1600 

from 1992 to 2008. This method successfully reduced differences caused by satellite shift 1601 

to some order. However, models derived in Sicily might not be generalized to cover the 1602 

entire globe, since noises introduced by various sources might not be geographically 1603 

homogenous (Pandey et al., 2017). To address this problem, researchers studying regional 1604 

urbanization dynamics have chosen local reference sites to derive their models so that they 1605 

better fit their specific regions (Liu et al. 2011; Liu et al. 2012; Nagendra et al. 2012; 1606 

Pandey et al. 2013). In an attempt to produce more generalized models for the entire 1607 

globe, Wu et al. (2013) extended the Elvidge et al. (2009) method by selecting more 1608 

reference sites, including Mauritius, Puerto Rico, and Okinawa, Japan in addition to 1609 

Sicily, Italy. Despite that the Wu et al. (2013) method achieved improvement, the way 1610 
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they chose invariant regions was not essentially different than that applied by Elvidge et 1611 

al. (2009) and also suffers from the limitation of subjectively choosing areas. 1612 

Li et al. (2013) designed an automatic method to find invariant pixels in Beijing, 1613 

China to avoid subjective errors. This automatic method can minimize the bias introduced 1614 

by subjective selection of invariant regions and has the potential to be extended to the 1615 

entire globe. However, since the region of Beijing experienced dramatic changes in the 1616 

past decades, this method might lead to overcorrection to the NTL time series. 1617 

Furthermore, the iterative procedure to identify stable pixels is very computation intensive 1618 

and thus cannot be directly implemented at the global scale, considering the gigantic 1619 

amount of pixels. Zhang et al. (2016) designed a ridge sampling and regression method to 1620 

calibrate the NTL time series over the entire globe. This method is based on a novel 1621 

sampling strategy to identify pseudo-invariant features. Data points along a ridgeline-the 1622 

densest part of a density plot generated between the reference image and the target image- 1623 

were first identified and those data points were then used to derive calibration models to 1624 

minimize inconsistencies in the NTL time series. In this way, only 63 pairs of data points 1625 

were used to run a regression model for calibrating each target image, significantly 1626 

reducing computation load. Since only the F152000 image was used as the reference 1627 

image, target images close to the two ends of the time series might be over corrected due 1628 

to the increased time intervals. Li and Zhou (2017) proposed a stepwise calibration 1629 

approach to address that issue. They first reduced temporal inconsistency within each 1630 

satellite segment and then systematically moved each satellite segment up or down to 1631 

generate a temporally consistent NTL time series from 1992 to 2013, by making full use 1632 

of the temporally neighbored image as a reference for calibration.  1633 

Each of the methods mentioned above has its strengths and shortages. A framework 1634 

to assess and choose a right method for a specific application was proposed by Pandey et 1635 

al. (2017). Future efforts are still needed to design better NTL calibrating methods. 1636 

Furthermore, there is a huge gap between DMSP/OLS and VIIRS/DNB. A temporally 1637 

consistent NTL time series extending from DMSP/OLS to VIIRS/DNB is highly 1638 

desirable, yet still a huge challenge, due to differences in passing time, onboard 1639 

calibration, spatial resolution, and other considerations (see Li et al., 2017, as well as 1640 

Zheng et al., 2019, for examples of inter-calibration between DMSP/OLS and 1641 

VIIRS/DNB). Ground-based stable and radiometrically calibrated light sources may offer 1642 

a useful approach for inter-calibration between night-time lights sensors, as well as for 1643 

validating the performance of these sensors, as attempted by Hu et al. (2018b) and Ryan et 1644 

al. (2019). 1645 
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 1646 

4.8 Outlook for the future 1647 

4.8.1 The need for geostationary platforms 1648 

Despite the benefits of its unique information content, a significant limitation of current 1649 

VIIRS DNB measurements is infrequent revisits, and hence poor temporal resolution 1650 

across the night. The low earth-orbiting (LEO) satellite platform offers only 1-2 passes per 1651 

night at low to mid-latitudes, meaning that the VIIRS DNB information must be used in 1652 

