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WP3: Satellite remote sensing of Arctic surfaces 

Task 3.2: Optical satellite remote sensing 

Deliverable 3.2.1: A technical report on the assessment of the capabilities and limitations of 
advanced optical satellite missions for snow, vegetation, and gas flaring mapping applications in 
Arctic areas 

1 Introduction 

A greater understanding of the phenomenon of Arctic climate change and amplification has led 

to intensive and conclusive research of Arctic ecosystem change over the last 50 years (see 

IPCC, 2014; AMAP 2017). Climate warming has resulted in cascading changes to terrestrial 

ecosystems including snow cover extent and depth, shifting vegetation composition, 

productivity, and phenology, as well as increased sensitivity to natural and anthropogenic 

disturbance (Bhatt et al., 2010; Chapin et al., 2005; Elmendorf et al., 2012; Serreze et al., 2000).   

Optical remote sensing is an invaluable tool to monitor terrestrial Arctic change at multiple 

spatial scales. Recent advances in sensor technology of legacy and new platforms has resulted 

in greater availability of high spectral resolution optical satellite data such as the broadband 

Landsat 8 OLI and Sentinel-2 mission, as well as the current and upcoming hyperspectral 

missions of PRISMA and EnMAP, respectively.  

In the following report, we demonstrate how advanced optical remote sensing technologies 

supported by in-situ validation data can be used to monitor and map (1) snow properties and 

snow melt regimes; (2) vegetation biomass, activity and biodiversity; and (3) the source and 

intensity of artificial light in the Arctic through night light observations.  



2 Snow mapping 

2.1 Background 

Snow cover is an important component of the cryosphere that plays a key role for climate 

dynamics and the resources availability: the seasonality of the snow cover influences weather 

patterns, hydro-power generation, agriculture, forestry, tourism, and aquatic ecosystems 

(Beniston et al., 2018). The snow cover characterization and its annual spatial-evolution 

represent important factors to be considered in the framework of climate modelling at a global 

scale. Furthermore, the snow cover has been officially declared as an Essential Climate 

Variable (ECV) by the Global Climate Observing System (GCOS) and high priority is assigned to 

enhancing and maintaining snow cover observations (WMO, 2010; 2011). From this 

perspective, the continuous monitoring of snow covers is a major challenge of these last years 

and the advances in remote sensing explain why optical data are so diffusely used to monitor 

the snow covers. The description of the snow cover implies two variables: the extent and the 

albedo. Remote sensing is the most common tool for the routine estimation of the snow cover 

extent. However, two different aspects must be considered for the enhancement of the final 

output: time and spatial resolutions. Both components, using remotely sensed data, are 

connected to each other, since the higher the spatial resolution (below hundreds of meters), the 

lower the revisit time interval (more than 1 week) (Dietz et al., 2012). Concerning the albedo, the 

spectral behaviour of the snow reflectance in the visible and short-wave infrared ranges 

supports the discrimination of snowed surfaces from other matrices and, moreover, the 

characterization of the snow surface (Painter et al., 2003; Tedesco & Kokhanovsky, 2007). In 

details, the reflectance of pure snow in the visible range of the electromagnetic spectrum (400–

700 nm) is approximately 100 % and it decreases as a function of the amount of impurity 

content in the snow and slightly increasing in the size of the snow grains with ageing (Figure 

2-1). In the short-wave infrared part of the solar spectrum (700–2500 nm), snow reflectance 

decreases rapidly and it is mostly controlled, in this case, by the snow grain size (Warren & 

Wiscombe, 1980; Wiscombe & Warren, 1980; Warren, 1982). The major advantage to monitor 

the snow with remote sensed data is the possibility to derive area-wide and spatially 

comprehensive surface information with a regular repeatability of measurements, even in 

remote areas. However, some limitations can occur when cloud cover or vegetation are present. 

While clouds avoid only to analyse the underlying surface, vegetation can produce omission 

and/or commission errors. Additional problems could affect the results in mountain areas where 

the surface heterogeneity is consistent. 



 

 
Figure 2-1 Spectral behaviour of different snow covers 

The state-of-the-art snow products concerning the snow extent are derived using remotely 

sensed data and they are based mainly on multispectral optical sensors. They can investigate 

the snow cover and give information about the size and the shape of snow grains (Dozier et al., 

2009), the presence of impurity soot, the age of the snow, and the presence of depth hoar. 

