AKADEMIE DER WISSENSCHAFTEN DER DDR Forschungsbereich Geo- und Kosmoswissenschaften ZENTRALINSTITUT FÜR PHYSIK DER ERDE

Veröffentlichungen des Zentralinstituts für Physik der Erde Nr. 49

Zeit- und Breitenbestimmungen

mit dem photografischen Zenitteleskop des Zentralinstituts für Physik der Erde

von

Manfred Meinig

Horst Jochmann

Als Manuskript gedruckt Potsdam 1976

		3
Inhalt	sverzeichnis	Seite
1.	Einleitung	7
2.	Konstruktions- und Arbeitsprinzip des Instruments	9
3.	Theorie der Auswertung	15
3.1.	Grundlegende Beziehungen zwischen Bildkoordinaten, Deklination,	
	Stundenwinkel und geographischer Breite	15
3.1.1.	Betrachtungen zum Refraktionseinfluß	16
3.1.2.	Reihenentwicklungen der Abbildungsgleichungen	17
3.1.3.	Die Modifikation der Abbildungsgleichungen infolge der Bewegung	
	des Plattenträgers während der Belichtung	18
3.2.	Der Beobachtungszyklus	21
3.2.1.	Der Einfluß des Umlegefehlers	22
3.3.	Die Beziehungen zwischen dem Koordinatensystem des Auswertegerätes	
	und dem Bildkoordinatensystem	23
3.4.	Ableitung der Grundformeln für die Auswertung	24
3.4.1.	Die Abbildungsgleichungen für einen Sterndurchgang	25
3.4.2.	Orientierungsunbekannte 0 und Maßstabsfaktor a	26
3.4.3.	Zeit und Zenitdistanz des Meridiandurchgangs	27
3.5.	Die Formeln des Rechenprogramms der PZT-Auswertung	28
4.	Fehlertheoretische Betrachtungen	32
4.1.	Der Einfluß von Azimut- und Umlegefehler auf Uhrkorrektion	
	und Zenitdistanz	32
4.2.	Die fehlertheoretische Beziehung zwischen den Bildkoordinaten	
	und den ermittelten Werten von z_m und t_m	33
5.	Beobachtungsprogramm	37
6.	Ergebnisse der Zeit- und Breitenbestimmungen	40
7.	Genauigkeitsuntersuchung	43
7.1.	Fehler der Plattenausmessung	43
7.2.	Lagefehler der Abbildungen auf der Photoplatte	43
7.3.	Fehler der Zeitregistrierung	47
7.4.	Fehler der Zeit- und Breitenbestimmungen	47
Litera	tur 🤋	50
Anhang	: Beobachtungsergebnisse	51

1/16/46 FG 037/ 1 /77

Zusammenfassung

Seit 1972 werden in Potsdam regelmäßig Beobachtungen mit dem PZT durchgeführt. Das Konstruktionsprinzip und die Arbeitsweise des Instruments werden erläutert. Aus den grundlegenden Beziehungen zwischen Bildkoordinaten, Sternörtern und Stationskoordinaten werden die Abbildungsgleichungen entwickelt und daraus die Grundfermeln für die Auswertung abgeleitet. Der Einfluß von Asimut- und Umlegefehler auf die Zeit- und Breitenbestimmung wird fehlertheoretisch untersucht. Für die Reduktion der Beebachtungen werden seit 1974 Sternörter verwendet, die auf Grund der Resultate von 1972 und 1973 verbessert wurden. In einer Genauigkeitsanalyse werden die Einflüsse verschiedener Fehlerquellen untersucht und die Leistungsfähigkeit des Instruments abgeschätzt. Die erhaltenen sufälligen Fehler der Zeit- und Breitenbestimmungen werden mit den theoretisch zu erwartenden Werten verglichen. Die Ergebnisse für die Jahre 1972 bis 1974 sind im Anhang zusammengestellt.

Summary

Observations have been carried out regularly in Potsdam using the PZT since 1972. The principles governing the design and mode of operation of the instrument are explained. From the fundamental relations between image point co-ordinates, star positions and station co-ordinates the imaging equations are developed and from them the basic formulae for evaluation are derived. The influence of azimuthal and reversal errors on time and latitude determination is examined from the point of view of error theory. For reduction of the observations star positions have been used since 1974, which have been improved taking as a basis the results of 1972 and 1973. By an accuracy analysis the influences of various sources of error are examined and the efficiency of the instrument is estimated. The random errors obtained in the time and latitude determinations are compared with the values to be expected in theory. The results for 1972 through 1974 are listed in the appendix.

Résumé

Depuis 1972 on réalise régulièrement à Potsdam des observations avec le PZT. Le principe de construction et le mode de fonctionnement de l'instrument sont expliqués. En partant des relations fondamentales entre les coordonnées de l'image, les positions d'étoiles et les coordonnées des stations, on développe les relations de conjugaison et on en déduit les formules de base en vue de l'évaluation. Du point de vue de la théorie des erreurs, on étudie l'influence des erreurs azimutales et de retournement sur la détermination de l'heure et de la latitude. Pour la réduction des observations, depuis 1974 on utilise des positions d'étoiles qui ont été améliorées en raison des résultats obtenus en 1972 et 1973. Moyennant une analyse de précision, on étudie les influences des différentes causes d'erreur et l'on apprécie le rendement de l'instrument. On effectue la comparaison entre les erreurs aléatoires obtenues pour la détermination de l'heure et de la latitude avec les valeurs théoriquement attendues. Les résultats obtenus de 1972 à 1974 figurent dans l'annexe.

Pesione

С 1972 года в Потсдаме регулярно ведутся наблюдения с помощью ФЦТ. Дается объяснение конструкции и принципа работы инструмента. Из основных связей между координатами изображения, местами положения звезд и координатами станций выводятся уравнения изображения, а из них - главные формулы оценки. На основе теоретически выведенных погрешностей исследуется влияние погрешностей азимута и перекладки на определение времени и шароты. Для редукции наблюдений с 1974 года используются положения звезд, которые были улучшены на основании результатов 1972 и 1973 годов. При проведении анализа точности исследуются влияния различных источников погрешности и оценивается работоспособность инструмента. Полученные случайные погрешности определения времени и широты сравниваются с теоретически ожидаемыми. Результаты 1972 - 1974 гг. приведены в приложении.

1. Einleitung

Das photographische Zenitteleskop (PZT) wird als leistungsfähiges Instrument für geodätisch-astronomische Zeit- und Breitenbestimmungen auf ortsfesten Stationen zur Ermittlung von Daten für die Untersuchung des Rotationsverhaltens der Erde eingesetzt. Im Vergleich zu anderen, für den gleichen Zweck verwendeten Instrumententypen weist das PZT einige Vorteile auf.

Da der Beobachtungsvorgang automatisch abläuft und durch ein Programmschaltwerk gesteuert wird, werden persönliche Fehler bei der Beobachtung nicht wirksam, und der Beobachter wird weitgehend entlastet. Seine Tätigkeit besteht in der Vorbereitung des Instruments, der Zeitregistriergeräte und des Programmgebers, dem Einlegen der Kassette, dem Programmstart zum vorgegebenen Zeitpunkt, der Kontrolle und Überwachung des Programmablaufs und dem Entnehmen der Kassette nach Abschluß der Beobachtung.

Refraktionsfehler spielen wegen der Beobachtung in unmittelbarer Zenitnähe nur eine untergeordnete Rolle. Ihr Einfluß wird durch das Auswerteverfahren und die Gestaltung des Sternprogramms weiter verringert. Auch instrumentelle Fehlereinflüsse werden durch das Konstruktionsprinzip des PZT weitgehend eliminiert. Die geforderten Toleranzen für Aufstellung und Justierung lassen sich ohne Schwierigkeiten einhalten. Nicht zuletzt ist das PZT durch seine im Vergleich zu Passageinstrument und Astrolab größeren Dimensionen den anderen Instrumententypen überlegen.

Ein Nachteil des PZT ergibt sich aus der Tatsache, daß die Beobachtung nur in unmittelbarer Nähe des Zenits erfolgt und dadurch nur Sterne in einer schmalen Deklinationszone beobachtet werden können. Es stehen daher kaum Fundamentalsterne zur Verfügung, und das Programm muß aus Sternen zusammengestellt werden, deren Örter und Eigenbewegungen zunächst nicht mit ausreichender Genauigkeit bekannt sind und mit Hilfe der eigenen PZT-Beobachtungen sowie durch spezielle Beobachtungen noch verbessert werden müssen. Ein weiterer Nachteil besteht in der Verwendung der photographischen Platte als Zwischenspeicher, wodurch der Auswerteprozeß recht zeitaufwendig wird.

Das in der Institutswerkstatt der Sternwarte Babelsberg gebaute PZT (Abb. 1) wurde nach der Übernahme durch das geodätisch-astronomische Observatorium des Zentralinstituts für Physik der Erde erprobt. Auf Grund der Erfahrungen, die bei den Versuchsbeobachtungen gewonnen wurden, sind einige instrumentelle Verbesserungen erfolgt. Das Instrument ist im westlichen Meridianhaus auf dem Gelände der Sternwarte Babelsberg aufgestellt. Zeit- und Breitenbestimmungen werden damit seit 1972 regelmäßig durchgeführt.

2. Konstruktions- und Arbeitsprinzip des Instruments

Im Vergleich zu anderen Instrumenten zur geodätisch-astronomischen Orts- und Zeitbestimmung zeichnet sich das PZT durch die optimale Elimination des Einflusses von Instrumentenfehlern aus.

Alle genaueren Beobachtungsverfahren der geodätischen Astronomie beruhen auf der Stabilisierung der vom Beobachtungsinstrument definierten Vertikalkreise oder Alumkantarate während des Sterndurchgangs. Beim PZT, das eine vertikale optische Achse besitzt, erfolgt die Stabilisierung durch einen in der halben Brennweite liegenden Quecksilberhorizont. Die Bildebene befindet sich in der bildseitigen Hauptebene des Objektivs, wodurch gewährleistet ist, daß Abstandsfehler zwischen Quecksilberhorizont und Objektiv meßtechnisch nicht wirksam werden können. Sie würden lediglich eine Verschlechterung der Abbildungsqualität auf der photographischen Platte bewirken.

In Abb. 2 ist der wesentliche optische Aufbau des PZT dargestellt. Nachdem die Strahlen das Objektiv 1 passiert haben, werden sie am Quecksilberhorizont 2 reflektiert und erzeugen auf der Photoplatte 3, die sich in der bildseitigen Hauptebene des Objektivs befindet und in West-Ost-Richtung beweglich ist, ein Bild. Das Auswerteprinzip des PZT erfordert, daß jeweils 4 Bilder pro Sterndurchgang erzeugt werden, wobei zwischen den einzelnen Belichtungen der Instrumentenkopf jeweils um 180° gedreht werden muß. Nachführung der Photoplatte und Drehung des Instrumentenkopfes zwischen den einzelnen Beobachtungen erfolgen während eines Beobachtungszyklus automatisch.

Wie im folgenden Kapitel gezeigt wird, können aus den Koordinatendifferenzen der vier Bilder, die während eines Sterndurchgangs erzeugt werden, die Zenitdistanz und die Meridiandurchgangszeit ermittelt werden, wenn die zeitliche Mitte der vier Belichtungen gegeben ist. In Abb. 3 ist der zeitliche Ablauf der Beobachtung eines Sterndurchgangs dargestellt. Der gesamte Beobachtungszyklus dauert 120 s, jede Belichtung 20 s, und der Instrumentenkopf wird innerhalb von 10 s umgelegt. Alle notwendigen Bewegungen und Steuerbefehle werden vom Antriebsmechanismus (Abb. 4) selbsttätig durchgeführt.

Bein Auslösen des Startimpulses zieht der Startmagnet 5 die Zahnkupplung 15 an und bringt das Zyklusgetriebe 4 mit der Sekundenwelle 2 in Verbindung. Die Untersetzung von der Sekundenwelle zum Zyklusgetriebe ist 30 : 1. Vom Zyklusgetriebe wird nach 5 s der Kontakt geschlossen. Hierdurch wird über den Kupplungsmagneten 9 das Kegelradwendegetriebe 3 für den Transport des Plattenwagens eingekuppelt. Gleichzeitig wird die Belichtungsklappe geöffnet. Die Einkupplung des Kegelradwendegetriebes erfolgt über die Mitnehmerstifte 14, wobei je nach der Lage des Instrumentenkopfes die Einkupplung für Links- oder Rechtslauf erfolgt. Das Kegelradwendegetriebe ist gegenüber der Sekundenwelle 2 : 1 untersetzt. Die sich mit dem Kegelrad drehende Antriebsspindel 7 bewegt ein Mutterstück 8, durch das der mittels Federkraft an den Bewegungsmechanismus angedrückte Plattenwagen 13 bewegt wird. Die Antriebsspindel hat eine auf die geographische Breite des Aufstellungsortes abgestimmte Steigung.