‘snapshot mode.’ With the addition of NOAA-20 in November 2017 to the same orbital 1653 

plane as Suomi, there is now a 50-min update around 01:30 local time. 1654 

This second observation provides some information on the changing environment, 1655 

but still cannot resolve parameter evolution or the diurnal cycle. For this, a geostationary-1656 

based (GEO) version of the DNB would be needed in order to overcome this principal 1657 

limitation. Having a sensor that can provide low-light visible sensitivity from GEO would 1658 

represent a significant advance over current nighttime imaging capabilities represented by 1659 

the VIIRS DNB. A pioneering study on the temporal dynamics of urban lights was done 1660 

by Dobler et al. (2015), using horizontal images from a fixed camera, every 10s over 22 1661 

nights, demonstrating the type of information which can be derived from continuous 1662 

monitoring of artificial lights throughout the night. Frequent monitoring of the Earth at 1663 

night from sunset to sunrise will allow researchers to uncover circadian patterns of human 1664 

activity, not only to quantify temporal changes in light pollution, but also to better inform 1665 

us on changes in ambient population during night-time, e.g., people working at night, or 1666 

attending various night-time events. 1667 

Such a GEO platform would allow stare and thereby attain signal-to-noise on par or 1668 

better (by a factor of 10) than the VIIRS/DNB. Dual proposing a nighttime GEO 1669 

instrument as a star tracker, and conducting multiple intermittent read-outs over the ~20s 1670 

sampling interval, would further allow the instrument to achieve the necessary navigation 1671 

and stability requirements for this measurement to attain 700 m resolution. It would be 1672 

very useful, but not required, to coordinate nighttime GEO operations with a 1673 

contemporary geostationary sensor (e.g., the Advanced Baseline Imager on GOES-R) to 1674 

leverage additional spectral information from those sensors. As noted in Miller et al. 1675 

(2013), combining the visible band with near infrared (conventional) and thermal bands 1676 

would further expand the utility of the low-light observations. For instance, a 1677 

geostationary lowlight visible sensor, combined with shortwave and thermal infrared 1678 

bands from co-located ABI observations, would be able to retrieve both cloud optical 1679 



70 

depth and effective particle size via moonlight, leading to improved estimates of cloud 1680 

water path.  1681 

So far, the only occasion that a sensor acquired a full night-time image of the entire 1682 

hemisphere (as a geostationary satellite would be able to do) showing artificial lights was 1683 

in the ESA - Rosetta mission. In three occasions the prove ESA - Rosetta made flybys over 1684 

the Earth to get the gravitational assistants it needed to change direction to its main scientific 1685 

goal, the comet 67P/Churiumov-Guerasimenko. The team took images of the Earth during 1686 

these flybys, and currently these images still the only images of the Earth at night taken 1687 

from a position where it is possible to see the full earth at night (other images available are 1688 

renders or mosaics of individual images or scans). These images where taken with the 1689 

camera OSIRIS (Keller et. al. 2007) on the filters “Blue”, “Green”, “Orange”. 1690 

Unfortunately, these images are only available on the raw format and Level 3 calibration. 1691 

The difficulty of their reduction and georeferencing have therefore limited their use in peer 1692 

review publications, although they are freely available at the ESA archive 1693 

(https://archives.esac.esa.int/psa/) (Figure 27). 1694 

 1695 

  1696 

https://archives.esac.esa.int/psa/
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 1697 

Figure 27: OSIRIS view of Earth by night. This is a composite of four images combined 1698 

to show the illuminated crescent of Earth and the cities of the northern hemisphere. The 1699 

images were acquired with the OSIRIS Wide Angle Camera (WAC) during Rosetta’s 1700 

second Earth swing-by on 13 November. This image showing islands of light created by 1701 

human habitation (from the Nile River on the upper left side, to eastern China on the upper 1702 

right side) was taken with the OSIRIS WAC at 19:45 CET, about 2 hours before the 1703 

closest approach of the spacecraft to Earth. At the time, Rosetta was about 80 000 km 1704 

above the Indian Ocean where the local time approached midnight. The image was taken 1705 

with a five-second exposure of the WAC with the red filter. This image showing Earth’s 1706 

illuminated crescent was taken with the WAC at 20:05 CET as Rosetta was about 75 000 1707 

km from Earth. The crescent seen is around Antarctica. The image is a colour composite 1708 

combining images obtained at various wavelengths. Source: 1709 

http://www.esa.int/spaceinimages/Images/2007/11/OSIRIS_view_of_Earth_by_night  1710 

