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ABSTRACT

A network of fossil subduction plate inter-
faces preserved in the Central Alps (Val Malenco, 
N Italy) is herein used as a proxy to study defor-
mation processes related to subduction and 
subsequent underplating of continental slices (in 
particular the Margna and Sella nappes) at depths 
reported to in the former brittle-ductile transition. 
Field observations, microfabrics, and mapping 
revealed a network of shear zones comprising 
mostly mylonites and schists but also rare foliated 
cataclasites. These shear zones are either located 
at the contacts of the two nappes or within the 
boundaries of the Sella unit. Microprobe results 
point to two different white mica generations, with 
higher-pressure (Si-rich) phengites rimming low-
er-pressure (Si-poor) phengites. Garnet is locally 
observed overgrowing resorbed pre-Alpine cores. 
Pressure-temperature estimates based on pseudo-
section modeling point to peak burial deformation 
conditions of ~0.9 GPa and 350–400 °C, at ~30 km 
depth. Rb/Sr geochronology on marbles deformed 
during the Alpine event yields an age of 48.9 ± 0.9 
Ma, whereas due to incomplete recrystallization, 
a wide range of both Rb/Sr and 40Ar/39Ar apparent 
ages is obtained from deformed orthogneisses and 
micaschists embracing 87–44 Ma.

Based on our pressure-temperature, structural 
and geochronological observations, the studied 
shear zones last equilibrated at depths downdip 
of the seismogenic zone in an active subduction 
zone setting. We integrate these new results in 

the frame of previous studies on other segments 
of the same Alpine paleosubduction interface, 
and we propose that this system of shear zones 
represents deformation conditions along the sub-
duction interface(s) in the transition zone below 
the seismogenic zone during active subduction.

■■ INTRODUCTION

Subduction zones commonly evidence strong 
interplate coupling and large magnitude earth-
quakes in the seismogenic zone (e.g., Hyndman 
et al., 1997; Conrad et al., 2004; Heuret and 
Lallemand, 2005). Investigating deformation pro-
cesses taking place along and in the vicinity of 
their interface can shed light on properties such 
as the distribution of seismicity or the effective 
rheology along the interface (e.g., Stöckhert, 2002; 
Herrendörfer et al., 2015). Exhumed suture zones 
are important targets since they enable a direct 
insight on ancient subduction settings and provide 
opportunities to access the long-term record of 
subduction zone deformation (e.g., Ernst and Dal 
Piaz, 1978; Platt, 1986; Stöckhert, 2002; Agard et 
al., 2018). Metamorphic rocks from ancient sutures 
may yield information on how rock fabrics evolve 
with depth from shallow brittle seismogenic faults 
(Sibson, 2013; Yamaguchi et al., 2014; Saffer and 
Wallace, 2015) to deeper tremorgenic regions and 
beyond (Angiboust et al., 2015; Obara and Kato, 
2016; Webber et al., 2018). While the shallow seg-
ments of the plate interface have been extensively 

documented thanks to a wealth of well-exposed 
key localities (Kitamura et al., 2005; Vannucchi 
et al., 2008; Bachmann et al., 2009b; Rowe et al., 
2013), our understanding of deeper deformation 
processes (20–40 km depth) is hampered by the 
scarcity of direct observations on localities devoid 
of exhumation-related tectonic imprint. Even rarer 
is the natural record of deformation along the 
hanging wall of a subduction interface.

The European Central Alps represent a remark-
able natural laboratory giving the opportunity to 
(nearly) continuously document hanging-wall 
processes from shallow levels exposed in Arosa 
and Engadine regions (Bachmann et al., 2009a, 
2009b) down to deeper segments exposed in 
the Dent Blanche and Sesia complexes (Trümpy, 
1975; Konrad-Schmolke et al., 2011; Angiboust et 
al., 2015; Jaeckel et al., 2018; Fig. 1). The subduc-
tion and accretion of continental slivers from the 
stretched Apulian margin over several millions of 
years against the Apulian buttress gave rise to the 
Austroalpine domain (Compagnoni et al., 1977; 
Dal Piaz et al., 2003). This composite nappe stack 
comprises individual slices separated by localized 
shear zones interpreted as transient slip interfaces 
and where local brittle and semi-brittle deforma-
tion patterns have been reported (Polino et al., 
1990; Babist et al., 2006; Angiboust et al., 2014, 
2015; Locatelli et al., 2018; Menant et al., 2018). 
While the Arosa-Engadine as well as Dent Blanche 
regions have been extensively investigated in 
the frame of the subduction interface model, the 
southern end of the Austroalpine complex in the 
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Figure 1. (A) Geological map of the Western and Central Alps showing the location of the Austroalpine nappes with respect to surrounding tec-
tonic units. The studied area is located in the black box in the Val Malenco region. Inset: Paleogeographic reconstruction along the NW margin 
of the Apulian plate. Dent Blanche, Sesia, Margna, and Sella nappes are interpreted as extensional allochthons derived from the Apulian margin 
(modified from Froitzheim and Manatschal, 1996). (B) Geological map of the Val Malenco, modified from Montrasio et al. (2005). Shades of ma-
genta colors represent units belonging to Sella nappe, beige to Margna nappe; also shown are the Malenco ultramafics (greenish) and the Bernina 
nappe (light brown). Black circles denote the sampling localities (e.g., #01* includes samples #01A, #01B, and #01F). For exact location, see also 
Table 1. Line A–Aʹ shows the position of the cross section in Figure 2B.
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Central Alps (Malenco region) remains unexplored 
despite its potential importance as the missing 
element linking the depths of the Arosa-Enga-
dine (10–20 km) and Dent Blanche–Sesia massifs 
(40–60 km). We herein report field, pressure-tem-
perature (P-T), and geochronological data from 
the aforementioned part of the Central Alps in 
order to study the processes taking place during 
subduction and underplating of the Margna and 
Sella nappes. We place particular emphasis on 
observing the deformation mechanisms in the 
plate interface zone(s) during subduction at the 
depth of the transition beneath the seismogenic 
zone as it is identified by instrumental observa-
tions to be below 350 °C and recently found to 
exhibit a diversity of slip behaviors (e.g., Obara 
and Kato, 2016, and references therein).

■■ GEOLOGICAL SETTING

The Central Alps are the result of the conver-
gence between the European and the Adriatic 
plates and their subsequent collision during Tertiary 
times (e.g., Ring et al., 1988; Liniger and Nievergelt, 
1990; Handy, 1996; Schmid et al., 2004). Two dis-
tinct tectonic phases affected the region during 
the evolution of the Alpine edifice: east to south-
east subduction of the Penninic units during the 
Cretaceous, which formed an oceanic domain 
between the two continental plates, accompanied 
by top-W thrusting and a later shift to N-S short-
ening with top-N directions in the Paleogene (e.g., 
Ratschbacher, 1986; Ring et al., 1988; Dürr, 1992; 
Handy, 1996).

The study area is located in Val Malenco, Central 
Alps, at the border of N Italy and SE Switzerland 
(Figs. 1A and 1B), precisely at the transition 
between the Austroalpine slice stack and the South 
Penninic oceanic domain. The major tectonic units 
in the study area are the Penninic Malenco-Forno 
unit, the overlying Austroalpine Margna and Sella 
nappes, both representing continental crust, and 
their sedimentary covers (e.g., Guntli and Liniger, 
1989; Liniger and Nievergelt, 1990; Hermann and 
Müntener, 1992; Trommsdorff et al., 1993; Bissig 
and Hermann, 1999; Mohn et al., 2011).

Austroalpine Units and Their Permo-
Mesozoic Sedimentary Covers

The continental Austroalpine units are repre-
sented in the study area by the Margna and the 
Sella nappes. Stratigraphic similarities between 
the Margna cover and sediments from the Lower 
Austroalpine Err nappe (Liniger and Guntli, 1988) 
suggest an Apulian affinity for the Margna nappe 
(Liniger, 1992). The Malenco and Platta nappes, 
which abut our studied units in the SW and NE, 
respectively, are former subcontinental mantle 
units exhumed during Jurassic rifting (Tromms-
dorff et al., 1993; Manatschal, 1995; Froitzheim and 
Manatschal, 1996). The position of Margna and 
Sella nappes between these two (ultra)mafic units 
reflects the primary complexity of the passive mar-
gin (Liniger, 1992; Spillmann, 1993). In this frame, 
Margna and Sella were extensional allochthons 
(e.g., Froitzheim and Manatschal, 1996), represent-
ing the transition from the Adria continental margin 
toward the South Penninic ocean basin during 
Jurassic, with Margna being the most distal part 
of the Adria continent (Hermann and Müntener, 
1996; Hermann et al., 1997).

Both nappes encompass pre-Variscan continen-
tal rocks, mostly granodiorites and granites, which 
were later metamorphosed into orthogneisses (e.g., 
Staub, 1946; Liniger and Guntli, 1988; Guntli and 
Liniger, 1989; Hermann and Müntener, 1992). Occa-
sionally, 2–3-m-thick andesitic and basaltic dikes 
crosscut the large igneous bodies for several hun-
dreds of meters. A sequence of Mesozoic, mostly 
Cretaceous, sediments is covering the Margna and 
Sella basement rocks (Hermann and Müntener, 
1992; Trommsdorff et al., 2005). The Margna nappe 
also contains an association of gabbros and lower 
crustal granulites (Hermann et al., 1997); this asso-
ciation is absent in Sella and is identical to the one 
found within the Malenco ultramafic units (Trom-
msdorff et al., 2005).

The boundaries between the Margna (lower) 
and the Sella (upper) units are marked by thin 
slices of sedimentary rocks (Figs. 2A and 2B; Her-
mann and Müntener, 1992). They comprise Triassic 
pre-rift marine shelf dolomite marbles and presum-
ably Lower Jurassic syn-rift quartz-calcschists that 

locally contain dolomite breccias (Hermann and 
Müntener, 1992; Trommsdorff et al., 2005). Their 
formation is connected to the rifting phase of the 
Austroalpine units during Mesozoic times. Both 
sedimentary units exhibit Alpine metamorphism.

