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ABSTRACT
A large number (>30 000) of Monte Carlo simulations in range of 0.002–1.41 ρ∗ and T∗ ≤ 25 (∗ for reduced, dimensionless) was performed,
producing a dense grid of state points for the internal energy U∗ and pressure p∗. The dense grid in ρ∗ allows the direct integration to obtain
the Helmholtz free energy F∗. The results in U∗, p∗, and F∗ were used to fit an equations of state (EOS) for the Lennard-Jones fluid using
the virial thermal coefficients B2–B6 taken from the literature and additional empirical coefficients (C7-C16), which correct the errors due to
nonconverging behavior of virial thermal coefficients. Those additional coefficients have the same mathematical form as the virial thermal
coefficients. The EOS allows an extrapolation to extreme conditions above T∗ > 100 and ρ∗ > 2.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5119761., s

I. INTRODUCTION

For chemical equilibrium calculations within the Earth, the
thermodynamic properties of pure fluids and their mixtures up to
very high temperatures T and pressures p are required. Considering
conditions in the lower crust or upper mantle of the Earth, thermo-
dynamic properties of species at pressures and temperatures above
2 GPa and 1000 K have to be evaluated. Within gas planets, condi-
tions are even more extreme. However, very few experimental p-T
data for volumes V exist for pure fluids at these extreme conditions.
For fluid mixtures, they are practically not existent. Therefore, the-
oretically derived equations of state (EOS) are a viable choice for the
prediction of the required fugacities for equilibrium calculations of
chemical species as a function of T and p. In addition, the speciation
in a fluid, for example, the occurrence of H2O or H4O2 in water, will
be a key point in the future development to enhance the chemical
understanding of equilibrium processes. For thermodynamic equi-
librium calculations, the properties of species are required and the
chemical compound (e.g., H2O) must be understood as a mixture of
their species. This will be important for solubility calculations, for
which speciation is essential.

One choice of an EOS to predict fugacities of any chemi-
cal species in mixtures as a function of p and T is based on the

perturbation theory. A simple perturbation EOS, as given by Chu-
rakov and Gottschalk,1,2 is quite successful in predicting the prop-
erties in such fluid mixtures. However, this EOS1,2 is restricted in
the number of implemented molecular interaction types and suf-
fers from numerical instability at high p, rendering it difficult to
extrapolate to extreme conditions. Therefore, efforts are under-
way to further investigate the potential of perturbation theory
to formulate an EOS, which is applicable to geologically relevant
conditions.

The Helmholtz free energy F and its derivatives with respect to
density ρ and temperature T describe all relevant thermodynamic
properties. Perturbation theory uses the ideal gas Fo as a starting
point and adds a residual part Fr , which is formulated using a well-
known model as a reference Fr

ref. Expanding Fr in λ, a dimension-
less parameter that can take on values ranging continuously from
0 (no perturbation) to 1 (the full perturbation) and hereby consid-
ering two- and many-body interactions accounting for multipole,
induction, dispersion, as well as repulsion forces of nonspherical
molecules,3–8 F becomes

F = Fo + Fr = Fo + Fr
ref + Fλ + Fλλ + Fλλλ +⋯. (1)

This communication deals with the Fr
ref term of Eq. (1). The

reference model chosen here is based on the 12-6 Lennard-Jones (LJ)
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where σ is the finite distance at which the interparticle potential is
zero, ε is the depth of the potential well, and r is the distance between
two particles. The 12-6 Lennard-Jones is a special form of the Mie
potential10
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[(σ
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where n and m are adjustable coefficients 12 and 6 for the LJ
potential.

The restriction to two parameters σ and ε in the LJ potential
allows the exploration of states with reduced, dimensionless vari-
ables (e.g., ρ∗, T∗, and p∗) resulting in dimensionless fluid properties
without addressing σ and ε explicitly:

T∗ = kBT
ε

, ρ∗ = ρσ3, p∗ = ρσ3

ε
, (4)

with

ρ = v−1 = N/V , (5)

where kB is the Boltzmann constant, T the temperature, and ρ the
number density, while the ∗ designates their reduced, dimensionless
form. Exploration of states is then usually done for ρ∗ and T∗.

A number of EOS are available for the LJ fluid,11–17 which all
have their merits. The reasons to formulate another, new EOS are as
follows:

● the new EOS should cover the ρ∗–T∗ comprehensive space
for which simulation data are derived here (0.002 ≤ ρ∗
≤ 1.41, T∗ ≤ 25);

● should allow extrapolation to extreme conditions (ρ∗ > 2,
T∗ > 100);

● should be based on a dense array of state points;
● should also be based on a large set of F∗ values obtained by

integration over ρ∗, without the need of particle insertion in
Monte Carlo (MC) simulations;

● the pair and triplet correlation functions over the total
phase space should be available and are therefore calcu-
lated because their integrals over distance and orientation
are needed in perturbation theory.

The presentation of the correlation functions and their integrals will
be subject to a further communication.

In this context, a large number of Monte Carlo simulations
(>30 000) in the canonical NVT ensemble were performed and used
as input for a formulation of an EOS.

The thermodynamic formalism for the derivation of the EOS
follows the outline of Thol et al.17 with only minor changes to the
procedure itself.18–22 However, the mathematical functional form of
the EOS is quite different from that of Thol et al.17

The EOS is written in terms of the reduced, dimensionless
Helmholtz free energy a∗ as a function of the inverse reduced
temperature T∗ and density ρ∗, where a∗ is divided into two
terms indicating an ideal-gas (superscript o) and a residual part

TABLE I. Reduced, dimensionless thermodynamic properties based on the definition
of Eq. (8).

