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Abstract

Chlorophyll-a (Chl-a) and Total Suspended Solids (TSS) are both key indicators of the biophys-
ical status of inland waters, and their continued monitoring is essential. Existing conventional
methods (e.g., in situ monitoring) have shown that they are impractical due to their time and
space limitations. The recently operated Sentinel-2A satellite offers the potential to have higher
temporal, spatial, and spectral resolution images with no cost for monitoring water quality pa-
rameters of inland waters. The main aim of this study was to develop a semi-empirical model for
predicting water quality parameters by combining Sentinel-2A data and machine learning meth-
ods using samples collected from several water reservoirs within the southern part of the Czech
Republic, Central Europe. A combination of 10 spectral bands of the Sentinel-2A and 19 spec-
tral indices, as independent variables, were used to train prediction models (i.e., Cubist) and then
produce spatial distribution maps for both Chl-a and TSS. The results showed that the prediction
accuracy based on Sentinel-2A was adequate for both Chl-a (R2 = 0.85, RMS Ep = 48.57) and
TSS (R2 = 0.80, RMS Ep = 19.55). The spatial distribution maps derived from Sentinel-2A
performed well where Chl-a and TSS were relatively high. The temporal changes in both Chl-a
and TSS could be seen in the distribution maps. The temporal changes are showing that The
values of TSS dramatically changed in fishponds compared to sand lakes over time which might
be due to indifferent management practices. Overall, it can be concluded that Sentinel-2A, when
coupled with machine learning algorithms, could be employed as a reliable, inexpensive, and
accurate instrument for monitoring the biophysical status of small inland waters like fishponds
and sandpit lakes.

Keywords: Water quality, Small inland waters, Cubist modelling, Remote sensing, Monitoring,
Fish ponds

1. Introduction1

Inland waters are the primary source of drinking water and irrigation and are critical to recre-2

ational and industrial needs such as energy production, transportation, and fisheries (Carvalho3
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et al., 2013). Additionally, they not only provide the habitat for fauna and flora but are also very4

crucial in the global carbon cycle and climate change (Tranvik et al., 2009; Moss, 2012). Over5

recent decades, the freshwater quality has been threatened by many human and environmental6

stressors, posing a significant threat to not only water security but also to the entire ecology sys-7

tem. Therefore, with respect to the above-mentioned dynamical effects, it is essential to have8

a comprehensive, accurate, fast, and inexpensive monitoring system to observe the biophysical9

and biochemical conditions of these water bodies to prevent severe damage occurring by ap-10

plying on-time treatments. An existing conventional in situ monitoring system coupled with11

geostatistical methods was shown to be impractical due to its time and space limitations (Philip-12

son et al., 2016). On the contrary, Earth observation (EO) techniques have been used by many13

researchers as efficient methods for retrieving and mapping some water quality parameters due14

to their micro-dynamic characteristics.15

Generally, optical remote sensors from different platforms record radiation from the water’s sur-16

face to derive information about water properties such as physiochemical properties (e.g. tur-17

bidity, total suspended solids (TSS)), organic properties (e.g., total organic carbon (TOC), ten-18

tatively identified compounds (TICs)), and microbiological properties (Chlorophyll-a (Chl-a))19

(Dörnhöfer et al., 2018; Matsushita et al., 2016; Tyler et al., 2016). Researchers used different20

remote sensing platforms to quantify and map different water properties for inland waters, for21

instance, unmanned aerial vehicles (Guimar£es et al., 2019), airborne platforms such as CASI,22

AISA, and APEX (Hunter et al., 2010; Rößler et al., 2013), and satellites like MERIS (Bres-23

ciani et al., 2011),MODIS (Koponen et al., 2004; McCullough et al., 2012), SeaWIFS (Gohin24

et al., 2019), Landsat (Boucher et al., 2018), and Quickbird (Heblinski et al., 2011). Recently,25