The Dent Blanche and Sesia units are consid-
ered equivalent to the Margna and Sella nappes in 
the Central Alps (Froitzheim and Manatschal, 1996; 
Froitzheim et al., 1996; Schmid et al., 2004). Both 
units consist of a polymetamorphic continental base-
ment that was intruded by pre-Alpine granitoids and 
mafic bodies (e.g., Rubatto el al., 1999; Monjoie et al., 
2007). Together, all four nappes (Margna, Sella, Dent 
Blanche, and Sesia) are thought to have represented 
extensional allochthons between two denuded man-
tle units, the Malenco to the west and the Platta to 
the east (e.g., Beltrando et al., 2010; inset of Fig. 1A).

Another Austroalpine unit in the broader Val 
Malenco area, not further studied here, however, 
is the Bernina nappe comprising intrusive rocks 
slightly deformed and with local Alpine metamor-
phic overprint (Fig. 1B; Rageth, 1984; Spillmann and 
Büchi, 1993; Trommsdorff et al., 2005).

Malenco-Forno Units

The Malenco unit, structurally beneath the Mar-
gna nappe (Figs. 2A and 2B), is mainly composed of 
ultramafic rocks (peridotite and spinel lherzolite) that 
are largely serpentinized and also retain ophicarbon-
ates in various localities (Trommsdorff and Evans, 
1977; Hermann and Müntener, 1992). A Jurassic 
crust-to-mantle transition is preserved near Mount 
Braccia, where gabbros and pelitic granulites are 
intermixed with the ultramafics as well as the Fedoz 
gabbro intrusion, also observed in the Margna unit 
(Gautschi, 1979, 1980; Ulrich and Borsien, 1996; Her-
mann et al., 1997). According to Trommsdorff et al. 
(1993) and Hermann et al. (1997), the Malenco ultra-
mafics were a denudated subcontinental fragment of 
the Adriatic lithospheric plate later exhumed during 
Jurassic rifting. Subsequent exhumation of the unit 
to the ocean floor (Trommsdorff et al., 1993) is sup-
ported by serpentinization of the ultramafic units, 
rodingitization, and the formation of ophicarbonates 
(Müntener et al., 2000). During the Upper Cretaceous, 
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the Malenco ultramafics were overprinted by Alpine 
deformation and subsequently incorporated into the 
Alpine nappe stack (Müntener et al., 1997).

The Forno unit belongs tectonically to the same 
level as the Malenco unit and is a typical ocean floor 

sequence (Montrasio, 1973; Ferrario and Montrasio, 
1976; Peretti, 1985) comprising volcaniclastic rocks 
and basalts. The whole oceanic crust sequence is 
overlain by middle Jurassic to late Cretaceous sed-
iments (Peretti, 1985).

Alpine Metamorphic Ages in Val Malenco

The broader Val Malenco area and the three 
units that comprise it (Sella, Margna, and Malenco) 
have been the target of several petrological and 
structural studies focusing on the inherited, pre-Al-
pine structures and deformation observed in the 
nappes (e.g., Froitzheim and Manatschal, 1996; Her-
mann and Müntener, 1996; Bissig and Hermann, 
1999; Müntener et al., 2000, 2010; Trommsdorff et 
al., 2005).

Only a few studies in the Val Malenco area have, 
so far, dealt with the timing of Alpine deforma-
tion and its imprint on older, preexisting structures 
(Fig. 3). Cretaceous greenschist-facies metamor-
phism in the southern Platta and Malenco units was 
initially recorded by Deutsch (1983), who obtained 
K-Ar amphibole ages spanning a range of 90–69 Ma. 
40Ar/39Ar dating on riebeckite from Platta yielded 
apparent ages in the range of 89–70 Ma, while K-Ar 
dating on mica-bearing meta-radiolarites from the 
lower Austroalpine Err nappe yielded ages of 89–76 
Ma for the first generation of white micas (parallel 
to S1 foliation; Handy et al., 1996) and 80–67 Ma 
for the second generation (parallel to S2; Handy et 
al., 1996). Finally, Villa et al. (2000) recognized two 
amphibole generations related to Alpine deforma-
tion from the Malenco ultramafics, one pressure 
and one temperature dominated, at 91–83 and 
73–67 Ma, respectively. Mohn et al. (2011) sug-
gest that deformation observed in the rocks of the 
Malenco ultramafics, as well as of S Platta, Margna, 
and Sella units, is possibly related to pressure-dom-
inated metamorphism of P ~0.5–0.6 GPa (Bissig and 
Hermann, 1999). Despite relatively large uncertain-
ties, Picazo et al. (2019) recently obtained ages of 
63.0 ± 3.0 Ma for pressure metamorphism asso-
ciated with nappe stacking and 54.7 ± 4.1 Ma for 
possibly peak temperature Alpine metamorphism.

The Subduction Interface through Time

Although the movement of the overriding plate 
has been systematically studied (Ratschbacher, 
1986; Ring et al., 1988, 1989), and it was top-W 
during Cretaceous and top-N in Early Tertiary, the 
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exact location of the subduction interface in the 
study area has long been disputed. Southward to 
south-eastward subduction started in the South 
Penninic ocean between 120 and 100 Ma (Handy 
and Oberhänsli, 2004, and references therein) and, 
based on 40Ar/39Ar dating of pseudotachylytes from 
the base of the Austroalpine nappe stack, was active 
between 90 and 60 Ma (Bachmann et al., 2009b). 
Recently, high-pressure (HP) subduction-related 
metamorphism was reported by Droop and Chavrit 
(2014) for the Lanzada–Santa Anna metagabbros, a 
unit structurally beneath the Malenco ultramafics 
and south of our study area (black star in Fig. 1A). 
According to the authors, these eclogitic metagab-
bros corroborate the existence of a south-dipping 
subduction and place the interface beneath the 
Malenco unit, at some later stage during Alpine 
convergence history.

■■ ANALYTICAL METHODS

Electron Probe Microanalyses

Electron probe microanalyses (EPMA) were 
performed with a JEOL-JXA 8230 probe at GFZ 
Potsdam, under common analytical conditions 
(15 kV, 20 nA, wavelength-dispersive spectros-
copy mode), using a 10-µm-diameter beam. The 
following standards were used for calibration: 
orthoclase (Al, Si, K), fluorite (F), rutile (Ti), Cr2O3 
(Cr), wollastonite (Ca), tugtupite (Cl), albite (Na), 
MgO (Mg), Fe2O3 (Fe), rhodonite (Mn). Samples of 
micaschists and (ortho- and para-) gneisses were 
analyzed from both the Margna and Sella units. 
The analyses focused on phengite and to a lesser 
extent on amphibole composition of eight samples. 
The Si content per formula unit (pfu) of phengites 
(Ph) and the related content of the celadonite (Cel) 
end-member, K(Mg,Fe2+)AlSi4O10(OH)2, are used 
here as an indicator of relative pressure changes 
(Massonne and Schreyer, 1987). In other words, 
high-silica regions of phengite correlate with 
lower aluminum contents and can be an indicator 
of relatively higher pressure conditions. Mineral 
abbreviations are used as suggested by Whitney 
and Evans (2010).

Thermodynamic Modeling

In order to estimate the P-T conditions under 
which micaschists and mica-rich gneisses from 
Magna shear zone (MSZ) and Intra-Sella shear 
zone (ISSZ) deformed, we calculated pseudo-
sections, following a free-energy minimization 
approach using the software PerpleX (Connolly, 
2005, version 6.7.7). The bulk rock composition in 
oxide weight percent was obtained by averaging 
for each sample conventional major elements X-ray 
fluorescence analyses on rock powders (made at 
the GFZ Potsdam) together with scanning electron 
microscope (SEM) surface estimates on thin sec-
tions (using an EVO MA-10 Zeiss microscope at 
the Institut de Physique du Globe de Paris [IPGP]). 
Synthetic bulk compositions used for the modeling 
as well as P-T pseudosection results are given in 
Supplemental Items S1 and S3–S51, respectively. 
The following solid solution models have been used 
for the modeling: phengite, garnet, amphibole (Hol-
land et al., 1998), feldspar (Fuhrman and Lindsley, 
1988), and chlorite (Holland et al., 1998). MnO has 

been considered only for samples #01B and #23B. 
Ferric iron has been neglected as suggested by the 
low-Fe content of clinozoisite crystals in the main 
Alpine foliation. Water is considered as pure H2O 
and in excess in the system based on microstruc-
tural observations (presence of veins and pressure 
solution fringes).

Best-fit P-T regions for each pseudosection have 
been estimated considering: (1) the field where 
we had the best agreement between observed 
and modeled paragenesis; (2) the microstructural 
mechanical behavior of quartz and albite, which 
has been used as an approximate geothermom-
eter; and (3) the phengite silica content isopleths.

Rb/Sr Geochronology

Ages of metamorphism and ductile deforma-
tion are herein investigated by Rb/Sr multi-mineral 
isochron dating for four mica-rich mylonites and 
one impure meta-carbonate. In this study, white 
mica is the high Rb/Sr phase, largely determining 

1 Supplemental Items. Item S1: X-ray fluorescence 
bulk-rock chemical analyses. Item S2: Analytical data 
of Rb/Sr geochronology. Item S3: Pressure-tempera-
ture pseudosection in the NCKFMASH system (plus 
Qz and water) for sample #01A, showing the phase 
relationships and the best-fit area (red polygon). Item 
S4: Pressure-temperature pseudosection in the Mn-
NCKFMASH system (plus Qz and water) for sample 
#01B, showing the phase relationships and the best-
fit area (red polygon). Item S5: Pressure-temperature 
pseudosection in the NCKFMASH system (plus Qz 
and water) for sample #23B, showing the phase re-
lationships and the best-fit area (red polygon). Please 
visit https://doi.org/10.1130/GES02149.S1 or access 
the full-text article on www.gsapubs.org to view the 
Supplemental Items.

SUPPLEMENTAL ITEM S1. XRF BULK ROCK CHEMICAL ANALYSES 

Sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Tiegel Sum 

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

#01A 68.5 0.450 15.7 3.00 0.031 1.00 0.71 4.35 3.91 0.221 1.84 99.70 

#01B 80.5 0.364 7.9 3.35 0.038 1.36 1.04 0.16 2.14 0.215 2.62 99.61 

#23B 59.1 0.794 18.2 8.19 0.108 3.16 0.65 2.52 3.67 0.152 2.68 99.28 

Ba Cr Ga Nb Ni Rb Sr V Y Zn Zr 

(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 

#01A 922 23 19 14 <10 123 94 37 42 27 202 

#01B 385 458 12 <10 19 85 165 609 54 51 88 

#23B 2697 98 22 13 32 121 72 124 33 123 138 

 

SUPPLEMENTAL ITEM S2. ANALYTICAL DATA OF Rb/Sr GEOCHRONOLOGY 

Sample no. Material Rb 
(ppm) 

Sr 
(ppm) 

87Rb/86Sr 87Sr/86Sr 87Sr/86Sr 
2σm (%) 

Analysis no.       
       