Properties

Pressure and its derivatives
p∗ = −(∂a∗

∂v∗ )T
= ρ∗T∗(Ao

01 + Ar
01) = ρ∗T∗(1 + Ar

01)

(∂p∗

∂ρ∗ )T
= T∗(1 + 2Ar

01 + Ar
02)

(∂
2p∗

∂ρ∗2 )
T
= T∗

ρ∗ (2Ar
01 + 4Ar

02 + Ar
03)

( ∂p∗

∂T∗ )ρ = ρ
∗(1 + Ar

01 − Ar
11)

(∂p∗

∂v∗ )T
= −ρ∗2(∂p∗

∂ρ∗ )T
= −ρ∗2T∗(1 + 2Ar

01 + Ar
02)

(∂
2p∗

∂v∗2 )
T
= 2ρ∗3(∂p∗

∂ρ∗ )T
+ ρ∗4(∂

2p∗

∂ρ∗2 )
T

= ρ∗3T∗(2 + 6Ar
01 + 6Ar

02 + Ar
03)

Entropy
s∗ = −( ∂a∗

∂T∗ )v
= Ao

10 + Ar
10 − Ao

00 − Ar
00

Internal energy
u∗ = a∗ + T∗s∗ = T∗(Ao

10 + Ar
10)

Enthalpy
h∗ = u∗ + p∗v∗ = T∗(1 + Ao

10 + Ar
10 + Ar

01)
Gibbs free energy

g∗ = ( ∂h∗
∂T∗ )p

= T∗(1 + Ao
00 + Ar

00 + Ar
01)

Isochoric heat capacity
c∗v = ( ∂u∗

∂T∗ )v
= −(Ao

20 + Ar
20)

Isobaric heat capacity

c∗p = ( ∂h∗
∂T∗ )p

= c∗v + T∗α2

ρ∗β∗T
= −(Ao

20 + Ar
20) + (1+Ar

20−Ar
11)

2

1+2Ar
01+Ar

02

Compressibility factor
Z = 1 + Ar

01

Fugacity coefficient

ϕ = eAr
00+Ar

01

1+Ar
01

nth thermal virial coefficient (n⩾2)

Bn = 1
(n−2)! lim

ρ→0
( 1
ρ∗n−1

∂n−1Ar
00

∂ρ∗n−1 )
T

Speed of sound

w∗ =
√
(∂p∗
∂ρ∗ )s

=
√

T∗(1 + 2Ar
01 + Ar

02 −
(1+Ar

01−Ar
11)

2

A0
20+Ar

20
)

Grüneisen coefficient

Γ∗ =
(

∂p∗

∂T∗ )ρ
ρ∗c∗v

= − 1+Ar
01−Ar

11
(A0

20+Ar
20)

Isothermal compressibility
β∗T = 1

ρ∗( ∂p∗

∂ρ∗ )T

= 1
ρ∗T∗(1+2Ar

01+Ar
02)

Thermal pressure coefficient
γ∗ = ( ∂p∗

∂T∗ )ρ = ρ
∗(1 + Ar

01 − Ar
11)

Thermal expansion coefficient

α∗ = β∗Tγ∗ =
(

∂p∗

∂T∗ )ρ

ρ∗( ∂p∗

∂ρ∗ )T

= (1+Ar
01−Ar

11)

T∗(1+2Ar
01+Ar

02)
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(superscript r):

a∗(τ, δ) = ao(T, ρ) + ar(T, ρ)
kBT

= ao∗(τ, δ) + ar∗(τ, δ), (6)

with a = F/N the Helmholtz free energy per particle. Additionally, τ
and δ are defined as

τ = 1
T∗

, δ = ρ∗. (7)

In contrast to Thol et al.,17 these definitions do not include the
critical properties T∗c and ρ∗c . They are not a prerequisite for the
derivation of the presented EOS. ρ∗ is sometimes renamed to
δ to be in agreement with Thol et al.,17 but this is used here
loosely.

All thermodynamic properties can be calculated from Eq. (6)
and its derivatives with respect to τ and δ. A selection is listed in
Table I. For the respective derivatives as in Thol et al.,17 the following
notation is used:

Amn = Ao
mn + Ar

mn = τmδn ∂
m+n(ao∗ + ar∗)

∂τm∂δn . (8)

For an ideal gas, ao∗ is

ao∗ = ho∗
r τ − so∗

r − 1 + log
δ τr

δr τ
− τ

τ

∫
τr

co∗
p

τ2 dτ +
τ

∫
τr

co∗
p

τ
dτ, (9)

where ho∗
r and so∗

r are the reduced, dimensionless enthalpy and
entropy at reference conditions (subscript r) in their standard state
and co∗

p the heat capacity at constant pressure at standard state
conditions. The standard state refers to a hypothetical ideal gas
at p∗r . Values of ho∗

r , so∗
r , as well as co∗

p as functions of T∗ can
be found for each ideal gas in thermodynamic reference tables. In
Eq. (9), the fourth term on the right hand side can be replaced
by

log
δ τr

δr τ
= log

p∗

p∗r
. (10)

For a classical monoatomic gas, the isobaric heat capacity is
co∗

p = 2.5. Therefore, integration of (9) yields

ao∗ = ln δ +
3
2

ln τ + c1τ + c2, (11)

with

c1 = ho∗
r −

5
2τr

(12)

and

c2 =
3
2
− so∗

r +
3
2

ln τr − ln δr . (13)

II. MONTE CARLO SIMULATIONS
Using the program mc_nvt_lj by Allen and Tildesley23 (code is

available at http://github.com/Allen-Tildesley), Monte Carlo (MC)
simulations in the NVT ensemble were performed. A total of 32 705
simulations were run providing a dense array of state points. The
conditions of this set of simulations are given in Table II. This set

TABLE II. Conditions of the MC simulations.