Furthermore, the short-wave infrared signal can support the discrimination between snow and 

clouds (Rodell et al., 2004). Considering that snow-covered surfaces are highly reflective in the 

visible range and low reflective in the short-wave infrared (swir) (Salomonson & Appel, 2006), it 

is possible to define an index that enhances the discrimination between snow and not snow in a 

single pixel. This index, defined as Normalized Difference Snow Index (NDSI), is calculated as 

follows: 

NDSI =(RG − Rswir)/(RG − Rswir) (1)  

The green and the swir parameters are the bands available for each satellite sensor and their 

selection includes generally wavelength ranges centered at 500–600 nm (RG) and 1500–1600 

nm (Rswir). The estimation of the snow extent from remotely sensed multispectral images is 

based on the relation between the radiative behavior of the surfaces and the Fractional Snow 

Cover (FSC). This parameter describes the percentage of surface covered by snow (Painter et 



al., 2009) in a pixel element of a remotely sensed image. The relation between the FSC and the 

NDSI represents the most common inference required by remote sensing studies. There are two 

options for estimating the NDSI—FSC relation: the first one consists in combining satellite 

products with different spatial resolution (Yin et al 2013); and the second one can be 

approached having a ground truth information. The first solution is based on (Salomonson & 

Appel, 2006) combining Landsat and MODIS data and a NDSI to FSC relation is defined. 

FSC = 1.45 × NDSI − 0.01 (2) 

This knowledge is implemented in the SNOWMAP algorithm (Hall et al., 2016), which is the core 

of the MODIS data chain for the definition of remotely sensed snow products. This approach is 

replicated also on Landsat data (Vermote et al., 2016) and in the NASA VIIRS ATBD (Riggs et 

al., 2015), derived by Suomi NPP satellite platform. Similarly, it is included in the SC algorithm, 

which is part of the Sentinel 2A data chain (Main-Korn et al., 2017). The second solution can be 

approached defining an empirical reflectance-to-snow-cover model that requires a calibration 

having a number of reference sites in the satellite image. The most important example is the so-

called Norwegian Linear Reflectance-to-snow-cover algorithm (NLR) (Solberg et al., 2006) that 

is the core of the GlobSnow Snow Extent (SE) data chain (Metsämäki et al., 2015). From this 

perspective, the availability of webcam networks is an important data source for calibration and 

validation processes. The attention of the scientific community of this proxy is increasing, and 

the literature about this topic is growing (Salzano et al., 2019).  

Several satellite products are available for the remote sensing of the cryosphere and for this 

study we considered products obtained by optical sensors, characterized by different spatial 

resolutions: high (< 100 m); intermediate (100 m - 1 km); and low (> 1 km). The integration 

between those products and ground-based imagery will be tested, in order to improve the 

dataset concerning the snow cover over a decade. 

The available remotely sensed snow products with a higher spatial resolution (< 100 m) were 

limited to the Landsat and the Sentinel-2 missions (Table 2-1). While Landsat data are available 

since 2004 with a revisiting time of about 16 days, the Copernicus program provides imagery 

only since 2015 with a revisiting time passed form 10 days to about 5 days since 2017 after the 

launch of a second platform. While the Landsat satellites are characterized by a spatial 

resolution up to 30 m, the Sentinel sensors are featured by a spatial resolution ranging from 10 

to 60 m. The available data must be geometrically and atmospherically corrected and different 

tools must be considered in order to prepare a 2A level product. Possible solutions are based on 



using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) algorithm 

available in the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI) software 

(Vermote et al., 1997) or the Sen2Cor toolbox (ESA, 2018). The final estimation of NDSI was 

possible considering Eq.1 and the first short-wave infrared band of Landsat sensors. The 

wavelength ranges are specific for each sensor and they correspond to 520–600 nm and 1550–

1755 nm for missions 5 and 7, and 533–590 nm and 1566–1651 nm for mission 8 (Barsi et al., 

2014), 543-578 nm and 1565-1655 nm for the Sentinel 2A platform. 

The highest time resolution available for optical remote sensing is provided, in the framework of 

the Earth Observing System (EOS) flagship, by NASA’s satellites Suomi NPP, Terra and Aqua. 

Terra and Aqua are both equipped with the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and they provide the coverage of the Earth two times daily (Terra in the local morning 

and Aqua in the local afternoon). The instrument is characterized by 36 bands with a spatial 

resolution of 250 m in the visible range and 500 m in the short-wave infrared. The Suomi NPP 

platform is equipped by the Visible Infrared Imaging Radiometer Suite (VIIRS), 22-band 

radiometer, which is similar to MODIS (satellites Aqua and Terra), but with better facilities (the 

spatial resolution is up to 375 m). The NASA’s data chain provides the retrieval of NDSI at the 

ground for Suomi NPP, Terra and Aqua (Hall et al., 2016). The NDSI values can be calculated 

using in the Equation 1 the MODIS bands 4 (545–565 nm) and 6 (1628–1652 nm) or the VIIRS 

band 1 (0.64 μm) and band I3 (1.61 μm). 