#01A (disequilibria; maximum age* = 44.0 ± 0.74 Ma) 
PS2840 wm 125-90 µm 209 61.5 9.86 0.725047 0.0018 
PS2838 apatite 5.88 2410 0.00706 0.718988 0.0011 
PS2839 feldspar 9.33 82.5 0.328 0.718093 0.0025 
PS2840 wm 125-90 µm 209 61.5 9.86 0.725047 0.0018 
PS2841 wm 355-250 µm 307 26.7 33.3 0.748662 0.0016 
PS2842 wm 500-355 µm 306 30.9 28.8 0.744595 0.0022 

       
#01F (disequilibria; maximum age  = 54.3 ± 1.1 Ma) 
PS2825 feldspar 2.9 65.1 0.129 0.713050 0.0027 
PS2826 wm 355-250 µm 347 218 4.60 0.716726 0.0018 
PS2827 wm 500-355 µm 350 213 4.75 0.716893 0.0020 
PS2828 wm 125-90 µm 296 175 4.90 0.716674 0.0022 
PS2829 wm 250-125 µm 331 203 4.73 0.716662 0.0014 
PS2830 apatite 0.48 1652 0.00085 0.712138 0.0013 
PS2831 titanite 1.43 66.7 0.062 0.710473 0.0010 

       
#02 (disequilibria; maximum age  = 78.9 ± 1.8 Ma) 
PS2832 feldspar 13.6 30.6 1.29 0.730217 0.0014 
PS2833 wm 125-90 µm 299 158 5.49 0.734855 0.0018 
PS2834 wm 500-355 µm 355 166 6.20 0.736391 0.0012 
PS2835 apatite 1.89 1479 0.0037 0.728496 0.0023 
PS2836 wm 355-250 µm 364 170 6.22 0.736267 0.0012 
PS2837 wm 250-125 µm 360 172 6.06 0.735831 0.0016 

       
#23B (disequilibria; 184 ± 71 Ma) 
PS2819 wm 500-355 µm 359 69.9 14.9 0.766369 0.0018 
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Figure 3. Published Alpine deformation 
age data for Val Malenco and Central Alps.
Footnotes: (1) Handy et al. (1996); (2) Handy 
and Oberhänsli (2004); (3) Villa et al. (2000); 
(4) Bachmann et al. (2009b); (5) Frey et al. 
(1974); (*) this study.
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the calculated age values. The Rb/Sr system of 
white mica is thermally stable at temperatures up 
to >600 °C (Glodny et al., 2008a) but may be fully 
reset by dynamic recrystallization even at lower 
temperature, down to 350 °C. Moreover, complete 
synkinematic recrystallization is often accompanied 
by inter-mineral isotopic re-equilibration (Inger and 
Cliff, 1994; Freeman et al., 1997; Villa, 1998; Müller 
et al., 1999, 2000; Cliff and Meffan-Main, 2003; 
Glodny et al., 2008b). Therefore, Rb/Sr isotopic data 
from penetratively deformed rocks can be used to 
date the waning stages of mylonitic deformation, 
given that deformation occurred below the tem-
perature range for diffusional resetting and that 
no later substantial reheating or fluid-rock inter-
action occurred.

For Rb/Sr geochronology, mineral separates 
from three basement rock samples from the Mar-
gna nappe, one basement rock sample from the 
Sella nappe, and one from the meta-sediments 
covering the aforementioned pre-Alpine base-
ment rocks have been prepared (see Table 1), with 
different mica grain-size fractions to identify pos-
sible presence of mixed mica populations (i.e., 
presence of unequilibrated, detrital, pre- or early 

deformational white mica relics; Müller et al., 1999). 
Isotopic data were generated at GFZ Potsdam using 
a Thermo Scientific TRITON thermal-ionization 
mass spectrometer. Sample processing, mineral 
separation, and data acquisition were performed 
following the procedures reported in Glodny et al. 
(2008a). Uncertainties of Rb/Sr isotope and age data 
are quoted at the 2σ level throughout this work. 
The software Isoplot/Ex 3.71 (Ludwig, 2009) and the 
revised Rb decay constant of 1.3972*10−11 yr−1 (Villa 
et al., 2015) were used to calculate regression lines. 
The full Rb/Sr data set is presented in Supplemental 
Item S2 (footnote 1).

40Ar/39Ar Dating

40Ar/39Ar dating was performed at the 40Ar/39Ar 
geochronology laboratory of Potsdam University. 
Bulk mineral separates 40Ar/39Ar dating and in situ 
40Ar/39Ar UV laser ablation dating were performed 
on one mica-rich mylonitic sample from the Mar-
gna nappe and one foliated cataclastic micaschist 
sample from the Sella nappe, respectively. For the 
first technique, 40Ar/39Ar dating of bulk mineral 

separates by CO2 laser stepwise heating, one hand 
specimen of micaschist was crushed and sieved. 
White mica fractions were obtained (handpicked 
fractions of 355–250 µm and mechanically prepared 
fractions of 500–355 and 355–250 µm; see also Wie-
derkehr et al., 2009 for fraction preparation) with 
a total of ~10 mg of white mica. Scanning electron 
microscope investigations were performed for this 
sample, in order to make sure that no chemical 
zoning characterized white micas and hence the 
ages would reflect more likely deformation-induced 
recrystallization. For in situ 40Ar/39Ar dating by UV 
laser ablation, a rock thick section (of ~1 mm thick-
ness and 5 mm diameter) was prepared and double 
polished. Before the laser experiment, the thick sec-
tion was studied using the SEM in order to have 
an accurate reference frame during the 40Ar/39Ar 
experiment and a general control over mica zon-
ing patterns.

The 40Ar/39Ar analytical system at the University 
of Potsdam has been described in detail in recent 
studies (Wiederkehr et al., 2009; Wilke et al., 2010; 
Halama et al., 2014). The Ar isotopic analytical sys-
tem consists of (1) a New Wave Gantry Dual Wave 
laser ablation system with a 50 W continuous CO2 

TABLE 1. OVERVIEW OF SAMPLES AND LOCATIONS

Sample Location Latitude (°N) Longitude (°E) Rock Minerals

Margna

#01A Rifugio Carate Brianza 46°19′57.26″ 09°54′14.05″ Gneiss Qz-Ab-Wm-Ttn-Ap-Aln-Px-Zrn

#01B Same as above Same as above Same as above Micaschist Qz-Wm-Chl-Grt-Bt-Hbl-Ap-Mag-Aln-Ep
#01F Same as above Same as above Same as above Micaschist Qz-Wm-Fsp-Chl-Ep
#02 Forca di Fellaria 46°19′44.97″ 09°55′10.42″ Micaschist Qz-Fsp-Wm-Chl

Sella

#11B Alpe Gembre 46°19′42.50″ 09°57′54.50″ Gneiss Qz-Fsp-Wm-Chl

#18D Rifugio Marinelli 46°20′49.30″ 09°54′11.70″ Micaschist Qz-Wm-Chl-Ttn-Rt-Ilm

#23B Same as above Same as above Same as above Micaschist Qz-Ab-Wm-Chl-Zrn-Ttn-Aln-Rt
#8.1 Rifugio Bignami 46°20′27.97″ 09°56′41.39″ Gneiss Qz-Pl-Wm-Chl-Ap-Ep-Zrn

#8.2.1 Same as above Same as above Same as above Gneiss Qz-Pl-Wm-Rt
#8.2.2 Same as above Same as above Same as above Qz-Fsp-Wm-Chl-Amp(Act-Hbl)-Hem-Ttn-Ep-Bt
#8.3.2 Same as above Same as above Same as above Gneiss Qz-Pl-Ep-Ttn

Metasediments

#13 Rifugio Bignami 46°19′28.30″ 09°58′08.40″ Marbles Cal-Qz-Wm
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laser (wavelength of 10.6 mm) for heating bulk 
samples and also Nd-YAG UV laser (frequency-qua-
drupled wavelength of 266 nm) for laser ablation 
of the thick section samples for extracting sample 
gases; (2) an ultra-high vacuum purification line 
equipped with two SAES getters and a cold trap 
used at −90 °C; and (3) a high-sensitivity Micromass 
5400 noble gas mass spectrometer equipped with 
an electron multiplier. The analysis with Micro-
mass 5400 has been done with MassSpec software 
manufactured by Dr. Alan Deino in the Berkeley 
Geochronology Center, California, USA.

Neutron activation of both samples was per-
formed at the CLICIT Facility of the Oregon State 
University TRIGA Reactor, in Corvallis, Oregon, 
USA. All of the unknown samples were wrapped 
in commercial Al foil and were then contained in 
a 99.999% pure Al sample container (22.7 mm in 
diameter and 102.5 mm in height), together with 
the neutron flux monitoring mineral, Fish Canyon 
Tuff sanidine, prepared by the Geological Survey of 
Japan (Uto et al., 1997; Ishizuka, 1998; 27.5 Ma) and 
crystals of K2SO4 and CaF2 for correction of interfer-
ence by Ar isotopes produced from K and Ca other 
than those produced by 39K(n,p)39Ar reaction. The 
container had been irradiated for 4 h with the fast 
neutron flux of 2.5 × 1013 n/cm2/s. After storage of 
the samples for several weeks at the reactor, they 
were finally brought back to Potsdam and then 
were analyzed for Ar isotopes. A K-Ar age standard 
biotite, HD-B1 biotite (Schwarz and Trieloff, 2007; 
24.18 ± 0.09 Ma), which was also included in the 
same Al sample container as a routine procedure 
for every irradiation, was analyzed, and the accu-
racy of the system was confirmed.

■■ RESULTS

Field Observations

The studied area comprises a series of several 
hectometer- to kilometer-thick continental slivers 
(pre-Alpine orthogneisses and micaschists) sep-
arated by greenschist-facies ductile shear zones. 
Some of these slices locally exhibit well-preserved 
magmatic fabrics, in particular in the Sella nappe. 