T∗from T∗to ΔT∗ ρ∗from ρ∗to Δρ∗ n

0.05 2.95 0.05 0.01 1.41 0.01 8 319
0.05 1.00 0.05 0.002 0.009 0.001 160
3.0 18.0 0.1 0.01 1.41 0.01 21 291
18.5 25.0 0.5 0.01 1.41 0.01 1 974
1.305 1.335 0.001 0.300 0.330 0.001 961

covers all possible phases: gas, fluid, and solid. In the MC sim-
ulations, the following resulting configurations are distinguished
according to their result:

● stable: outside vapor/fluid field, 1 phase in the simulation,
homogeneous δ in the box;

● metastable: within the vapor/fluid field, but MC shows only
1 phase in the simulation, homogeneous δ in the box;

● heterogeneous: within the vapor/fluid field, but MC shows 2
phases in the simulation, heterogeneous δ in the box.

At each state point, 1372 LJ particles were equilibrated using
5 × 104 cycles and subsequently sampled for 0.75 × 106 cycles. One
cycle consists of 1372 trial moves, one for each particle. Besides the
final result, the output of the program provides additional informa-
tion after completion of a certain amount of cycles, so-called blocks.
Each block reports the move acceptance ratio, U∗, p∗, and the con-
figuration temperature T∗config as well as stores the its respective con-
figurational of particles. T∗config can be used as a diagnostic tool for the
simulation run.23 The stored configurations can be used afterward to
calculate pair and triplet correlations functions. For thermodynamic
sampling, the block size was 1000 cycles. Standard errors of the mean
σM for U∗ and p∗ were calculated using the block output for U∗

and p∗.
The move acceptance ratio was varied automatically by the

program mc_nvt_lj (see Ref. 23, p. 159).
The program mc_nvt_lj, using long-range corrections, provides

the internal energy U∗ and pressure p∗ from which Ar
10 and Ar

01 can
be calculated using Eq. (8) (see also Table I).

Batches of simulations were performed in T∗-increments of
0.05 or 0.1, starting with the final output of the previous configura-
tion. The first configuration of a batch was a fcc-lattice. For densities
ρ∗ ≤ 1.37, a cutoff of 5.0 was used, and for ρ∗ > 1.37, a cutoff of 4.5
was used. The selection of the cutoff was intended to be a compro-
mise between accuracy and computing cost. For ρ∗ = 1.372, a cutoff
of 5.0 is equal to the half of the box length (L/2).

Table III shows exemplarily the effect of a cutoff of 5.0 vs half
of the box length (L/2) as used by Thol et al.17 Here, in total 176 sim-
ulations were conducted at identical conditions as in Thol et al.17

For Ar
01, except for 1 simulation, the differences between the val-

ues in Thol et al.17 and the presented values are within a range of
−0.021 to 0.001. For Ar

10, except for 3 values, the differences are
in range of ±0.01. If the range is narrowed to ±0.005, 12 values
are outside this range. So, as a conclusion, the chosen cutoff of 5.0
(4.5 for ρ∗ > 1.37) and the selected number of cycles seem to be
justified.
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TABLE III. Comparison of MC simulations with a cutoff of 5.0 vs half the box length (L/2) used by Thol et al.17

MC (cutoff 5.) MC - Thol et al.17

ρ∗ T∗ Ar
01 Ar

10 Ar
01 Ar

10

0.01 0.9 −0.063 56(5) −0.111 11(10) −0.063 71(4) −0.111 15(2)
0.85 0.9 0.776 1(8) −6.580 1(1) 0.762 9(24) −6.581 9(4)
0.45 1.3 −0.789 2(6) −2.397 0(5) −0.802 1(6) −2.378 2(3)
0.85 1.3 2.243 1(10) −4.250 1(2) 2.232 1(16) −4.250 9(3)
0.10 2.0 −0.111 19(11) −0.333 77(12) −0.110 92(6) −0.333 41(2)
1.00 2.0 6.602 6(12) −2.519 6(2) 6.587 6(20) −2.522 1(4)
0.10 5.0 0.066 05(10) −0.102 17(3) 0.065 96(5) −0.102 01(1)
0.60 5.0 1.314 2(3) −0.539 36(5) 1.310 1(4) −0.539 41(6)
1.08 5.0 6.966 5(7) −0.284 25(15) 6.957 7(12) −0.285 76(25)

The grid of Ar
01 values with respect to ρ∗ at constant T∗ is quite

dense; therefore, Ar
00 can be calculated by numerical integration

Ar
00 =

ρ∗

∫
0

p∗ − T∗ρ∗

ρ∗2 dρ∗ = 1
τ

δ

∫
0

Ar
01

δ
dδ. (14)

However, integration is only possible when the function Ar
01 is con-

tinuously known starting from ρ∗ = 0. This is only the case for
T∗ ≥ 1.3 or for vapor (δ∗ < 0.3, T∗ < 1.3).

The fluid/solid MC-separation line, the location above which
no fluid simulation data are available, is detected by discontinu-
ities17 of Ar

10 and Ar
01 at constant T∗ with respect to ρ∗ as illus-

trated in Fig. 1. In Fig. 1, results to left of the discontinuity are
interpreted to belong to the fluid state and to the right to the solid
state. This discontinuity simply identifies the location where the
solid spontaneously melts during the simulations and such defines
the MC-separation line.

FIG. 1. At constant T∗, Ar
01 and Ar

10 show marked discontinuities in respect to ρ∗.
Results to left of the dashed line are attributed to the fluid and to the right to the
solid state. Short dashed T∗ = 3 and long dashed T∗ = 7.