  1711 

http://www.esa.int/spaceinimages/Images/2007/11/OSIRIS_view_of_Earth_by_night
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4.8.2 Spectral information 1712 

Artificial lighting sources vary in their emission spectra from the sun’s emission and from 1713 

each other (Aubé et al., 2013; Figure 24). To better estimate the negative effects of light 1714 

pollution, various spectral indices have been proposed, including the Melatonin 1715 

Suppression Index (MSI), the Induced Photosynthesis Index (IPI) and the Star Light Index 1716 

(SLI) (Aubé et al., 2013), which also allow to compare the impacts of different lamp types 1717 

on different species based on their spectral response curves (Longcore et al., 2018). With 1718 

hyperspectral data, the major types of artificial lighting sources can be separated (Dobler 1719 

et al., 2016). However, the majority of available space borne sensors are panchromatic, 1720 

with only ISS photos and the new Jilin-1 satellite offering RGB color images (Table 1). 1721 

As noted above, the panchromatic channel on the DMSP/OLS and VIIRS/DNB does not 1722 

cover the blue light, thereby important spectral information is missing, which will become 1723 

even more crucial as more cities change their street lighting technology to LED (Kyba et 1724 

al., 2015a). Future night-time sensors designed for monitoring artificial lights should 1725 

therefore include the blue band, and offer several spectral bands in the VIS-NIR range, so 1726 

as to enable the identification of lighting types, and so as to fit human scotopic and 1727 

photopic vision (Elvidge et al., 2007b). Investigating the optimal spectral band 1728 

combination, Elvidge et al. (2010) concluded that the best set of spectral bands (in terms 1729 

of cost and efficiency) would include at least four bands: the blue, green, red and NIR (as 1730 

on Landsat). Such a combination of bands which will enable the identification of major 1731 

types of lighting, and will also allow the estimation of the luminous efficacy of radiation, 1732 

and the correlated color temperature, but not will enable to estimate other properties, such 1733 

as the color rendering index (Elvidge et al., 2010). With the transition to LEDs, we are 1734 

facing the global challenge of how to reduce light pollution, in spite of this new 1735 

technology which allows to light up more areas at lower costs. One direction can be the 1736 

application of light pollution metrics (such as developed by Aubé et al., 2013 and by 1737 

Longcore et al., 2018) which will be placed on packages of bulb, to better inform 1738 

consumers on possible light pollution impacts, similar to information provided on food 1739 

packages concerning their ingredients, allergens, and dietary information (Tangari and 1740 

Smith, 2012). 1741 

 1742 

4.8.3 Spatial resolution 1743 

Numerous studies have made great use of available night-time sensors (mostly 1744 

DMSP/OLS and VIIRS/DNB) to study the spatial and temporal patterns of artificial light 1745 
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at night, and the anthropogenic and physical variables explaining it, at global, regional and 1746 

national levels. However, most studies of night lights were not able to examine spatial 1747 

patterns at the neighborhood or street level due to the lack of sensors with fine spatial 1748 

resolution (Table 1). The spatial resolution of the majority of night-time space borne 1749 

sensors is below 100 m, and freely available images of cities at spatial resolution which is 1750 

better than 100 m are only available from astronaut photographs taken from the ISS. 1751 

However, these images are not taken regularly, and are of varying radiometric and spatial 1752 

quality. Night-time images with high spatial resolution (< 5 m) have been shown to enable 1753 

the mapping and classification of individual lighting sources (e.g., Metcalf, 2012; Hale et 1754 

al., 2013), and can enable us to better understand the nightscape as experience by animals 1755 

within urban areas (Bennie et al., 2014b). However, high spatial resolution such as offered 1756 

now by commercial satellites (such as EROS-B and Jilin-1) may not be needed for all 1757 

applications. Indeed, several papers have shown that high spatial resolution of night time 1758 

images did not improve our ability to explain spatial patterns of light pollution, and that 1759 

better correlations were obtained at spatial resolutions of 50 – 100 m (Katz and Levin, 1760 

2016) or even at coarser spatial resolutions (e.g., Anderson et al., 2010). This result may 1761 

relate to the combined artefact of night-time images becoming darker and with greater 1762 

contrast between dark and bright areas with increasing spatial resolution (Kyba et al., 1763 