Finally, the daily estimation of the snow cover extent is being provided, over the considered 

period, by the European Space Agency as a component of the Data User Element. The 

GlobSnow Snow Extent (SE) product covers the Northern Hemisphere and the processing data 

chain combines optical measurements in the visual and in the thermal part of the 

electromagnetic spectrum acquired by the ERS-2 sensor ATSR-2 and the Envisat sensor 

AATSR. Since 2016 the product has been extended to the Suomi NPP data.  

The first step of the data chain is based on a cloud-cover retrieval algorithm (SCDA) where 

clouds, as well as large water bodies (oceans, lakes and rivers) and glaciers, are masked out. 

This algorithm is based on the brightness - temperature difference between 11 and 3.7 μm and 

on a set of additional rules, useful for certain sky conditions. Furthermore, the snow cover 

information is retrieved for not-vegetated areas by the NLR algorithm (Metsämäki et al., 2012) 

where the band 2 (670 nm) is considered. This step is based on a semi-empirical reflectance 

model, where reflectance from a target is expressed as a function of the snow fraction. The 

Fractional Snow Cover can then be derived from the observed reflectance based on the given 



reflectance constants and the transmissivity values. The product is provided daily with a spatial 

resolution of 1 km and the data are available using the GlobSnow service (Metsämäki et al., 

2015). 

Table 2-1 Summary of the available snow products obtained by remote sensing at high latitudes 

Product Platform Sensor Spatial 
resolution 

(m) 

Revisit 
time 

(days) 

Year Algorithm 

Globsnow 
SE 

ERS-2 
Envisat 

Suomi NPP 

ATSR-2 
AATSR 
VIIRS 1000 7 

1995 - 2002 
2002 - 2012 

2016 - 
ongoing 

SCAMod 
NLR 

MODIS SCF Terra 
Aqua MODIS 500 0.5 

1999 - 
ongoing 
2003 - 

ongoing 

SNOWMAP 

VIIRS SC Suomi NPP VIIRS 375 1 2012 - 
ongoing SNOWMAP 

Landsat 
SCA 

Landsat 5 
Landsat 7 
Landsat 8 

TM 
ETM+ 
OLI 

30 16 

1984 - 2013 
1999 - 

ongoing 
2013 - 

ongoing 

SNOWMAP 

Sentinel SC Sentinel-2A 
Sentinel 2B 

OLCI 
MSI 10 5 

2015 - 
ongoing 
2017 - 

ongoing 

Level 2A - 
SC 

2.2 Case study  

We selected a study area located close to Ny-Ålesund (Svalbard - Norway) where the Italian 

Arctic Station represents an important scientific facility and experimental activities are 

appropriately supported. The site is characterized by intense international research 

collaborations and different data sources can be included as input for the integration between 

remotely sensed data and terrestrial images collected by webcam. We performed an overview 

about the algorithms focused on processing multispectral images and snow index calculation as 

well as on the automatic geo-rectification of ground-based photography and on the routinely 

estimation of the fractional snow cover. We considered satellite product characterized by 

intermediate (MODIS) and high (Sentinel-2) spatial resolutions and we investigated the relation 



between FSC and NDSI under different snow cover conditions. The aim of this first part of 

activities was focused on estimating omissions and commissions between automated algorithms 

and supervised classifications. The selected MODIS product is part of the USGS data-chain 

concerning the snow cover and it provides an NDSI estimation with a spatial resolution of 500 m 

twice per day. On the other hand the Sentinel-2 reflectance product was obtained using the 

Sen2Cor processor and it is characterized by a 10 m spatial resolution available since 2017 

every 5 days. While the automated algorithm was based on selecting a NDSI threshold of 0.6 as 

discriminating factor between snowed and not-snowed pixels, the supervised approach was 

supported by the definition of different region-of-interest (ROI) and by the estimation of a 

“distance” parameter that assess the type of land cover. We used the maximum likelihood 

distance as estimator and we defined different ROIs: snow, shadowed snow, cloud covered 

snow, and bare soil. Both approaches were carried out on Sentinel data in order to minimize the 

mixing pixel effect and we report here a couple of examples that summarize the most important 

issues (Figure 2-2).  



 

Figure 2-2 The snow cover at Ny-Ålesund during two different seasons: (A) August 20th 2018; 
(B) September 17th 2018. Relationship between the spectral index of snow (NDSI) obtained by 
Sentinel data and the classification obtained using supervised classifications (C,D).  