The fluid/solid phase MC-separation line (T∗ < 8.6) is given by
the function

fs(δ) = a1 + a2 δ + a3 δ2 + a4 δ3. (15)

In the vapor/fluid two phase field, heterogeneous configura-
tions occur, which result in heterogeneities in density within the
simulation box and are due to either gas + fluid or gas + solid in
the box. Within this region, simulation results must be discarded.
The heterogeneous phase region can be approximated by using the
following function:

h(δ) = a1 + a2 δ1/2 + a3 δ + a4 δ2 + a5 δ3 + a6 δ4. (16)

The respective constants for fs(δ) and h(δ) are listed in Table IV.
Restricting the temperature range to 0.4 ≤ T∗ ≤ 25 and applying

Eqs. (15) and (16) lead to a data reduction to yield 26 165 Ar
00 and

27 579 Ar
01 and Ar

10 values. Because of the lack of Ar
00 at T∗ < 1.3

and ρ∗ > 0.3 for fluids, 89 Ar
00 values from Thol24 were additionally

considered (noting that the Ar
00 fluid values in the supplement of

Thol et al.17 are incorrect and new values were therefore supplied by
Thol24).

The results of the simulations are shown in Figs. 2(a)–2(c) as
contour plots showing their magnitude. In the supplementary mate-
rial, Ar

00, Ar
01, and Ar

10 values, as well as the original p∗ and U∗ results
of the simulations, are provided in the form of an Excel-spreadsheet.
The respective errors σm are also included.

TABLE IV. Parameters for liquid δ′ and vapor δ′′ stability, the boiling curve pres-
sure p∗σ , the fluid/solid MC-separation line fs, and the limiting functions for the
heterogeneous region h.

δ′(ϑ) δ′′(ϑ) p∗σ (T∗) fs(δ) h(δ)

a1 −0.256 866 −0.700 23 −5.356 53 −10.1899 0.270 714
a2 14.041 6 −2.160 96 −1.931 12 29.9634 4.271 09
a3 −46.300 0 −8.816 42 −17.264 8 −33.4296 −6.276 54
a4 83.459 8 18.783 4 −18.902 2 15.3339 11.180 8
a5 −74.636 0 −17.422 −151.893 −19.178 2
a6 26.427 3 −1.713 87 147.669 10.201 8
a7 −24.514 −468.657
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FIG. 2. Results of the Monte Carlo simulations: (a) Ar
00, (b) Ar

01, and (c) Ar
10.

Contours are isolines of Ar
mn. Blue curve is the vapor/fluid phase field, and the

red curve is the fluid/solid MC-separation line. Dots are the critical point and the
intersection of the blue and red curve.

III. EQUATION OF STATE
The functional form chosen here for the residual part ar∗ in the

presented EOS uses a virial equation as a first approximation and
differs therefore from the approach taken by Thol et al.17

The thermal virial equation ar∗
v is defined by

ar∗
v =

n

∑
i=2

δi−1

i − 1
Bi(τ), (17)

where Bi is a function of τ or T∗ only. The virial equation is known
to be an excellent approximation at low ρ∗ and gets good pre-
dictions up to high T∗.25 However, in the fluid (liquid) region at
ρ∗ > 0.3 and T∗ < 3, the virial equation is known to be noncon-
vergent,25 i.e., results from the virial equation are not suitable or
acceptable at these conditions. The situation worsens exponentially
with increasing order i of the thermal coefficients Bi. On the other
hand, Thol et al.17 uses successfully B2, B3, and B4 as input for their
EOS and reproduces the experimental virial coefficients as a func-
tion of T∗. Only B3 shows minor deviations in the T∗-range of
0.3–3.0 demonstrating that the virial equation seems to be viable
approximation for an EOS at higher T∗.

Here, the computationally known virial coefficients B2–B6 are
used to formulate a preliminary EOS prior to any fitting to the MC
results. For Bi≥7 from literature, the nonconvergence in the liquid
region becomes too large to be corrected by a fit to a function with
a reasonable amount of parameters (see below). However, as a first
step, the parameters for thermal virial coefficients B2–B6 must be
determined.

For B2, an exact solution is available.26–29 The solution can be
formulated using a modified Bessel function26 and the following
form is valid:

B2(τ) =
√

2π2

3
τe

τ
2 (I−3/4(

τ
2
) − I−1/4(

τ
2
) − I1/4(

τ
2
) + I3/4(

τ
2
)).

(18)

The thermal virial coefficients B3–B6 are fitted to simulation
data30–38 using an equation presented by Feng et al.,39

Bi(τ) = (
1

4τ
)
−

i−1
4 ⎛
⎝

B̄SS
i +

ki

∑
k=1

bi,k(eci
√

τ − 1)
2k−1

4 ⎞
⎠

, (19)

however, the exponent in sum-term is modified and the temperature
dependence is formulated in τ. While Feng et al.39 used integer val-
ues for the exponent, it has been observed that using an exponent in
the form (2k−1)/4 leads to slightly higher R2 values for B5 and B6 and
such leads to lower residuals considering the same amount of param-
eters. In addition, the exponent (2k− 1)/4 seems to be more adequate
for the steep decrease of Bi at T∗ < 0.6 and allows the calculation to
low T∗ down to approximately 0.25.

In total, 252, 433, 328, and 180 values are available for B3–B6,
respectively. In the light of available data, the amount of parameters
(13 for B3–B5 and 10 for B6) seems to be of no consequence.

Dyer et al.34 pointed out that error estimates for thermal virial
coefficients in earlier literature were somewhat optimistic. This
observation was not considered here, and all data were treated equal.
No weighting scheme had been used, i.e., the errors of the individ-
ual values were not considered for fitting. Consequently, the derived
values from the fits average existing values.

For the parameter B̄SS
n , values are taken from Tan et at.40 and

Wheatley.41 It is important to note that no Monte Carlo simulation
data of the present communication are used for fitting of the param-
eters of B3–B6. The modeled τ-dependence is shown in Fig. 3, and
the B̄SS

i , bi,k, and ci coefficients are presented in Table V.
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FIG. 3. Thermal virial coefficients B2–B6 as function of τ. The lower plot is an
enlargement of the upper. [◯ (Ref. 33)△ (Ref. 38),▽ (Ref. 36),◁ (Ref. 32), ◽
(Ref. 30), ♢ (Ref. 31), (Ref. 34), (Ref. 35) (Ref. 37)].