Anastomosing deformation networks are visible 
in the cliffs as well as in the landscape: they form 
5–10-m-thick shear zones generally subparallel 
to the main Alpine shear zones. One of the major 
shear zones of the studied sequence lies within the 
lowermost 200 m at the base of the Margna nappe 
at the contact with the Malenco unit. Sheared meta-
granitic rocks exhibit a main foliation affected by a 
crenulation cleavage (Fig. 4A). Clasts of silica-rich 
domains (probably former pegmatitic veins in the 
orthogneiss) are observed wrapped by the main 
proto-mylonitic foliation (Fig. 4B). Semi-brittle 
deformation networks, marked in the field by bro-
ken feldspar clasts in a weakly oriented matrix are 
either found along the main thrust contacts or dis-
tributed within Margna and Sella slices (Fig. 4C). 
Along both the basal Margna shear zone (MSZ) 
and the Intra-Sella shear zone (ISSZ), foliated cat-
aclasites (Fig. 4D) comprising submillimeter- to 
millimeter-sized clasts are exposed. Several gen-
erations of foliated cataclasites are recognized, 
striking parallel to the main N-plunging foliation 
or slightly oblique to it. They form centimeter- to 
decimeter-sized networks interleaved with domains 
where semi-brittle and ductile deformation prevails. 
Centimeter-thick quartz veins are locally observed 
within the regions more affected by Alpine defor-
mation. Quartz veins are either found as en echelon 
vein sets cutting at high angle the main foliation 
(Fig. 4E) or as boudinaged lenses wrapped by the 
alpine foliation (Fig. 4F). A very strong flattening 
recorded in rock microfabrics contributed to the 
formation of numerous pressure-solution fringes 
visible from hand specimen to millimeter scale in 
both orthogneisses and Sella nappe micaschists 
(Fig. 4G).

Kinematic indicators, obscured by the strong 
flattening, indicate mixed top-N and top-SE tec-
tonic transport directions. Previous studies in the 
broader Penninic/Austroalpine boundary report 
top-W kinematics during Cretaceous and a later 
shift to mainly top-N (e.g., Ratschbacher, 1986; 
Ring et al., 1988, 1989; Liniger and Nievergelt, 1990). 
However, it is possible that, locally, the old top-W 
structures are overprinted by the second phase; 
such is the case in Middle Austroalpine units of 
the Eastern Alps where transport directions are 

mainly top-N, although locally E-W stretching 
directions are observed (Ratschbacher, 1986). We 
recognized such top-W kinematic indicators in the 
Maloja gneiss NW of our study area, in Maloja pass, 
but not in the Val Malenco.

The top of the basal Margna shear zone is lined 
by an extremely sheared, nearly continuous rib-
bon lens of impure marbles forming mylonites and 
brecciated dolomitic limestones (Fig. 4H), while 
pseudotachylytes are commonly found in loose 
blocks falling from inaccessible cliffs that probably 
form the Sella and Bernina units (Fig. 4I).

Ductile deformation in the Malenco Massif led 
to pervasive mylonitic deformation of antigorite 
schists. The strong compositional and deforma-
tional gradient along the basal Margna shear zone 
between the crustal and mantle materials locally 
led to the formation of a metasomatized tectonic 
mixing zone comprising lenses of mafic tuffs, sub-
metric to metric lenses of metasediments, as well 
as minor volumes of tremolite schists, and in parts 
deformed basement rocks exhibiting foliated cat-
aclasites (named “breccias” in Picazo et al., 2019).

Petrographic Description

Continental Austroalpine rocks for petrographic 
and geochronological studies were carefully 
selected based on the greatest intensity of Alpine 
overprint. In less mylonitized facies, few remnants 
of the pre-Alpine assemblages, namely albite por-
phyroclasts (Fig. 5A), garnet cores (Fig. 5E), biotite 
flakes, hornblende cores, and (possibly alpine pro-
grade) muscovite cores can be observed. Alpine 
deformation led to the formation of a fine-grained 
foliation underlined by oriented phengite planes 
(Fig. 5A), tremolite around hornblende, clinozoisite, 
and titanite neoblasts (Fig. 5F). Pressure-solution 
fringes line up the main foliation. In one foliated 
cataclasite sample, two crosscutting foliations 
were observed (Figs. 5B and 5G), possibly associ-
ated with two stages of deformation, i.e., one that 
formed the main foliation and one that formed 
coevally with the crenulation cleavage. In quartz-
rich lithologies, a strong apparent crystal-preferred 
orientation (CPO) denotes the existence of dynamic 
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Figure 4. (A) Representative view of the Alpine imprint in Margna nappe gneisses showing a main foliation (S1) moderately imprinted by a crenulation plane (S2). (B) Field picture showing 
a silicic clast (former magmatic vein?) wrapped in the alpine foliation in the basal Margna shear zone. (C) Field picture showing a semi-brittle network comprising numerous finely crushed 
feldspar clasts moderately sheared along the main foliation (Sella nappe). (D) Picture showing two crosscutting generations of finely fractured orthogneisses (foliated cataclasites; Sella 
nappe). (E) Picture showing the mylonitic foliation from the Intra-Sella shear zone crosscut by en echelon quartz veins. (F) Picture showing centimeter-thick quartz vein as a boudinaged lens. 
(G) Close-up hand specimen picture showing the presence of darkish pressure solution planes, mostly parallel to the main thrust fault. (H) Layers of marbles and impure marbles showing tight 
folds (base of the Margna nappe). (I) Block deriving possibly from Sella or Bernina nappe, showing networks of pseudotachylytes (black veins) crosscutting a weakly deformed dioritic matrix.
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Figure 5. (A) Optical microscope 
view (with polarized light) of a 
Sella mylonite showing a feld-
spar boudin, wrapped by micas, 
which mark the foliation. The 
feldspar grain has been partly 
replaced by quartz. A big white 
mica grain, within the fine mica 
foliation shows partial recrystal-
lization of white micas. Quartz is 
recrystallized in the whole thin 
section. (B) Optical microscope 
view (with polarized light) of a 
Sella micaschist. The fine-grained 
micas form two foliations, S1 and 
S2 (see also picture G in the same 
figure). (C) Recrystallized quartz 
from a Sella mylonite, exhibiting 
recrystallization ribbons (with po-
larized light). (D) Crystal-preferred 
orientation (CPO) in recrystal-
lized quartz from Sella mylonite 
(polarized light + gypsum plate). 
(E) Backscatter electron image 
of a garnet, with two distinct 
compositions; Margna mylonite. 
(F) Backscatter electron image 
showing titanite rimming around 
rutile in Sella micaschist. (G) Back-
scatter electron image of a Sella 
micaschist, showing the two dif-
ferent foliations, S1 and S2.
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recrystallization during shearing (Figs. 5C and 5D). 
On the contrary, albite does not show clear evi-
dence of intracrystalline deformation.

In samples identified as foliated cataclasites, 
all the mineral phases including albite and quartz 
exhibit microfracturing and alignment of crystal 
clasts along discrete shear planes. The semi-brittle 
networks differ from foliated cataclasites by the 
presence of coeval crystal-plastic deformation 
along shear planes (mostly underlined by phyllosil-
icates) and micro-cracking of stronger albite grains. 
Phengite planes are commonly closely associated 
with chlorite (Figs. 6A and 6B). Relicts of pre-Alpine 
origin exhibit micro-fracturing and resorption tex-
tures (Fig. 6D). In some mylonitic samples, quartz 
exhibits marked grain size reduction.

Samples from both MSZ and ISSZ reveal the 
presence of Al-rich/Si-poor white mica cores (Si 
~3.2 pfu; Fig. 6A), surrounded by Al-poor/Si-rich 
phengitic mantles (Si between 3.3 and 3.4 pfu; Fig. 
6C; Table 2). Phengite outer rims thus do not exhibit 
systematically lower Si contents as may be the case 
when phengite recrystallizes at lower pressure con-
ditions during exhumation. The average Si content 
of the basal Margna shear zone is ~3.22 pfu, and the 
maximum Si content is 3.32 pfu, both slightly lower 
than those of Guntli and Liniger (1989). The respec-
tive values for the Intra-Sella shear zone are ~3.31 
pfu (average) and 3.46 pfu (maximum). Depending 
on the intensity of the Alpine overprint, the propor-
tion of fully recrystallized phengite crystals ranges 
from 20 vol% (e.g., #01B; Fig. 6A) to nearly 90 vol% 
in #18D (Fig. 6B). Only one sample (#01B) exhibits 
thin Fe-rich garnet rims around a partly corroded, 
darker garnet core (Figs. 5E and 6D). The core of 
this garnet has a significantly higher XMg (Mg/(Fe 
+ Mg)) content than its rims (Fig. 6E). A summary 
of our petrographic observations is presented in 
Figure 6F and Table 1; representative mineral anal-
yses are shown in Table 2.

Thermodynamic Modeling Results

Best-fit region between observed parageneses 
and the modeled system is obtained at 0.9–1.0 GPa 
and 350–375 °C for sample #23B, while slightly lower 

pressures and higher temperatures correspond to 
sample #01A (0.65–0.9 GPa and 350–400 °C). The cor-
responding mineral assemblages predicted by the 
model are the following: Ab-Ph-Qz-Chl-Ep-Ttn-Pg 
and Ab-Ph-Qz-Chl-Ep-Ttn-Amp, for sample #23B 
and #01A, respectively. Even lower pressure and 
higher temperature conditions were obtained for 
#01B (0.6–0.9 GPa, ~450 °C; Fig. 7), corresponding to 
a paragenesis composed of Qz-Fs-Ph-Chl-Amp-Grt-
Ep-Ttn. Detailed pseudosection plots are provided 
in Supplemental Items S3–S5 (footnote 1). Mod-
eled mineral modes are in agreement with observed 
modes in the samples. Note that the pressure esti-
mates derived from the pseudosection modeling 
strongly depend on the position of the phengite 
silica isopleths, which represent the most reliable 
barometer for such an assemblage.