Dörnhöfer & Oppelt (2016) listed different remote sensing platforms and sensors used for moni-26

toring lake water properties.27

Since the late 1970s, satellite remote sensing for monitoring water quality for inland water was28

set back due to lack of appropriate sensors such as a lack of a sufficient number of spectral29

bands as well as relatively low radiometric sensitivity and low spatial and temporal resolution30

(Matsushita et al., 2016; Mouw et al., 2015). For instance, Landsat 1-7 has limited radiometric31

resolution, and the spatial resolution of the moderate resolution imaging spectroradiometer is not32

suitable for inland water. However, with the availability of new satellites with a higher spatial,33

spectral, and temporal resolution, like Landsat-8 and Sentinel-2, water quality retrieval and map-34

ping from the orbit have become more reachable.35

The multispectral imager (MSI) aboard Sentinel-2, which was launched on 23 June 2015 with36

a combination of wide coverage (swath width of 290 km ), spatial resolution (10–60 m), and a37

minimum of five days temporal resolution, provides an exceptional perspective on inland water38

remote sensing (Drusch et al., 2012). Researchers showed that Sentinel-2 not only can improve39

global inland water mapping (Du et al., 2016) but can offer a useful range of information for40

monitoring certain water quality indicators (Toming et al., 2016; Pahlevan et al., 2017). For41

instance, Toming et al. (2016) showed the suitability of Sentinel-2 data to map different water42

quality parameters, namely Chl-a, water color, CDOM, and DOC for small inland waters. In43

Grendait et al. (2018), Sentinel-2 images were used to predict the Chl-a concentration in eu-44

trophic lakes in Lithuania. Chl-a was predicted with an accuracy range between 0.45 and 0.76.45

In Ansper & Alikas (2018), the suitability of Sentinel-2 A for retrieving Chl-a from water bodies46

was evaluated. Kutser et al. (2018) also utilized Sentinel-2 data for mapping several water qual-47

ity parameters such as Chl-a, TSM and CDOM for shallow waters in Baltic sea. Additionally,48

Pahlevan et al. (2019) evaluated and compared the Landsat 8 and Sentinel-2A/B top of atmo-49

spheric, reflectance, and remote sensing reflectance to estimate TSS. Giardino et al. (2019) used50
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Sentinel-2A to determine the color of water of 170 Italian lakes as a water quality attribute. In51

other words, MSI has four visible bands, three near-infrared (NIR) bands which certainly makes52

MSI more potent for the retrievals of concentrations of Chl-a or other pigments in severe bloom53

conditions (Gower et al., 2005; Moses et al., 2009). Additionally, for accurate measurement of54

TSS, sensors are needed with a red and NIR band and sufficiently high signal-to-noise ratio (Rud-55

dick et al., 2016; Caballero et al., 2018) which MSI has both bands at high spatial resolution.56

One of the widely used methods for the retrieval of water quality properties from remote sensing57

data for optically complex waters (i.e., inland waters) is band ratio based algorithms. Commonly,58

band ratio based algorithms can be expressed as the band ratio of surface reflectance (ρw) at two,59

three, or four bands. Usually, these bands are a combination of one (ρw) in the red spectrum and60

two or three (ρw) in the near-infrared (NIR) spectrum (Matsushita et al., 2016). For instance, Le61

et al. (2009) proposed that the combination of four bands at 662, 693, 740, and 705 nm could be62

used to predict Chl-a in highly turbid waters. In Moses et al. (2009), two (i.e., 665 and 708 nm)63

and three band (i.e., 665, 708, and 753 nm) models from MERIS were used to predict the Chl-a64

concentration in inland and turbid coastal waters. The model was shown to predict Chl-a with65

96% and 94% accuracy when two and three band models were used, respectively. In Gilerson66

et al. (2010), a ratio of (ρw) at 709 nm was shown, and 665 nm was used to predict Chl-a in67

moderately turbid waters. These wavelengths correspond with the maximum spectral reflectance68

of cell tissue and Chl-a of green algae, respectively (Moses et al., 2009; Gilerson et al., 2010).69