The virial part (v) of the EOS is then

ar∗
v =

6

∑
i=2

δi−1

i − 1
Bi(τ). (20)

Figures 4(a)–4(c) show the difference of the Monte Carlo sim-
ulation results and the thermal virial coefficients Ar

mn − Ar v
mn [for

definitions of Ar
mn and Ar v

mn, see Eq. (8)]. It should be noted from
Figs. 4(a) to 4(c) that except for the fluid field at low T∗, the virial
part ar∗

v is a very good approximation to the simulation data.
The residual, the difference between Ar

mn −Ar v
mn, was then fitted

using an equation analogous to Eq. (19),

Ci(τ) = (
1

4τ
)
−

i−1
4 ⎛
⎝

C̄SS
i +

ki

∑
k=1

ci,k(edi
√

τ − 1)
2k−1

4 ⎞
⎠

, (21)

thereby the constants C̄SS
n , cn,k, and dn have no physical significance,

but mimic a similar dependence with respect to τ.
Ar

00, Ar
01, and Ar

10 are used to fit the coefficients in Eq. (21).
While Ar

00 is derived from Ar
01 according to the integral relationship

[Eq. (14)] at constant T∗, the use of Ar
00 is justified. The values of Ar

00
include a set of Ar

01-values reflecting a set of different ρ∗ at constant
T∗. So, the fit of EOS not only uses the slopes Ar

01 in respect to ρ∗,
but also includes the functional values Ar

00.
No weighting scheme had been used for fitting. The derived

coefficients are given in Table VI. Accordingly, the complete residual

TABLE V. Parameters of the thermal virial coefficients.

B3 B4

B̄SS
i 3.791 07 3.527 51

ci 1.529 031 885 2.795 121 498
bi,1 1.221 844 737 × 10−1 −1.832 133 004 × 10−2

bi,2 −2.533 814 785 −2.221 029 066 × 10−1

bi,3 2.321 052 047 −2.290 140 445
bi,4 −2.221 116 991 × 101 2.497 587 053
bi,5 6.037 723 605 × 101 −1.491 751 608
bi,6 −8.614 627 023 × 101 5.194 910 488 × 10−1

bi,7 7.947 702 893 × 101 −7.580 241 786 × 10−2

bi,8 −5.013 039 389 × 101 −9.570 910 251 × 10−3

bi,9 2.179 355 452 × 101 6.444 596 963 × 10−3

bi,10 −6.423 839 356 −1.323 484 892 × 10−3

bi,11 1.222 200 983 1.400 743 960 × 10−4

bi,12 −1.351 435 025 × 10−1 −7.861 096 502 × 10−6

bi,13 6.519 707 093 × 10−3 1.749 011 555 × 10−7

B5 B6

B̄SS
i 2.114 94 0.769 53

ci 4.903 830 267 5.539 252 062
bi,1 −5.737 837 739 × 10−2 −1.107 146 794 × 10−1

bi,2 2.384 059 560 × 10−1 3.639 967 813 × 10−1

bi,3 −3.175 043 752 × 10−1 −1.722 555 372 × 10−1

bi,4 1.411 210 874 × 10−1 5.355 823 913 × 10−2

bi,5 −4.065 269 634 × 10−2 −9.119 290 154 × 10−3

bi,6 7.132 4506 69 × 10−3 6.312 327 708 × 10−4

bi,7 −7.501 879 316 × 10−4 −6.471 729 317 × 10−6

bi,8 5.000 252 419 × 10−5 −6.635 662 426 × 10−7

bi,9 −2.224 242 683 × 10−6 1.145 665 574 × 10−8

bi,10 6.334 525 666 × 10−8 −5.093 701 999 × 10−10

bi,11 −1.124 571 857 × 10−9

bi,12 1.120 406 875 × 10−11

bi,13 −4.806 632 984 × 10−14

part of the derived EOS has then the following form:

ar∗ EOS
v =

6

∑
i=2

δi−1

i − 1
Bi(τ) +

16

∑
i=7

δi−1

i − 1
Ci(τ). (22)

The residuals Ar
mn − Ar EOS

mn are presented in Figs. 5(a)–5(c).
Magnification plots for the area T∗ ≤ 3 are presented in the sup-
plementary material (Figs. S1(a)–(c)) as well as formulations for the
differentials Ao

mn and Ar EOS
mn in respect of τ and δ up to m, n = 3. By

comparing Figs. 4(a)–4(c) and 5(a)–5(c), it is observed that the situ-
ation in the liquid region is dramatically improved, but the high-T∗

high-ρ∗ region is only marginally better, showing also an opposite
sign. This is an indication that more terms (i > 16) might be required
for further improvement.

All fit procedures were performed using the NonlinearModelFit
function of Mathematica.42
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FIG. 4. Simulation after application of the thermal virial coefficients B2–B6: (a)
Ar

00−Ar v
00 , (b) Ar

01−Ar v
01 , and (c) Ar

10−Ar v
10 . Contours are isolines of Ar

mn−Ar v
mn .

Legend for blue and red curves as well for dots as in Fig. 1. White areas designate
a larger deviation as indicated by the side bar.

IV. CRITICAL POINT
The formal requirements for the critical point are

(∂p∗

∂v∗
)

T
= 0 (23)

and

(∂
2p∗

∂v∗2 )
T
= 0. (24)

Using the definition of the pressure derivatives in Table I and (22)
in conjunction with (23) and (24), the critical point is calculated
to be T∗c = 1.3276, ρ∗c = 0.3164, and p∗c = 0.1356. Table 10 in
Thol et al.17 reports various critical parameters for the LJ fluid col-
lected from literature. The values found here are in good agreement
with previous reported parameters. For instance, Thol et al.17 used
T∗c = 1.32, ρ∗c = 0.31, and p∗c = 0.1300 as a prerequisite to derive
their EOS. However, one should note that their resulting EOS yields
T∗c = 1.3035, ρ∗c = 0.3104, and p∗c = 0.1212 when Eqs. (23) and (24)
are applied.