Abb. 2. Optischer Aufbau des PZT

Abb. 3. Zeitlicher Ablauf der instrumentellen Funktionen während eines Sterndurchgangs (nach ENGELBRECHT /1_7)

Abb. 4. Der Antriebsmechanismus (schematisch) des PZT-Plattenwagens (nach ENGELBRECHT 277)

Neben dem Plattenwagen wird durch die Antriebsspindel eine 20 : 1 untersetzte Welle mit den Nockenscheiben 6 gedreht, durch die der Stoppkontakt und die Relaisschaltung zum Umlegen des Instrumentenkopfes ausgelöst werden. Jeweils nach dem 7 s dauernden Umlegen wird 3 s später ein neuer Belichtungsvorgang ausgelöst. Der Beobachtungszyklus wird über ein Zeitrelais in der Steuereinrichtung gestoppt. Mit der Antriebsspindel ist eine Piacrylscheibe 11 verbunden, die zur Zeitkontaktgabe dient. In dieser geschwärzten Piacrylscheibe befindet sich ein Lichtspalt, der das von einer Lampe mit optischer Abbildungseinrichtung 12 kommende Licht bei entsprechender Stellung der Scheibe hindurchläßt und dadurch die Abbildung des Lampenwendels auf eine Photodiode 16 ermöglicht. Hierdurch wird ein Startimpuls erzeugt, der einen elektronischen Zeitintervallmesser auslöst. Den Stoppimpuls erhält dieser durch die Sekundenkontakte des elektronischen Zeitdienstes des geodätisch-astronomischen Observatoriums. Beim Drehen der Antriebsspindel werden auf diesem Wege je Belichtung die Sekundenbruchteile eines Zeitpunktes registriert. Das Mittel der vier registrierten Zeiten entspricht den Sekundenbruchteilen der zeitlichen Mitte des Beobachtungszyklus. Der Antrieb der Sekundenwelle 2 erfolgt durch einen 1000-Hz-Synchronmotor 1, der durch die Normalfrequenz einer Quarzuhr gesteuert wird.

In Abb. 5 ist das Funktionsschema des PZT wiedergegeben. Die unter der gestrichelten Linie dargestellten Einheiten befinden sich am Instrument, während die darüber verzeichneten in einem separaten Steuerraum untergebracht sind.

Der Beobachtungszyklus kann für jeden Stern durch Handstart oder für das gesamte Programm einer Nacht durch den Programmgeber ausgelöst werden. Der vorstehend beschriebene Aufbau des Antriebsmechanismus und seine Zuordnung zur Zeitkontaktgabe gewährleisten eine von Justierfehlern weitgehend unbeeinflußte Relation der Sternbilder zum Zeitkontakt.

Verstreicht bei einer Belichtung vom Bewegungsbeginn bis zur Zeitkontektgabe ein Zeitintervall Δt , so beträgt in der um 180[°] gedrehten Lage des Instrumentenkopfes das Zeitintervall 2 s - Δt . Das Mittel aus den Zeitregistrierungen aller vier Belichtungen würde demnach die um 1 s verschobene zeitliche Mitte der Belichtungen ergeben. Diese notwendige Korrektur ist für die Auswertung der PZT-Beobachtung jedoch ohne Bedeutung, da ohnehin nur die Bruchteile von Sekunden berücksichtigt werden.

In ähnlicher Weise wie beim Zeitintervall von Bewegungsbeginn bis Zeitkontaktgabe werden durch die gegenläufige Bewegung in beiden Lagen des Instrumentenkopfs unterschiedliche Stellungen der Mitnehmerstifte 14 (Abb. 4) kompensiert. Unregelmäßige Fehler im Getriebe werden durch zeitliche Summierung bei der Belichtung ausgeglichen.

Abb. 5. Funktionsschema des PZT

3. Theorie der Auswertung

3.1. Grundlegende Beziehungen zwischen Bildkoordinaten, Deklination, Stundenwinkel und geographischer Breite

Wir legen ein Bildkoordinatensystem fest, dessen y'-Achse nach Süden und dessen x'-Achse nach Westen zeigt. Ein räumliches rechtwinkliges Koordinatensystem wird so orientiert, daß seine positive z-Achse nach dem Nordpol zeigt, die x-Achse parallel zur x'-Achse ist und die y-Achse in der Meridianebene liegt.

Abb. 6. Bildkoordinatensystem und räumliches Koordinatensystem

Abb. 6 zeigt die gegenseitige Lage der verschiedenen Koordinatensysteme. Im räumlichen Koordinatensystem wird der Einheitsvektor in Richtung des Sterns

(1)
$$\mathfrak{g} = \begin{cases} \cos \delta \sin t \\ \cos \delta \cos t \\ \sin \delta \end{cases}$$

Die Fernrohrachse (Abbildungskonstante c) wird durch den Vektor

(2)
$$\mathbf{c} = \mathbf{c} \begin{pmatrix} \mathbf{0} \\ \cos \phi \\ \sin \phi \end{pmatrix}$$

dargestellt. Das Bildkoordinatensystem ist durch die Einheitsvektoren in Richtung seiner Koordinatenachsen definiert:

(3)
$$\mathbf{i}' = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{j}' = \begin{bmatrix} 0 \\ \sin \varphi \\ -\cos \varphi \end{bmatrix}$.

Den Ortsvektor des Sternbildes in der Bildebene erhält man nach der vektoriellen Beziehung

(4)
$$z = \lambda s = c$$
,

worin sich λ aus dem skalaren Produkt

zu

(5)
$$\lambda = \frac{c^2}{s \cdot c}$$

ergibt.

Aus (4) erhält man die Bildkoordinaten auf Grund der Beziehungen

(6)
$$\begin{cases} x' = \mathfrak{r} \cdot \mathfrak{i}' = \lambda \mathfrak{s} \cdot \mathfrak{i}' = \mathfrak{c}^2 \frac{\mathfrak{s} \cdot \mathfrak{i}'}{\mathfrak{s} \cdot \mathfrak{c}}, \\ \mathfrak{r}' = \mathfrak{r} \cdot \mathfrak{j}' = \lambda \mathfrak{s} \cdot \mathfrak{j}' = \mathfrak{c}^2 \frac{\mathfrak{s} \cdot \mathfrak{j}'}{\mathfrak{s} \cdot \mathfrak{c}}. \end{cases}$$

Unter Berücksichtigung der Formeln (1), (2) und (3) ergeben sich aus (6) folgende Beziehungen zwischen den Bildkoordinaten, den astronomischen Äquatorialkoordinaten und der geographischen Breite:

(7)
$$\begin{cases} x^{*} = c \frac{\cos \delta \sin t}{\sin \phi \sin \delta + \cos \phi \cos \delta \cos t}, \\ y^{*} = c \frac{\sin \phi \cos \delta \cos t - \cos \phi \sin \delta}{\sin \phi \sin \delta + \cos \phi \cos \delta \cos t}. \end{cases}$$

(7) bezeichnen wir im folgenden als Abbildungsgleichungen.

3.1.1. Betrachtungen zum Refraktionseinfluß

Formel (7) stellt die rein geometrische Beziehung zwischen den astronomischen und den Bildkoordinaten dar. In ihr ist der tatsächliche Verlauf des Lichtstrahls, der bekanntlich infolge der astronomischen Refraktion gekrümmt ist, noch nicht berücksichtigt.

Um den Einfluß der Refraktion betrachten zu können, leiten wir nach Abb. 6 die Beziehungen zwischen den Bildkoordinaten und dem Horizontsystem ab. Diese werden: (8) $x' = f \tan z \sin a$, $y' = f \tan z \cos a$.

In (8) ist $r \approx c$ die Brennweite des PZT und z die Zenitdistanz. Zwischen der tatsächlichen Zenitdistanz z und der infolge Refraktion verfälschten z_R besteht bekanntlich die Beziehung

(9) $z - z_R = r_0 \tan z$,

worin $r_0 = 0,000 294$ die Refraktionskonstante ist. Da mit dem PZT nur zenitnahe Sterne beobachtet werden, gilt näherungsweise

z ≈ tan z,

so daß sich aus (9)

(10) $\tan z_{\rm R} = (1 - r_{\rm o}) \tan z$

ergibt. Aus (10) folgt, daß die Beziehungen (8) gültig bleiben, wenn

 $c = (1 - r_0) f$

gesetzt wird. Demnach kann die Refraktion unberücksichtigt bleiben, wenn das Auswerteverfahren beim PZT so gestaltet wird, daß c als Unbekannte mitbestimmt wird.

Auf gleichem Wege werden eventuell vorhandene lineare Anteile der Verzeichnung des Objektivs kompensiert. Der Einfluß von Verzeichnungsanteilen höherer Ordnung kann wegen der geringen Neigung der Hauptstrahlen gegenüber der optischen Achse vernachlässigt werden.

3.1.2. Reihenentwicklungen der Abbildungsgleichungen

Da mit dem PZT zenitnahe Sterne beobachtet werden, ist es möglich, in (7) für die Winkelfunktionen der Stundenwinkel Reihenentwicklungen einzuführen. Setzen wir

$$\cos t = 1 - \frac{t^2}{2}$$
, $\sin t = t - \frac{t^3}{6}$

und berücksichtigen, daß für die Meridianzenitdistanz

 $z_m = \varphi - \delta$

gilt, so wird

 $\sin \varphi \sin \delta + \cos \varphi \cos \delta = \cos z_m \approx 1 - \frac{z_m^2}{2},$ $\sin \varphi \cos \delta - \cos \varphi \sin \delta = \sin z_m \approx z_m - \frac{z_m^3}{6}.$

Stellen wir die noch verbleibenden Funktionen von δ als Funktionen der geographischen Breite ϕ und der Zenitdistanz z_m dar, so erhält man nach einigen elementaren Umformungen aus (7):

(11)
$$\begin{cases} x' = c \cos \varphi t + c \sin \varphi z_m t + \frac{c}{2} \cos \varphi (\cos^2 \varphi - \frac{1}{3}) t^3 \dots, \\ y' = c z_m - \frac{c}{4} \sin 2\varphi t^2 + \frac{c}{2} \cos 2\varphi z_m t^2 + \frac{c}{2} z_m^3 \dots \end{cases}$$

Wir wollen untersuchen, welche Fehler durch die Vernachlässigung der Glieder 3. Ordnung entstehen. Für das Potsdamer PZT gelten folgende Parameter:

 $\varphi = 52^{\circ}24^{\circ}$, $\cos \varphi = 0,6101$, c = 3773 mm, $\sin \varphi = 0,7923$.

Die maximale Zenitdistanz, die noch beobachtet werden kann, beträgt

 $z_{m} = 15'$,

und ein Stundenwinkel kann

t

nicht überschreiten. Mit diesen Werten ergeben sich folgende Glieder 3. Ordnung :

 $\frac{c}{2} \cos \varphi (\cos^2 \varphi - \frac{1}{3}) t^3 = 3,7 \cdot 10^{-6} \text{ mm},$ $\frac{c}{2} \cos 2 \varphi z_m t^2 + \frac{c}{3} z_m^3 = 1,4 \cdot 10^{-4} \text{ mm}.$

Beide Glieder liefern Maximalfehler, die weit unter der Standardabweichung der Bildkoordinatenmessung ($\approx \pm 2 \ \mu$ m) liegen. Den weiteren Untersuchungen können die Gleichungen

(12) $x' = c \cos \varphi t + c \sin \varphi z_m t$, $y' = c z_m - \frac{c}{4} \sin 2\varphi t^2$

zugrunde gelegt werden.

3.1.3. Die Modifikation der Abbildungsgleichungen infolge der Bewegung des Plattenträgers während der Belichtung

In den bisherigen Untersuchungen wurde ein statischer Abbildungsprozeß vorausgesetzt. Tatsächlich ist der Abbildungsprozeß infolge der endlichen Belichtungszeit und der hierdurch erforderlichen Nachführung der Platte dynamisch. Dies muß bei den der Auswertung zugrunde liegenden Gleichungen berücksichtigt werden.

Für die weiteren Untersuchungen führen wir folgende Größen ein: t_0 sei der Zeitpunkt des Beginns der Belichtung, τ die Belichtungszeit (Zeit der Nachführung), $t_{\rm M} = t_0 + \tau/2$ die Mitte der Belichtung und $t_{\rm m}$ der Zeitpunkt des Meridiandurch-

DOI: http://doi.org/10.2312/ZIPE.1976.049

gangs. t ist im folgenden die fortlaufende Zeitzählung. Mit vorstehenden Bezeichnungen ergibt sich nach (12):

(13)
$$r = \begin{cases} \frac{15c}{\rho} \cos \varphi (t - t_m) + \frac{15c}{\rho^2} \sin \varphi z_m (t - t_m) \\ \frac{c}{\rho} z_m - \frac{c}{4} \frac{225}{\rho^2} \sin 2\varphi (t - t_m)^2 \end{cases}$$

In (13) wurde noch berücksichtigt, daß t in Zeitsekunden und z_m in Winkelsekunden in die Berechnungen eingeführt werden.

