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Abstract
Forecasting crop yields is becoming increasingly important under the current context inwhich food
security needs to be ensured despite the challenges brought by climate change, an expandingworld
population accompanied by rising incomes, increasing soil erosion, and decreasingwater resources.
Temperature, radiation, water availability and other environmental conditions influence crop growth,
development, andfinal grain yield in a complex nonlinearmanner.Machine learning (ML)
techniques, and deep learning (DL)methods in particular, can account for such nonlinear relations
between yield and its covariates. However, they typically lack transparency and interpretability, since
theway the predictions are derived is not directly evident. Yet, in the context of yield forecasting,
understandingwhich are the underlying factors behind both a predicted loss or gain is of great
relevance. Here, we explore how to benefit from the increased predictive performance ofDLmethods
whilemaintaining the ability to interpret how themodels achieve their results. To do so, we applied a
deep neural network tomultivariate time series of vegetation andmeteorological data to estimate the
wheat yield in the IndianWheat Belt. Then, we visualized and analyzed the features and yield drivers
learned by themodel with the use of regression activationmaps. TheDLmodel outperformed other
testedmodels (ridge regression and random forest) and facilitated the interpretation of variables and
processes that lead to yield variability. The learned features weremostly related to the length of the
growing season, and temperature and light conditions during this time. For example, our results
showed that high yields in 2012were associatedwith low temperatures accompanied by sunny
conditions during the growing period. The proposedmethodology can be used for other crops and
regions in order to facilitate application ofDLmodels in agriculture.

1. Introduction

The Food and Agriculture Organization (FAO) of the
United Nations estimates that 50% more food needs
to be produced by 2050 in order to feed the increasing
world population (FAO 2017). However, the ongoing

efforts to increase food production are curbed by
climate change, which has already impacted global
mean yields of major crops in the last decades, and is
further projected to negatively affect food security
(FAO, IFAD, UNICEF, WFP and WHO 2018, Mbow
et al 2019). It is therefore crucial to not only accurately
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predict crop yield, but also to model and characterize
the processes involved by understanding the meteor-
ological drivers of crop yield variability.

Meteorological variables influence crop growth,
development, and final grain yield in a nonlinearman-
ner and often with complex interactions (Siebert et al
2017, Akter and Rafiqul Islam 2017). These variables
are accounted for in both process-based as well as sta-
tistical models to estimate crop yield (e.g. Lobell et al
2011, Iizumi et al 2018). While process-based models
require detailed (and not always available) informa-
tion on the farmers’ practices, recent increase in the
availability of global satellite observations and
advancements in statistical methods have fueled the
application of machine learning (ML) models at var-
ious scales (e.g. Lobell et al 2011, Guan et al 2017, Cai
et al 2019). In particular, such models may have the
capability of accounting for additional factors redu-
cing growth and yield (e.g. pests, diseases, weeds and
other perils).

In order to better exploit the wealth of information
in the meteorological and satellite-derived vegetation
data, we propose to apply convolutional neural net-
works (CNNs), a class of deep learning (DL) models
(Goodfellow et al 2016, LeCun et al 2015). DL meth-
ods promise great advances in Earth observation and
geosciences (Reichstein et al 2019), as they can account
for the large size of the input datasets, nonlinear rela-
tions, and interconnections among multiple variables.
Since CNNs can learn the features directly from the
data, this approach does not depend on the manual
selection of specific parameters.

A major shortcoming of ML methods in general,
and of DL methods in particular, is that the learned
relations are hidden under very complicated predic-
tion functions. However, recent years have seen the
emergence of a whole field of ML called ‘Explainable
Artificial Intelligence’ to face this issue (Miller 2019),
and techniques and methodologies have been intro-
duced to study what the ML/DL models are learning
(Montavon et al 2018). In this work, we focus on an
efficient method to explain the model predictions
called regression activation mapping (RAM) (Zhou
et al 2016, Wang et al 2017, Wang and Yang 2017).
RAM contains the immediate information for the final
prediction, but also maintains the correspondence to
the input data in the time (or spatial) dimension and
shows the contribution of each time (or space) instant
to the final output. As a result, we not only benefit
from DL in terms of improvements in the model per-
formance, but we specifically focus on evaluating the
underlying drivers, thereby placing confidence in the
model as well as gaining insight into the relevant con-
ditions leading to crop yield variability.