Geochronological Results

Rb/Sr Dating

Determination of deformation ages from Mar-
gna and Sella basement rocks proved problematic 
because of Sr-isotope disequilibria in the mica pop-
ulations. Smaller grains appear to be systematically 
younger than bigger grains (Figs. 8B and 8C). This 
pattern is a characteristic signature of incomplete 
recrystallization. Correspondingly, all basement 
rock samples show disequilibria among the low–
Rb/Sr phases (apatite, feldspar, and titanite). The 
issue of isotopic heterogeneity due to inheritance 
has been extensively addressed in Glodny et al. 
(2005) and highlighted in Bachmann et al. (2009b) 
and Angiboust et al. (2014). Full recrystallization 
of white mica during deformation together with 
Sr-bearing phases (such as apatite or albite) yields 
Sr isotopic re-equilibration, and ages calculated 
from equilibrated (sub)assemblages generally 
reflect the waning stages of deformation (e.g., 
Freeman et al., 1998; Inger and Cliff, 1994). In our 
samples, full recrystallization of pre-Alpine base-
ment rocks was obviously not achieved, and Alpine, 
exhumation-related temperatures in our samples 
were too low for diffusional resetting. The only geo-
logically meaningful ages that could be calculated 

are ages of ca. 44 and 54 Ma, interpreted as maxi-
mum ages for the end of deformation for samples 
#01A and #01F, respectively (see also Discussion 
and Interpretation of Age Data sections for expla-
nation of our observed data ranges).

Since dating of the pre-Alpine basement rocks 
did not produce conclusive results, we analyzed 
and dated a sample from the meta-sedimentary 
rocks found between the Margna and the Sella 
nappes. Despite small disequilibria between differ-
ent calcite-dominated rock fragments, robust age 
information of 48.9 ± 0.9 Ma was acquired. Nota-
bly, for this sample, no correlation between mica 
grain size and apparent age is observed (Fig. 8A). 
Therefore, although the Alpine overprint in the 
study area cannot be precisely dated with Rb/Sr in 
white micas of pre-Alpine rocks, dating white micas 
from meta-sediments devoid of pre-Alpine history 
facilitates dating of the waning stages of ductile 
deformation. Analytical data on Rb/Sr geochronol-
ogy are given in Supplemental Item 2 (footnote 1).

40Ar/ 39Ar Dating

Here we present the results acquired during 
stepwise heating as well as in situ 40Ar/39Ar dating 
on one mylonitic orthogneiss from Margna and 
one foliated cataclasite from Sella. The complete 
set of isotopic data is presented in Tables 3 and 4 
for stepwise heating and in situ 40Ar/39Ar dating, 
respectively.

Stepwise heating. Stepwise-heating 40Ar/39Ar 
analysis was performed for mica fractions of 
mylonitic sample #01A (right column of Fig. 8B). 
Microscopically, the sample exhibits flattened 
quartz and mica flakes, the latter co-defining the 
foliation. There are no apparent core-rim struc-
tures in the dated micas; therefore, deformation 
is thought to have affected them homogeneously. 
Dating of this sample yielded fairly homogeneous 
apparent ages for all grain sizes, namely a range 
of apparent deformation ages between 61.1 and 
66.2 (±0.3) Ma (Figs. 9A–9C). In particular, although 
an apparent plateau age for the handpicked small 
fractions (#01A–H, 355–250 µm) was not detected, 
most steps point to a meaningful age of ca. 66–64 
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400 μm Figure 6. (A) X-ray map of a mica-rich shear 
band from sample #01B showing that the 
matrix mainly composed of a high-pressure 
phengitic mica foliation (Ph II), locally con-
tains 200–300 mm large remnants of higher 
aluminum clasts (Ph I). Chlorite flakes in-
tergrown with phengite are best visible on 
the Fe map. (B) X-ray map of a mica-rich 
shear band from sample #18D showing 
chlorite-phengite domain. (C) Triangular 
plot of phengite composition in the cel-
adonite-pyrophyllite-muscovite system for 
samples from the two shear zones stud-
ied here. The blue shaded domain shows, 
for comparison, the composition of peak 
burial phengite analyses from the Dent 
Blanche Massif (data from Angiboust et 
al., 2014, 2015). (D) X-ray map of a garnet 
crystal from sample #01B showing two dis-
tinct compositions: the core (Grt A) clearly 
evidences resorption and overgrowth by 
a newly formed generation (Grt B). The 
end-member compositions corresponding 
to the transect A–Aʹ are shown in Figure 6E. 
(E) Composition profile across the garnet 
crystal shown in Figure 6D. Note the pres-
ence of a high Mn content at the contact 
between the (possibly) pre-Alpine and the 
alpine generation. (F) Schematic represen-
tation of the microstructures observed in 
sample #01B, showing the foliation, the two 
phengite generations, the core-rim struc-
ture of the garnet shown in Figure 6D and 
S1-S2 structures. Alm—almandine; Grs—
grossular; Prp—pyrope; Sps—spessartine.
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Ma (Fig. 9A). A plateau age of 64.6 (±0.3) Ma was 
obtained for small fractions (#01A–L, 355–250 µm), 
collected by mechanical means (Fig. 9B). Finally, 
stepwise-heating dating of large mica fractions 
collected by the same method (#01A-P, 500–355 
µm) varies from ca. 55 Ma to ca. 61 Ma, therefore 
exhibiting an irregular pattern (Fig. 9C).

In situ dating. Macroscopically, sample #18D 
appears to be a foliated cataclasite, while its micro-
structure is characterized by the presence of S-C 
fabric in micas and large boudins of quartz. Folia-
tion in the sample is marked by interconnected and 
synkinematic white micas and chlorite, coinciding 
with the S-fabric. Based on the microstructural 
observations, two different structures of white 
mica were systematically dated: along the S-plane 
(blue color in Figs. 10A–10E) and along the C-plane 

(green color in Figs. 10A, 10B, 10E, and 10F). For 
the interpretation of the data, measurements with 
high Ca/K ratio were omitted, because Ca-derived 
37Ar was not produced in white micas but was 
derived from other Ca-rich minerals such as epi-
dote and/or titanite, thus contamination of Ar from 
those Ca-rich minerals could be considered. Finally, 
we included only measurements that produced a 
total Ar of more than 40% of in situ radiogenic Ar 
and yielded an analytical uncertainty <5 Ma.

Ages span a wide range for white micas along 
S-planes, including micas wrapping around quartz. 
However, measurements with the lowest uncertain-
ties were obtained for ages between 44.0 ± 2.3 and 
70.7 ± 2.7 Ma (Fig. 10G; Table 4). Due to their smaller 
extended length in the sample, fewer points were 
measured for micas forming the C-structures, which 

yielded intermediate ages from 56.0 ± 1.2–70.1 ± 3.0 
Ma (Fig. 10G; Table 4). Since there is an overlap of 
ages for both structures, we cannot attribute them 
to separate kinematic or deformational events. It is 
interesting, however, to notice that the maximum 
ages obtained from Rb/Sr for the end of Alpine defor-
mation (44.0 ± 0.7 and 54.3 ± 1.1 Ma) coincide with 
the youngest ages obtained by in situ 40Ar/39Ar dating.

■■ DISCUSSION

Interpretation of P-T Data

We herein provide a first attempt to quantify 
the pressure-temperature history for the Alpine 
overprint event in Austroalpine rocks from the 

TABLE 2. MINERAL CHEMICAL ANALYSES FOR GARNET, AMPHIBOLE, AND PHENGITES FROM MARGNA AND SELLA NAPPES

Garnet Garnet Amphibole Phengite (nOx = 11)

Sample: #01B #01B #8.2.2 #01B #01B #02 #02 #11B #11B #18D #18D #23B #23B
Reference: Z1-1-L18 Z1-1-L34 Z1-19 All (23) Z2-8 All (16) Z3-1 All (38) Z1-5 All (51) Z1-2 All (34) Z2-7
Structure: Core Rim Core Avg. Max.* Avg. Max.* Avg. Max.* Avg. Max.* Avg. Max.*

SiO2 37.38 37.28 45.01 48.00 49.74 47.79 48.13 48.70 46.70 48.73 49.63 49.94 52.61
TiO2 0.09 0.19 1.20 0.44 0.36 0.29 0.33 0.27 0.25 0.19 0.12 0.31 0.38
Al2O3 20.79 20.70 9.63 29.69 29.10 32.28 31.49 29.76 29.85 30.29 29.29 27.38 26.49
FeO 24.88 26.97 18.62 3.18 2.74 2.29 2.42 2.49 2.69 2.82 2.64 3.68 1.99
MnO 2.97 3.15 0.66 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.01 0.03 0.01
MgO 2.01 1.13 9.13 2.41 2.58 1.58 1.81 2.59 2.45 2.31 2.72 3.23 3.77
CaO 11.06 9.90 11.62 0.02 0.03 0.01 0.00 0.01 0.01 0.03 0.03 0.03 0.01
Na2O 0.00 0.00 1.43 0.65 0.50 0.72 0.82 0.53 0.47 0.27 0.19 0.14 0.19
K2O 0.00 0.00 0.72 9.91 10.26 9.74 9.70 10.22 10.30 10.41 10.79 10.78 10.78
Sum 99.18 99.33 98.03 94.32 95.33 94.70 94.70 94.58 94.73 95.07 95.43 95.52 96.26

Si 2.99 3.00 6.74 3.25 3.32 3.20 3.23 3.30 3.39 3.27 3.32 3.35 3.46
Ti 0.01 0.01 0.14 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.02
Al 1.96 1.97 1.70 (tot) 2.37 2.29 2.55 2.49 2.32 2.17 2.39 2.31 2.17 2.06
Fetot 1.67 1.82 2.30 0.18 0.15 0.13 0.14 0.16 0.16 0.16 0.15 0.20 0.11
Mn 0.20 0.21 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.24 0.14 2.04 0.24 0.26 0.16 0.18 0.27 0.30 0.23 0.27 0.32 0.37
Ca 0.95 0.85 1.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Na 0.00 0.00 0.42 0.08 0.06 0.09 0.11 0.06 0.02 0.03 0.03 0.02 0.02
K 0.00 0.00 0.14 0.86 0.87 0.83 0.83 0.89 0.92 0.89 0.92 0.92 0.91
XPrp 8.00 4.00 XMg 0.60 0.62 0.55 0.57 0.64 0.65 0.59 0.65 0.62 0.77
XAlm 54.00 59.00 Ms 0.72 0.65 0.78 0.75 0.69 0.61 0.72 0.67 0.64 0.52
XSps 7.00 7.00 Cel 0.22 0.28 0.14 0.18 0.25 0.34 0.20 0.27 0.31 0.41
XGrs 31.00 28.00 Prl 0.06 0.07 0.08 0.07 0.06 0.06 0.08 0.06 0.05 0.07