In Ansper & Alikas (2018), it was shown that three and four band ratio models can estimate the70

Chl-a at levels close to in situ measurements.71

Since water properties have complex optical characteristics that strongly affect the performance72

of the different prediction approaches, different studies provide different results (Kallio et al.,73

2001; Pepe et al., 2001). Therefore, introducing more efficient approaches is greatly demanded.74

Consequently, the primary objective of the current study is to introduce a novel approach to use75

Sentinel-2 water surface reflectance (ρw) for retrieving and mapping selected water quality pa-76

rameters such as Chl-a and TSS for small inland bodies of water. Water quality properties with77

high dimensional spectral data require intelligent feature extraction, which can be acquired by78

using machine learning algorithms including the support vector machine (Matarrese et al., 2008),79

neural network (Sudheer et al., 2006; Mas & Flores, 2008; Chebud et al., 2012), and extreme ma-80

chine learning (Peterson et al., 2018). Despite physical models, machine learning algorithms are81

a better approach for handling complex problems without prior knowledge (Chang et al., 2013;82

Keller et al., 2018) where the limited assumption is required. Additionally, they are less affected83

by the atmospheric and other background factors under non-ideal contexts (Chebud et al., 2012).84

Therefore, another objective of this experiment was to develop a semi-empirical model based on85

the machine learning algorithm for predicting and mapping Chl-a and TSS by considering ten86

spectral bands and the most available water indices derived from Sentinel-2A images. The intro-87

duced method is a completely data-driven approach and does not rely on any prior knowledge.88

It also not only can be used as an efficient approach to other small inland waters with similar89

conditions, but also it provides vital information about water quality parameters in a manner that90

is faster, more accurate, and computationally cheaper than other methods.91

2. Materials and Methods92

2.1. Study area93

Samples of water were collected from water reservoirs within the southern part of the Czech94

Republic, Central Europe and analyzed for their quality (for more detail, see Fig. 1). To gain a95
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large spectra of various water quality levels, fishponds and sandpit lakes were selected for water96

sampling. The spatial extent of observed reservoirs varied in the order of tens to hundreds of97

hectares.98

Both fishponds and sandpit lakes were observed in the area of the Biosphere Reserve and Land-99

scape Protection Area Třeboňsko between the towns Třeboň and Veselı́ nad Lužnicı́ (South Bo-100

hemia). The territory is very flat with an elevation of approximately 420 m a.s.l. The mean annual101

temperature varies by about 7.8 ◦C, and the annual sum of precipitation is circa 650 mm. Fish-102

ponds are shallow artificial lakes with a depth of up to 2 m that were developed between the103

15th and 19th Centuries. The usage of the fishponds is mainly for fish production, mostly com-104

mon carp (Cyprinus carpio L.). The fishponds are supplied by water using a system of ditches105

and channels. The fishponds are usually very turbid and hypertrophic, typically with very low106

transparency (tens of centimeters). Sandpit lakes are water reservoirs created in pits after sand107

mining. The lakes are currently used mostly for recreation and partly for mining (sandpit lake108

Horusice). The depth of observed sandpit lakes was up to 10 m. The sandpit lakes are predom-109

inantly supplied by underground water. The water is relatively clear, oligotrophic to eutrophic110

(depends on the age of lake) with transparency of about 1 m. Water samples taken from sandpit111

lakes were used as a reference for the water samples from fishponds. An overview of the essential112

characteristics of observed reservoirs is shown in Table 1.113

Figure 1: Map of water reservoirs used for water sampling in this study.
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už

ni
ce

N
ad

ěj
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už

ni
ce

D
ob

rá
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2.2. Ground sampling and water quality variable measurements114

Water samples were collected from water reservoirs during the summer seasons in the years115