Aus (13) erhalten wir die Bewegungsgeschwindigkeit eines Sternbildes in der Bildebene

(14)
$$b_{s} = \frac{dz}{dt} = \begin{pmatrix} \frac{15c}{\rho} \cos \varphi + \frac{15c}{\rho^{2}} \sin \varphi z_{m} \\ - \frac{c}{2} \frac{225}{\rho^{2}} \sin 2\varphi (t - t_{m}) \end{pmatrix}$$

(14) gibt die Bewegungsgeschwindigkeit des PZT-Plattenträgers an, die zur Erzeugung einer punktförmigen Abbildung des Sterns erforderlich ist. Da beim PZT eine geradlinige Bewegung in Richtung der x'-Achse des Bildkoordinatensystems mit der Geschwindigkeit 15 c cos φ/ρ erfolgt, ist strenggenommen eine punktförmige Abbildung a priori nicht gewährleistet. Neben diesem konstruktiv bedingten Fehlereinfluß muß noch berücksichtigt werden, daß die Bewegungsrichtung des Plattenwagens mit der x'-Achse einen Winkel α (Plattenwagenazimut) einschließen kann. Auch kann die tatsächliche Bewegungsgeschwindigkeit v_p vom genannten Sollwert abweichen. Bezeichnen wir den Geschwindigkeitsvektor der Plattenbewegung mit

so wird die notwendige Bedingung ^bg - ^bp = 0 in der Regel nicht erfüllt, und wir müssen mit einer Geschwindigkeitsdifferenz

rechnen, infolge der wir einen Lagefehler des Schwerpunktes des Sternbildes

(17)
$$\Delta z = \frac{1}{2} \int_{t_0}^{t_0^+ \Delta \tau} \Delta b \, dt$$

erhalten. Mit

$$\Delta \mathfrak{d} = \begin{cases} \frac{15\mathfrak{c}}{\rho} \cos \varphi + \frac{15\mathfrak{c}}{\rho^2} \sin \varphi \, z_m - v_p \, \cos \alpha \\ - \frac{\mathfrak{c}}{2} \, \frac{225}{\rho^2} \sin 2 \, \varphi \, (\mathfrak{t} - \mathfrak{t}_m) + v_p \, \sin \alpha \end{cases}$$

ergibt sich nach (17)

(18)
$$\Delta z = \begin{pmatrix} \frac{15c}{\rho} \cos \varphi \, \frac{\tau}{2} + \frac{15c}{\rho^2} \sin \varphi \, z_m \, \frac{\tau}{2} - v_p \, \cos \alpha \, \frac{\tau}{2} \\ - \frac{c}{4} \, \frac{225}{\rho^2} \sin 2 \, \varphi \, (t_o - t_m + \frac{\tau}{2}) + v_p \, \sin \alpha \, \frac{\tau}{2} \end{pmatrix}$$

Setzen wir

$$\nabla_{p} = \frac{15c}{\rho} \cos \phi + \Delta \nabla_{q}$$

so wird

(19)
$$\Delta z = \begin{bmatrix} \frac{15c}{\rho} \cos \varphi \, \frac{\tau}{2} + \frac{15c}{\rho^2} \sin \varphi \, z_{\mathrm{m}} \, \frac{\tau}{2} - (\frac{15c}{\rho} \cos \varphi + \Delta v) \cos \alpha \, \frac{\tau}{2} \\ \\ - \frac{c}{4} \, \frac{225}{\rho^2} \sin 2 \, \varphi \, (t_0 - t_{\mathrm{m}} + \frac{\tau}{2}) + (\frac{15c}{\rho} \cos \varphi + \Delta v) \sin \alpha \, \frac{\tau}{2} \end{bmatrix}$$

Für $\Delta \mathfrak{d} = 0$ und $\alpha = 0$ erhalten wir aus (19) den konstruktiv bedingten Lagefehler

(20)
$$\Delta z = \begin{cases} \frac{15c}{\rho^2} \sin \varphi \ z_m \ \overline{2} \\ -\frac{c}{4} \ \frac{225}{\rho^2} \sin 2\varphi \ (t_o = t_m + \overline{2}) \end{cases}$$

Mit (13) ergibt sich nach

 $(\mathbf{r}) = \mathbf{r}_{0}(\mathbf{t}_{0}) + \Delta \mathbf{r}$

die modifizierte Abbildungsgleichung. Für ihre Komponenten erhalten wir unter Berücksichtigung kleiner Winkel & :

(21)
$$\begin{cases} (\mathbf{x}_{0}^{*}) = \frac{15c}{\rho} (\mathbf{t}_{0} - \mathbf{t}_{m}) + \frac{15c}{\rho^{2}} \sin \varphi (\mathbf{t}_{M} - \mathbf{t}_{m}) \mathbf{z}_{m} + \frac{15c}{4\rho^{2}} \cos \varphi \alpha^{2} \tau - \frac{\Delta v}{2} \tau, \\ (\mathbf{y}_{0}^{*}) = \frac{c}{\rho} \mathbf{z}_{m} - \frac{225}{4} \frac{c}{\rho^{2}} \sin 2\varphi (\mathbf{t}_{0} - \mathbf{t}_{m})^{2} - \frac{225}{4} \frac{c}{\rho^{2}} \sin 2\varphi (\mathbf{t}_{M} - \mathbf{t}_{m}) + \\ + \frac{15c}{2\rho^{2}} \alpha \tau + \frac{1}{2\rho} \tau \Delta v \alpha \end{cases}$$

Vorstehende Gleichungen sind die Abbildungsgleichungen des PZT bei Berücksichtigung des dynamischen Belichtungsvorgangs. Um zu Gleichungen zu kommen, die der Auswertung der PZT-Beobachtungen zugrunde gelegt werden können, muß zunächst der Ablauf des Beobachtungszyklus näher analysiert werden.

3.2. Der Beobachtungszyklus

Bei der Beobachtung des Sterndurchgangs mit dem PZT werden vier Belichtungen ausgeführt. Zwischen jeder Belichtung wird die Platte um 180[°] gedreht (Umlegung). Im allgemeinen beginnt der Beobachtungszyklus, wenn sich der Antriebsmotor für die Plattennachführung östlich vom Meridian (Lage-Ost) befindet. In dieser Situation soll die in Abb. 6 dargestellte Lage des Bildkoordinatensystems (Positivbild) vorliegen. In Abb. 7 ist die Entstehung der vier belichteten Sternbilder nach dem in Abb. 2 gegebenen Zeitverlauf dargestellt.

Abb. 7. Die gegenseitige Lage der Sternbilder

 $5^{\rm S}$ nach Auslösen des Beobachtungszyklus beginnt die erste Belichtung ($\tau = 20^{\rm S}$), während der der Plattenwagen nachgeführt wird. Fallen zu Beginn der Belichtungen Zenitbild und Plattenzeit (Z = Z') zusammen, so wird infolge der Plattenbewegung Z' in die Position (Z' = Z') verschoben. Der Verschiebungsbetrag ist 15c cos $\varphi \tau / \rho$. Durch die Umlegung kommt das Plattenzenit in die Position (Z' = Z') und wird bei der nachfolgenden Verschiebung in die Ausgangsposition (Z = Z') transportiert. Für die dritte und vierte Belichtung wiederholt sich der Vorgang in gleicher Weise.

In Abb. 7 sind die Sternpositionen (1', 2', 3', 4') in der Bildebene zu Beginn der Belichtung dargestellt. Die Belichtung der Positionen 1' und 3' erfolgt in Lage-Ost, so daß deren Bilder auf der Photoplatte die gleiche Lage wie in der Bildebene haben. Die Belichtung von 2' und 4' erfolgt bei um 180° gedrehter und um 15c cos φ τ/ρ verschobener Platte, wodurch die photographischen Bilder in die Positionen 2 und 4 kommen.

Bezeichnet man die Bildkoordinaten in der Ausgangslage (Bild 1 und 3) mit x_{I}^{*} und y_{I}^{*} , so gilt auf Grund der Drehung und Verschiebung der Platte für die zweite Lage

(22)
$$x_{II}^{i} = -x_{I}^{i} - \frac{15c}{\rho} \cos \varphi \tau$$
, $y_{II}^{i} = -y_{I}^{i}$.

In (22) sind für die Lage I die durch (21) gegebenen Bildkoordinaten einzuführen.

3.2.1. Der Einfluß des Umlegefehlers

In den bisherigen Ableitungen hatten wir stillschweigend vorausgesetzt, daß die Umlegung fehlerfrei erfolgt, d.h., es wird der Instrumentenkopf genau um 180° gedreht. Praktisch wird diese Voraussetzung jedoch nicht erfüllt sein, und wir müssen annehmen, daß der Drehwinkel um einen Betrag ω (Umlegefehler) von 180° abweicht. Dieser Fehler beeinflußt die Bildkoordinaten auf zwei verschiedene Arten:

- Die Bewegungsrichtung des Plattenwagens erhält in Lage II einen anderen Azimutfehler als in Lage I. Hierdurch ändern sich für diese Lage die Abbildungsgleichungen (21).
- 2. Die Transformation zwischen den Bildkoordinaten in den Lagen I und II ist mit einem Drehwinkel $180^{\circ} + \omega$ durchzuführen.

Die erste Wirkung des Umlegefehlers berücksichtigen wir, indem wir in (21) α durch ($\alpha + \omega$) ersetzen, und die Transformation zwischen den Bildkoordinaten erfolgt nach den Formeln

(23) $\begin{cases} x_{II}^{i} = -(x^{i}) \cos \omega + (y^{i}) \sin \omega - \frac{15c}{\rho} \cos \varphi \tau \approx -(x^{i}) + (y^{i}) \frac{\omega}{\rho} - \frac{15c}{\rho} \cos \varphi \tau, \\ y_{II}^{i} = -(y^{i}) \cos \omega - (x^{i}) \sin \omega \approx -(y^{i}) - (x^{i}) \frac{\omega}{\rho}. \end{cases}$

Eine Untersuchung der Größenordnung der Koeffizienten von α und ω ergibt, daß man sich wegen der kleinen Werte dieser Winkel in unseren Abbildungsgleichungen auf

lineare Glieder beschränken kann. Unter Berücksichtigung von (22) und (23) ergeben sich aus (21) folgende Abbildungsgleichungen:

$$\begin{cases} \mathbf{x}_{\mathbf{I}}^{t} = \frac{15c}{\rho} \cos \varphi \ (\mathbf{t}_{0} - \mathbf{t}_{\mathbf{m}}) + \frac{15c}{\rho^{2}} \sin \varphi \ (\mathbf{t}_{\mathbf{M}} - \mathbf{t}_{\mathbf{m}}) \ \mathbf{z}_{\mathbf{m}} - \frac{\mathbf{T}}{2} \ \Delta \nabla \ \mathbf{y} \\ \mathbf{y}_{\mathbf{I}}^{t} = \frac{c}{\rho} \ \mathbf{z}_{\mathbf{m}} - \frac{225}{4} \frac{c}{\rho^{2}} \sin 2 \ \varphi \ (\mathbf{t}_{0} - \mathbf{t}_{\mathbf{m}})^{2} - \frac{225}{4} \frac{c}{\rho^{2}} \sin 2 \ \varphi \ (\mathbf{t}_{\mathbf{M}} - \mathbf{t}_{\mathbf{m}}) \ \mathbf{x} + \frac{15c}{2\rho^{2}} \cos \varphi \ \tau \ \alpha \ \mathbf{y} \\ (24) \\ \mathbf{x}_{\mathbf{II}}^{t} = \frac{15c}{\rho} \cos \varphi \ (\mathbf{t}_{0} - \mathbf{t}_{\mathbf{m}}) - \frac{15c}{\rho^{2}} \sin \varphi \ (\mathbf{t}_{\mathbf{M}} - \mathbf{t}_{\mathbf{m}}) \ \mathbf{z}_{\mathbf{m}} + \frac{\mathbf{T}}{2} \ \Delta \nabla + \frac{c}{\rho^{2}} \ \mathbf{z}_{\mathbf{m}}^{t} - -\frac{15c}{\rho} \cos \varphi \ \tau \ \mathbf{y} \\ - \frac{15c}{\rho} \cos \varphi \ \tau \ \mathbf{y} \\ \mathbf{x}_{\mathbf{II}}^{t} = -\frac{c}{\rho} \ \mathbf{z}_{\mathbf{m}} + \frac{225}{4} \frac{c}{\rho^{2}} \sin 2 \ \varphi \ (\mathbf{t}_{0} - \mathbf{t}_{\mathbf{m}})^{2} + \frac{225}{4} \frac{c}{\rho^{2}} \sin 2 \ \varphi \ (\mathbf{t}_{\mathbf{M}} - \mathbf{t}_{\mathbf{m}}) \ \tau - -\frac{15c}{2\rho^{2}} \cos \varphi \ \tau \ \alpha - \frac{15c}{\rho^{2}} \cos \varphi \ (\mathbf{t}_{0} - \mathbf{t}_{\mathbf{m}})^{2} + \frac{225}{4} \frac{c}{\rho^{2}} \sin 2 \ \varphi \ (\mathbf{t}_{\mathbf{M}} - \mathbf{t}_{\mathbf{m}}) \ \tau - -\frac{15c}{2\rho^{2}} \cos \varphi \ \tau \ \alpha - \frac{15c}{\rho^{2}} \cos \varphi \ (\mathbf{t}_{0} - \mathbf{t}_{\mathbf{m}}) \ \omega \ . \end{cases}$$