*Chemical analysis with the maximum Si content (pfu) in the analyzed sample.
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Malenco region. Synkinematic growth of chlorite 
and white mica and the recrystallization of quartz 
place a lower limit on temperatures at ~250 °C. 
Brittle deformation of albite as well as absence 
of blue amphibole and jadeite set an upper limit 
for peak T (<500 °C) and peak P conditions (<1.2 
GPa). Moreover, our pseudosection results along 
with micro-fabrics analysis suggest that deforma-
tion during Alpine convergence took place at T > 
350 °C and pressures ~0.9 GPa. This estimate plots 

along the burial gradient of 8°-10°/km commonly 
accepted for late Cretaceous Alpine metamorphism 
(e.g., Agard et al., 2001). These pressure-tempera-
ture estimates are in agreement with previous 
attempts to quantify the alpine metamorphism in 
the base of the Austroalpine stack farther to the 
NW in the Bivio region (Handy et al., 1996) and 
in the Piz de la Margna region (main Alpine folia-
tion; Guntli and Liniger, 1989) where 0.6–0.9 GPa 
and 300–450 °C were obtained. A later stage of 

lower-pressure conditions is also mentioned for 
deformation postkinematic to the main Alpine 
foliation (0.4–0.5 GPa; Guntli and Liniger, 1989). 
The growth of thin garnet rims in equilibrium with 
phengite and chlorite from the main foliation sug-
gests heating during decompression (Fig. 7), since 
garnet commonly requires temperatures >450 °C to 
form. This event may relate with the D2 postpeak 
stage reported by Handy et al. (1996) and referred 
as “T-dominated” in Villa et al. (2000). We empha-
size that some uncertainty exists on P-T estimates 
for the burial P-T conditions (at least several tens of 
degrees and possibly a few hundred MPa) due to 
their strong dependence on phengite solid solution 
model (and associated Si isopleths) as well as the 
control of MnO concentration on the ”Garnet-in” 
reaction location (e.g., Mahar et al., 1997).

Interpretation of Age Data

Calculating the Rb/Sr isochron for white micas 
from metasediments marking the boundaries 
between the crystalline nappes yielded an age of 
48.9 ± 0.9 Ma. Since there is no correlation between 
mica grain size and apparent age for this sample, 
we consider this a robust age. Moreover, it is identi-
cal to the age obtained by Bachmann et al. (2009b) 
for the youngest movements at the plate interface 
farther north in southern Switzerland and relatively 
close to the ages obtained by Picazo et al. (2019). It 
has been particularly difficult to derive meaningful 
age information for the crystalline basement rocks, 
since the various mineral fractions separated reveal 
significant disequilibrium, including the low-Rb/
Sr phases such as apatite, albite, or titanite. Large 
mica grains seem apparently older than younger 
grains, which is a characteristic signature for 
incomplete recrystallization (Figs. 8B and 8C). We 
interpret the Sr disequilibrium and the obvious 
evidence for much older isotopic signatures as 
an incomplete overprint of possibly Variscan ages 
during Alpine shearing. An analogous conclusion 
has been already drawn for similar rocks from the 
base of the Austroalpine nappe farther north (Bach-
mann et al., 2009b) and west in the Dent Blanche 
Massif (Angiboust et al., 2014).
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Figure 7. Summary of pseudosection modeling results comparing obtained results (gray shaded polygons) with peak burial 
estimates for the Arolla gneiss in Western Alps (brown rectangle; Angiboust et al., 2014) and the Austroalpine orthogneiss 
in St. Moritz (green rectangle; Bachmann et al., 2009b), both accreted along the same alpine paleo-interface (detailed 
pressure-temperature [P-T] pseudosections calculated for this work are provided in Supplemental Items S3, S4 and S5 
[text footnote 1]). Gray-shaded polygons correspond to the best-fit areas identified for each individual sample peak burial 
conditions. The shape of the retrograde path is controlled by the retrogressed sample #01B and by the presence of garnet 
(Grt) in this sample. Jd—jadeite; Lws—lawsonite.
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Figure 8. Rb/Sr mineral data (left column) and char-
acteristic rock fabrics under optical microscope 
(right column) for three samples. (A) Sample #13 
from Permo-Mesozoic metasediments. (B) Sample 
#01A. (C) Sample #02; B and C from the Margna 
nappe. Analytical data are given in Supplemental 
Item S2 (text footnote 1). Grain size is indicated be-
cause different grain-size fractions were analyzed.
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TABLE 3. FULL RESULTS OF WHITE MICA 40Ar/39Ar STEPWISE-HEATING ANALYSIS

Run ID 40Ar/39Ar
(±1σ)

38Ar/39Ar
(±1σ)

37Ar/39Ar
(±1σ)

36Ar/39Ar
(10-3 ±1σ)

40Ar*
(%)

39Ar*
(%)

40Ar*/39Ar
(±1σ)

Age
(Ma)

±1σ

01A-H

1043-01 164.819 ± 4.718 0.157 ± 0.018 1.841 ± 0.685 449.936 ± 14.033 19.4 0.4 32.046 ± 2.250 56.7 3.9
1043-02 51.087 ± 0.852 0.036 ± 0.004 0.844 ± 0.217 53.965 ± 2.002 68.9 1.3 35.223 ± 0.867 62.3 1.5
1043-03 42.588 ± 0.285 0.016 ± 0.001 0.000 ± 0.024 6.178 ± 1.345 95.7 4.6 40.755 ± 0.487 71.9 0.8
1043-04 38.898 ± 0.154 0.015 ± 0.001 0.000 ± 0.016 4.339 ± 0.118 96.7 7.6 37.608 ± 0.155 66.4 0.3
1043-05 38.859 ± 0.120 0.013 ± 0.001 0.001 ± 0.014 3.421 ± 0.097 97.4 9.4 37.843 ± 0.122 66.8 0.2
1043-06 38.742 ± 0.109 0.013 ± 0.000 0.002 ± 0.010 2.043 ± 0.081 98.4 13.6 38.134 ± 0.111 67.3 0.2
1043-07 37.364 ± 0.096 0.013 ± 0.000 0.012 ± 0.008 1.627 ± 0.061 98.7 18.7 36.879 ± 0.098 65.1 0.2
1043-08 36.824 ± 0.115 0.013 ± 0.000 0.011 ± 0.009 1.170 ± 0.057 99.1 15.2 36.474 ± 0.115 64.4 0.2
1043-09 36.579 ± 0.128 0.013 ± 0.001 0.000 ± 0.014 0.939 ± 0.097 99.2 10.8 36.295 ± 0.131 64.1 0.2
1043-10 34.711 ± 0.119 0.012 ± 0.000 0.000 ± 0.014 1.428 ± 0.115 98.8 9.2 34.283 ± 0.124 60.6 0.2
1043-11 46.318 ± 2.641 0.019 ± 0.001 0.065 ± 0.026 3.020 ± 0.257 98.1 5.0 45.428 ± 2.591 79.9 4.5
1043-12 40.014 ± 0.204 0.013 ± 0.000 0.049 ± 0.036 3.029 ± 0.219 97.8 4.2 39.119 ± 0.212 69.0 0.4

01A-L

1042-01 224.501 ± 3.376 0.133 ± 0.004 0.126 ± 0.156 587.686 ± 9.082 22.6 0.4 50.849 ± 1.572 88.4 2.7
1042-02 51.076 ± 0.321 0.023 ± 0.001 0.084 ± 0.030 48.325 ± 0.590 72.1 1.5 36.800 ± 0.305 64.4 0.5
1042-03 44.919 ± 0.172 0.018 ± 0.001 0.020 ± 0.013 26.888 ± 0.231 82.3 4.0 36.971 ± 0.169 64.7 0.3
1042-04 39.601 ± 0.186 0.014 ± 0.000 0.007 ± 0.020 8.049 ± 0.134 94.0 4.7 37.218 ± 0.181 65.1 0.3
1042-05 38.325 ± 0.112 0.014 ± 0.000 0.000 ± 0.013 5.153 ± 0.100 96.0 6.8 36.796 ± 0.114 64.4 0.2
1042-06 37.706 ± 0.091 0.013 ± 0.000 0.016 ± 0.009 2.668 ± 0.064 97.9 9.9 36.914 ± 0.092 64.6 0.2
1042-07 37.394 ± 0.112 0.012 ± 0.000 0.000 ± 0.006 2.391 ± 0.050 98.1 12.8 36.682 ± 0.112 64.2 0.2
1042-08 37.836 ± 0.122 0.012 ± 0.000 0.000 ± 0.005 2.595 ± 0.048 98.0 14.2 37.063 ± 0.122 64.9 0.2
1042-09 36.498 ± 0.140 0.012 ± 0.000 0.000 ± 0.005 1.893 ± 0.056 98.5 13.2 35.934 ± 0.140 62.9 0.2
1042-10 36.535 ± 0.127 0.013 ± 0.001 0.012 ± 0.012 1.301 ± 0.069 99.0 8.8 36.146 ± 0.128 63.3 0.2
1042-11 37.631 ± 0.122 0.013 ± 0.000 0.000 ± 0.008 1.312 ± 0.088 99.0 6.7 37.236 ± 0.124 65.2 0.2
1042-12 37.816 ± 0.152 0.017 ± 0.001 0.000 ± 0.019 1.127 ± 0.173 99.1 3.9 37.477 ± 0.160 65.6 0.3
1042-13 37.010 ± 0.138 0.012 ± 0.000 0.026 ± 0.009 1.508 ± 0.055 98.8 13.2 36.562 ± 0.138 64.0 0.2