2017 and 2018. Data were collected from May to October because this time period is the most116

important in fishponds management point of view. Furthermore, development of algae commu-117

nities is the most intensive during this period.118

Terms of water sample collection were synchronized with Sentinel 2 satellite data acquisition119

in the area of interest. The reason for the synchronization of data collection was to ensure the120

comparability of satellite and ground data. Data collection details are shown in Table 2. Water121

from fishponds and sandpit lakes was sampled at noon, with one or two samples collected from122

each reservoir.123

Water samples were collected from the surface layer in the column of approx. 0.2 to 0.3 m124

to polyethylene bottles and transported to the laboratory within 4 h. Each sampling point was125

recorded using a GPS tracker. The distance of sampling points from a bank was greater than126

100 m.127

Chl-a values were estimated by the reading of absorbance with a double beam UVVis spec-128

trophotometer Heλios Alpha (Unicam, GB) at 664 nm after extraction with a mixture of 90 %129

acetone:methanol (Pechar, 1987). TSS was determined as the dry weight of seston captured on130

pre-weighed Whatman GF/C filters and dried to a constant weight at 105 ◦C.131

132

Table 2: Details of data collected from the study area.

Samples (no.) in situ sampling Superspectral Sentinel-2 Properties
16 11.05.2017 11.05.2017 Chl-a , TSS
16 13.06.2017 13.06.2017 Chl-a, TSS
7 20.06.2017 20.06.2017 Chl-a, TSS

11 03.08.2017 3.08.2017 Chl-a, TSS
12 30.08.2017 30.08.2017 Chl-a, TSS
11 17.10.2017 17.10.2017 Chl-a
19 07.08.2018 07.08.2018 Chl-a
21 17.08.2018 17.08.2018 Chl-a
11 27.08.2018 27.08.2018 Chl-a, TSS
7 16.10.2018 16.10.2018 Chl-a, TSS

2.3. Superspectral satellite data pre-processing and indices retrieval133

Ten cloud-free Sentinel-2 images (Level 1C processing) were downloaded from the ESA Sen-134

tinels Scientific Data hub according to the closest dates to field sampling (Table 2). All Sentinel-135

2 level-1C data were atmospherically corrected with ACOLITE software, which is completely136

image-based. ACOLITE uses the Dark Spectrum Fitting (DSF) algorithm to convert ToA data137

to water surface reflectance data (ρw). The DFS algorithm initially corrected images for atmo-138

spheric gas transmittance and sky reflectance. DFS is based on the application of Lookup tables139

(LUTs) constructed automatically using standard 6SV continental and maritime models (i.e.,140

based on the lowest aerosol optical thickness (τa)), except pre-defined dark bands (e.g., NIR and141

SWIR) were not used; rather, the best model was selected based on the lowest dark spectrum142

for each band (ρpath(λ)) (Vanhellemont & Ruddick, 2018). This approach prevents unrealistic143

negative (i.e., over-corrected) reflectances after atmospheric correction (Kuhn & Quinlan, 2018).144

Additionally, along with the atmospheric correction, the vicarious calibration gains provided by145

Pahlevan et al. (2017, 2019) were applied in this study to improve some of the existing biases in146

MSI-derived products.147

6



Nearest neighbor resampling was used from the original 20 m spatial resolution to the 10 m res-148

olution of the Sentinel-2 bands. This method was chosen, because it is computationally efficient149

and preserves the input image pixel values (Roy et al., 2016).150

The analysis was performed using two sets of remote sensing variables including the water sur-151

face reflectance ρ of 10 extracted bands (Table 4) from the Sentinel-2 and 19 calculated spectral152

indices (Table 3) as co-variances, which was expected to improve the prediction capability. Two153

different groups of spectral indices including vegetation indices (which are sensitive to Chl-a)154

and water indices (which are sensitive to TSS) were calculated to indirectly retrieve variables155

through inter-correlation between target traits. The employed spectral indices were the Nor-156

malized Differences Vegetation Index (NDVI), Normalized Difference Water Index (NDWI),157