Here, we focus on the wheat yield estimation in the
IndianWheat Belt, where concerns of yield stagnation
have risen due to increasingly inconsistent growth
trend of wheat yields in recent years (Ray et al 2012,
Tripathi and Mishra 2017). High temperature has

been identified as the most detrimental factor, affect-
ing both crop growth and grain formation (Lobell et al
2012, Jain et al 2017), but also heavy and untimely
rainfall and hailstorm events have caused large-scale
damages to the crops (Singh et al 2017). Finally, cloudy
weather with high humidity and low temperatures
increases chances of wheat diseases (e.g. wheat rusts
and spot blotch) (Duveiller et al 2007, Kaur et al 2015),
which have been spreading in India (Hodson 2011). In
addition, in the specific case of the double cropping
system in India (typically rice-wheat), the timing of
wheat sowing may be suboptimal because it is condi-
tioned by local farming practices and by the timing of
the rice harvest (Global Information and Early Warn-
ing System on Food and Agriculture (GIEWS) 2019).
As the Indian Wheat Belt poses many challenges
regarding complex processes and nonlinearities, it
constitutes a good scenario to evaluate our approach
that could be eventually used in other similar settings.

Therefore, the aims of the paper are two-fold:
(1) to develop a DL model for wheat yield estimation
and evaluate its application for within-season yield
forecast, and (2) to scrutinize what this model learned
by visualizing and interpreting the drivers of yield esti-
mation. This knowledge extraction process may have
implications in further crop management actions, as
well as interactions with stakeholders and farmers.

2.Materials andmethods

Our analysis was performed in the Indian Wheat Belt
region, which supplies around 70% of India’s total
wheat production (figure 1). We estimated district-
level crop yield using as input a set of time series of
meteorological and satellite-derived vegetation vari-
ables at a daily resolution that are summarized in
table 1 and described in S1. In our analysis, we used
three vegetation indices (VIs): the normalized differ-
ence vegetation index (NDVI) (Tucker et al 1985), the
normalized difference water index (NDWI)
(Gao 1996), and near-infrared reflectance of vegeta-
tion (NIRv) (Badgley et al 2017); and seven environ-
mental variables: minimum, mean and maximum air
temperatures (Tmin, Tmean, Tmax), downward short-
wave radiation flux (SWdown), water vapor pressure
deficit (VPD), precipitation, and day-length (table 1).
Pixel level values of input variables were spatially
aggregated to the district level as the weighted average
according to fractional area occupied by wheat in each
pixel (S1 in the supplementary information, available
online at stacks.iop.org/ERL/15/024019/mmedia).

The DL models (CNN) and the baseline models
(ridge regression, RR, and random forest, RF) were
trained and tested on the dataset of 143 districts over
13 years (2001–2013) (S2). The time range of the ana-
lysis was determined by the availability of both
MODIS imagery and wheat yield data for all states. In
the standard setup, all districts were pooled together
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and a separate model for each year was calculated,
where data from this year were used for testing and
data from the rest of the years were used for training.

The CNN model stacked one-dimensional con-
volutional layers (Conv1D) along time dimension and
max pooling layers (MaxPool1D) with a window size
of five (figure 2(a)). After the second Conv1D, the data
were fed into a global average pooling layer (GAP),
which computed the mean in the time dimension for
each variable. Finally, a simple linear layer was applied
to obtain thefinal yield prediction.

We propose to use RAMs as a tool to visualize and
interpret how the CNN models achieve their results.
Activation mapping has been previously applied for
image analysis in the classification (Zhou et al 2016) and
regression problems (Wang and Yang 2017). Here, we
show their application on time series data, as inspired
by the application of class activation map to interpret
the temporal data inWang et al (2017). For a time series
input, the RAM is another time series such that its aver-
age over time (plus bias) corresponds to the predicted
output value. As a result, RAM contains the immediate
information for the final prediction, but also maintains
the correspondence between the last convolutional
feature maps and the input data in the time dimension.
RAM is calculated by combining the convoluted data
that is fed into GAP layer with the weights of the final
linear layer (figure 2(b)). In particular, if {z1,t, K, zd,t}
are the input time series to the GAP layer, the output of
the GAP layer is the mean over the time dimension

å z
T t i t
1

, for each time series iä{1,.., d}. The final yield
prediction (ŷ ) is then the linear combination of those
averaged time series:

å å= +y
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1
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i
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where wz,i and bz are respectively the weights and the
bias of the output linear combination. In this setting,
we define theRAM (rt) as the following time series:

å=r z w . 2t
i

d

i t z i, , ( )

RAM satisfies that = å +y r b
T t t z
1ˆ . Hence the RAM

value at a given time step rt can be interpreted as an
estimation of the derivative of the output w.r.t. time,
»r dy dtt ˆ , and the final estimation as the integral of

RAM, ò=y r t dt
T

1ˆ ( ) .