Table 2-2 Identification of surface cover types using supervised and automated classifications 

 August 20th 2018 September 17th 2018 

Class NDSI > 0.6 
[%] 

Total  
[%] 

NDSI > 0.6 
[%] 

Total  
[%] 

Snow 99.8 22.4 100 8.6 

Shadowed snow 32.3 8.2 98.9 68.2 

Cloud-covered 
snow 

67.7 16.0 30.4 19.8 

Soil 0.7 53.5 79.4 3.4 

Looking at the comparison between the two different approaches we can highlight a good 

agreement under clear and illuminated conditions of the surface but we can detect a significant 

underestimation in shadowed and partially-cloud covered areas (Table 2-2). These areas 

represent in August about 25% of the total area corresponding to the Kongsfjorden bay. Such an 

effect appeared to be limited in September when snow cover started to be almost complete and 

misclassification are lower than 10%. Considering that intense cloud cover is recurrent (up to 

80% of cloudy conditions per year) in Svalbard islands (Salzano et al., 2016), the availability of 

Sentinel data is limited and the use of intermediate spatially-resolved imagery is required. 

MODIS data are unfortunately affected by the mixing pixel and the availability of ground-truth is 

an important issue. The state-of-the-art approaches are based on integrating MODIS imagery 

with Landsat or Sentinel data. We considered in our case study the same Sentinel images of the 

previous exercises and we compared in this experiment the Sentinel-derived FSC to the MODIS 

NDSI product (Figure 2-3). 



 
Figure 2-3 The snow cover at Ny-Ålesund during two different seasons: (a) August 20th 2018; (c) 
September 17th 2018. Relationship between the spectral index of snow (NDSI) obtained by 
MODIS data, and the Fractional Snow Cover estimated by Sentinel data ((b),(d)). 

The obtained FSC-to-NDSI relations were coherent to the Salomonson & Appel (2006) in 

September and some problems were detected in August. These observations are influenced of 

course by  the availability of a reliable ground-truth that can assess the relation between FSC 

and the spectral behavior of the mixed pixel. 

2.3 Challenges and gaps     

The major challenge associated with mapping of snow cover in the Arctic is the lack of ground-

validated datasets and an overall scarcity of dense, high quality image time series. Cloud cover 

and low sun elevation represent an important limitation to the availability of complete time-series 

concerning the snow cover. This gap can be filled by terrestrial photography that represents an 

important source of continuous and high-spatially resolved description of the FSC conditions. 

The integration of different snow products, obtained at different time and spatial resolutions is a 

major challenge at high latitudes.  



3 Vegetation mapping 

3.1 Background 

The Arctic biome is broadly divided into sub, low and high Arctic dictated by the ecological 

effects of latitude and climate spanning from the tundra-taiga-ecotone in the south to the polar 

deserts in the north (Bliss and Matveyeva, 1992). Walker et al. (2005) improved this broad 

classification by further subdividing the Arctic biome into five bioclimatic zones with detailed 

vegetation descriptions, following a roughly latitudinal gradient from warmest and most 

vegetated in the south to coldest and least vegetated in the north. In general, Arctic vegetation 

cover and species biodiversity decreases with increasing latitude and though biodiversity is low 

at the biome scale, at the community scale it is comparable to temperate grasslands and 

coniferous biomes (Bliss et al., 1981).  

Recent research highlights the heterogeneous and non-linear vegetation change occurring at 

multiple spatial scales in terrestrial Arctic ecosystems (Bhatt et al., 2010; Bjorkman et al., 2017, 

2015; Elmendorf et al., 2012).  Remote sensing offers a tool that can capture landscape and 

biome scale responses of Arctic vegetation to climate change though limitations exist due to the 

often challenging acquisition conditions that limit data frequency and quality. The majority of 

mapping efforts provide rasterized ecological classifications or estimations of vegetation 

properties from local to biome scales through inferred relationships with broadband vegetation 

indices (VIs). However, heterogeneous species composition, dynamic surface moisture 

conditions, and an abundance of non-photosynthetic plant material and non-vascular species 

can complicate broadband VI signals, especially in sparsely vegetated areas (Liu et al., 2017). 

Advancements of optical sensors in recent years (e.g. Sentinel-2, PRISMA) have increased both 

the spatial and spectral resolution of optical remote sensing imagery facilitating the use of 

narrowband indices and the entire spectral feature space of the electromagnetic spectrum. 

These new advanced systems can provide additional information to better capture and 

characterize vegetation properties and the complex changes occurring in terrestrial Arctic 

ecosystems. 