Modified Normalized Difference Water Index (MNDWI), Normalized Difference Turbidity In-158

dex (NDTI), Water Ratio Index (WRI), Automated Water Extraction Index (AWEI), Simple Ratio159

(SR), and Simple Ratio Water Color (SRWC). To the best of our knowledge, no studies have been160

used the proposed methodology for predicting water quality traits.161
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Table 4: Technical details of Sentinel-2 bands used in this study.

Band Spectral
Range (nm)

Central
Wavelength (nm) Bandwidth (nm) Spatial

Resolution (m) SNR

B2 458–523 492 65 10 154
B3 543–578 560 35 10 168
B4 650–680 665 30 10 142
B5 698–713 704 15 20 117
B6 733–748 740 15 20 89
B7 773–793 783 20 20 105
B8 785–900 833 115 10 174
B8a 855–875 865 20 20 72
B11 1565–1655 1641 90 20 100
B12 2100–2280 2202 180 20 100

2.4. Modeling and prediction performance assessment162

The dataset was divided into training and validation sets using random stratified sampling.The163

training set (70% of total samples) was used for the fitting model, and the testing set (30% of164

total samples) was used to assess the prediction accuracy of models. To develop the prediction165

model, Cubist, which is an extension of the M5 model trees (Quinlan, 1992), was used. Cubist166

is a form of rule-based regression which initially partitions the response data into subsets within167

which their characteristics are similar concerning the predictors (i.e., Sentinel2A bands and spec-168

tral indices) based on a series of hierarchically arranged rules. Additionally, the ensemble of the169

rule-based model, called the committee, and the number of neighboring observations were ad-170

justed to improve the predictability and stability of the models (Rossel & Webster, 2012). In171

other words, the Cubist permits to add multiple training committees and reinforcement to make172

the weights more balanced in comparison to other similar algorithms such as random forest173

(Kuhn & Quinlan, 2018; Zhou et al., 2019). Cubist has several advantages including (a) it re-174

quires the relatively small number of effective tuning hyperparameters, (b) it minimized the risk175

of overfitting, and (c) it easily can be interpreted due to availability of variable importance in the176

final predictor model (Zhou et al., 2019).177

The error of the prediction model was evaluated by repeated 10-fold cross-validation of the train-178

ing set (70% of samples) and by using the root-mean-square error (RMSE). The coefficient of179

determination (R2) was also measured to show how well the variation of one variable explains180

the variation in the other. Generally, the largest R2 and smallest RMSEp values give the best181

prediction model. R package Caret (Kuhn, 2018) and Cubist (Kuhn & Quinlan, 2018) were used182

together for the Cubist regression model.183

2.5. Distribution mapping184

Once the model was validated, it applied to all spatial data (i.e., Sentinel-2 images from water185

bodies) to predict the spatial variability of both Chl-a and TSS and create the geospatial raster186

dataset. The final maps of water properties were produced using R software (R Development187

Core Team, Vienna, Austria).188

3. Results189

3.1. Water quality descriptive statistics and correlations190

Descriptive statistical results of both Chl-a and TSS from all water bodies including the mean,191

minimum, maximum, SD, and Coefficient of Variation (CV) are shown in Table 5. Generally,192
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Chl-a increased with the start of algae growth in June, reached its maximum in August, and193

declined in September. This trend was seen for TSS as well. In other words, both Chl-a and TSS194

followed the same trend. A comparison of attributes’ CV values showed that during June, both195

Chl-a and TSS had the highest CV values, 192.64% and 85.60%, respectively. In contrast, Chl-a196

and TSS had the lowest CV values during October, which shows that their distributions are more197

homogeneous during October than on other dates.198

Table 5: Statistical description of water properties

Sampling date Chl-a TSS
Mean Min Max SD CV(%) Mean Min Max SD CV(%)