Themodels were applied directly to themultivariate
time series of input variables (VIs and meteorological
data). The time period analyzed corresponded to
245 days, starting from October 1st, that cover the rabi
growing season when wheat is grown. As a result, each
input for the DL model was a tensor of size (245, nvars),
where nvars is a number of input variables that varied
depending on the experiment. In case of the baseline
models, the daily data was reshaped into vectors
(of length ´ n245 vars). Afterwards the baseline models
were trained using those vectors as input and the final
yield as output. Application of RR and RF to monthly
averages slightly increasedmodel performance (S3).

The model performances were compared among
CNNs, as well as the baseline models for three different
combinations of the input data, with two, five or ten
input variables using the time series data only (‘No dis-
trict’), as well as using additionally the district informa-
tion as input (‘Incl. district’) as in amixed-effects model
(Wu 2009). Specifically, in the ‘Incl. district’ setting, we
added a district-dependent bias in the last layer of the

Figure 1.The study area of the IndianWheat Belt region. The rabi season cropland fraction for season 2007–08 is shown for the four
wheat producing states used in this study (Punjab,Haryana, Uttar Pradesh, Bihar) in green. The circles represent the wheat yield for
the districts (delineated in gray) for the same season.
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Table 1.Main characteristics of the data used in this study.Most of the datawas downloaded using theGoogle Earth Engine (GEE) cloud computing platform (Gorelick et al 2017).

Category Variables Spatial resolution Temporal resolution Source

Satellite observations of vegetation NDVI,NDWI,NIRv calculated fromMODISBands

1, 2 and 7

500 m 16 day resolution, 1 day sampling MODISMCD43A4V6, exported fromGEE

Meteorological data Tmin,Tmean,Tmax, SWdown, VPD 0.25° 3 h, aggregated to daily values GLDAS-2.1, exported fromGEE

Precipitation 0.05° Daily CHIRPS, exported fromGEE

Day-length District Daily Calculated between civil twilight before the sunrise and the end of civil twi-

light after the sunset

Crop fraction Rabi seasonwheat crop fraction 5000 m Yearly Annual CroplandDatasets ofNational Remote SensingCentre in India

Wheat yield data Rabi seasonwheat yield District Yearly Indiastat
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CNNmodel that was fitted during the training process.
The district information was represented in RR as an
additional binary class matrix, and in RF—as a catego-
rical variable. The best model architectures and hyper-
parameters were determined as described in S3. In addi-
tion, we compared the model performance to the null
model, in which the yield for each district for every year
was calculated as the average of yields from the other
available years in the input dataset for this district (e.g.
yield for the district Patiala in 2006 was calculated as the
mean of yields in Patiala for years 2003–2005 and
2007–2013). As a next step, to evaluate what input para-
meters were themost important for the wheat yield esti-
mation, we run ensembles of five CNN models in two
simple sets of varying combinations of input variables:
(1) with one variable only (for all ten variables); and
(2) with two variables: VI + one meteorological para-
meter (21 combinations).

Finally, twomodels where selected for RAM calcu-
lations and visualizations: CNN with two input vari-
ables, NDWI and Tmin (CNN2), as well as all ten input
variables (CNN10), both including district informa-
tion. These models were run in model ensembles of
ten members each. In addition to creating a separate
model for each year (as previously), we also re-trained
these models on all the input data (CNN 2,all and
CNN 10,all) in order to compare RAMs across different
years createdwith the samemodel weights.

Because our study compares many different mod-
els, we chose to use a single evaluation metric to sim-
plify the process of model selection and the
presentation of the results. The selected metric is the

Nash–Sutcliffe efficiency (NSE) (Nash and Sut-
cliffe 1970), that provides an indication of the good-
ness of fit and can range from -¥ to 1, with the best
possible score (1.0)meaning that modeled crop yields
are equal to reported ones.