In (24) führen wir für die vom Aufstellungsort und der Konstruktion des PZT abhängigen Koeffizienten folgende Bezeichnungen ein:

(25)
$$\begin{bmatrix} a_x = \frac{15c}{\rho} \cos \varphi , & b_x = \frac{15c}{\rho^2} \sin \varphi , \\ a_y = \frac{c}{\rho} , & b_y = \frac{225}{4} \frac{c}{\rho^2} \sin 2\varphi . \end{bmatrix}$$

Hiermit erhält man aus (24) folgende Form der Abbildungsgleichungen:

$$(26) \begin{cases} x_{I}^{i} = a_{x} (t_{o} - t_{m}) + b_{x} (t_{M} - t_{m}) z_{m} - \frac{\tau}{2} \Delta v , \\ y_{I}^{i} = a_{y} z_{m} - b_{y} \left\{ (t_{o} - t_{m})^{2} + (t_{M} - t_{m}) \tau \right\} + \frac{a_{x}}{2\rho} \tau \alpha , \\ x_{II}^{i} = -a_{x} (t_{o} - t_{m}) - b_{x} (t_{M} - t_{m}) z_{m} + \frac{\tau}{2} \Delta v + \frac{a_{y}}{\rho} z_{m} \omega - a_{x} \tau , \\ y_{II}^{i} = -a_{y} z_{m} + b_{y} \left\{ (t_{o} - t_{m})^{2} + (t_{M} - t_{m}) - \tau \right\} - \frac{a_{x}}{2\rho} \tau \alpha - \frac{a_{x}}{\rho} (t_{o} - t_{m}) \omega . \end{cases}$$

3.3. Die Beziehungen zwischen dem Koordinatensystem des Auswertegerätes und dem Bildkoordinatensystem

Die Auswertung der PZT-Platten wird im geodätisch-astronomischen Observatorium Potsdam mit dem Koordinatenmeßgerät "Ascorecord" des VEB Carl Zeiss Jena durchgeführt. Dabei ergeben sich die Koordinatenwerte im System des Meßgerätes. Die Messung erfolgt an den belichteten Negativplatten der PZT-Beobachtung.

Für eine geschlossene Form der Auswertung ist es zweckmäßig, die Abbildungsbeziehung zwischen gemessenen Koordinaten - im System des Koordinatenmeßgerätes - und den sphärischen Werten z_m und t_m herzustellen. Abb. 8 stellt die Beziehungen zwischen

Abb. 8. Die gegenseitige Lage der Koordinatensysteme des Positivbildes, des Negativbildes und des Koordinatenmeßgerätes

den Koordinatensystemen des Positivbildes, des Negativbildes und des Koordinatenmeßgerätes dar.

Berücksichtigen wir noch, daß im allgemeinen zwischen dem Bildkoordinaten- und dem Gerätekoordinatensystem ein Orientierungsfehler 0 besteht, so liest man aus Abb. 8 leicht folgende Transformationsgleichungen ab:

(27) $y' = y \cos \theta - x \sin \theta + y_0$, $x' = -x \cos \theta - y \sin \theta + x_0$.

3.4. Ableitung der Grundformeln für die Auswertung

Die Bestimmung der geographischen Breite und Uhrkorrektion erfolgt nach den Formeln

(28)
$$\varphi = \delta + z_m$$
, $\Delta U = k (\alpha - \lambda - SZ_{o_{(2r)}}) - t_m + 0$, 021;

dabei sind δ die Deklination, α die Rektaszension, λ die geographische Länge, SZ_{0Gr} die Sternzeit für O^{'n} Weltzeit, k = 0,997 269 57 der Umrechnungsfaktor von Sternzeitintervallen in Intervalle der mittleren Zeit und 0,021 die Korrektur infolge täglicher Aberration. z_m und t_m gehen in die abgeleiteten Abbildungsgleichungen ein und sind im Auswerteverfahren zu ermitteln.

Ferner hatten wir in Abschnitt 3.1.1. festgestellt, daß es zur Ausschaltung des während der Beobachtung konstanten Anteils der astronomischen Refraktion erforderlich ist, die Abbildungskonstante c im Auswerteverfahren zu bestimmen. c ist im Formelsystem (26) im Koeffizienten a_x (Maßstabsfaktor) enthalten, den wir als weitere Unbekannte in die Auswertung einführen wollen.

Die Transformationsbeziehung (27) ist uns a priori ebenfalls unbekannt. Wir wollen deren Konstanten jedoch nur insoweit explizit angeben, wie es für den Auswertevorgang erforderlich ist.

 ω und α lassen sich wegen der Struktur der Matrix, die sich aus den Abbildungsbeziehungen für einen Sterndurchgang ergibt, nicht im Auswerteverfahren, sondern nur durch zusätzliche Meßmittel oder speziell angeordnete Beobachtungsverfahren bestimmen. Als Beobachtungswerte liegen dem Auswerteverfahren die gemessenen Bildkoordinaten (x_i, y_i) und die - zumindest in Bruchteilen der Sekunde - registrierte Zeit der Mitte des Beobachtungszyklus zugrunde.

3.4.1. Die Abbildungsgleichungen für einen Sterndurchgang

Während eines Sterndurchgangs erfolgen die Belichtungen der Bilder 1 und 3 in Lage I und die der Bilder 2 und 4 in Lage II. Berücksichtigt man dies, so erhält man aus (26) und (27) folgende Abbildungsgleichungen für die vier Bilder eines Sterndurchgangs:

[$x_0 - x_1 \cos \theta - y_1 \sin \theta =$	$a_x (t_1 - t_m) + b_x z_m (t_M - t_m) - \Xi \Delta v$
	$x_0 - x_2 \cos \theta - y_2 \sin \theta =$	$-a_{x}(t_{2} - t_{m}) - b_{x} z_{m}(t_{M_{2}} - t_{m}) + \frac{\tau}{2} \Delta v +$
(29a)		$+ \frac{a_{\chi}}{\rho} z_{\mu} \omega - a_{\chi} \tau$
	$x_0 - x_3 \cos \theta - y_3 \sin \theta =$	$a_x (t_3 - t_m) + b_x z_m (t_M_3 - t_m) - \overline{2} \Delta v$
	$x_0 - x_4 \cos \theta - y_4 \sin \theta =$	$-a_{\chi} (t_{4} - t_{m}) - b_{\chi} z_{m} (t_{M_{4}} - t_{m}) + \frac{\tau}{2} \Delta v +$
		$+\frac{a_{y}}{\rho}z_{m}\omega - a_{x}\tau$
	$y_0 + y_1 \cos \theta - x_1 \sin \theta =$	$a_{y} z_{m} - b_{y} \left\{ (t_{1} - t_{m})^{2} + (t_{M_{1}} - t_{m})_{\tau} \right\} +$
~		$+\frac{a_x}{2\rho}\tau\alpha$,
	$y_0 + y_2 \cos \theta - x_2 \sin \theta =$	$-a_{y} z_{m} + b_{y} \left\{ (t_{2} - t_{m})^{2} + (t_{M_{2}} - t_{m}) \tau \right\} =$
(29Ъ)		$-\frac{a_{x}}{2\rho}\tau\alpha-\frac{a_{x}}{\rho}(t_{2}-t_{m})\omega,$
	$y_0 + y_3 \cos \theta - x_3 \sin \theta$	$a_{y} z_{\underline{m}} - b_{y} \left\{ (t_{\underline{3}} - t_{\underline{m}})^{2} + (t_{\underline{M}_{\underline{3}}} - t_{\underline{m}})_{\underline{\tau}} \right\} +$
		$+\frac{a_x}{2\rho}\tau \alpha$,
	$y_0 + y_4 \cos \theta - x_4 \sin \theta$	$-a_{y} z_{m} + b_{y} \left\{ (t_{4} - t_{m})^{2} + (t_{M_{4}} - t_{m})_{\tau} \right\} -$
		$-\frac{a_{x}}{2\rho}\tau \alpha - \frac{a_{x}}{\rho}(t_{\mu} - t_{m}) \omega$

In vorstehenden Gleichungen wurden mit t_1 , t_2 , t_3 , t_4 die Zeitpunkte des Beginns der Belichtungen und mit t_{M_1} , t_{M_2} , t_{M_3} , t_{M_4} die der Belichtungsmitten bezeichnet. Die Belichtungen erfolgen in Abständen von $T = 30^8$, so daß in den folgenden Ableitungen die Beziehungen

$$t_{2} = t_{1} + T, t_{M_{2}} = t_{M_{1}} + T,$$

$$(30) t_{3} = t_{1} + 2T, t_{M_{3}} = t_{M_{1}} + 2T,$$

$$t_{4} = t_{1} + 3T, t_{M_{4}} = t_{M_{4}} + 3T$$

berücksichtigt werden können.

3.4.2. Orientierungsunbekannte ⁰ und Maßstabsfaktor a_x

Die Berechnung der Orientierungsunbekannten erfolgt mit Hilfe des Gleichungssystems (29b). Durch entsprechende Subtraktion und Addition gewinnt man folgende Gleichung:

$$(31) (y_4 - y_2 + y_1 - y_3) \cos \theta - (x_4 - x_2 + x_1 - x_3) \sin \theta =$$

$$= b_y \left\{ (t_4 - t_m)^2 - (t_2 - t_m)^2 + (t_3 - t_m)^2 - (t_1 - t_m)^2 + (t_{M_4} - t_{M_2} + t_{M_3} - t_{M_1}) \tau \right\} - \frac{a_x}{\rho} (t_4 - t_2) \omega .$$

Den mit by multiplizierten Ausdruck in vorstehender Formel kann man mit Berücksichtigung von (30) in folgende Form bringen:

$$(t_{4} - t_{m})^{2} - (t_{2} - t_{m})^{2} + (t_{3} - t_{m})^{2} - (t_{1} - t_{m})^{2} + (t_{M_{4}} - t_{M_{2}} + t_{M_{3}} - t_{M_{1}})\tau =$$

= 2T (t_{1} + t_{2} + t_{3} + t_{4} - 4t_{m} + 2\tau) .

Dieser Zeitausdruck läßt sich auf Grund des Gleichungssystems (29b) als Funktion der Bildkoordinaten darstellen. Mit

(32)
$$t_s = t_1 + t_2 + t_3 + t_4$$

1

ergibt sich

$$t_{S} - 4t_{m} + 2\tau = \frac{1}{a_{x} + b_{x} z_{m}} \left\{ (x_{2} - x_{1} + x_{4} - x_{3}) \cos \theta + (y_{2} - y_{1} + y_{4} - y_{3}) \sin \theta \right\}.$$

Setzen wir dies in (31) ein und berücksichtigen die Beziehungen

DOI: http://doi.org/10.2312/ZIPE.1976.049

so erhalten wir zur Bestimmung der Orientierungsunbekannten folgende Formel:

(34)
$$\tan \theta = \frac{y_a}{x_a} - \frac{2T b_y}{a_x + b_x(z_m)} \left(\frac{x_t}{x_a} + \frac{y_t y_a}{x_a^2}\right) + \frac{2a_x}{\rho} \frac{T}{x_a} \omega$$

Die in vorstehende Formel eingehenden Werte a_x , b_x , b_y und z_m werden genügend genau auf Grund der annähernd bekannten geographischen Breite, der Brennweite und der Deklination des Sterns berechnet.