11.05.2017 26.29 2.142 111.55 28.57 108.67 7.44 2.00 22.60 6.19 82.79
13.06.2017 78.49 3.94 379.27 85.50 108.92 23.36 7.8 65.00 14.95 63.99
20.06.2017 74.18 2.99 397.12 142.91 192.64 17.91 6.2 51.0 15.33 85.60
03.08.2017 214.09 9.93 430.84 157.68 73.65 67.22 5.8 195.0 54.14 80.54
30.08.2017 245.70 8.22 509.79 149.10 60.43 61.28 5.8 90.0 26.21 42.78
17.10.2017 96.70 5.71 423.26 114.25 118.14 - - - - -
07.08.2018 36.83 17 150 33.150 90.00 - - - - -
17.08.2018 110.76 15 240 86.99 78.54 - - - - -
27.08.2018 283.70 8.05 672.58 235.45 83.34 69.62 4.4 120.0 44.89 64.48
16.10.2018 219.43 128.52 355.57 82.64 37.66 72.57 33.0 142.42 34.59 47.67

3.2. Water variable prediction using Sentinel-2A data199

Figure 2 presents the results of the Cubic modeling of water quality traits using superspectral200

Sentinel-2A data. The estimation of water quality properties provided rather good results for201

Chl-a, which was predicted with R2
p = 0.85 and RMS Ep = 49.64 . Although, the obtained202

accuracy for TSS was satisfactory (R2
p = 0.80 and RMS Ep = 19.55), it was a bit lower than that203

of Chl-a. The above-mentioned results highlight the fact that data from Sentinel-2A are suitable204

for predicting both Chl-a and TSS in this study area.205
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(a)

(b)

Figure 2: The measured versus predicted values of Chl-a (a) and TSS (b) with Sentinel-2.

The performance of the Cubist model, listed in Table 6, shows good results. The performance206

in the training dataset is slightly better than on the validation, which can be evidence that the207

model does not overfit.208
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Table 6: Training statistics using Cubist for Chl-a and TSS

training set validation set testing set
Rˆ2 RMSE Rˆ2 RMSE Rˆ2 RMSE

Chl-a 0.92 35.53 0.89 55.88 0.85 45.63
TSS 0.96 10.05 0.89 18.40 0.80 19.55

As mentioned earlier, Cubist easily can be interpreted due to the availability of variable im-209

portance in the final predictor model (Zhou et al., 2019). Therefore, the variable importance for210

all variable and co-variables showed in figure 3. It indicates that NDVI, SWRI and B5 are the211

top three most important variables in the dataset and B7 and B8 are the least essential variables212

Cubist utilized for predicting Chl-a. It also indicates that NDWI3, B5 and NDWI1 are the most213

variables Cubist algorithm used for predicting TSS.214
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(a)

(b)

Figure 3: Rank of features by importance for Chl-a (a) and TSS (b) based on Cubist algorithm.

Consequently, to better understand which spectral bands and spectral indices are the most215

significant drivers in the prediction of Chla and TSS using Sentinel-2A data, correlograms be-216

tween variables and co-variables were built (Figure 4). It can be seen that the most correlated217

features with Chl-a were NDWI2, NDWI4, NDWI5, and NDVI, followed by B5 and SR. For218

TSS, which was successfully predicted using Sentinel-2A data, the highest correlation among219

the Sentinel-2A bands was B5, regarding the correlation between water spectral indices and TSS.220

The most correlated indices were NDWI2, NDWI4, NDWI5, NDWI3, and MNDWI4, followed221

by MNDWI1, MNDWI2, and MNDWI3.222
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Figure 4: The correlograms of Chl-a (A) and TSS (B) at Sentinel-2 bands and calculated water indices (values in cells
show correlation coefficients and crossed out cells indicate insignificant values at the 0.01 level).