3. Results

3.1. Performance of themodels
The performances measured as NSE for different
models and input datasets are compared for all years
averaged and for one year separately (2012) in table 2.
The results for 2012 were shown to demonstrate that
the overall good performance among all years does not
necessarily guarantee accurate predictions for abnor-
mal years. 2012 was a peculiar year characterized by
very high yields compared to average (figure S8), as
indicated by poor performance of the null model
(table 2). CNNmodels provided the best results overall
(best NSE of 0.868 among all years in the ‘Incl. district’
setting, compared to the best NSE of 0.757 for RR and
0.836 for RF) that were stable among model runs (S4),
which shows applicability of such models to dense
time series for yield estimation. The null model was
already a good predictor for the yield among all years
(NSE of 0.812) and it performed better than anymodel
that excluded district information, as the majority of
the yield variation came from the spatial variation (S5).
However, when considering the abnormal year 2012,
the null model performed much worse than the other
models (NSE of 0.288), which demonstrates the

Figure 2.Convolutional neural network (CNN) architecture used in this study (a) and regression activationmapping (b). The
numbers reflect the input data size, size of features during themodel processing, and number of thefilters used in theCNNmodel
(with 10 input variables and district information, as in table S2), where the input for theDLmodel was a tensor of size (245, 10), where
245 corresponds to the length of the analyzed time period and 10 is the number of input variables.
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importance of using satellite observations to estimate
yields for atypical years.

3.2. Impact of input variables on themodel
performance
Performance of CNNs improved with the increase in
the number of input parameters, both in terms of the
best performing models, as well as among all tested
model settings (table 2). When testing models with
one or two variables to evaluate the parameters
importance, the model performance and variable
ranking were not consistent among the years, with
2012 showing the worst performance (figures 3 and 4).
The models performed much better and had a smaller
performance variation if the information on the
district was included. However, in 2012, some model
combinations gave better results without district
information, which is related to the fact that the null
model performed poorly for this year.

In case of models with one variable only and no
district information (‘No district’ in figure 3), VIs per-
formed better among all the parameters (and NDWI
the best). Models with day-length as the only variable
had a very good performance, even though this

parameter does not carry any information about the
crop condition. It suggests that the model was actually
trying to learn the specific day-length patterns related
to districts, as yields have a clear spatial pattern in this
region (figure 1) that is somewhat similar to the latitu-
dinal distribution of day-length (figure S9).

When the district information was fed into the
model (‘Incl. district’ in figure 3), the best performing
model across all years was the one using NDWI, fol-
lowed closely by SWdown and other VIs. The good per-
formance of NDWI and SWdown was reproduced for
models with two variables (figure 4). However, this
behavior was not consistent among all the years for
neither one- nor two-variable models. Good perfor-
mance of NDWI and SWdown in 2012 (figures 3 and 4)
could be a leading factor responsible for their high
overall ranking, as the differences among the models
in this year were much larger than for other years. For
example, in case of 2002, the ranking of pairs includ-
ing NDWI and SWdown were among the worst, but the
general variability was very small. These results suggest
that accounting for various parameters is important,
as the conditions that limit or boost the crop yields
vary among the years.

3.3. RAMs and their sensitivity to input variables
Overall, the main features of RAMs were the same for
all the ensemble members (figure 5), as well as for the
models re-trained on all the input data (CNN 2,all and
CNN10,all). We compare in detail RAMs of the district
Patiala for 2006, for selected CNN models using two
(CNN 2,all) or ten (CNN10,all) input variables in
figures 6(a)–(b). As mentioned before, the average of
RAM plus bias (bias both of the whole model and the
district-specific, seeS6), equals the estimated yield. Even
though RAMs are products of the complex nonlinear
interactions of the input data, some basic patterns can
be directly inferred. For example, the overall shape of
RAMs is closely related to the growing cycle as shownby
NDWI. In case of the 2-variable model (figure 6(a)), all
observed temporal patterns of RAM can be related to
NDWIorTmin, as thesewere the only input parameters.
As a result, a small dip in RAM around day 100 can be
associated with the increase in Tmin, as NDWI during
this time was steadily increasing, which suggests the
negative impact of higher Tmin on the crop yield. To
support this claim, wemodifiedTmin and calculated the
resulting changes in RAMs as shown infigure 6(c). Two
small changes were performed on theTmin data—in the
first case we removed the Tmin peak around day 100
(shown in blue infigure 6(c)) and in the second case, we
increased Tmin around day 150 (shown in yellow in
figure 6(c)). The changes in the resultingRAMs—which
directly relate to changes in the estimated yield—are
highlighted in blue and yellow in figure 6(c). The
decrease in Tmin led to the increase in RAM and
removed the previously observed dip. On the other
hand, increase inTmin led to a similar decrease in RAM,