01A-P

1035-01 297.763 ± 3.950 0.167 ± 0.003 0.120 ± 0.127 747.150 ± 10.311 25.9 0.8 76.991 ± 1.820 132.0 3.0
1035-02 79.382 ± 0.893 0.029 ± 0.005 0.052 ± 0.085 136.867 ± 1.806 49.1 1.4 38.938 ± 0.649 68.1 1.1
1035-03 58.068 ± 0.570 0.035 ± 0.002 0.054 ± 0.054 79.440 ± 1.083 59.6 2.0 34.594 ± 0.468 60.6 0.8
1035-04 48.525 ± 0.310 0.023 ± 0.001 0.084 ± 0.036 52.819 ± 0.565 67.8 3.7 32.920 ± 0.284 57.7 0.5
1035-05 35.954 ± 0.164 0.016 ± 0.001 0.028 ± 0.019 9.110 ± 0.187 92.5 7.3 33.259 ± 0.165 58.3 0.3
1035-06 35.620 ± 0.187 0.016 ± 0.001 0.036 ± 0.018 6.987 ± 0.196 94.2 7.6 33.554 ± 0.189 58.8 0.3
1035-07 34.939 ± 0.151 0.013 ± 0.001 0.000 ± 0.011 3.316 ± 0.111 97.2 14.4 33.954 ± 0.153 59.5 0.3
1035-08 35.565 ± 0.091 0.013 ± 0.000 0.000 ± 0.009 2.259 ± 0.073 98.1 21.8 34.893 ± 0.093 61.1 0.2
1035-09 34.875 ± 0.119 0.013 ± 0.001 0.000 ± 0.015 3.083 ± 0.138 97.4 10.0 33.958 ± 0.124 59.5 0.2
1035-10 33.033 ± 0.155 0.014 ± 0.000 0.001 ± 0.014 4.650 ± 0.146 95.8 8.9 31.654 ± 0.156 55.5 0.3
1035-11 33.844 ± 0.174 0.012 ± 0.001 0.040 ± 0.016 3.700 ± 0.199 96.8 7.0 32.750 ± 0.180 57.4 0.3
1035-12 34.386 ± 0.219 0.013 ± 0.001 0.006 ± 0.034 3.582 ± 0.434 96.9 3.1 33.323 ± 0.249 58.4 0.4
1035-13 45.331 ± 0.407 0.014 ± 0.001 0.000 ± 0.083 3.855 ± 0.970 97.5 1.3 44.180 ± 0.491 77.0 0.8
1035-14 41.862 ± 0.167 0.014 ± 0.001 0.362 ± 0.016 6.736 ± 0.142 95.3 10.7 39.905 ± 0.168 69.7 0.3
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To test whether the K-Ar system of white mica 
was more equilibrated than Rb/Sr in the crystalline 
basement rocks and to potentially avoid the problem 
of contamination of the Alpine signal by pre-Alpine 
isotopic relics, we analyzed white micas derived 
from one mylonitic gneiss from Margna and one 
foliated cataclasite from Sella, by 40Ar/39Ar stepwise 
heating and in situ dating, respectively. We analyzed 
the samples with the least fraction of isotopic rel-
ics. This approach enabled the production of age 
data from regions of the samples most pervasively 
affected by mylonitization. Microscopically, the sam-
ple used for stepwise-heating dating did not exhibit 
core-rim structures in phengite crystals. Three mica 
fractions were dated, yielding an age of 61.1–66.2 ± 
0.3 Ma, and a plateau age of 64.6 ± 0.3 Ma was cal-
culated for one of the fractions. In situ 40Ar/39Ar age 
results for sample #18D (foliated cataclasite), how-
ever, yielded a large span of ages from 44.0 to 70.7 
Ma (see Fig. 10G). Neither an apparent systematic 
relation was observed between S- and C-structures 
and their calculated ages nor a correlation of the two 
structures with different Si content (Fig. 6B; unlike 
for Agard et al., 2002).

It is known that extraneous 40Ar (including 
both excess and inherited argon) can be com-
monly found in HP and UHP basement rocks 

(Scaillet, 1996; Sherlock and Kelley, 2002; Di Vin-
cenzo et al., 2006, and references therein) and 
that in its presence apparently older and mean-
ingless geological ages can be obtained. Excess 
argon might be present due to diffusion through 
grain boundaries, whereas inherited argon can 
result from preexisting argon from older min-
erals whose isotopic signature did not get fully 
re-equilibrated by the metamorphic imprint that 
one aims to date.

In the present study, the mylonitic sample 
dated with 40Ar/39Ar stepwise heating (#01A) 
exhibits disequilibrium of its isotopic signature, 
as attested by the lack of plateau for two mica 
fractions and the different ages calculated for 
different mica fractions, especially since bigger 
fractions (#01A-P) yield younger ages than the 
finer ones (compare Fig. 9C with Figs. 9A and 9B). 
Furthermore, ages obtained by in situ dating on 
the foliated cataclasite (#18D) exhibit a wide range 
of values (44–87 Ma; Fig. 10G), which, however, 
fall within the range of published Alpine defor-
mation ages in the Central Alps in general (K-Ar 
on phengite crystals, Handy et al., 1996; 40Ar/39Ar 
on amphiboles, Villa et al., 2000; Fig. 3), as well 
as for the time window of active subduction as 
inferred from the spread of pseudotachylyte 

ages (Bachmann et al., 2009b) along the same 
contact. The aforementioned geochronological 
heterogeneities are also reflected in the petro-
chemical signature of the rocks: feldspar boudins, 
mica fish within recrystallized mica fibers (Fig. 
5A), and multiple phengite generations (Figs. 6A 
and 6B). Based on the above heterogeneities and 
our previous interpretation of the age data as 
indicative of maximum ages for the cessation of 
deformation, we cannot exclude the presence of 
extraneous 40Ar in our samples.

As already mentioned, the maximum Rb/
Sr ages for the end of Alpine deformation (44.0 
and 54.3 Ma) coincide with the youngest in situ 
40Ar/39Ar ages (44.0 Ma; see Table 5). We interpret 
the older ages obtained as reflecting mixed ages, 
due to incomplete recrystallization and only partial 
isotopic resetting, while we interpret the youngest 
ones as maximum age for the end of deformation 
(see also Fig. 10H and Picazo et al., 2019). Finally, 
we emphasize that the seeming discrepancy with 
the studies of Handy et al. (1996) and Mohn et al. 
(2011) is due to the terminology used and not to the 
processes themselves: what these authors refer to 
as collision/D3 deformation is considered in our 
study a stage of “subduction of continental Aus-
troalpine sliver(s).”

TABLE 4. FULL RESULTS OF WHITE MICA 40Ar/39Ar IN-SITU UV LASER PROBE ANALYSIS

Run ID 40Ar/39Ar
(±1σ)

38Ar/39Ar
(±1σ)

37Ar/39Ar
(±1σ)

36Ar/39Ar
(10-3 ±1σ)

40Ar*
(%)

40Ar*/39Ar
(±1σ)

Age
(Ma)

± 1σ

S-planes

1049-09 60.786 ± 1.149 0.023 ± 0.005 0.000 ± 0.666 71.470 ± 4.470 65.1 39.503 ± 1.558 70.7 2.7
1049-10 86.312 ± 2.446 0.061 ± 0.011 0.028 ± 1.412 126.557 ± 8.745 56.7 48.912 ± 2.943 87.2 5.1
1049-12 74.229 ± 2.317 0.000 ± 0.0127 0.000 ± 1.373 10.467 ± 1.035 58.0 42.956 ± 3.411 76.8 6.0
1049-20 40.893 ± 0.772 0.024 ± 0.005 0.104 ± 0.646 55.916 ± 3.776 59.6 24.375 ± 1.281 44.0 2.3
1049-21 37.481 ± 0.710 0.022 ± 0.004 0.533 ± 0.557 23.640 ± 2.737 81.5 30.544 ± 1.034 54.9 1.8
1049-23 35.848 ± 0.617 0.023 ± 0.002 0.316 ± 0.448 24.323 ± 3.723 80.0 28.687 ± 1.227 51.6 2.2
1049-24 40.354 ± 0.543 0.025 ± 0.002 0.262 ± 0.359 23.795 ± 2.909 82.6 33.344 ± 0.991 59.9 1.8
1049-26 33.450 ± 0.417 0.017 ± 0.002 0.002 ± 0.278 2.523 ± 1.407 97.8 32.699 ± 0.587 58.7 1.0
1049-28 34.225 ± 0.336 0.018 ± 0.002 0.081 ± 0.204 1.774 ± 1.185 98.5 33.704 ± 0.484 60.5 0.9

C-planes

1049-11 50.722 ± 1.119 0.008 ± 0.005 0.000 ± 0.788 38.901 ± 4.845 77.2 39.147 ± 1.713 70.1 3.0
1049-16 36.612 ± 0.815 0.019 ± 0.006 0.039 ± 0.527 7.753 ± 4.644 93.8 34.320 ± 1.581 61.6 2.8
1049-19 39.028 ± 0.543 0.021 ± 0.003 0.000 ± 0.277 26.518 ± 1.705 79.9 31.179 ± 0.686 56.0 1.2
1049-29 36.245 ± 0.589 0.017 ± 0.003 0.000 ± 0.332 0.000 ± 2.132 102.0 36.960 ± 0.868 66.2 1.5
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Alpine Deformation along the Base of the 
Austroalpine Stack

The base of the Austroalpine nappes in Central 
and Western Alps (Dent Blanche) has been pro-
posed by Bachmann et al. (2009b) and Angiboust 
et al. (2015), respectively, as a field analogue for 
the roof of an ancient subduction interface (see 
also Froitzheim and Manatschal, 1996; Froitzheim 
et al.,1996; Schmid et al., 2004 for paleogeo-
graphic reconstructions). Although the presence 
of a metamorphic gradient along the Arosa–St. 
Moritz–Malenco transect is well known (e.g., Trom-
msdorff, 1983; Guntli and Liniger, 1989), up to now 
this part of the Austroalpine-Penninic boundary has 
not been studied in the frame of the subduction 
interface.

The Val Malenco setting is a plate interface zone 
characterized by abundant underplated continen-
tal slivers (such as the Sella and Margna nappes), 
which likely represent extensional allochthons of 
the Apulian upper plate, sheared off early in the 
subduction history and transported toward depth. 
Hence, the Margna and Intra-Sella shear zones (MSZ 
and ISSZ, respectively) correspond to parts of a 
shear zone network forming the plate interface zone 
in their entirety. As suggested by Beltrando et al. 
(2010) and Mohn et al. (2011), it is conceivable, but 
not easily tested, that preexisting extensional faults, 
active during Jurassic rifting, could have facilitated 
the detachment from the downgoing slab during 
the subduction event.