3.3. Spatial distribution of Chl-a and TSS and time series analysis223

The resulting spatial distribution maps of Chl-a and TSS developed through time derived224

observations from the Sentinel-2A are illustrated in Figure 5 and Figure 6 respectively.225

Figure 5 shows that the maps displayed high and very high classes of Chl-a with higher mean226

values (Table 5), but Sentinel-2 failed to characterize the low level of Chl-a content in the study227

area. In general, according to the Chl-a map, Chl-a increased in August but decreased by the end228

of October. This trend is similar to all fishponds; however, for sand lakes, Chl-a did not change.229

This trend relatively was similar in both data collection years (i.e., 2017 and 2018).230

According to the TSS spatial distribution maps (Figure 6), TSS reached its highest value by the231

end of August for fish ponds, but it decreased until the end of October. However, TSS remained232

relatively stable for sand lakes over time.233
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Figure 5: Distribution map of Chl-a over time.
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Figure 6: Distribution map of TSS over time.
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4. Discussion234

The results of this study show that Sentinel-2A products can provide enough data to effi-235

ciently predict and visualize temporal and spatial Chl-a and TSS trends in small water bodies.236

Additionally, it showed that machine learning permits the prediction of Chl-a and TSS with sig-237

nificant accuracy based only on interactions between optical and water properties. In comparison238

to other studies, such as Toming et al. (2016), which predicted Chl-a for small bodies of inland239

water based on the band ratio calculated from BoA with 80% accuracy, machine learning man-240

aged to improve the accuracy of prediction. Machine learning generates a universal prediction241

algorithm, which allows better generalization due to utilizing all spectral bands and any num-242

ber of band ratios. Although most previous studies (Song et al., 2012; Moridnejad et al., 2015;243

Chang et al., 2017) that used artificial neural network (ANN) to retrieve water quality parame-244

ters reported significant results, ANN requires a large dataset for training. It also necessitates245

an exceedingly long computation time; however, other machine learning methods such as Cubist246

could train the model with the smaller dataset and lower computation costs.247

Considering the correlogram and performance of the extracted bands of Sentinel-2A and the248

calculated water spectral indices, the specific spectral band of B5 (698–713nm) provided the249

strongest correlations with both Chl-a and TSS. These results can be attributed mainly to the250

absorbance of red edge characteristics of vegetation (Gitelson et al., 1996).251

The results in Figure 4 also indicate that the highest correlations for both Chl-a and TSS were252

provided from NDWI2, NDWI4, NDWI5, and NDVI, which represent a combination of Vis,253

NIR, and SWIR. Similar to what Grebdaute et al. (2018) reported, water indices, which are254

based on the combination of B4, B5, and B8A, can provide better results for retrieving Chl-a255

in inland waters using Sentinel-2A water surface reflectance. Similar to Chla, water surface re-256

flectance in the NIR and Vis are sensitive to the TSS concentration. Furthermore, as Novoa et al.257

(2017) and Din et al. (2017) pointed out, water indices which have the SWIR partially contribute258

to successful TSS retrieval in high turbidity waters because they have been proven to be reliable259

for atmospheric correction of ACOLITE in SWIR bands.260

Based on the Cubist model, we established that the spatial distribution of the concentration of261

both Chl-a and TSS for small water bodies can be easily generated. As expected, Chl-a and TSS262

were relatively higher during summer due to the growth of algal bloom cells. This trend was263

seen in fishponds; however, Chl-a and TSS concentrations remained low in sandpit lakes.264

Regarding the spatial distribution of both Chl-a and TSS over time (Figure 5 and 6), the values of265

TSS dramatically changed in fishponds compared to in sandpit lakes, where the TSS values were266

more stable than the former. The reason for this may have arisen due to indifferent fishery man-267

agement practices. While sandpit lakes are not managed, fishponds are controlled extensively.268