Table 2.Yield estimation performance for the test
sub-sets usingCNNs, ridge regression and random
forest at their best performing architectures for
different input variables combinations: 2 input vars.
(NDVI+Tmin), 5 input vars. (NDVI,NDWI,Tmin,
SWdown, VPD), 10 input vars. (NDVI,NDWI,NIRv,
Tmin,Tmean,Tmax, SWdown, VPD, precipitation, day-
length). Excluding or including district information
(+ district) refers to ‘Nodistrict’ or ‘Incl. district’
settings, respectively.

Model input vars.
NSE

All years 2012

CNN 2 0.663 0.251

CNN 5 0.740 0.494

CNN 10 0.788 0.625

CNN 2+ district 0.830 0.532

CNN 5+ district 0.862 0.741

CNN 10+district 0.868 0.743

RR 2 0.734 0.418

RR 5 0.744 0.436

RR 10 0.756 0.432

RR 2+ district 0.737 0.421

RR 5+ district 0.746 0.438

RR 10+district 0.757 0.434

RF 2 0.704 0.338

RF 5 0.744 0.443

RF 10 0.754 0.481

RF 2+ district 0.827 0.493

RF 5+ district 0.831 0.480

RF 10+district 0.836 0.453

Nullmodela 0.812 0.288

a Null model is calculated for each district for every

year as the average of yields from the remaining

available years in this district.
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Figure 3.Model performance (NSE) for ensembles of fiveCNNmodels with only one variable as the input for selected years and
averaged among all years. The results for twomodel settings are tested: ‘Nodistrict’ is using only one bias in thewholemodel in the
final layers, while in case of ‘Incl. district’ a bias per district (time-independent) is additionally fitted during the training process.

Figure 4.Model performance (NSE) for ensembles of fiveCNNmodels with only two input variables (VI+meteorological variable)
for selected years and averaged among all years. Only results formodels including district information (‘Incl. district’) are shown.

Figure 5.Variability of regression activationmaps calculated for different districts and years for differentmembers in amodel
ensemble of tenwith ten input variables (a)–(c) or in amodel ensemble of tenwith two input variables (d)–(f). The thin green lines
(‘one year’) correspond tomodels calculated for one year using other years as training, red lines (‘all years’) correspond tomodels
trained on thewhole dataset, while the thick dashed lines (Mean of ‘all years’) correspond to the average of the ‘all years’models.
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and therefore a decrease in the yield. However,
analogous Tmin modifications for CNN10,all resulted in
different magnitudes of changes in RAMs due to
decrease or increase in Tmin. The increase in Tmin

towards the end of the growing season had a much
bigger impact on RAM than the decrease inTmin earlier
in the growing season, which led to a positive but very
small change inRAM.

To better identify the parameters and features that
led to certain responses in RAMs, we compared selec-
ted input variables and RAMs for Patiala for two very
different years: the year 2006, when the yield was quite
poor (4.233 t/ha), and 2012, when the yield was very
good (5.473 t/ha) in figures 7(a) and (b). In 2006,
RAM demonstrated overall lower values and many
strong drops, while in 2012, RAM showed consistently
high values despite not much higher VIs. To analyze
the drivers of this variability, we exchanged, one in
turn, four input variables (Tmin, Tmax, SWdown, pre-
cipitation) among 2006 and 2012 to check how this
would affect changes in both RAMs and estimated
yields (figures 7(c)–(j)). For example, SWdown was
mostly responsible for creating the dips in RAMs in
2006 for Patiala—as many of them were filled when
SWdown from 2012 was used, especially the big drop
around day 160 (figure 7(g)). Overall, the yield in 2006
increased using any of the input parameters from
2012, but the highest increase was observed for Tmax,
followed by SWdown, Tmin and only slightly for pre-
cipitation. The same rank of variables in terms of the
magnitude of the impact was observed in the case of
modifying the input variables in 2012.