V. LIQUID-VAPOR PHASE FIELD
The requirements for the vapor-liquid equilibrium are that

both phases have the same pressure p∗σ and temperature T∗σ and that
the fugacity coefficient ϕ for each phase is equal (′ liquid, ′′ vapor),

ϕ′(δ′, τ) = ϕ′′(δ′′, τ). (25)

This leads to the following equilibrium conditions (see also equa-
tions in Table I):

δ′

δ′′
= (1 + Ar

01(δ′′, τ))
(1 + Ar

01(δ′, τ))
(26)

and

(1 + Ar
01(δ′, τ))(

δ′

δ′′
− 1)− ln( δ

′

δ′′
) = Ar

00(δ′, τ)−Ar
00(δ′′, τ). (27)

The positions of the respective phase equilibria are fitted using the
following relation:

ϑ = 1 − T∗

T∗c
. (28)

The density of the vapor phase δ′′ as a function of ϑ at the phase
boundary becomes

ln(δ
′′

δc
) = a1ϑ1/3 + a2ϑ2/3 + a3ϑ3/3 + a4ϑ4/3

+ a5ϑ5/3 + a6ϑ6/3 + a7ϑ15/3 (29)

and that for the liquid phase δ′

δ′

δc
= 1 + a1ϑ1/3 + a2ϑ2/3 + a3ϑ3/3 + a4ϑ4/3 + a5ϑ5/3 + a6ϑ6/3. (30)

The pressure at the phase equilibrium p∗σ is

ln(p∗σ
p∗c
) = T∗

T∗c
(a1ϑ + a2ϑ3/2 + a3ϑ5/2 + a4ϑ7/2

+ a5ϑ6 + a6ϑ15/2 + a7ϑ19/2). (31)

The coefficients for all 3 functions are listed in Table IV using
T∗c = 1.3276, ρ∗c = δc = 0.3164, and p∗c = 0.1356. Table VII com-
pares the densities δ′, δ′′, and pressure p∗σ at the liquid-vapor phase
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TABLE VI. Fit parameters for Eq. (21).

C7 C8 C9 C10 C11

C̄SS
i 2.356 773 117 × 103 −3.264 039 611 × 103 −7.804 186 018 × 104 4.734 725 795 × 105 −1.317 864 191 × 106

di 4.85 4.85 4.85 4.85 4.85
ci,1 −3.848 657 712 × 103 1.214 533 953 × 104 5.841 998 321 × 104 −4.717 257 385 × 105 1.411 244 301 × 106

ci,2 1.940 790 808 × 103 −9.125 315 944 × 103 5.336 019 753 × 103 7.338 796 875 × 104 −2.875 424 926 × 105

ci,3 −6.786 775 725 × 102 3.397 150 517 × 103 −6.393 577 02 × 103 1.526 191 655 × 103 2.109 845 310 × 104

ci,4 1.592 726 729 × 102 −7.355 400 823 × 102 1.371 420 01 × 103 −1.479 809 349 × 103 9.648 092 327 × 102

ci,5 −2.733 389 532 × 101 1.207 984 183 × 102 −1.843 597 578 × 102 1.033 775 279 × 102 −1.118 483 146 × 101

ci,6 3.305 728 801 −1.595 650 007 × 101 2.756 765 411 × 101 −1.762 232 710 × 101 −5.953 997 923
ci,7 −2.396 300 005 × 10−1 1.301 737 514 −2.765 120 060 3.029 682 621 −1.736 288 154
ci,8 8.107 532 579 × 10−3 −4.828 021 321 × 10−2 1.107 783 436 × 10−1 −1.382 464 464 × 10−1 1.102 848 617 × 10−1

ci,9 −5.209 209 916 × 10−5 4.779 918 832 × 10−4 −1.100 471 432 × 10−3 1.049 186 458 × 10−3 −4.233 596 547 × 10−4

ci,10 −1.863 883 724 × 10−6 4.808 860 997 × 10−6 −4.538 508 711 × 10−6 1.455 012 606 × 10−6

ci,11 6.787 957 968 × 10−9 −3.433 240 822 × 10−9

C12 C13 C14 C15 C16

C̄SS
i 2.146 863 058 × 106 −2.165 267 779 × 106 1.335 386 749 × 106 −4.628 739 042 × 105 6.922 915 835 × 104

di 4.85 4.85 4.85 4.85 4.85
ci,1 −2.385 034 755 × 106 2.465 995 272 × 106 −1.550 792 557 × 106 5.466 032 853 × 105 −8.300 129 372 × 104

ci,2 5.411 774 951 × 105 −5.990 022 139 × 105 3.971 186 192 × 105 −1.464 740 110 × 105 2.318 027 845 × 104

ci,3 −5.532 941 146 × 104 7.174 967 760 × 104 −5.317 159 494 × 104 2.148 725 004 × 104 −3.684 215 524 × 103

ci,4 2.842 688 756 × 102 −1.763 990 307 × 103 2.096 231 490 × 103 −1.141 346 457 × 103 2.443 351 261 × 102

ci,5 5.210 586 49 × 101 −1.121 805 527 × 102 7.436 426 163 × 101 −1.333 984 225 × 101 −2.185 586 771
ci,6 1.569 383 441 × 101 −7.327 702 248 −1.053 356 075 1.604 683 226 −2.645 512 917 × 10−1

ci,7 2.519 375 463 × 10−1 3.057 812 577 × 10−1 −1.621 886 602 × 10−1 1.067 758 340 × 10−2 3.982 533 293 × 10−3

ci,8 −5.923 068 772 × 10−2 1.906 868 401 × 10−2 −2.542 729 177 × 10−3

ci,9 5.305 829 584 × 10−5

field to the results of Thol et al.17 Below T∗ ≤ 1.1, respective densi-
ties are quite similar, but for T∗ > 1.1, when approaching T∗c , larger
deviations are observed.