Vegetation mapping can be divided into the two categories of land cover classification and 

estimation of vegetation properties. The most commonly used land cover map in the Arctic is the 

14-km resolution Circumpolar Arctic Vegetation Map (CAVM; CAVM Team, 2003), a hierarchical 

classification of physiognomic units with detailed vegetation description derived from a 

combination of AVHRR spectral information and manual delineation by local experts. Recently, 



a 1-km raster CAVM was developed which greatly improves the spatial resolution and detail of 

this highly valuable classification (Raynolds et al., 2019).  

The identification of Arctic tundra vegetation species, plant functional types and/or vegetation 

communities is challenging due to a lack of standard definitions, circumpolar nomenclature and 

the spatial scale and detail of available data. The majority of other vegetation mapping efforts in 

the Arctic have been performed  at regional or local scales produced through automated or 

semi-automated classification of satellite data combined with ancillary data such as terrain 

attributes, percent vegetation cover, aboveground biomass and soil moisture (Atkinson and 

Treitz, 2012; Fraser et al., 2012; Johansen et al., 2012).  

Mapping Arctic tundra vegetation properties is largely dependent on inferred relationships with 

broadband vegetation indices. A lot of uncertainty remains in estimating vegetation properties 

given the scarcity of high quality validation datasets. However at local and regional scales in 

multiple Arctic ecosystems, ground-validated satellite-derived vegetation indices have been 

used to successfully estimate and map aboveground biomass, leaf-area index (LAI), phenology, 

productivity and more recently solar-induced fluorescence (Raynolds et al., 2012; Williams et al., 

2008; Shaver et al., 2013; Emmerton et al., 2016; Walther et al., 2018).  

To date there are very few vegetation mapping efforts using Sentinel-2 in terrestrial Arctic 

ecosystems though it has been identified as an important sensor for a wide range of mapping 

applications (Bartsch et al., 2016). Riihimäki et al. (2019) demonstrated that both Sentinel-2 and 

Landsat 8 OLI are capable of estimating fractional vegetation cover in a sub Arctic tundra 

ecosystem with high accuracy. Mochalov et al. (2019) used Sentinel-2 in combination with field 

data and botanical information as an input in a machine-learning algorithm to accurately map 

vegetation communities in Siberian tundra. Langford et al. (2019) also demonstrated the 

potential of machine-learning to improve vegetation classification using convolutional neural 

networks with Landsat 8 OLI, hyperspectral and terrain datasets to accurately map vegetation at 

a 5 m scale in western Alaska. Many studies also incorporate Landsat 8 OLI into long-term 

Landsat time series for multiple applications of mapping Arctic vegetation (Frost et al., 2014; 

Macander et al., 2017; Edwards and Treitz, 2015). 



3.2 Case Study 

3.2.1 2.2.1 Lena Delta biomass and biodiversity 

As part of the iCUPE project, the application of Sentinel-2 and Landsat-8 data to questions of 

Arctic vegetation change is expanded by relating spectral information of the sensors to 

destructively sampled biomass and biodiversity data in the central Lena Delta, Siberia (Figure 

3-1). A dense time-series of Sentinel-2 and Landsat 8 was collected over the region in the 

growing season of 2018 and concurrent biomass and plant species data were collected. The 

influence of phenology, topography, and vegetation community type will be taken into account. 

The results will increase the availability of ground-validated biomass datasets for extrapolation 

and use in the multidisciplinary research of the iCUPE project. 

  



 

Figure 3-1 Sentinel-2 image of the central Lena Delta and the extractable vegetation variables 
using spectral diversity measures. © ESA-BELSPO 2015, produced by VITO 

Most of the high spectral resolution studies of Arctic vegetation used ground-based 

hypersepctral spectral data (Beamish et al., 2017; Huemmrich et al 2013; Bratsch et al., 2016; 

Buchhorn et al., 2013; Liu et al., 2017). A small number of studies exist using Hyperion-EO but 

the data quality and latitudinal extent is limited (Langford et al., 2019). The quantity and quality 

of hyperspectral data is increasing, providing the opportunity to use these advanced missions to 

better characterize Arctic vegetation. 

3.2.2 North Slope Alaska photosynthetic pigments and plant functional types 

In preparation for hyperspectral satellite and aerial data acquisitions, a detailed ground-based 

spectral characterization of low Arctic tundra vegetation on the Alaskan North Slope was 

conducted (Beamish et al., 2017; Beamish et al., 2018). We collected canopy-based spectral 

reflectance in five dominant low Arctic vegetation communities at three major phenological 

phases of leaf-out, maximum canopy, and senescence (Figure 3-2). As a first step to improve 

the estimation and monitoring of Arctic tundra vegetation we examined within and between 

community variability to determine the most discriminative wavelengths and phenological phase. 