2015a; Katz and Levin, 2016). At high spatial resolutions there may also be greater 1764 

differences between ground measurements of night-time brightness in the horizontal 1765 

direction, and space borne measurements of night-time brightness, which only capture 1766 

upward emissions of artificial lights (Katz and Levin, 2016). Indeed, in their evaluation of 1767 

the required spatial resolution of a concept mission termed as NightSat, Elvidge et al. 1768 

(2007b) estimated that a sensor with a spatial resolution of 50 – 100 m would suffice to 1769 

present the major night-time features which are common to urban and rural areas. Such 1770 

medium spatial resolution will also enable global monitoring of the Earth at night at a 1771 

frequent revisit time, without requiring a constellation with too many satellites. With the 1772 

rise in launch and use of cubesats (such as Planet Labs; Strauss, 2017), and the recent 1773 

launch of the Luojia-1 cubesat (Jiang et al., 2018), this may offer a relatively cheap 1774 

approach for providing global coverage of the Earth at night, at finer spatial resolutions 1775 

than currently available. An additional research challenge, which relates to the need to 1776 

better quantify the exposure to light pollution, requires us to develop methods to quantify 1777 

and understand the differences between human exposure to night-time brightness both 1778 

indoors (based on ground based sensors or on smart wearable technology, mobile device 1779 
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platforms or embedded platforms; Ko et al., 2015) vs. the exposure to night-time 1780 

brightness outdoors (as measured by satellites).  1781 

 1782 

5. Conclusions 1783 

Images of artificial lights at night directly observe human activity from space, and 1784 

therefore enable a number of remote sensing applications either unique to night light 1785 

sensing (e.g. monitoring illegal fishing, remotely sensing lighting technologies) or 1786 

strongly complementing other types of remote sensing (e.g. evaluating the impacts of 1787 

armed conflicts and disasters and the recovery from them, quantifying temporary and 1788 

seasonal changes in population, studying urban change). The field of remote sensing of 1789 

night lights has greatly expanded since the early 2000s, thanks to an increase in the 1790 

number and quality of space and ground based sensors able to measure low levels of light 1791 

in the visible band. This development has also had a major impact on the study of light 1792 

pollution, which has grown in parallel with remote sensing of night lights. Nevertheless, 1793 

despite the demonstrated value of night lights data, the sensors, algorithms, and products 1794 

for night lights still lag far behind the state of the art in remote sensing based on reflected 1795 

daylight, or in other spectral ranges. In particular, night lights data are generally taken at 1796 

lower resolutions, lack temporal coverage, and most importantly lack multi- or 1797 

hyperspectral data. This is of particular concern at the moment, because of the global 1798 

shift in the night lights spectra due to the adoption of LED lights. 1799 

New and improved sensors and algorithms will not only allow a host of new remote 1800 

sensing applications based on night lights data, they will also have a dramatic influence 1801 

on our understanding of human influence on one of the most threatened environments on 1802 

Earth’s land surface: the night. In stark contrast to many other environmental stressors 1803 

such as climate change due to greenhouse gasses or chemical pollution, reductions in 1804 

light emissions reduce the degree of light pollution and its environmental impact 1805 

immediately. Whereas reducing greenhouse gas levels requires coordinated global action, 1806 

light pollution depends overwhelmingly on local actors. Many of the transitions needed 1807 

to achieve a sustainable society, such as emissions free transportation, are difficult 1808 

problems that still require considerable research and likely changes in behavior. Methods 1809 

to eliminate waste light, on the other hand, are already well known (e.g. Falchi et al. 1810 

2011); lights must simply be directed more carefully (which LEDs can help with), in 1811 

many cases overall light levels must be reduced, and in other cases, lights can simply be 1812 
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turned off. Fortunately, it has been demonstrated that reductions in overall light emission 1813 

can be accomplished while actually improving vision over current practice (e.g. 1814 

Narendran et al. 2016). 1815 

The main challenge facing the transition to sustainable lighting is one of awareness. 1816 

Future night lights data will play a key role in this regard. The data will be used to 1817 

visualize changes in light emission and light pollution, identify and quantify emissions 1818 

from specific polluters, and evaluate the effectiveness of light pollution mitigation 1819 

strategies. 1820 
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List of Figure Captions 2920 