Zur Ermittlung des Maßstabsfaktors bilden wir aus (29a) den Ausdruck

$$(x_1 - x_3 - x_2 + x_4) \cos \theta + (y_1 - y_3 - y_2 + y_4) \sin \theta =$$

= $a_x (t_3 - t_1 + t_4 - t_2) + b_x z_m (t_{M_3} - t_{M_1} + t_{M_4} - t_{M_2})$

Unter Berücksichtigung von (30) und (33) wird

$$(35) a_{x} = \frac{1}{4T} (x_{a} \cos \theta + y_{a} \sin \theta) - b_{x} (z_{m}) .$$

Aus (35) erhalten wir den für die Berechnung der Breite erforderlichen Maßstabsfaktor

(36)
$$a_y = \frac{a_x}{15 \cos \varphi}$$

und die Abbildungskonstante

$$(37) c = a_{y} \rho = \frac{a_{x}}{15 \cos \varphi} \rho \circ$$

3.4.3. Zeit und Zenitdistanz des Meridiandurchgangs

Die Meridiandurchgangszeit erhält man aus (29a) unter Berücksichtigung von (30), (32) und (33) zu

$$(38) t_{\rm m} = \frac{1}{4} t_{\rm g} + \frac{\tau}{2} - \frac{x_{\rm t} \cos \theta + y_{\rm t} \sin \theta}{4 \left(a_{\rm x} + b_{\rm x}(z_{\rm m}) \right)} - \frac{1}{2} \frac{\tau \Delta v}{a_{\rm x} + b_{\rm x}(z_{\rm m})} - \frac{1}{2} \frac{a_{\rm y}(z_{\rm m})}{a_{\rm x} + b_{\rm x}(z_{\rm m})} \frac{\omega}{\rho} \circ$$

In vorstehender Formel ist $1/4 t_g + \tau/2$ die Zeitmitte des Beobachtungszyklus. Dieser Wert wird als Mittel der Zeitregistrierungen während der vier Belichtungsvorgänge erhalten.

Zur Berechnung der Zenitdistanz wird aus (29b) unter Berücksichtigung von (33) die Gleichung

$$(39) = y_{t} \cos \theta + x_{t} \sin \theta = 4a_{y} \dot{z}_{m} - b_{y} \left\{ (t_{1} - t_{m})^{2} + (t_{2} - t_{m})^{2} + (t_{3} - t_{m})^{2} + (t_{4} - t_{m})^{2} + \tau (t_{M_{1}} + t_{M_{2}} + t_{M_{3}} + t_{M_{4}} - 4t_{m}) \right\} + \frac{2a_{x}}{\rho} \tau \alpha + \frac{a_{x}}{\rho} (t_{2} - t_{4} - 2t_{m}) \omega$$

abgeleitet. Zur Berechnung des mit by multiplizierten Klammerausdrucks werden außer t_1 sämtliche Belichtungszeiten durch die Beziehungen (30) dargestellt. In dem umgewandelten Ausdruck ist außer den bekannten Werten T und T nur noch die Differenz $t_1 - t_m$ enthalten. Da by ein kleiner Wert ist, können wir bei der Berechnung dieser Differenz den kleinen Winkel θ und die auf die Krümmung des Parallels zurückzuführenden Glieder im Gleichungssystem (29) vernachlässigen. Es gilt dann näherungsweise

$$t_1 - t_m = \frac{1}{a_x} (x_0 - x_1).$$

Die Summation der Gleichungen (29a) ergibt

$$x_0 = \frac{1}{4} (x_1 + x_2 + x_3 + x_4) - \frac{1}{2} T a_x$$

womit wir

$$t_1 - t_m = \frac{1}{a_m} \left(\frac{x_1 + x_2 + x_3 + x_4}{4} - x_1 \right) - \frac{T}{2}$$

erhalten.

Wir setzen zur Vereinfachung

(40)
$$t_1 - t_m = -\frac{3}{2}T + \Delta t$$
,

worin

(41)
$$\Delta t = \frac{1}{a_x} \left(\frac{x_1 + x_2 + x_3 + x_4}{4} - x_1 \right) + T$$

ist. Berücksichtigt man vorstehenden Gedankengang in (39), so ergibt sich für die Zenitdistanz

(42)
$$z_{m} = \frac{1}{4a_{y}} (-y_{t} \cos \theta + x_{t} \sin \theta) + \frac{b_{y}}{4a_{y}} (5T^{2} + 2\tau^{2} + 4\tau \Delta t + 4\Delta t^{2}) - \frac{1}{2} \frac{a_{x}}{a_{y}} \frac{\tau}{\rho} \alpha - \frac{1}{4\rho} \frac{a_{x}}{a_{y}} (t_{2} + t_{4} - 2t_{m}) \omega$$

3.5. Die Formeln des Rechenprogramms der PZT-Auswertung

Die in Abschnitt 3.4. abgeleiteten Formeln bilden die Grundlage für die Aufstellung des Rechenprogramms. In ihnen werden die Einflüsse von Azimut- und Umlegefehler mit berücksichtigt. Wie sich aus den noch darzustellenden fehlertheoretischen Untersuchungen ergibt, beeinflussen die Fehler dieser Werte das Ergebnis nur in so geringem Umfang, daß die erforderlichen Toleranzen von Azimut und Umlegung leicht eingehalten werden und für die Auswertung $\omega = 0$ und $\alpha = 0$ angenommen werden können. Die gleiche Annahme ist auch für den Fehler der Nachführgeschwindigkeit gerechtfertigt.

Die in folgender Beschreibung des Rechenganges dargestellten definitiven Formeln gelten speziell für den Aufstellungsort des Potsdamer PZT. Der Berechnung der Konstanten lagen folgende Werte zugrunde:

 $(\varphi) = 52^{\circ}24^{\circ}24^{\circ}, \quad c = 3773,5 \text{ mm}, \quad T = 30^{\circ}_{MZ} = 30,082 \ 137^{\circ}_{SZ},$ $\tau = 20^{\circ}$

Der programmierte Rechengang dient jeweils für die Auswertung einer Gruppe von ca. 10 bis 12 Sternen, deren Bilder sich auf einer Platte befinden. Durch Messung der Bildkoordinaten erhalten wir für jeden Stern die Koordinaten

x₁, x₂, x₃, x₄; y₁, y₂, y₃, y₄.

Während der Beobachtung wird die Differenz zwischen der zeitlichen Mitte des Beobachtungszyklus und dem Sekundenzeichen des elektronischen Zeitdienstes Potsdam

dt_{II} = Z (PZT) - UTC (ZIPE)

registriert. Für eine Gruppe wird jeweils das Mittel aus den Registrierungen aller Sterndurchgänge in die Auswertung eingeführt.

Auf Grund des Näherungswertes (o) der geographischen Breite wird ein Näherungswert der Meridianzenitdistanz für jeden Stern

 $(z_m) = (\varphi) = \delta$

berechnet. Aus den Bildkoordinaten jedes Sterns ergeben sich die Werte

 $y_a = y_1 - y_2 - y_3 + y_4, \qquad x_a = x_1 - x_2 - x_3 + x_4;$

 $y_t = -y_1 + y_2 - y_3 + y_4$, $x_t = -x_1 + x_2 - x_3 + x_4$

Mit vorstehenden Ausdrücken erhält man nach (34) die Orientierungsunbekannte

$$\tan \Theta = \frac{y_a}{x_a} - \frac{2T b_y}{a_x + b_x(z_m)} \left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_t y_a}{x_a^2}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_a}{x_a}\right) = \frac{y_a}{x_a} - 0,001\ 733\ 2\left(\frac{x_t}{x_a} \div \frac{y_a}{x_a}\right) = \frac{y_a}{x_a} + \frac{y_t y_a}{x_a} + \frac{y_t y_a}{x_a} + \frac{y_t y_a}{x_a} + \frac{y_t y_a}{x_a}\right) = \frac{y_a}{x_a} + \frac{y_a}{x_a} + \frac{y_t y_a}{x_a} + \frac{y_t y_a$$

Aus sämtlichen Werten 0, die sich für eine Gruppe ergeben, wird das arithmetische Mittel gebildet und in die weitere Auswertung eingeführt.

Nach (35) ergibt sich der Maßstabsfaktor

$$a_{x} = \frac{1}{4T} (x_{a} \cos \theta + y_{a} \sin \theta) - b_{x}(z_{m}) =$$

= 0,831 057 9.10⁻² (x_a cos θ + y_a sin θ) - 0,105 471.10⁻⁵(z_m),

für den ebenfalls das Mittel aus allen Werten der Gruppe gebildet und in die weitere Auswertung eingeführt wird. Zur Berechnung der Meridianzenitdistanzen bilden wir aus vorstehender Formel den Wert

$$a_y = \frac{a_x}{15 \cos \varphi} = \frac{a_x}{9,1507785}$$

und

c = 206 264,81 a.

Um die Uhrkorrektion zu bestimmen, berechnen wir zunächst die Weltzeit des Meridiandurchgangs für alle Sterne. Führt man alle Werte in Sekunden ein, so ergibt sich

$$t_0 = (\alpha - \lambda - SZ_{0,Gr}) \circ 0,997\ 269\ 57,$$

worin α die Rektaszension, λ die geographische Länge und SZ_{0,Gr} die Sternzeit für O^h Weltzeit sind. Nach (38) berechnen wir

$$t_{m} = -\frac{1}{4 (a_{x} + b_{x}(z_{m}))} \left\{ x_{t} \cos \theta + y_{t} \sin \theta \right\} =$$
$$= -\frac{0.997\ 269\ 57}{4 (a_{x} + 0.105\ 471 \cdot 10^{-5}(z_{m}))} \left\{ x_{t} \cos \theta + y_{t} \sin \theta \right\}.$$

Damit erhalten wir die Uhrkorrektion zu .

 $dU = (t_0 + 0,021 - t_m + dt_U).$

Von vorstehendem Wert sind nur die Sekundenbruchteile brauchbar, da die Mitte des Beobachtungszyklus nur hinsichtlich dieser Bruchteile festgelegt ist.

Zur Ermittlung der Zenitdistanz wird zunächst der Wert

$$\Delta t = \frac{1}{a_{x}} \left\{ \frac{x_{1} + x_{2} + x_{3} + x_{4}}{4} - x_{1} \right\} + T = 5,973 \left\{ \frac{x_{1} + x_{2} + x_{3} + x_{4}}{4} - x_{1} \right\} + 30^{8}$$

berechnet, mit dem wir die Zenitdistanz

$$z_{\rm m} = \frac{1}{4a_{\rm y}} \left(-y_{\rm t} \cos \theta + x_{\rm t} \sin \theta \right) + \frac{b_{\rm y}}{4a_{\rm y}} \left(5T^2 + 2\tau^2 + 4\tau\Delta t + 4\Delta t^2 \right) =$$
$$= \frac{1}{4a_{\rm y}} \left(-y_{\rm t} \cos \theta + x_{\rm t} \sin \theta \right) + 0,35" + 0,005 \ 29 \ \Delta t + 0,000 \ 264 \ \Delta t^2$$

erhalten.

Auf Grund der Zenitdistanzen ergibt sich für jeden Stern ein Wert der geographischen Breite

$$\varphi = \delta + z_m$$

Für jede Gruppe wird ein Mittelwert der geographischen Breite und der Uhrkorrektion berechnet. Das Programm wird ergänzt durch Berechnungen der mittleren Fehler der Einzel- und Mittelwerte für θ , a_x, dU und ϕ nach bekannten Formeln der Fehlertheorie.

4. Fehlertheoretische Betrachtungen

4.1. Der Einfluß von Azimut- und Umlegefehler auf Uhrkorrektion und Zenitdistanz

Nehmen wir an, die Orientierungsunbekannte sei nur durch den Umlegefehler beeinflußt, und setzen für diesen Fall die Formel (34) an, so erhalten wir direkt den durch ω verursachten Fehler der Orientierungsunbekannten

$$d\Theta = 2a_x \frac{T}{x_a} \omega$$
.

Mit diesem Wert ergibt sich aus (38) der Fehler der Uhrkorrektion

(43)
$$dt_{m} = -\frac{1}{2} \left\{ \frac{y_{t}}{(a_{x} + b_{x} z_{m})} \frac{a_{x} T}{x_{a}} + \frac{a_{y} z_{m}}{(a_{x} + b_{x} z_{m})} \right\} \frac{\omega}{\rho} \circ$$

Aus den Formeln (29) wird näherungsweise

$$x_a = 4a_x T, \quad y_t = -4a_y z_m$$

erhalten, womit in (43) der Faktor von ω/ρ verschwindet. Ein Umlegefehler hat in erster Ordnung demnach keinen Einfluß auf die Bestimmung der Uhrkorrektion. Ebenso verschwindet der Einfluß des Azimutfehlers. Für den Einfluß des Umlegefehlers auf die Zenitdistanz erhält man aus (42)

$$dz_{m} = \frac{x_{t}}{4a_{y}} \frac{d\theta}{\rho} - \frac{1}{4\rho} \frac{a_{x}}{a_{y}} (t_{2} + t_{4} - 2t_{m}) \omega$$

Berücksichtigt man in vorstehender Formel den Einfluß des Umlegefehlers auf die Orientierungsunbekannte und setzt man näherungsweise

$$x_t \approx a_x (t_1 + t_2 + t_3 + t_4 - 4t_m),$$

so ergibt sich für den Einfluß des Umlegefehlers auf die Zenitdistanz

$$(44) \quad \exists z_{\underline{m}} = -\frac{1}{4} \frac{a_{\underline{x}}}{a_{\underline{y}}} T \frac{\omega}{\rho} \quad .$$

Den Einfluß eines Azimutfehlers auf die Zenitdistanz kann man aus (42) direkt ablesen:

(45)
$$dz_{m_{\chi}} = -\frac{1}{2} \frac{a_x}{a_y} \frac{\tau}{\rho} \alpha$$
.