The mean fish stock is approximately 500 kg.ha−1 (Pechar, 2000, 2015) in fishponds in the area269

of interest. The dominant fish is the benthivorous common carp (Cyprinus carpio L.). Carp digs270

in the bottom sediment while searching for food. As shown by Huser et al. (2016), common carp271

can disturb the bottom sediment at depths of up to 0.15 m. The result of the intensive bioturba-272

tion of the sediment by common carp is high water turbidity with a large amount of TSS in the273

water with enormous consequences to the water reservoir ecosystem (see, e.g., Zambrano et al.274

(2001)). In the case of sandpit lakes, the amount of TSS in water can be increased artificially by275

mining activities (sandpit lake Horusice) as well as recreation activities.276
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5. Limitations and Perspectives277

Although the prediction accuracy of the introduced method is significant; it still needs to be278

improved. Besides, knowledge of the associated uncertainties related to water quality traits mea-279

surements and how to control the sources of errors are also crucial for small inland waters where280

bio-optical parameters are complex. To overcome these and similar uncertainties, a number of281

strategies can be recommended; For instance, the accuracy of the model can be improved i. by282

establishing a benchmark between field and satellite measurements in order to avoid mismatch283

in time scales between in situ and sensor overpass schedules,ii. by implying the spectral un-284

mixing to decompose the optical water components which seems crucial for small inland waters285

(Alcantara et al., 2009), iii. by utilizing the super-resolution images in order to minimize the286

introduced bias due to conventional spatial resampling methods (Lanaras et al., 2018), and iv. by287

optimizing and applying other machine learning algorithms to reach better prediction accuracy.288

Additionally, as Pahlevan et al. (2019) demonstrated, there is consistency between Landsat-8 and289

Sentinel-2A/B for retrieving water biogeochemical properties. Thus, further studies should fo-290

cus on investigating the application of machine learning methods for predicting water properties291

based on multi-mission surface reflectance.292

As previously mentioned, machine learning algorithms are the better approach for handling the293

complex problems without prior knowledge, and they are less affected by the atmospheric and294

other background factors under non-ideal contexts. Therefore it can be assumed that the devel-295

oped approach can be applied to other inland water within the same terrestrial and atmospheric296

condition; However, it still needs to be validated.297

Conclusion298

This study used a machine learning approach (i.e., Cubic) to retrieve two influential water299

quality properties for inland waters, i.e., Chl-a and TSS. To this end, concurrently to Sentinel-300

2A, several field campaigns were conducted to collect in situ data at several lakes in the south of301

the Czech Republic. As demonstrated, the enhanced spatial, spectral and temporal capabilities of302

Sentinel-2A permitted the prediction of biogeochemical properties accurately and inexpensively.303

Additionally, the machine learning algorithm was able to predict both Chl-a and TSS with signif-304

icant accuracy in small lakes and ponds over time. This could be used as an alternative approach305

to commonly used methods such as physical models for predicting and mapping water quality306

parameters. The results of this study will support the trending idea that implementing data-driven307

methods (i.e., machine learning algorithms) for predicting water quality parameters improves the308

overall pipeline for predictive accuracy for complex spectral relationships and interactions. Nev-309

ertheless, future works are still essential to expand the knowledge on the other factors affecting310

the bio-optical parameters, efficient machine learning algorithms for retrieving the water quality311

parameters, and the associated uncertainties related to remote sensing of water quality traits.312

Acknowledgements313

This work was funded by the Ministry of Education, Youth and Sports of the Czech Republic314

project CENAKVA [LM2018099]; The CENAKVA Centre Development [No. CZ.1.05/2.1.00/19.0380].315

This work was also supported by the grant of Technological Agency of the Czech Republic no.316

TG03010027 The Strengthening of Activities Proof-of-Concept at the University of South Bo-317

hemia.318

18



Thanks belong to the staff of Laboratory of Applied Ecology, namely Martina Kobesová, Blanka319
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