The results suggest that for imaging spectroscopy, the senescent phase data is superior to early 

and peak season for differentiating vegetation communities (Beamish et al., 2017).  



In a second step, the spectral reflectance data were then compared to simple greenness ratios 

from digital cameras and photosynthetic pigments extracted from dominant plant species to 

understand how vegetation colour reflects vegetation change. Results indicate that shifts in 

vegetation colour are concurrent with shifts in photosynthetic pigment content and simple 

greenness ratios can be used to estimate pigment concentrations (Beamish et al., 2018).  

 

Figure 3-2 Airborne hyperspectral AISA orthomosaic of the Toolik Lake Natural Research Area. 
Spectral characterization at the ground and airborne scale of six dominant vegetation 
communities. Moisture, stature and fractional cover of plant functional types influenced spectral 
scaling. 

In a final step, using detailed plant compositional data, we explored the sensitivity using simple 

linear regression of individual wavelength and two-band spectral indices to varying fractional 

vegetation cover (Figure 3-3). We found that wavelengths and spectral indices showed 

overlapping areas of sensitivity to vascular and non-vascular functional types which could 

confound the extraction of vegetation properties derived from vegetation indices.  



These results overall suggest that using wavelengths and narrowband indices in the visible 

spectrum can provide sufficient information to monitor seasonal changes in vegetation activity 

and vitality. This reduces the dependency on the near infrared which has shown high sensitivity 

to surface moisture, a ubiquitous feature in Arctic tundra ecosystems. In addition, phenology 

clearly plays an important role in differentiating vegetation communities and deriving vegetaiton 

properties.  

 

Figure 3-3 Mapping plant functional types at the airborne scale in two distinct geomorphic areas, 
dry upland heath and wet shrubby water tracks. At the airborne scale, extraction of dwarf shrub 
cover was poor in the water tracks but good in the upland heath. 

3.3 Challenges and gaps  

The major challenge associated with mapping of Arctic vegetation is the lack of ground-validated 

datasets and an overall scarcity of dense, high quality image time series. The increasing 

availability of hyperspectral data will face similar challenges and given the limited number of 

hyperspectral remote sensing studies in the Arctic, high quality, ground-validated data is 

required to accurately interpret these dense and complex datasets. The rise of more advanced 

classification methods such as machine-learning techniques are highly promising for Arctic 

vegetation mapping using advanced remote sensing platforms. An increased effort to develop 

Arctic-specific algorithms is needed. 



4 Artificial light 

4.1 Background 

One of the defining features of Arctic regions is the unique light cycle. In contrast to temperate 

and tropical latitudes, Arctic regions are famous for experiencing long periods of “midnight sun” 

during the summer, and aurora during winter when the sun is set. Less well known, but likely of 

great importance for Arctic animals, are the periods in winter during which the full moon does 

not set for multiple days. For example, Last et al. (2016) demonstrated that vertical migration of 

zooplankton due to lunar cycles is ubiquitous across the Arctic Ocean. Artificial light at human 

habitations is far brighter than light from the aurora and the moon, and therefore has the 

potential to dramatically impact the behaviour and physiology of Arctic animals. Ludvigsen et al. 

(2018) hypothesize that the susceptibility of Arctic animals to light pollution is at its extreme in 

this region. 

Artificial light could potentially affect Arctic animals in at least two ways. First, is the effect of 

artificial light on orientation, navigation, and hunting. Ludvigsen et al. (2018) demonstrated that 

the light polluted environment near research vessels in Arctic waters affects zooplankton 

communities to a degree where it is impossible to examine the abundance and natural rhythms 

within the upper 100 m of the water column. Second, Arctic animal and plant physiology is 

specially adapted for the region, and exposure to light during polar night could impact seasonal 

biology. Stokkan et al. (2013) showed that Arctic reindeer adjust their tapetum lucidum (reflector 

system regulating light sensitivity in the eyes) between winter and summer. In wild populations, 

it is golden in summer and deep blue in winter. However, reindeer kept at the University of 

Tromsø were observed to have green tapetum lucidum all winter, presumably due to their 

exposure to artificial light from distant urban light and its reflection from clouds.  