 2921 

Figure 1: Lighting changes in Calgary, Alberta (Canada) between 24/12/2010 (top) and 2922 

28/11/2015 (bottom). The neighborhood at left has converted from high pressure sodium 2923 

to white LED lights, while the highway at right is newly illuminated with sodium lamps. 2924 

The area has a roughly 7.5x3 km extent. Images based on astronaut photographs ISS026-2925 

E-12438 and ISS045-E-155029. 2926 

 2927 

Figure 2: Space borne sensors with night-time lights capabilities, as a function of the year 2928 

from which digital night-time images are available, and the spatial resolution of the 2929 

sensor. 2930 

 2931 

Figure 3: Cumulative number of papers on artificial lights in the Artificial Light at Night 2932 

(ALAN) Research Literature Database (n = 2545) (http://alandb.darksky.org/, accessed 2933 

September 16th, 2019). Also shown are papers where the title of the paper included the 2934 

word pollution (n = 271), and papers published in remote sensing journals or where either 2935 

one of the words “remote”, “sensing”, “satellite”, “DMSP”, “VIIRS”, “Luojia”, “SQM” 2936 

appeared in the title of the paper or that Chris Elvidge was one of the co-authors (n = 380). 2937 

The green line shows the yearly numbers of papers cited in our manuscript (n = 372).  2938 

 2939 

Figure 4: Lunar eclipse over North America on 2014/10/08, viewed by VIIRS DNB. At 2940 

far right, the eclipse had not yet begun, and the instrument observed clouds illuminated by 2941 

full moonlight. The next strip was taken with the moon partially eclipsed, and the dark 2942 

strip when the moon was near to fully eclipsed. The final strip (at left) was taken one day 2943 

earlier. Image prepared by Christopher Kyba based on image and data processing by 2944 

NOAA's National Geophysical Data Center. Image available under a CC BY license at 2945 

https://tinyurl.com/us-eclipse-20141008. 2946 

 2947 

Figure 5: DMSP local times at the ascending equatorial crossing. 2948 

 2949 

  2950 
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Figure 6: DMSP colorized night lights. The white represents lights generated from 2951 

electricity, the red shading shows fires, the pink shading indicates light from squid fishing 2952 

boats, and the blue spots are gas flares from oil rigs. Each is one year's worth of data. The 2953 

differentiation of fires, boats, electric lights and gas flares was all done by temporal 2954 

analysis (do the lights stay constant and do they move). The instrument itself is not able to 2955 

distinguish between them. Zoomed in areas are shown for northern Europe (b), Japan and 2956 

Korea (c), western Africa (d), and northern South America (e). Source of dataset: 2957 

https://sos.noaa.gov/datasets/nighttime-lights-colorized/  2958 

 2959 

Figure 7: Section of the first global map of DMSP nighttime lights, produced by 2960 

mosaicking film segments by Woody Sullivan, University of Washington. 2961 

 2962 

Figure 8: NGDC’s first map of DMSP nighttime lights, produced from 29 orbits and no 2963 

cloud screening. 2964 

 2965 

Figure 9: NGDC’s second generation DMSP nighttime lights product produced with 2966 

cloud-screening from 236 orbits acquired in a six month period in 1995. 2967 

 2968 

Figure 10: DMSP radiance nighttime lights for St. Louis, Missouri. 2969 

 2970 

Figure 11: False color composites of DMSP stable lights version 4, showing: (a) decrease 2971 

in lights following the war in Syria; (b) expansion of roads in the United Arab Emirates 2972 

(UAE); (c) the lit border between India and Pakistan; (d) urbanization in China; (e) 2973 

economic decline in Ukraine and Moldova following the collapse of the Soviet Union; (f) 2974 

temporal changes in activity of oil wells in Nigeria. 2975 

 2976 

Figure 12: Night lights of the Levant, Astronaut photograph ISS053-E-50422, taken on 2977 

28/9/2017, 00:10:11 GMT. At the bottom of the image the densely populated Delta of the 2978 

Nile can be seen, while the center of the image covers Israel, the West Bank, Jordan and 2979 