In Figs. 6(a) and 6(b), the behavior of Ar
00 within the two-

phase field is shown for the EOS presented here and that of Thol
et al.17 It can be seen in Fig. 6(b) that there is a significant depres-
sion below the critical point in Thol et al.,17 which is due to the
use of Gaussian bell-shaped functions. Such Gaussian bell-shaped
functions are “patches” to certain ρ∗–T∗ regions. However, such
holes are physically not justified. In principal, those “patches” in the
two phase field do not affect any calculations of A∗00 in one phase
region. However, if calculations are performed in two phase region,
this might also affect any chemical equilibrium considerations
when accidentally touched. The presented EOS [Fig. 6(a)] shows
a sharp cliff in the liquid/vapor region for T∗ < 0.8. It is unclear
if this is physically justified or a relic of the virial approach used
here.

VI. EXTRAPOLATION AND COMPARISON
The EOS was fitted to data with T∗ ≤ 25 and ρ∗ ≤ 1.41.

Some simulation results at extreme conditions43–45 are available in

the literature. In Table VIII, Ar
10 and Ar

01 values for T∗ > 30 are com-
pared with these literature results and the percentage of deviation is
given. The deviation is in most cases well below 4% for Ar

10 and well
below 3% for Ar

01. It rarely exceeds 5%. The highest deviation for Ar
10

with−11.36% is at ρ∗ = 0.2 and T∗ = 100. However, here the absolute
deviation from simulation of Ar

10 is only 0.004. Even at very extreme
conditions (T∗ > 130 or ρ∗ > 2), the deviations from the EOS are
well below 5%. This extrapolation behavior can be attributed to the
good approximation of the application of the virial equation up to
the order of i = 6.

Figures 7(a) and 7(b) show the behavior of the EOS at low ρ∗ at
0.01–0.10 and T∗ ≤ 10 for Ar

01 and Ar
10 in respect to the simulation

data. In this region, the simulation errors for Ar
01 and Ar

10 are in the
order of 1–2 × 10−4. The deviations of the EOS to the calculations are
in the order of 2σ of the simulation errors. The observed deviation
are just the noise of the simulations.

The presented EOS compares favorably with the EOS of Thol
et al.17 in the region ρ∗–T∗ space for which their EOS is valid
[Figs. S2(a)–(d) in the supplementary material]. If compared to the
absolute values of the simulations in Figs. 2(a)–2(c), the deviations
for Ar

00, Ar
01, and Ar

10 are mostly minor. However, at T∗ < 1.5 and
ρ∗ < 0.4, around the critical point, larger deviations are observed.
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FIG. 5. Residuals for the EOS: (a) Ar
00 − Ar EOS

00 , (b) Ar
01 − Ar EOS

01 , and (c) Ar
10

− Ar EOS
10 . Contours are isolines of Ar

mn − Ar EOS
mn . In the case of Ar

00 − Ar EOS
00 ,

only very few Ar
00-values from Thol et al.17 for T∗ < 1 are available and ρ∗ does

not exceed 0.87. So, isolines could not be calculated and this region is left white.
Legend for blue and red curves as well for dots as in Fig. 1.

The reason for this is the functional form (Gaussian bell-shaped
functions) used by Thol et al.,17 which leads to the “hole” described
in Fig. 6(b). The influence on derivatives of the Gaussian bell-shaped
functions is severe and may affect the values of Ar

mn considerably

TABLE VII. Densities at the liquid-vapor phase field. For EOS presented here, p∗σ -,
δ′-, and δ′′-values are calculated directly from (26) and (27) and not via (29)
and (30).

EOS Thol et al.17

T∗ p∗σ δ′′ δ′ p∗σ δ′′ δ′

0.7 0.001 36 0.001 98 0.842 75 0.001 37 0.001 99 0.842 60
0.8 0.004 63 0.006 07 0.799 60 0.004 64 0.006 08 0.799 18
0.9 0.011 80 0.014 44 0.753 27 0.011 82 0.014 47 0.752 00
1.0 0.024 85 0.029 40 0.702 26 0.024 90 0.029 45 0.701 85
1.1 0.045 86 0.054 77 0.642 29 0.045 91 0.054 74 0.642 06
1.2 0.076 92 0.098 98 0.566 78 0.076 86 0.097 92 0.565 70
1.3 0.120 77 0.199 72 0.442 71 0.119 79 0.192 32 0.435 72

having numerous minima and maxima over a quite large ρ∗–T∗

range. Only 1 of the 11 bell functions used by Thol et al.17 leads
to such drastic depression of Ar

00, but numerous extrema can be
observed for Ar

01, Ar
10, and Ar

20 in the liquid region [Figs. S2(b)–(d)

FIG. 6. Ar
00 within the 2 phase field: (a) EOS and (b) Thol et al.17 Contours are

isolines of Ar
00. Legend for blue and red curves as well as for dots as in Fig. 1.
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TABLE VIII. Extrapolation from data by Miyano,45 Shaw,44 Hansen43 and deviation
to the simulation presented in this study.