The polar environment has important effects for both the propagation of light in the environment, 

and for observations of artificial light from space. As mentioned above, clouds typically brighten 

rather than darken the night sky near lit areas (Kyba et al., 2011), but this effect is especially 

pronounced in the arctic, due to the high albedo of snow cover (Jechow & Hölker, 2019). The 

seasonal cycle also means that in contrast to temperate areas, artificial light can only be 

observed from October-March, with observations at higher latitudes possible only from 

November-February, periods when snow cover is near certain. Furthermore, because polar 

orbiting satellites pass over polar regions more frequently, the number of possible observations 

per day is larger. For example, in December, the Visible Infrared Imaging Radiometer Suite 



Day/Night Band (DNB) on the Suomi Net Primary Productivity (NPP) satellite images areas at 

the equator approximately once per night, compared to 60o and 70o with approximately 2.5 and 

4 overpasses per night, respectively. 

Artificial light emissions are strongly connected with human activity around the world, and the 

Arctic is no exception. Light sources in the Arctic include human habitations, resource extraction 

sites (e.g. from gas flaring), and air and sea ports. Many of these lights are continuously on and 

are therefore visible during the late-night overpasses of Suomi NPP. In this report, we present 

three case studies regarding artificial light emissions in the Arctic. The first is intended to 

demonstrate how a tool developed in the ERA-PLANET GEO-Essential project can be used to 

examine light changes in the Arctic. The second is an analysis of the types of artificial light 

sources on the Yamal Peninsula. The third is an analysis of how the artificial light environment is 

changing across the entire Arctic. 

4.2 Case studies 

4.2.1 Colville Delta 

The “Radiance Light Trends” web application makes it possible to quickly analyze trends in night 

lights in a browser without needing to download the satellite dataset or run GIS software (Figure 

4-1). The application is based on DNB data processed by the Earth Observation Group of the 

Colorado School of Mines (https://eogdata.mines.edu/download_dnb_composites.html). It can 

immediately be seen that the aurora produces significant light in Arctic regions, introducing a 

background that complicates the identification of areas with low levels of artificial light (e.g. small 

villages). Nevertheless, brighter and larger sources of artificial light are easily seen, for example 

in the case of resource extraction in the Colville River Delta, Alaska (Figure 4-2), where artificial 

light associated with oil and gas extraction is easily visible above the background. 

In Figure 3.2, a region at the extreme West of the light producing region was selected. Figure 

4-3 shows the lighting trend for the average value of DNB data from this region during 2012-

2019. A clear transition in the light emissions of the site can be seen, with artificial light 

emissions beginning at the end of 2015. The figure also shows that the observed radiance is not 

identical from month to month. The causes of variations in monthly night emissions are 

discussed by Coesfeld et al. (2018). In the case of the Arctic, the freshness of snow cover plays 

an especially strong role. 



 

Figure 4-1 Main page of the Radiance Light Trends application, with annotations in yellow 
highlighting several features. The EOG annual composite DNB image for 2016 is shown. 

 

Figure 4-2 Zoom in of the Colville Delta region. The lights layer is the EOG annual composite for 
2016. The yellow arrow shows the location of a region to be analyzed. The red outline inside the 
analysis region shows the area that EOG determined to have regular light emissions (i.e. not 
background light). The coordinates of polygons drawn by a user can be downloaded, and then 
uploaded later to repeat the analysis. 

 



 

Figure 4-3 Change in average light observed in the selected region shown in Figure L1. 
Because of the high latitude, data were only available during November through February. 

4.2.2 Yamal Peninsula 

The Radiance Light Trends app was used to identify artificial light sources on the Yamal 

Peninsula in Russia, and then visible band daytime imagery from Google Maps and Bing Maps 

was used to identify what type of human activity was responsible for the light. The positions of 

the 78 lit areas and their light source classification are shown in Figure 4-4; a CSV file 

describing the sites is available in Coesfeld & Kyba (2019), as is a KMZ file for viewing the sites 

in Google Earth or another viewer. The most common type of land use associated with light 

emissions were areas related to oil and gas extraction and/or refining (classified as industry and 

industry/flare). There is a string of artificial lights with points separated at 30-40 km distance 

associated with a road, and seven communities. In ten cases, high resolution imagery was 

either not available or out of date, so the site was classified as unknown. Water indicates lights 

that are not on land, most likely indicating an offshore platform. 



 

Figure 4-4 Locations and categorization of artificial light sources on the Yamal Peninsula. 
Background maps are Esri basemaps: World Imagery (left) and World Light Gray Canvas (right). 

3.2.3 Changes in lit regions across the entire Arctic 

As a final case study, we consider how the number of lit areas and their size are changed 

across the Arctic over a seven year period. We did not examine what sources were responsible 

for observed trends. In this case, Radiance Light Trends was not used. Rather, DNB data were 

manually downloaded and examined in Python (scripts available in Coesfeld, 2019). Lights 

sources across the Arctic are shown in Figure 4-5. For this purpose, the boundary of the Arctic 

was defined as 60oN. Pixels were considered lit if they had a radiance above a specified value in 

nW/cm2sr, and areas with adjacent lit pixels were agglomerated into individual “lit sites”. 