Setzt man die sich aus den konstruktiven Parametern und dem Aufstellungsort des PZT ergebenden Werte für a_x , a_y , T und τ in (44) und (45) ein, so werden

(46)
$$dz_{m} = -3,33 \cdot 10^{-4}$$

(47)
$$dz_{m} = 4,44 \cdot 10^{-4} \alpha \cdot$$

Lassen wir in der Zenitdistanz einen durch beide Einflüsse verursachten Fehler von 0,01" zu, so müssen

$$\omega \leq 30^{\circ}$$
 und $\alpha \leq 20^{\circ}$

sein.

Durch (43), (44) und (45) sind die Einflüsse systematischer Fehleranteile von α und ω dargestellt. Mit einer unregelmäßigen Änderung des Azimutfehlers im Laufe eines Beobachtungszyklus ist nicht zu rechnen. Dagegen können wir annehmen, daß sich der Umlegefehler nach jedem Wechsel der Lage um unregelmäßige Beträge ändert. Den Einfluß unregelmäßiger Änderungen des Umlegefehlers erhält man durch die Annahme unterschiedlicher Werte von ω für jede Lage des Beobachtungszyklus. Das berücksichtigt man in den Formeln (29) und wendet auf (38) und (42) das Fehlerfortpflanzungsgesetz an. Man erhält

(48)
$$m_{t_{m,\omega}} = 0.3 \frac{a_y}{a_x} \frac{z_m}{\rho} m_{\omega}$$

und

$$(49) \quad \underline{\mathbf{m}}_{\mathbf{z}_{\mathbf{m},\boldsymbol{\omega}}} = \frac{0.517}{\rho} \frac{\mathbf{a}_{\mathbf{x}}}{\mathbf{a}_{\mathbf{y}}} \mathbf{m}_{\boldsymbol{\omega}} \cdot \mathbf{a}_{\mathbf{x}}$$

Setzt man in beide Formeln die Werte a_x , a_y ein und nimmt für (48) die maximal mögliche Zenitdistanz $z_m = 15^{\circ}$ an, so erhält man

 $m_{t_{m_{0}\omega}} = 1,45 \cdot 10^{-4} m_{\omega}, m_{z_{m_{0}\omega}} = 6,9 \cdot 10^{-4} m_{\omega}.$

Vorstehende Werte zeigen, daß selbst relativ große unregelmäßige Änderungen von ω einen nur geringen Einfluß auf die Bestimmung von Meridianzenitdistanz und Meridiandurchgangszeit haben.

4.2. Die fehlertheoretische Beziehung zwischen den Bildkoordinaten und den ermittelten Werten von ${\bf z}_{\rm m}$ und ${\bf t}_{\rm m}$

Es wird vorausgesetzt, die Bildkoordinaten seien nur mit zufälligen Fehlern behaftet und die Auswertung erfolge nach den in Abschnitt 3.5. zusammengestellten Formeln. Als Gewichtseinheitsfehler wird der mittlere Fehler der Koordinaten angenommen, der für beide Koordinatenwerte gleich groß sei. Damit erhalten wir die Gewichtskoeffizienten

$$Q_{XXX} = Q_{VV} = 1$$
.

Mit diesen Werten ergeben sich nach (33) die Gewichts- und Korrelationskoeffizienten der Werte x_a, y_a, x_t und y_t

(50)
$$\begin{cases} Q_{y_{a}y_{a}} = 4, & Q_{y_{a}x_{a}} = 0, & Q_{y_{a}y_{t}} = 0, & Q_{y_{a}x_{t}} = 0, \\ & Q_{x_{a}x_{a}} = 4, & Q_{x_{a}y_{t}} = 0, & Q_{x_{a}x_{t}} = 0, \\ & Q_{y_{t}y_{t}} = 4, & Q_{y_{t}x_{t}} = 0, \\ & Q_{y_{t}y_{t}} = 4, & Q_{y_{t}x_{t}} = 0, \\ & Q_{x_{t}x_{t}} = 4, & Q_{y_{t}x_{t}} = 0, \\ & Q_{x_{t}x_{t}} = 4, & Q_{y_{t}x_{t}} = 0, \\ & Q_{x_{t}x_{t}} = 4, & Q_{x_{t}x_{t}} = 0, \\ & Q_{x_{t}x_{t}} = 4, & Q_{x_{t}x_{t}} = 0, \\ & Q_{x_{t}x_{t}} = 4, & Q_{x_{t}x_{t}} = 0, \\ & Q_{x_{t}x_{t}} = 4, & Q_{x_{t}x_{t}} = 0, \\ & Q_{x_{t}x_{t}} = 4, & Q_{x_{t}x_{t}} = 0, \\ & Q_{x_{t}x_{t}} = 0, & Q_{x_{t}x_{t}} =$$

Durch Bildung des Differentials von (34) erhalten wir

(51)
$$d\theta = \frac{\cos^2\theta}{x_a} dy_a - y_a \frac{\cos^2\theta}{x_a^2} dx_a$$

In vorstehender Formel und auch in den noch abzuleitenden können wir uns auf die Hauptglieder beschränken, da der Fehlereinfluß der Bildkoordinaten auf die Korrektionsglieder bedeutungslos ist. Wir wollen annehmen, die Beobachtung sei symmetrisch zum Meridian erfolgt, womit wir

$$y_1 = y_3, \quad x_1 = x_4; \quad y_2 = y_4, \quad x_2 = x_3$$

setzen können. Hieraus folgt

$$y_a = 0, \quad x_a = 2(x_1 - x_2); \quad y_t = 2(y_2 - y_1), \quad x_t = 0.$$

Ferner gilt näherungsweise

 $\cos \Theta \approx 1$, $\sin \Theta \approx 0$.

Hiermit wird (51)

$$d\theta = \frac{1}{2} \frac{1}{x_1 - x_2} dy_a$$
,

woraus man folgende Gewichts- und Korrelationskoeffizienten erhält:

(52)
$$\begin{cases} Q_{\Theta \Psi} = \frac{1}{4} \frac{1}{(x_1 - x_2)^2} Q_{y_a y_a} = \frac{1}{(x_1 - x_2)^2}, \\ Q_{\Theta x_a} = 0; \quad Q_{\Theta y_a} = \frac{1}{2} \frac{1}{x_1 - x_2} Q_{y_a y_a} = \frac{2}{x_1 - x_2}; \\ Q_{\Theta x_t} = 0; \quad Q_{\Theta y_t} = 0. \end{cases}$$

Aus (35) ergibt sich

$$(53) da_{x} = \frac{1}{4T} dx_{a}$$

DOI: http://doi.org/10.2312/ZIPE.1976.049

oder

(54)
$$Q_{a_{x}a_{x}} = \frac{1}{16T^{2}} Q_{x_{a}x_{a}} = \frac{1}{4T^{2}}$$

Nach Berechnung der 0 und a_x werden in die weitere Auswertung Gruppenmittel dieser Werte eingeführt. Für eine Gruppe von n Sternen ergeben sich demnach folgende Gewichts- und Korrelationskoeffizienten:

(55)
$$\begin{cases} Q_{\overline{\Theta}\overline{\Theta}} = \frac{1}{n} \frac{1}{(x_1 - x_2)^2}, & Q_{\overline{\Theta}\overline{y}_a} = \frac{1}{n} \frac{2}{x_1 - x_2}, \\ Q_{\overline{a_x}a_x} = \frac{1}{4n \ T^2}, & Q_{\overline{a_x}x_a} = \frac{1}{nT}, \\ Q_{a_x}y_a = 0, & Q_{a_x}x_t = 0, & Q_{a_x}y_t = 0. \end{cases}$$

Ferner ist

(56)
$$Q_{a_y a_y} = \frac{V_{a_x a_x}}{15^2 \cos^2 \varphi}$$
.

Aus der Formel zur Berechnung der Meridiandurchgangszeit (38) wird

(57)
$$dt_{m} = -\frac{1}{4(a_{x} + b_{x} z_{m})} (dx_{t} + y_{t} d\theta)$$

erhalten, woraus für den Gewichtskoeffizienten

(58)
$$Q_{t_m t_m} = \frac{1}{16 (a_x + b_x z_m)^2} (Q_{x_t x_t} + y_t^2 Q_{00})$$

folgt. Nach einigen elementaren Umformungen ergibt sich aus (58):

(59)
$$Q_{t_m t_m} = \frac{T^2}{(x_1 - x_2)^2} (1 + \frac{1}{n} \frac{(y_1 - y_2)^2}{(x_1 - x_2)^2})$$

Auf gleichem Wege erhält man aus (42)

(60)
$$Q_{z_m z_m} = \frac{1}{4a_y^2} \left(1 + \frac{1}{900 \text{ n } \text{ T}^2 \cos^2 \phi} \frac{(y_2 - y_1)^2}{a_y^2}\right)$$

Mit den Parametern des PZT ergeben sich für eine Gruppe von n = 10 Sternen folgende Zahlenwerte für die Gewichtskoeffizienten:

$$Q_{\Theta\Theta} = 10^{-3},$$

$$Q_{a_{x}a_{x}} = 2,78 \cdot 10^{-5}, \qquad Q_{a_{y}a_{y}} = 3,33 \cdot 10^{-7},$$

$$Q_{t_{m}t_{m}} = 9 (1 + 10^{-3} (y_{2} - y_{1})^{2}),$$

$$Q_{z_{m}z_{m}} = 0,74 \cdot 10^{3} (1 + 0,246 \cdot 10^{-3} (y_{2} - y_{1})^{2}).$$

Der Maximalwert der Ordinatendifferenz beträgt beim PZT $(y_2 - y_1)_{max} \approx 30 \text{ mm}$, womit die Gewichtskoeffizienten von t_m und z_m in folgendem Bereich schwanken:

1.
$$y_2 = y_1 \approx 0$$
, $Q_{t_m t_m} = 9$, $Q_{z_m z_m} = 0.74 \cdot 10^3$,
2. $y_2 = y_1 \approx 30$, $Q_{t_m t_m} = 17$, $Q_{z_m z_m} = 0.90 \cdot 10^3$.

Bei der Koordinatenmessung mit dem "Ascorecord" wird ein mittlerer Fehler von $m_0 \pm 0,0015$ mm erreicht, woraus man die mittleren Fehler der Zenitdistanz und der Meridiandurchgangszeit

1.
$$\underline{m}_{t_{m}} = \pm 0^{s}_{5}0045$$
, $\underline{m}_{z_{m}} = \pm 0^{s}_{5}041$,
2. $\underline{m}_{t_{m}} = \pm 0^{s}_{5}0062$, $\underline{m}_{z_{m}} = \pm 0^{s}_{5}045$

erhält.

Diese mittleren Fehler repräsentieren den Einfluß der Koordinatenmessung. Sie werden in der Regel wesentlich kleiner sein als die tatsächlich mit dem PZT erreichbaren. Es wird zusätzlich zu den Meßfehlern noch mit Fehlereinflüssen zu rechnen sein, die in den Verzerrungen der photographischen Schicht und den Variationen der Geometrie des Abbildungsvorgangs durch Veränderungen des Refraktionseinflusses zu suchen sind. Wie später noch nachgewiesen wird, kann unter Berücksichtigung aller erkennbaren Umstände der mittlere Fehler der Bildkoordinaten zu

 $m_{0} = \pm 0,006 \text{ mm}$

geschätzt werden. Mit diesem Wert ergeben sich folgende mittlere Fehler von t_m und z_m :

1. $m_{t_{m}} = \pm 0.0000$, $m_{z_{m}} = \pm 0.0000$ 2. $m_{t_{m}} = \pm 0.00000$, $m_{z_{m}} = \pm 0.00000$

5. Beobachtungsprogramm

Das Sternprogramm für die Beobachtung mit dem PZT besteht aus insgesamt 257 Sternen bis zur Helligkeit 9^m,5 aus dem Katalog der Astronomischen Gesellschaft AGK 3 <u>7</u>. Aus der Gesamtzahl der Sterne wurden 24 Gruppen gebildet. Um den Einfluß eines Fehlers des Plattenmaßstabs bei der Berechnung der geographischen Breite klein zu halten, wurden die Sterne einer Gruppe so ausgewählt, daß die Summe ihrer Zenitdistanzen möglichst klein ist. Der Plattenmaßstab läßt sich im Durchschnitt für eine Gruppe von 10 Sternen mit einer relativen Genauigkeit von ca. 1·10⁻⁴ bestimmen. Damit kein größerer Fehler als 0",02 in der Breite entsteht, müssen die Zenitdistanzen z der H Hauptsterne einer Gruppe die Bedingung

(61) $\frac{1}{H} |\Sigma z| \leq 3'$

erfüllen. Die kürzeste Zeitdifferenz zweier aufeinanderfolgender Sterne ist instrumentell bedingt durch die Dauer von 120⁸ für den Beobachtungszyklus eines Sterns. In einigen Fällen enthält das Programm Sterne mit sehr kleinen Rektaszensionsunterschieden ($\Delta \alpha \leq 14^8$), die mit dem gleichen Beobachtungszyklus aufgenommen werden können.