The shear zones studied here were, at least 
kinematically, at one point in their lifetime part 
of the plate interface shear-zone network. Since 
these shear zones are interface-parallel and none 
of them ends blindly high up (nor crosses the units 
at an angle), we exclude the possibility that they 
represent splay faults into the upper plate. We 
rather assume that they formed part of a network 

#01A-H

#01A-L

(handpicked, 355-250 μm)

(355-250 μm)

(500-355 μm)

Ap
pa

re
nt

 ag
e (

Ma
)

Ap
pa

re
nt

 ag
e (

Ma
)

Ap
pa

re
nt

 ag
e (

Ma
)

Cumulative % 39Ar released

#01A-P

Integrated age = 66.2 ± 0.3 Ma

Integrated age = 64.6 ± 0.3 Ma

64.6 ± 0.3 Ma (p=0.13)

Integrated age = 61.1 ± 0.3 Ma

C

B

A
Figure 9. White mica 40Ar/39Ar age spectra obtained for sample 
#01A by stepwise- heating experiments. Total gas ages were 
determined by integrating over all steps. Steps attributed to the 
plateau are highlighted in black. Uncertainties are given in 2σ; 
H—handpicked fractions of 355–250 μm; L—fractions of (355–
250 μm) obtained by the “tapping or shaking paper” method; 
P—fractions of (500–355 μm) obtained by the same method as L.
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Figure 10. (A–F) Scanning electron mi-
croscope (SEM) backscattered electron 
photomicrographs of studied white mica–
bearing sample #18D and the location of 
the analyzed domains during laser ablation 
in white micas; blue colors correspond to 
analyses of S-planes in micas, green colors 
to C-planes. (G) Summary of apparent ages 
obtained on white mica by in situ laser 
analyses; the two transparent age points 
correspond to measurements with large 
analytical uncertainty (>5 Ma), which are 
not taken into consideration for the inter-
pretation of the in situ age data; dashed 
line corresponds to the age obtained by 
Rb/Sr on metasediments, and shaded area 
shows uncertainty at 2σ level. Uncertain-
ties of 40Ar/39Ar analyses are given in 1σ. 
(H) Interpretation of a hypothetical span 
of both Rb/Sr and 40Ar/39Ar measurements; 
x-axis shows age (Ma), y-axis the different 
mica populations dated. The older ages 
(red squares) would correspond either to 
age of formation of the rock or complete 
pre-Alpine deformation. Full isotope reset-
ting and re-equilibration of the rock would 
give ages clearly clustered around the last 
event of deformation (orange bar, e.g., at ca. 
49 Ma). A geochronological signal similar to 
the purple squares, namely scattered defor-
mation ages, would reflect mixed ages due 
to incomplete recrystallization and/or only 
partial isotopic resetting. The youngest age 
can, therefore, only be interpreted as the 
maximum age for the end of deformation.
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belonging to the plate interface as long as they 
were active. This would make the system kine-
matically similar to the finding by Angiboust et al. 
(2014) on the evolution and stacking of interfaces 
through progressive underplating of duplex units. 
Unfortunately, our dating results do not resolve 
whether they were sequentially active—as in the 
Dent Blanche area—or active simultaneously. We 
stress that exhumation and collision have left an 
imprint in the present-day structures. However, our 
sampling and observations were limited to areas 
with minimum reworking, as shown by the white 
mica zoning pattern, which exhibits only minor 
exhumation-related zoning and by the moderate 
back-shearing observed in the kinematic indicators 
along main thrust contacts. In addition, the young-
est ages near 44 Ma that we obtained are older 
than the late Eocene–Oligocene collisional event 
that started at ca. 40 Ma and continued until ca. 25 
Ma (e.g., Becker, 1993; Markley et al.; 1998, Price et 
al., 2018) related to the entrance of the European 
continental margin in the Alpine subduction zone 
and associated with a kinematic inversion of sub-
duction-related structures.

Despite some uncertainties due to the scarcity 
of pressure indicators, our estimates plot deeper 
than for Arosa and St. Moritz, for which peak burial 
temperatures of 200°–250 °C and 300°–350 °C have 
been estimated, respectively (Fig. 7; Bachmann et 
al., 2009b). On a microstructural point of view, the 
Alpine deformation and the associated mylonitic 

deformation are much more extensively expressed 
in the Malenco region than along shallower equiv-
alents (see fabric description from Bachmann et 
al., 2009a, 2009b; Fig. 11). In fact, large mylonitic 
corridors are commonly observed in Margna and 
Sella nappes, unlike Arosa and St. Moritz, where 
deformation of the Austroalpine units is mostly 
expressed by microscale fractures in shallower 
parts and recrystallization of sheet silicates deeper. 
The larger amount of ductile imprint is likely a 
consequence of increasingly higher peak burial 
temperatures from Arosa, through Malenco down 
to Dent Blanche regions at also slower strain rates. 
Veining and mineralization within the Austroalpine 
units of the study area are not pervasive, which 
agrees with observations for the shallower basal 
parts of the Austroalpine, in the Arosa–St. Moritz 
region (Bachmann et al., 2009b).

One of the main differences between Arosa–
St. Moritz and Malenco is the absence of in situ 
pseudotachylytes along the base of the Aus-
troalpine units of the latter. In the study area of 
Bachmann et al. (2009b), pseudotachylytes are 
abundant in the northern part of the transect, pro-
viding evidence for high strain rates at seismic slip 
velocities; the southernmost (and hence deepest) 
locality where pseudotachylytes along the plate 
interface zone are mentioned is SW of St. Moritz, 
where peak temperatures of ~350 °C were reached. 
In our study area, a significant number of pseudo-
tachylytes was observed only in the form of fallen 

blocks along streams; but based on their abun-
dance and location in which they were found, we 
hypothesize they derive from the hanging wall, i.e., 
higher Austroalpine units, such as Upper Sella and/
or Bernina nappes (Fig. 4I). The rocks studied in 
the Val Malenco region accommodated shearing 
predominantly by ductile flow with limited cata-
clastic networks (Fig. 11). While this observation, 
along with the evidence for repeated hydrofrac-
turing, is indicative of variations in creep velocity 
by at least several orders of magnitude, there is no 
clear evidence as to whether they are related to slip 
at seismic velocities, i.e., at 1 m/s. Along the base 
of the Dent Blanche basal thrust, the close genetic 
link between foliated cataclasites with metamor-
phic veins led Angiboust et al. (2015) to propose 
their association with semi-brittle and brittle-duc-
tile switches, potentially the record of transient 
slow slip events that take place near the base of 
the seismogenic zone. Some pseudotachylytes 
found in the core of Dent Blanche Massif (Valpel-
line unit) were interpreted as the consequences 
of the accumulation of high stresses in very stiff 
rocks that were not prone to breaking (Menant et 
al., 2018). Their age is coeval with peak burial con-
ditions, pointing to heterogeneous deformation 
patterns at depth in accreted continental slivers in 
the Alpine channel. They may or may not be coeval 
with the pseudotachylytes found as fallen blocks 
in our study area. It has yet to be shown whether 
the Bernina pseudotachylytes formed during the 

TABLE 5. OVERVIEW OF AGE DATA ACQUIRED IN THIS STUDY

Sample Rb/Sr age
(Ma)

Ar/Ar age
(Ma)

Interpretation

Margna

#01A 44 61–66 (stepwise) Rb/Sr maximum age for end of deformation
#01F 54 n/a Same as above
#02 Disequilibria n/a Rb/Sr disequilibria

Sella

#18D n/a 44–87 (in situ) Age span covering most of P-dominated Alpine deformation
#23B Disequilibria n/a Rb/Sr disequilibria

Metasediments

#13 48.9 ± 0.9 n/a Synkinematic metamorphic (re)crystallization: deformation age

n/a—not applicable.
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rifting phase (e.g., Bissig and Hermann, 1999; Mohn 
et al., 2011), or if they formed in a similar man-
ner as for the Valpelline unit in the Dent Blanche 
Massif. With the absence of distinct fabrics that 
may be related to seismogenic deformation and 
temperatures of ~400 °C, we, therefore, hypoth-
esize that this part of the Alpine subduction zone 
represents the deformation styles of the transition 
zone, found globally to characterize the downdip 
end of seismicity toward aseismic creep at similar 
temperatures (e.g., Hyndman et al., 1997; Oleskev-
ich et al., 1999). Moreover, the findings corroborate 
repeated switches between slower and faster creep 
velocities and near-lithostatic pore-fluid pressure 
conditions characterizing this depth domain, similar 
to findings in this depth region found instrumen-
tally in many active subduction settings.

■■ CONCLUSIONS

The Lower Austroalpine units in the Malenco 
region were subducted, underplated, and partly 

re-crystallized during the long history of Alpine 
convergence. The dominant deformation pattern 
along Alpine shear zones affecting the Austroal-
pine bodies during peak burial (at ~400 °C and 0.9 
GPa) is ductile with widespread pressure-solution 
as well as local semi-brittle (fractured albite) and 
brittle, cataclastic networks. Rb/Sr geochronology 
on mica-rich metasediments deposited during 
Jurassic rifting and later metamorphosed during 
Alpine convergence yields a robust age of defor-
mation and (re)crystallization of 48.9 ± 0.9 Ma. 
However, our Rb/Sr as well as 40Ar/39Ar dating of 
some Alpine, seemingly recrystallized white micas 
from mylonites and one foliated cataclasite of the 
crystalline basement reveal a wide range of ages, 
which, despite falling within the range obtained 
by previous studies (Handy et al., 1996; Villa et al., 
2000; Picazo et al., 2019), can only be considered as 
mixed ages due to partial resetting of the isotopic 
signature of the system.

Putting together recent findings in the broader 
Val Malenco area (e.g., Droop and Chavrit, 2014; 
Picazo et al., 2019) and the P-T-t results of this study, 

we highlight the existence, during the geodynamic 
evolution of the Central Alps, of a continuous sub-
duction and underplating process along the active 
subduction interface, from the upper nappes (Aus-
troalpine) toward the deeper ones (Malenco). The 
Val Malenco area sheds light onto a region below 
the seismogenic depths exposed in Arosa–St. 
Moritz and displays subduction-related deforma-
tion at a depth range in the transition zone, which 
is globally found to host both slow creep as well 
as more rapid silent slip events.
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marizing the structure of the 
paleo-Alpine interface at ca. 50 Ma, 
when Margna and Sella nappes 
were already basally accreted to 
the Austroalpine tectonic edifice. 
Val Malenco deformation patterns 
are compared in this figure with 
features reported by Bachmann 
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