 

 



 

Figure 4-5 Artificial light sources in and near to the Arctic in December, 2018. The dashed blue 
line shows 60o North, light sources are shown in black. The land areas are shaded based on 
maps from Natural Earth’s free vector and raster map data available at naturalearthdata.com. 
The EOG maps do not include latitudes above 75o North, so any lights that are located there are 
not shown (white area at center). 

Each monthly dataset from the EOG was analyzed individually for the months of November to 

February during the period for which data is available in 2012-2019. The trends in total number 

of lit sites and total lit area are shown in Figure 4-6 and Figure 4-7, respectively. Three radiance 

cuts of 5, 10, and 20 nW/cm2sr were analyzed separately. For both lit area and total number of 

lit sites, the data is most consistent with a fairly rapid increase. However, the variability in the 

satellite dataset remains too large to rule out the null hypothesis that lights are not increasing. 



There is a very clear seasonal effect: The number of detected sites and their area are typically 

smallest in November, and larger with each subsequent month. This is not surprising, as snow 

cover increases during this period. 

 

Figure 4-6 Total number of illuminated sites above 60oN in each of the DNB datasets for three 
different radiance thresholds (in nW/cm2sr). Data from February, 2017 is not shown for the 
threshold of 5 nW/cm2sr, due to a large upward fluctuation. 

 

Figure 4-7 Total area of illuminated pixels above 60oN in each of the DNB datasets for three 
different radiance thresholds (in nW/cm2sr). Data from February, 2017 is not shown for the 
threshold of 5 nW/cm2sr, due to a large upward fluctuation. 

4.3 Challenges and gaps 

A key challenge for observing artificial light in the Arctic from space, particularly for smaller light 

installations, is the dramatic variability in atmospheric aurora and surface albedo (due to snow 

cover). This can be seen in the dramatic upward fluctuations in areas lit above 5 nW/cm2sr 

observed in February of 2017 and 2019 (Figure 4-6 & Figure 4-7), and the pattern that more 

bright areas are typically detected in February than in November. Another difficulty is that night 

lights data are not acquired throughout the entire night, but rather early in the morning (local 

time). If electric lights are on only during the “day” and early evening hours, they may not be 

detected by DNB at all. While future night light detectors on geostationary satellites could 

observe the evolution of lights over the course of the night (Levin et al., 2019), such 

observations would be more challenging or impossible for polar regions because of the very low 



elevation angle of the satellites relative to the horizon. Similarly, transient light sources (such as 

from moving ships) may impact arctic marine life, and may be difficult to distinguish from spikes 

in aurora. Finally, additional ground-based observations of light such as those undertaken by 

Jechow et al. (2019) would be valuable both for understanding the natural light environment of 

the polar night, and also the degree to which humans are changing it. 

In closing, individuals and industry could minimize the environmental impact of artificial light 

emissions, while also reducing fuel use for producing electricity for the lights through changing 

practices. For example, Wren et al. (2015) documented how reducing light use on oil rigs 

through more careful direction of the lights can actually increase visibility for workers. This work 

led to a set of recommendations for lighting oil and gas infrastructure1, which has been 

endorsed by key industry players, including the American Petroleum Institute and the Texas Oil 

& Gas Association. Other practices, such as minimizing flaring, turning off lights when not in 

use, and using only as much light as is needed, could similarly reduce the environmental impact 

of anthropogenic light on the polar night. 

5 Conclusion 
The case studies presented in this report demonstrate what a powerful tool optical remote 

sensing is for monitoring and characterizing diverse changes in terrestrial Arctic ecosystems. 

Both vegetation and night light mapping require in-situ validation to better understand regional 

and biome scale trends. Providing detailed ground-validated datasets from advanced multi and 

hyperspectral platforms will improve our understanding of the current state of snow, 

aboveground biomass, photosynthetic activity, and biodiversity. Such information is crucial for 

accurately monitoring and relating changes to other iCUPE work packages studying 

atmospheric chemistry, snow depth and snow melt dynamics, and urban and industrial 

development. Night light mapping is a highly valuable tool to monitor urban and industrial 

development and provide important information to monitor the ecological impact of 

anthropogenic activity to Arctic flora and fauna. 

  

                                                
1 available at: https://texanbynature.org/wp-content/uploads/2018/06/RecommendedLightingPracticesFINAL.pdf 

https://texanbynature.org/wp-content/uploads/2018/06/RecommendedLightingPracticesFINAL.pdf
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