In Tab. 1 sind für jede Gruppe die Gesamtzahl N der Sterne, die Anzahl H der Hauptsterne, die Anzahl Z der Zusatzsterne, der Rektaszensionsbereich α und der Beobachtungszeitraum angegeben. Die durchschnittliche Anzahl der Hauptsterne pro Gruppe beträgt 10 (minimal 8, maximal 12). In jeder klaren Nacht werden nach Möglichkeit 3 Sterngruppen beobachtet. Im Normalfall wird auf eine Platte jeweils nur eine Gruppe aufgenommen. Die Programmfolge im Laufe eines Jahres geht aus Abb. 9 hervor. Der Programmwechsel erfolgt halbmonatlich nach dem Prinzip der Kettenmethode. Jede Gruppe wird somit in einem Zeitraum von 1 1/2 Monaten und die Kombination zweier benachbarter Gruppen einen Monat lang beobachtet.

Die mittleren Örter und die Eigenbewegungen der PZT-Sterne sind im Sternkatalog für das Potsdamer PZT <u>/4_7</u> zusammengestellt. Die Rektaszensionen und Deklinationen wurden auf Grund der Ergebnisse der PZT-Beobachtungen von 1972 und 1973 korrigiert. Die Bestimmung der Sternkoordinatenkorrektionen geschah in zwei Schritten:

- Aus den Restfehlern innerhalb der Gruppen wurden individuelle Korrektionen abgeleitet. Im Zusammenhang damit erfolgte die Reduktion unvollständiger Gruppen auf das entsprechende Gruppenzentrum.
- 2. Nach dem Prinzip der Kettenmethode wurden aus den Differenzen zwischen den in der gleichen Nacht beobachteten Gruppen die Gruppenkorrektionen berechnet.

Ausführlich ist die Ermittlung der Sternkoordinatenkorrektionen aus den Potsdamer PZT-Beobachtungen in $\mathbb{Z}4_7$ dargestellt. Die Genauigkeit für die aus individuellen und Gruppenkorrektionen zusammengesetzten Gesamtkorrektionen beträgt im Durchschnitt ± 0 ,08 für die Deklination und ± 0 ,010 für die Rektaszension.

Die aus den PZT-Beobachtungen erhaltenen Deklinationen wurden zusammen mit weiteren 5 zu verschiedenen Epochen seit 1915 beobachteten Katalogen dazu verwendet, um neue Eigenbewegungskomponenten in Deklination für die PZT-Sterne zu berechnen. Die mittleren Fehler dieser neu berechneten Eigenbewegungen sind im Durchschnitt mit $\pm 0,004$ nur halb so groß wie die der Eigenbewegungen des AGK 3.

Gmunno	N	Ū	7	<u></u>	Beah	achtun	cazai traum
arabba	14	д			Deor	acircui	Reser traum
1	12	10	2	$0^{n}02^{m} - 0^{n}46^{m}$	1.	Okt.	- 15. Nov.
2	12	10	2	0 55 - 1 37	16.	Okt.	- 30. Nov.
3	10	9	1	149 - 226	1.	Nov.	- 15. Dez.
4	11	10	1	2 34 - 3 11	16.	Nov.	- 31. Dez.
5	14	12	2	3 19 - 4 01	1.	Dez.	- 15. Jan.
6	13	10	3	4 16 - 4 57	16.	Dez.	- 31. Jan.
7	12	12	-	5 06 - 5 57	1.	Jan.	- 15. Febr.
8	10	10	-	6 14 - 6 58	16.	Jan.	- 28. Febr.
9	9	9	-	7 13 - 7 47	1.	Febr.	- 15. März
10	10	10	-	8 09 - 9 19	16.	Febr.	- 31. März
11	10	10	-	9 32 - 10 43	1.	März	- 15. Apr.
12	11	10	1	10 53 - 12 18	16.	März	- 30. Apr.
13	11	11	-	12 47 - 14 09	1.	Apr.	- 15. Mai
14	11	10	1	14 20 - 15 22	16.	Apr.	- 31. Mai
15	10	8	2	15 42 - 16 36	1.	Mai	- 15. Juni
16	8	8	-	17 01 - 17 17	16.	Mai	- 30. Juni
17	9	9	-	17 30 - 18 19	1.	Juni	- 15. Juli
18	10	10	-	18 31 - 19 09	16.	Juni	- 31. Juli
19	9	9	-	19 18 - 19 43	1.	Juli	- 15. Aug.
20	12	10	2	19 55 - 20 46	16.	Juli	- 31. Aug.
21	12	12	-	20 59 - 21 31	1.	Aug.	- 15. Sept.
22	10	10	-	21 42 - 22 13	16.	Aug.	- 30. Sept.
23	11	10	1	22 25 - 22 54	1.	Sept.	- 15. Okt.
24	10	10	(11)	23 04 - 23 48	16.	Sept.	- 31. Okt.
Summe	257	239	18				

Tab. 1. Anzahl der Sterne und Beobachtungszeiträume der Gruppen

6. Ergebnisse der Zeit- und Breitenbestimmungen

Bei der Auswertung der PZT-Beobachtungen sind zunächst die rechtwinkligen Koordinaten der Sternabbildungen auf der Photoplatte zu bestimmen. Dazu wird ein Koordinatenmeßgerät mit automatischer Datenregistrierung "Ascorecord" vom VEB Carl Zeiss Jena benutzt. Vor der Messung wird die Platte im Meßgerät genähert orientiert; der restliche Orientierungsfehler wird aus den Meßwerten rechnerisch ermittelt. Weitere Ausgangsdaten für die Berechnung der Uhrkorrektion und der Breite sind die bei der Beobachtung gemessene zeitliche Lage des Beobachtungszyklus im Zeitsystem UTC (ZIPE), die scheinbaren Örter der beobachteten Sterne sowie die Sternzeit für O^h Weltzeit. Für die geographische Länge wird der Wert

$$\lambda = 52^{m}25^{s}200 E$$

angenommen. Die rechnerische Auswertung erfolgt mit Hilfe des elektronischen Rechenautomaten Robotron R 300. Der Programmierung lagen die in Abschnitt 3.5. zusammengestellten Formeln zugrunde.

Für die Auswertung der Beobachtungen von 1972 und 1973 wurden zunächst die Sternörter des AGK 3 <u>7</u> verwendet. Die Ergebnisse dieser Beobachtungen dienten zur Berechnung von Korrektionen für die AGK-3-Örter, worauf bereits im vorigen Kapitel eingegangen wurde. Der revidierte Katalog der PZT-Sterne <u>7</u> bildet die Grundlage für die Reduktion der Beobachtungen seit 1974. Außerdem wurden die Beobachtungen von 1972 und 1973 unter Verwendung dieses Kataloges neu reduziert. Die Resultate für die Jahre 1972 bis 1974 sind im Anhang zusammengestellt. Übersichten über die in den einzelnen Jahren beobachteten Gruppen und Gruppenkombinationen geben die Tab. 2 und 3. Nach Berücksichtigung der Polbewegung unter Verwendung der vom Bureau International de l'Heure (BIH) veröffentlichten Polkoordinaten tritt im Verlauf der Breitenergebnisse in den Jahren 1972 bis 1974 deutlich eine Jahresperiode hervor. Eine Analyse nach dem Ansatz

$$(62) \quad \varphi = \varphi + z,$$

(63) $z = a \sin 2\pi t + b \cos 2\pi t + c \sin 4\pi t + d \cos 4\pi t$

(t = Jahresbruchteil) führte zu folgenden Ergebnissen:

	8	Ъ	C	d
1972	-0,185	0,068	0,021	0,017
	± 17	± 19	<u>+</u> 22	± 15
1973	-0,171	0,020	-0,048	-0,016
	<u>+</u> 17	<u>+</u> 18	± 17	± 18
1974	-0,236	-0,017	0,009	0,028
	<u>+</u> 14	<u>+</u> 16	<u>+</u> 15	± 15

Als mögliche Ursachen für das lokale z-Glied kommen z.B. restliche Deklinationsfehler der Form $\Delta \delta_{\alpha}$ oder meteorologische Einflüsse in Frage. Die Ergebnisse der Zeitbestimmungen zeigen nach Berücksichtigung der Polbewegung und der Rotationsschwankungen der Erde keine so offensichtliche Jahresperiode wie die Breitenbestimmungen.

Gruppe	1972	1973	1974	Kombination	1972	1973	197
1	7	6	0	1 = 2	3	3	0
2	5	4	1	2 - 3	4	3	1
3	5	4	2	3 - 4	3	0	2
4	4	4	4	4 - 5	4	2	2
5	4	3	2	5 - 6	1	3	1
6	1	6	3	6 - 7	0	3	1
7	1	5	1	7 - 8	1	3	1
8	1	5	1	8 - 9	0	4	C
9	2	8	2	9 - 10	1	5	2
10	3	8	4	10 - 11	3	5	2
11	3	7	6	11 - 12	2	5	5
12	6	7	6	12 - 13	2	3	2
13	4	6	6	13 - 14	4	1	2
14	6	5	6	14 - 15	3	5	4
15	3	9	6	15 - 16	0	7	3
16	3	9	5	16 - 17	3	3	2
17	4	8	3	17 - 18	3	6	
18	5	11	2	18 - 19	2	7	1
19	2	11	4	19 - 20	1	6	4
20	2	9	9	20 - 21	0	5	8
21	1	11	9	21 - 22	0	6	5
22	4	10	9	22 - 23	4	4	L
23	5	6	6	23 - 24	4	2	5
24	7	5	5_	24 1	6	3	(
Summe	88	167	102	Summe	54	94	58

Tab. 2. Anzahl der beobachteten Gruppen

Tab. 3. Anzahl der beobachteten Gruppenkombinationen

Für die Korrektion wegen der Polbewegung und der Rotationsschwankungen wurden die vom BIH veröffentlichten Größen verwendet. Aus den korrigierten Zeitbestimmungen lassen sich Verbesserungen für die angenommene geographische Länge ableiten. Damit erhält man für die einzelnen Jahre die folgenden Mittelwerte der Länge der PZT-Station:

	Länge der PZT-Station
1972	52 ^m 25 ^s 2307 ± 0 ^s ,0013
1973	25,2303 ± 0,0015
1974	25,2534 + 0,0019

Der Unterschied zwischen den Längenwerten von 1972/73 einerseits und 1974 andererseits hat seine Ursache offenbar in einer Änderung am Registriersystem zu Beginn des Jahres 1974.

.

Berechnet man aus den korrigierten Breitenbestimmungen die mittleren Breiten für die einzelnen Jahre, so ergeben sich einmal ohne und einmal mit Berücksichtigung des z-Gliedes die folgenden Werte:

Breite der PZT-Statio	n
-----------------------	---

	ohne z	nit z
1972	52°24'24",861 + 0",020	52°24'24,853 ± 0,013
1973	24,882 ± 0,015	24,891 <u>+</u> 0,013
1974	24,925 ± 0,021	$24,915 \pm 0,011$

Zum Vergleich mit den PZT-Ergebnissen wurden die aus früheren Beobachtungen vorliegenden konventionellen Koordinaten der PZT-Station herangezogen <u>/5</u>_7:

 $\lambda = 52^{m}25^{s}, 239 \text{ E}, \qquad \phi = 52^{o}24'24, 36 \text{ N}.$

 $\varphi = 52^{\circ}24!25!03 \pm 0!08$

Dieser Wert kann als Bestätigung der PZT-Ergebnisse betrachtet werden, während die zum Vergleich verwendete konventionelle Breite offenbar fehlerhaft ist.

7. Genauigkeitsuntersuchung

7.1. Fehler der Plattenausmessung

Der Meßfehler am "Ascorecord", der sich aus dem Fehler der Einstellung des Sterns mit der Meßmarke und dem Ablesefehler zusammensetzt, wurde aus Differenzen von Doppelmessungen berechnet. Die Analyse eines umfangreichen Datenmaterials aus den Jahren 1972 und 1973 ergab im Gesamtdurchschnitt für den mittleren Fehler einer Einzelmessung $\pm 0,0032$ mm. Abgesehen von Sternen heller als $6^{m}_{,0}$ 0 besteht keine eindeutige Helligkeitsabhängigkeit des Meßfehlers. Bei den Sternen, die heller als $6^{m}_{,0}$ 0 sind, ist die Meßunsicherheit deutlich größer ($\pm 0,0046$ mm). Schließt man diese hellen Sterne aus den Betrachtungen aus, so beträgt der durchschnittliche Fehler einer Einzelmessung $\pm 0,0028$ mm und ist für beide Koordinaten gleich groß.