Similar features were consistent among all districts
in 2006 and 2012, as shown by anomalies (positive in
red, negative in blue) in RAM, NDWI, Tmax, Tmin and
SWdown in figure 8. In general, these years were rela-
tively sunny, but in 2012, both Tmax and Tmin had
strong negative anomalies during the second half of
the growing season. The rapid and short negative
anomalies in RAMs were usually related to negative

anomalies in SWdown (highlighted with green boxes),
which sometimes were also accompanied by positive
anomalies in Tmin (as cloudy skies capture the long-
wave radiation emitted by Earth at night). It is noted
that this link may lead to a wrong interpretation of the
effect of Tmin, when considered alone (e.g. a model
with Tmin as the only weather input). Positive anoma-
lies in RAM in 2012 were connected to strong negative
anomalies inTmax and Tmin (highlighted withmagenta
boxes).

3.4. Predictive skill of CNNs
We examined if our CNN model could be potentially
useful for predicting the yield during the growing
season by analyzing the impact of shortening the input
time series in 25-day steps on the model performance.
As compared to the null model, CNN10 had better
prediction fromday 145, which corresponds to the last
week of February (figure 9), In general, the month of
February is the time of the anthesis stage, conditions
during which are crucial for the final crop yield.
Therefore, covering this time period is essential for a
good yield estimation. Fromday 195 (middle of April),
which widely corresponds to the harvest time in this
region, the model performance did not increase.
This suggests that after harvest the additional data
were not useful anymore for the yield estimation.
Although this may seem trivial, it is nevertheless
important thatmodel performance appears insensitive
to post-harvest data, as adding such data could occur
whilst in an operational context.

4.Discussion

4.1. Application ofDLmodels for yield estimation
Even though our DL modeling approach was con-
strained by the requirement for network explainability
(global pooling layer after the convolutional layers to
facilitate RAMs), it outperformed RF and RR in the

Figure 6.Regression activationmaps for Patiala (2006) formodels with input of two (CNN 2,all) and ten (CNN 10,all) variables. Original
RAMs ((a) and (b)), and changes in RAMs due tomodification in Tmin ((c) and (d)) are shown. Colorful lines reflect the changes in
Tmin, while the highlighted areas correspond to changes in RAMs (that are directly transferred into changes in the estimated yield).
Tmin andNDWI are scaled (as the input toCNNs).
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yield estimation task, though RF provided a strong
performance improvement as compared to RR.
Although DL models are already widely used for a
variety of problems in image and signal processing
domain (LeCun et al 2015), DL applications for crop
yield estimation are still rare (e.g. You et al 2017,
Crane-Droesch 2018), as the transfer of available tools
from the field of ML into the environmental applica-
tions requires adaptations that account for specificities
of the data. Our results demonstrate that CNNs can be
a valid tool for capturing complex processes in
agricultural systems, and their application can be
therefore further explored for other crops and regions.

4.2. Impact of environmental conditions on the crop
yield as captured byDL
To generalize well in the yield estimation problem, it is
important to train models over several years and
simultaneously account for multiple vegetation and

environmental variables, as themain yield drivers vary
among seasons. Since many of the input variables in
the crop yield models are correlated and inter-related,
multiple parameters should be consideredwhen trying
to understand the impact of variables on the crop yield
in the model. For example, the impact of Tmin varied
depending on whether it was the only input meteor-
ological variable or one ofmany (figure 6).

RAM’s general shape reflected VIs, which empha-
sizes the importance of the length of the growing per-
iod and agrees with previous studies (Lobell et al 2012,
Jain et al 2017). Meteorological variables used together
with VIs are expected to have only a marginal contrib-
ution to yield estimation, as their impact is already
reflected by vegetation growth that is captured by VIs.
Overall, SWdown turned out to be the most important
meteorological variable for yield estimation, even
though the ranking varied significantly among the
years. Comparison of performances among models