Lebanon. The consequences of the conflict in Syria are hinted in this photo, where Syria is 2980 

mostly dark, in contrast with lit towns and cities in Turkey to the north. 2981 

 2982 
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Figure 13: The number of night-time ISS photos identified by the Cities at Night 2983 

crowdsourcing project (http://citiesatnight.org/index.php/maps/). Note that in several ISS 2984 

missions many night-time photos were taken, while in other mission hardly any night-time 2985 

photos were taken. The data shown does not include the recent three years.  2986 

 2987 

Figure 14: Berlin at day and night: (a) Landsat 8 OLI, April 2017, true color composite; 2988 

(b) Astronaut photography from the International Space Station, ISS047-E-29989, March 2989 

2016; (c) Luojia01 night-time image, August 25th, 2018; (d) VIIRS/DNB October 2016.  2990 

 2991 

Figure 15: (a) The number of night-time ISS photos identified by the Cities at Night 2992 

crowdsourcing project (http://citiesatnight.org/index.php/maps/), within 100x100 km grid 2993 

cells;. (b) The number of all night-time Luojia-1 images acquired so far (n = 8675, May 2994 

2019), as received from Wuhan University, with 250x250 km grid cells. 2995 

 2996 

Figure 16: A vertical aerial photograph taken during a raid on Berlin on the night of 2-3 2997 

September 1941. The broad wavy lines are the tracks of German searchlights and anti-2998 

aircraft fire. Also illuminated by the flash-bomb in the lower half of the photograph are 2999 

the Friedrichshain gardens and sports stadium, St Georgs Kirchhof and Balten Platz. 3000 

 3001 

Figure 17: All-sky luminance map based on a photograph taken 15 kilometers outside of 3002 

Berlin’s city limits (30 km from the city center). Photograph and image processing by 3003 

Andreas Jechow. The dashed line shows 40o from zenith (equivalently 50o elevation). A 3004 

natural starlit sky has a luminance near 0.2-0.3 mcd/m2 (Hanel et al 2018). 3005 

 3006 

Figure 18: Night-time hemispheric photo at Emily Bay, Norfolk Island, Australia (April 3007 

6th, 2018, 21:52 local time). The upper image shows the raw image, while the bottom 3008 

image presents sky brightness as calculated by the Sky Quality Camera software. The 3009 

bright light at the east (azimuth 112͐͑͐
͑͒
, left side of the image) is the moon rising over the 3010 

horizon. Notice the difference between bright clouds above artificial light sources, and the 3011 

dark clouds above dark areas. Photo taken by Noam Levin. 3012 

 3013 

  3014 
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Figure 19: Mean VIIRS radiance values in July 2014 at the country level (averaging all 3015 

cities within a country), as a function of national GDP per capita. Based on data from 3016 

Levin and Zhang (2017). Note that GDP on its own is not enough to explain night-time 3017 

brightness differences of urban areas between countries. Additional variables include 3018 

albedo, whether countries have natural gas and oil resources, and lighting standards, 3019 

among other factors. 3020 

 3021 

Figure 20: Temporal changes in monthly VIIRS night-time brightness, demonstrating 3022 

various patterns (each of the sites was normalized between its own minimum and 3023 

maximum values). 3024 

Aleppo, Syria: dramatic decrease in night-time lights due to the war in Syria. 3025 

El Zaatari refugee camp, Jordan: influx of refugees from Syria makes this refugee camp 3026 

one of the largest cities in Jordan. 3027 

Dubai, UAE: A global city and a business hub in the Middle East, with a growing 3028 

economy. 3029 

San Juan, Puerto Rico: Hurricane Maria (September 20th, 2017) led to power outages 3030 

throughout Puerto Rico. 3031 

Caracas, Venezuela: In 2014 Venezuela entered an economic recession, with a decrease in 3032 

its GDP, evident in a decrease of night lights in its capital city. 3033 

Juliaca, Peru: A seasonal pattern is evident in night-time lights, commonly attributed to 3034 

seasonal changes in albedo related to vegetation and snow cover. 3035 

 3036 

Figure 21: After making landfall as a category 4 storm on October 10, 2018, Hurricane 3037 

Michael knocked out power for at least 2.5 million customers in the southeastern United 3038 