ρ∗ T∗ Ar
10 Ar EOS

10 %Δ Ar
01 Ar EOS

01 %Δ

0.2 50 0.0300 0.0284 −6.37 0.2400 0.2492 3.73
0.4 50 0.0700 0.0732 4.52 0.5800 0.5908 1.86
0.6 50 0.1400 0.1416 1.25 1.0400 1.0604 1.94
0.8 50 0.2500 0.2416 −3.47 1.6800 1.6924 0.74
1.0 50 0.4000 0.3860 −3.62 2.5100 2.5340 0.95
0.2 100 0.0400 0.0360 −11.36 0.2200 0.2220 0.82
0.4 100 0.0800 0.0856 6.46 0.5000 0.5112 2.16
0.6 100 0.1500 0.1532 2.18 0.8800 0.8920 1.37
0.8 100 0.2400 0.2432 1.34 1.3500 1.3852 2.55
1.0 100 0.3600 0.3604 0.08 1.9700 2.0092 1.95

Shaw44

0.864 30.886 0.2580 0.2604 0.88 2.1796 2.2352 2.50
0.864 33.461 0.2628 0.2660 1.22 2.1212 2.1828 2.84
1.2 34.840 0.6508 0.6268 −3.84 4.2648 4.2032 −1.46
1.2 39.596 0.6388 0.6144 −3.99 4.0396 3.9880 −1.30
1.2 44.633 0.6260 0.6020 −3.96 3.8392 3.8000 −1.04
1.2 49.946 0.6124 0.5904 −3.78 3.6600 3.6336 −0.72
1.2 55.533 0.5992 0.5788 −3.51 3.4980 3.4856 −0.36
1.2 61.386 0.5856 0.5676 −3.17 3.3516 3.3528 0.04
1.2 66.806 0.5740 0.5580 −2.83 3.2328 3.2456 0.40
1.2 73.142 0.5612 0.5480 −2.41 3.1104 3.1356 0.80
1.2 78.978 0.5500 0.5392 −2.03 3.0104 3.0456 1.16
1.2 84.998 0.5396 0.5308 −1.65 2.9180 2.9628 1.52
1.2 91.197 0.5296 0.5228 −1.28 2.8324 2.8860 1.86
1.2 97.567 0.5200 0.5152 −0.91 2.7532 2.8144 2.18
1.2 104.100 0.5108 0.5080 −0.56 2.6792 2.7476 2.49
1.2 110.790 0.5020 0.5008 −0.22 2.6108 2.6856 2.78
1.2 117.630 0.4936 0.4940 0.10 2.5468 2.6272 3.06
1.2 124.612 0.4856 0.4876 0.39 2.4872 2.5724 3.31
1.2 130.835 0.4788 0.4820 0.64 2.4384 2.5272 3.52
1.2 136.249 0.4736 0.4776 0.83 2.3984 2.4900 3.68

Hansen43

0.2 100 0.0360 0.0360 −0.22 0.2212 0.2220 0.37
0.4 100 0.0852 0.0856 0.61 0.5048 0.5112 1.18
0.5 100 0.1152 0.1168 1.62 0.6752 0.6888 1.98
0.666 100 0.1752 0.1804 2.99 1.0072 1.0416 3.34
1.0 100 0.3608 0.3604 −0.19 1.9500 2.0092 2.95
1.33 100 0.6480 0.6332 −2.35 3.3600 3.3848 0.73
1.4 100 0.7340 0.7056 −4.01 3.7600 3.7340 −0.70
2.0 100 1.7672 1.6912 −4.49 8.5000 7.9824 −6.48
2.22 100 2.3460 2.3796 1.41 11.1000 10.8560 −2.25
2.38 100 2.8872 3.0164 4.28 13.4600 13.5900 0.96
2.5 100 3.3040 3.4824 5.12 15.2900 15.6500 2.30

in the supplementary material], which are due to the other 10 bell
functions.

Percent assessments of any errors like in Thol et al.17 are
avoided here because values of Ar

00, Ar
01, and Ar

10 change sign
as a function of ρ∗–T∗, leading to infinity deviations in these
regions.

FIG. 7. Residuals for the EOS at low ρ∗: (a) Ar
01 − Ar EOS

01 and (b) Ar
10 − Ar EOS

10 .
At the shown conditions, the residuals are basically the noise of the simulation.
Contours are isolines of Ar

mn − Ar EOS
mn . Legend for blue line as in Fig. 1.

VII. CONCLUSION
Based on the thermal virial equation up to the order Bi≤6, an

EOS for the LJ fluid was formulated. The required thermal virial
coefficients are fitted to simulations available in the literature. The
nonconvergent behavior of the thermal virial equation in the liq-
uid region is compensated by fitting correction functions to a large
set of Monte Carlo simulations over a large density and temper-
ature range (0.002 < ρ∗ < 1.41, 0.4 < T∗ < 25). These functions
have the same mathematical form as the thermal virial coefficients,
but are only empirical correction terms. Gaussian bell-shaped func-
tions are completely avoided. In addition, the dependency on ρ∗ and
T∗ of the EOS is strictly separated due to the virial approach. The
EOS can be extrapolated to extreme conditions (at least, ρ∗ < 2.5,
T∗ < 140). In the heterogeneous region (MC yielding more than 1
phase) of the liquid-vapor phase field, the EOS seems to be accessible
above T∗ > 0.8.

SUPPLEMENTARY MATERIAL

The supplementary material contains Figs. S1(a)–(c) and
S2(a)–(d), the formulation of Ao

00 and Ar
00, and their respective
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derivatives Ao
mn and Ar

mn (m ≤ 3 and n ≤ 3) for use in Eq. (8), the
required implementation of the modified Bessel function used in
Eq. (18), and an Excel spreadsheet containing the MC-results includ-
ing errors for U∗, p∗, and T∗config as well as thereof the resulting values
of Ar

00, Ar
01, and Ar

10 and their respective errors.
The supplementary material also contains code for the residual

part of the EOS and their derivatives in C and C++ as a function or a
class, respectively, and as well as a Mathematica package.

Table S1 provides numerical values for Ar
00, Ar

10, Ar
20, Ar

01, Ar
11,

Ar
21, Ar

02, Ar
12, and Ar

22, which can be used for the verification of
computer codes.
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