Figure 7.Regression activationmaps for Patiala for themodel with input of ten variables (CNN 10,all). Original RAMs and scaled input
data for year 2006 (a) and year 2012 (b).Modified input data andRAMs for year 2006 (c), (e), (g), (i) and 2012 (d), (f), (h), (j).Modified
input parameters (imported from the other year) are shown in dashed red lines (c)–(j). Input parameters shown are scaled (z-score,
therefore unitless), while RAMs represent the intermediate step of the data processed in themodel (in general unitless, but practically
related to the yield in the yield units).
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with one or two input variables, as well as the RAM
analysis, showed that high yields in 2012 were asso-
ciated with low temperatures accompanied by sunny
conditions during the growing period, though most
recent studies focus primarily on the impact of
increasing temperatures in the IndianWheat Belt (e.g.
Duncan et al 2014, Jain et al 2017, Song et al 2018) and
in other regions (Lobell et al 2005). As an important
driver of photosynthesis, SWdown affects the resources

that crops can build during the growing season, which
is apparently not fully reflected in the VIs. High radia-
tion levels are also especially important during the cri-
tical period for grain number determination (20–30
days before anthesis to ten days afterwards)
(Fischer 1985). Analysis of RAMs showed that the
model was trained to recognize events of decreased
light as having negative impact on the crop yield,
which suggests that the decline of photosynthesis due

Figure 8.Anomalies of RAMs and selected input variables for all districts for the years 2006 and 2012. Time series for each district are
shown as rows, and columns correspond to time steps. Starting from the top, districts are located in states of Punjab,Haryana, Uttar
Pradesh andBihar. The anomalies were calculated by subtracting district-specificmulti-year averages from the scaled data for the
given year. Positive anomalies are shown in red, negative in blue. The strong and rapid negative anomalies in RAMs that could be
related to negative anomalies in SWdown are highlighted in green rectangles, while positive anomalies in 2012 that could be related to
strong negative anomalies inTmax andTmin are highlighted inmagenta rectangles.

Figure 9.Model performance (NSE) as a function of changes in the end limit of the input data among all years. OneCNN 10 modelwas
retrained for each year separately for the input data shortened in 25-day steps. The shaded range of values corresponds toNSE
variability among different years.
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to decreased radiation was larger than the benefit due
to increased diffused light. This agrees with the nega-
tive effects associated with a reduction in sunlight
shown on a global scale (Proctor et al 2018). Decreased
penetration of sunlight for the crop has already spur-
red demand for breeding for high photosynthetic or
radiation-use efficiency (Joshi et al 2007). These obser-
vations also suggest that sun-induced fluorescence
could be a good direct proxy for the crop yield, as it
carries information on light conditions, and was pre-
viously shown to performbetter thanVIs for yield esti-
mation (Song et al 2018). Although NIRv was found
superior to other VIs for estimating GPP (Badgley et al
2017), we did not detect any benefit of using it for the
yield estimation.

4.3. Physical interpretability of RAMs
Thenovelty of our approach extends beyond obtaining
a satisfactory model performance, as we adapted the
activation mapping to the regression problem for the
temporal data in order to localize important patterns
for the yield estimation. The analysis of RAMs applied
in the time dimension facilitates DL network inter-
pretability and provides the needed transparency on
what DL models learn and how they accomplish their
prediction. Analysis of the different patterns in RAMs
can provide a consistent description of how the
network captures the weather effects in relation to the
temporal progression of the crop, and can ultimately
lead to a valid physical interpretation. The natural way
to interpret RAMs is to regard it as a kind of derivative
of the yield function in time. In the global pooling layer
this function is then integrated out by the network to
estimate the crop yield, which as a result reflects the
accumulated effects of crop growth and meteorologi-
cal conditions. Thus, the application of RAM allows
for an instinctive analysis of how certain events in the
time domain impact the estimated crop yield and
enables a comparison with known drivers. In our case,
RAMs were roughly reflecting the development of the
crop and at the same time were sensitive to the
variability of meteorological conditions, which some-
how reflects the basic approach of relating yield to the
accumulated biomass. Such an approach can increase
the confidence in the model (as it captures the
processes that are expected to be relevant), but might
also draw attention to so far neglected features or
model weaknesses. For example, although high tem-
peratures leading to low yields are often considered in
the Indian Wheat Belt, the importance of sunny
conditions for good yields is rather neglected. On the
other hand, RAMs varying towards the end of the
analyzed time periodmight suggest that the model has
not completely learned to ignore the time after the
harvest. In general, the proposed methodology facil-
itates the application of DL in agriculture, not only to
improve yield estimation and prediction but also to
gain insight into the key drivers of crop yield.
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