States, according to the Edison Electric Institute. The images show where lights went out 3039 

in Panama City, Florida, comparing the night lights before (top) and after (bottom) the 3040 

hurricane (October 6th and 12th, 2018, respectively). 3041 

 3042 

Figure 22: Lighting differences between countries across borders, as seen from the ISS: 3043 

China - North Korea - South Korea (ISS038-E-38280), US - Mexico (ISS030-E-213358), 3044 

East and West Berlin (ISS035-E-17202). 3045 

 3046 
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Figure 23: City lights shine brighter during the holidays in the United States when 3047 

compared with the rest of the year, as shown using a new analysis of daily nighttime data 3048 

from the VIIRS instrument onboard the NASA/NOAA Suomi NPP satellite (Roman and 3049 

Stokes, 2015). Dark green pixels are areas where lights are 30 percent brighter, or more, 3050 

during December. Because snow reflects so much light, only snow-free cities were 3051 

analyzed. Holiday activity is shown to peak in the suburbs and peri-urban areas of major 3052 

Southern US cities, where Christmas lights are prevalent. In contrast, most central urban 3053 

districts, with compact dwelling types affording less space for light displays, experience a 3054 

slight decrease or no change in energy service demand. The calculation is based on the 3055 

relative change in lights between the Christmas holiday vs. the rest of the year. It is a 3056 

simple ratio between the latter vs the former. 3057 

 3058 

Figure 24: Spectral response of the most popular sensors and most popular spectra, from 3059 

top to bottom. (a) the spectral response of the Nikon D3s Cameras used by the astronauts 3060 

at the ISS; (b) a typical spectra of a Metal Halide lamp, popular on architectural lights; (c) 3061 

a High pressure sodium light, popular until 2014 on streelighting; (d) LEDs of 5000K 3062 

(blue), 4000K (cyan), 2700K (grey) and PC-Amber(amber), popular on street lighting; (e) 3063 

representative spectral response of DMSP/OLS(black) and SNPP/VIIRS/DNB(blue). 3064 

Sources: Sánchez de Miguel 2015, Tapia Ayuga et. al. 2015, Sánchez de Miguel et. al. 3065 

2017, Elvidge. et. al 1999 and Liao et. al. 2013. 3066 

 3067 

Figure 25: Histograms of top of atmosphere radiance for the images of Berlin of VIIRS 3068 

and day-time Landsat OLI shown in Figure 14. 3069 

 3070 

Figure 26: Visibility of lit facades depends on perspective. The top image is a crop of an 3071 

photograph taken from the South, so North facing facades are visible. The bottom image 3072 

was taken from the North, so the South faces of buildings therefore appear dark. Photos 3073 

taken by Alejandro Sanchez de Miguel and the Freie University"at Berlin during the EU 3074 

COST Action ES1204 LoNNe. Figure and caption reproduced from Coesfeld et al. (2018), 3075 

available under a Creative Commons Attribution license (CC-BY 4.0). 3076 

  3077 
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Figure 27: OSIRIS view of Earth by night. This is a composite of four images combined 3078 

to show the illuminated crescent of Earth and the cities of the northern hemisphere. The 3079 

images were acquired with the OSIRIS Wide Angle Camera (WAC) during Rosetta’s 3080 

second Earth swing-by on 13 November. This image showing islands of light created by 3081 

human habitation (from the Nile River on the upper left side, to eastern China on the upper 3082 

right side) was taken with the OSIRIS WAC at 19:45 CET, about 2 hours before the 3083 

closest approach of the spacecraft to Earth. At the time, Rosetta was about 80 000 km 3084 

above the Indian Ocean where the local time approached midnight. The image was taken 3085 

with a five-second exposure of the WAC with the red filter. This image showing Earth’s 3086 

illuminated crescent was taken with the WAC at 20:05 CET as Rosetta was about 75 000 3087 

km from Earth. The crescent seen is around Antarctica. The image is a colour composite 3088 

combining images obtained at various wavelengths. Source: 3089 

http://www.esa.int/spaceinimages/Images/2007/11/OSIRIS_view_of_Earth_by_night  3090 

http://www.esa.int/spaceinimages/Images/2007/11/OSIRIS_view_of_Earth_by_night
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Tables 

Table 1 
Table 1. Comparison of available space-borne sensors for night-lights mapping, sorted by 
spatial resolution. 

Sensor Spatial 
resolution 
(m) 

Operational 
years 

Temporal 
resolution 

Products Radiometric range Spectral bands Main references 

DMSP/OLS 3000 Digital archive 
available for 
1992-2013 

Global coverage 
can be obtained 
every 24 hours 

Stable lights, Radiance calibrated, 
Average DN 

10-6 to 10-9 watts/cm2/ 
sr/µm 
  
6 bit 
 
Min detectable signal 4 
10-5 W/m/sr 

Panchromatic 
400-1100 nm 

Doll 2008; Elvidge et al. 
1997b, 2009c 

VIIRS/DNB 740 Launched in 
Oct 2011 

Daily images can 
be downloaded. 

Monthly Cloud-free composites 
available from April 2012 
onwards in radiance units of nano-
Watts/(cm2*sr). 
Daily corrected product, 
VNP46A1, available since mid-
2019 (NASA Black Marble). 

14 bit 
 
Min detectable signal 3 
10-5 W/m/sr 

Panchromatic 
505-890 nm 

Miller et al. 2012; 
Elvidge et al., 2013, 
2017; Roman et al., 2018 
 
https://viirsland.gsfc.nasa
.gov/ 
 
https://ladsweb.modaps.e
osdis.nasa.gov/search/ord
er/1/VNP46A1--5000 

https://viirsland.gsfc.nasa.gov/
https://viirsland.gsfc.nasa.gov/
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Aerocube 4 500 Experimental 
cubesat, 2014 

Sporadic N\A Detection threshold of 
about 20 nW/cm2/sr to 
achieve SNR of 4 or 
more 
 

RGB Pack and Hardy, 2016; 
Pack et al., 2017 

SAC-C HSTC  300 Launched in 
Nov 2000 

Sporadic N\A 8 bit Panchromatic 
450-850 nm 

Colomb et al. 2003 

SAC-D HSC 200- 
300 

Launched in 
June 2011 

Sporadic N\A 10 bit Panchromatic 
450-900 nm 

Sen et al. 2006 

Astronauts 
photographs 
onboard the 
International Space 
Station (ISS) 

  
  

5-200 

From 2003 
onwards (since 
mission 
ISS006) 

Photos taken 
irregularly 

Photos can be searched and 
downloaded from: 
http://eol.jsc.nasa.gov/ 

8-14 bit RGB Doll 2008; Levin and 
Duke 2012; Kyba et al., 
2014; Sánchez de Miguel 
et al., 2014 

CUMULOS 150 Experimental 
cubesat, 2018 

Sporadic N\A N\A 
 

Panchromatic Pack et al., 2018, 2019 

LuoJia1-01 130 Launched June 
2018 

15 day revisit time Freely available DN values with lab 
calibration 

Panchromatic, 460-
980 nm 

Li et al., 2018b, 2019a 

Aerocube 5 124 Experimental 
cubesat, 2015 

Sporadic N\A Detection threshold of 
about 20 nW/cm2/sr to 
achieve SNR of 4 or 
more 
 

RGB Pack and Hardy, 2016; 
Pack et al., 2017 



4 

Landsat 8 15-30 Launched in 
2013 

Night time images 
acquired 
irregularly 

Freely available 14 bit 
 
Only very bright objects 
are detected 

Seven bands Roy et al., 2014; Levin 
and Phinn, 2016 

Jilin-1 
 (JL1-3B) 

0.9 Launched 
January 2017  

Commercial 
satellite, acquires 
images on demand 

N\A 8 bit 430–512 nm 
(blue), 489–585 nm 
(green) and 580–
720 nm (red) 

Zheng et al., 2018 
 
https://www.cgsatellite.co
m/imagery/luminous-
imagery/ 

JL1-07/08 < 1 Launched 
January 2018 

Commercial 
satellite, acquires 
images on demand 

N\A N\A Panchromatic and 
multi-spectral 
(blue, 
green, red, red 
edge, and 
near-infrared 
bands) 

Zhao et al., 2019 

EROS-B 0.7 Night lights 
images offered 
since mid-2013 

Commercial 
satellite, acquires 
images on demand 

N\A  16 bit Panchromatic Levin 2014; Katz and 
Levin, 2016 
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