Eine bessere Qualität der photographischen Abbildung wurde durch die Verwendung von ZU2-Platten ab Mai 1974 und die im Zusammenhang damit verbesserte Fokussierung erreicht. Damit verringerte sich der Meßfehler um ca. 30 % und beträgt für die einmalige Messung einer Koordinate ±0,0020 mm. Bei der Auswertung der PZT-Beobachtungen werden für die rechtwinkligen Koordinaten der Sternabbildungen auf der Photoplatte die Mittelwerte von Doppelmessungen eingeführt. Nach den vorliegenden Untersuchungen ergibt sich die Meßunsicherheit dieser Größen für beide Koordinaten gleich zu

$$m_x = m_y = \pm 0,0015 \text{ mm}.$$

7.2. Lagefehler der Abbildungen auf der Photoplatte

Die Fehler in den Positionen der Abbildungen auf der Photoplatte wurden auf zwei verschiedenen Wegen ermittelt: einmal aus x-Differenzen von jeweils zwei in der gleichen Lage des Drehkopfes aufgenommenen Bildern und zum anderen aus den Unterschieden der Schwerpunktkoordinaten bzw. der Koordinatensummen von jeweils 4 zu einem Stern gehörenden Bildern. Aus den x-Differenzen läßt sich nur die Fehlerkomponente in x-Richtung bestimmen. Ausgehend von den Gleichungen (29a), erhält man unter Berücksichtigung der Tatsache, daß

$$t_4 - t_2 = t_3 - t_1$$
 und $t_{M_4} - t_{M_2} = t_{M_3} - t_{M_1}$

gilt, die Beziehung

(64) $(x_1 - x_2) \cos \theta + (y_1 - y_2) \sin \theta = (x_4 - x_2) \cos \theta + (y_4 - y_2) \sin \theta$

bzw.

(65)
$$x_1 + x_2 - x_3 - x_4 = (-y_1 - y_2 + y_3 + y_4) \tan \Theta$$
.

Zur Abschätzung des Betrages des Ausdrucks $(-y_1 - y_2 + y_3 + y_4)$ setzen wir in den Gleichungen (29b) die Werte ω und θ gleich Null und erhalten durch Summen- bzw. Differenzbildung

$$\mathbf{y}_{1} - \mathbf{y}_{2} + \mathbf{y}_{3} + \mathbf{y}_{4} = \mathbf{b}_{\mathbf{y}} \left\{ (\mathbf{t}_{1} - \mathbf{t}_{m})^{2} - (\mathbf{t}_{2} - \mathbf{t}_{m})^{2} - (\mathbf{t}_{3} - \mathbf{t}_{m})^{2} + (\mathbf{t}_{4} - \mathbf{t}_{m})^{2} \right\}.$$

Für b, ergibt sich durch Einsetzen der Zahlenwerte in (25)

Unter der Annahme, daß der Sterndurchgang symmetrisch beobachtet wurde, gilt

$$(t_1 - t_m)^2 = (t_4 - t_m)^2 = 2025$$

und

$$(t_2 - t_m)^2 = (t_3 - t_m)^2 = 225,$$

und damit wird

$$-y_1 - y_2 + y_3 + y_4 = 0,017 \text{ mm}.$$

Bei der Ausmessung werden die PZT-Platten im Koordinatenmeßgerät im allgemeinen so orientiert, daß tan $\theta < 2 \cdot 10^{-3}$ wird, so daß das Glied $(-y_1 - y_2 + y_3 + y_4)$ tan θ in Formel (65) vernachlässigt werden kann. Damit erhält man aus (65) die Bedingung

(66)
$$x_1 + x_2 = x_3 = x_4 = 0_{\circ}$$

Infolge von Fehlern in den gemessenen x-Koordinaten wird diese Bedingung durch die Meßwerte nicht erfüllt sein, und aus den Abweichungen Δ kann der mittlere Fehler einer x-Koordinate im Durchschnitt für n Sterne nach folgender Formel ermittelt werden:

(67)
$$m'_{\rm X} = \frac{1}{2} \sqrt{\frac{\Sigma \Delta^2}{n}}$$

Die Auswertung von ca. 250 Sternen ergab

$$m_{\chi}^{i} = \pm 0,0056 \text{ mm}.$$

Eliminiert man den Meßfehler, der in diesem Wert noch enthalten ist, so beträgt der Lagefehler in x-Richtung

$$m_{Lx} = \pm 0,0054 \text{ mm}.$$

Bei der zweiten Art der Berechnung der Lagefehler wurde von den Koordinatensummen von jeweils 4 zu einem Stern gehörenden Bildern ausgegangen. Dabei kann in den Gleichungen (29a) und (29b) die Größe 0 vernachlässigt werden, weil sie im allgemeinen auf Grund der erwähnten Orientierung der Platte vor der Messung hinreichend klein ist. Wir erhalten dann folgende Beziehungen:

(68)
$$\begin{cases} x_{0} - x_{1} = a_{x} (t_{1} - t_{m}) + b_{x} z_{m} (t_{M_{1}} - t_{m}), \\ x_{0} - x_{2} = -a_{x} (t_{2} - t_{m}) - b_{x} z_{m} (t_{M_{2}} - t_{m}), \\ x_{0} - x_{3} = a_{x} (t_{3} - t_{m}) + b_{x} z_{m} (t_{M_{3}} - t_{m}), \\ x_{0} - x_{4} = -a_{x} (t_{4} - t_{m}) - b_{x} z_{m} (t_{M_{4}} - t_{m}) \end{cases}$$

und

(69)
$$\begin{cases} y_{0} + y_{1} = a_{y} z_{m} - b_{y} \left\{ (t_{1} - t_{m})^{2} + (t_{M_{1}} - t_{m})\tau \right\}, \\ y_{0} + y_{2} = -a_{y} z_{m} + b_{y} \left\{ (t_{2} - t_{m})^{2} + (t_{M_{1}} - t_{m})\tau \right\}, \\ y_{0} + y_{3} = a_{y} z_{m} - b_{y} \left\{ (t_{3} - t_{m})^{2} + (t_{M_{1}} - t_{m})\tau \right\}, \\ y_{0} + y_{4} = -a_{y} z_{m} + b_{y} \left\{ (t_{4} - t_{m})^{2} + (t_{M_{1}} - t_{m})\tau \right\}. \end{cases}$$

Durch Summenbildung und Umformung ergibt sich

(70)
$$x_1 + x_2 + x_3 + x_4 = 4x_0 + 2(a_x + b_x z_m) T$$

und

(71)
$$y_1 + y_2 + y_3 + y_4 = -4y_0 + b_y T \left\{ 2\tau + (t_1 - t_m) + (t_2 - t_m) + (t_3 - t_m) + (t_4 - t_m) \right\}$$
.

Für (70) können wir schreiben

(72)
$$x_1 + x_2 + x_3 + x_4 = K_x + 2b_x z_m T$$
,

wobei K_x = 4x_o + 2a_x T ein konstanter Wert für alle Sterne einer Gruppe ist. Man erhält aus (69) mit ausreichender Näherung

$$z_{m} = \frac{y_{1} - y_{2}}{2a_{y}}$$

und somit aus (72)

(73)
$$K_x = x_1 + x_2 + x_3 + x_4 - \frac{b_x T}{a_y} (y_1 - y_2)$$

bzw. nach Einsetzen der Zahlenwerte

(74)
$$K_x = x_1 + x_2 + x_3 + x_4 = 0,1736 \cdot 10^{-2} (y_1 - y_2).$$

In (71) kann unter Berücksichtigung der Gleichungen (68) mit ausreichender Näherung

$$(t_1 - t_m) + (t_2 - t_m) + (t_3 - t_m) + (t_4 - t_m) = \frac{1}{a_x} (x_2 - x_1 + x_4 - x_3)$$

geschrieben werden. Setzt man ferner $-4y_0 = K_y$, so folgt aus (71)

(75)
$$y_1 + y_2 + y_3 + y_4 = K_y + \frac{b_y}{a_x} T (x_2 - x_1 + x_4 - x_3).$$

Da im allgemeinen die Aufnahmen symmetrisch zum Meridian liegen, wird der Klammerausdruck in (75) sehr klein, so daß das zweite Glied auf der rechten Seite von Formel (75) vernachlässigt werden kann. Damit wird

(76)
$$K_y = y_1 + y_2 + y_3 + y_4$$
°

Aus den Beziehungen (74) und (76) ergibt sich die Möglichkeit, mittlere Koordinatenfehler zu berechnen. Dazu sind für alle n Sterne einer Gruppe aus den Werten K_x und K_y die Mittelwerte zu bilden:

(77)
$$\overline{K_x} = \frac{1}{n} \sum_{i=1}^{n} K_{x_i}, \quad \overline{K_y} = \frac{1}{n} \sum_{i=1}^{n} K_{y_i}.$$

Mit den Abweichungen der Einzelwerte vom Mittel

$$v_{x_{i}} = \overline{k_{x}} - k_{x_{i}}$$
 und $v_{y_{i}} = \overline{k_{y}} - k_{y_{i}}$

erhält man die mittleren Koordinatenfehler für ein Bild zu

(78)
$$\overline{m}_{x} = \frac{1}{2} \sqrt{\frac{\Sigma v_{x}^{2}}{n-1}}$$
 und $\overline{m}_{y} = \frac{1}{2} \sqrt{\frac{\Sigma v_{y}^{2}}{n-1}}$.

Aus der Auswertung von 50 Platten mit jeweils mindestens 10 Sternen ergaben sich im Durchschnitt folgende Fehler:

 $\overline{m_x} = \pm 0,0063 \text{ mm}, \qquad \overline{m_y} = \pm 0,0064 \text{ mm}.$

Eliminiert man wieder den Meßfehler, so verbleibt als Lagefehler

$$\overline{m}_{L} = \pm 0,0061 \text{ mm}$$
 bzw. $\overline{m}_{L} = \pm 0,0062 \text{ mm}$

Es zeigt sich, daß beide Koordinaten mit gleicher Genauigkeit erhalten werden. Auf Grund des geringen Einflusses des Meßfehlers ist eine weitere Verbesserung der Meßgenauigkeit nicht erforderlich. Die Hauptfehlerquellen sind offenbar in Refraktionsanomalien, Szintillation, Verzerrungen der photographischen Schicht und instrumentellen Fehlereinflüssen zu suchen.

Für den Einfluß der Bildbewegung (Richtungsszintillation) gibt HØG 27 folgende Formel an:

$$(79) \sigma = 0.33 (\tau + 0.65)^{-0.25}$$

(mit τ = Integrationszeit). Beim PZT beträgt die Integrationszeit für ein Bild τ = 20⁸, und der Einfluß der Richtungsszintillation wird nach (79)

 $\sigma = \pm 0,155$

oder in linearem Maß auf der Platte +0,003 mm.

7.3. Fehler der Zeitregistrierung

Der zufällige Fehler der Zeitregistrierung wurde aus Differenzen der in bezug auf die Zeitskala UTC (ZIPE) registrierten Zeitimpulse des PZT für die erste und dritte bzw. zweite und vierte Belichtung berechnet. Die Genauigkeit der Registrierung eines Einzelimpulses beträgt ±0,2 ms. Für jeden Stern werden vier Impulse registriert, und in die Auswertung wird das Mittel aus den registrierten Impulsen für alle Sterne einer Gruppe eingeführt. Der zufällige Fehler dieses Mittelwertes liegt unter 0,1 ms und spielt im Vergleich zu anderen Fehlereinflüssen eine untergeordnete Rolle.

7.4. Fehler der Zeit- und Breitenbestimmungen

Der Einfluß des in Abschnitt 7.2. ermittelten Lagefehlers auf die Endergebnisse wurde bereits in Abschnitt 4.2. untersucht. Die bei den fehlertheoretischen Betrachtungen erhaltenen mittleren Fehler sollen nun verglichen werden mit den Fehlern, die sich aus den Zeit- und Breitenbestimmungen ergeben. Die mittleren Fehler für die Beobachtung eines Sterns wurden aus den Abweichungen der Einzelwerte vom Gruppenmittel berechnet. Für die verschiedenen Jahre ergaben sich folgende Durchschnittswerte:

	^m ∆u _o	m _@ o
1972	0,0183	0,167
1973	0,0173	0,166
1974	0,0201	0,177

Diese Ergebnisse befinden sich in guter Übereinstimmung mit den theoretisch erwarteten Werten, wenn man berücksichtigt, daß außer dem Lagefehler auch noch die in Kap. 5 erwähnten Sternkoordinatenfehler die Endergebnisse beeinflussen. Aus den angegebenen Werten für die Beobachtungsgenauigkeit läßt sich die zu erwartende durchschnittliche innere Genauigkeit für eine Gruppe von 10 Sternen abschätzen zu

 $m_{\Delta u_i} = \pm 0^{s}_{,0059}$ und $m_{\phi_i} = \pm 0^{u}_{,054}$.

Die äußere Genauigkeit wurde aus den Abweichungen der Gruppenmittel vom Jahresmittel berechnet, wobei vorher eine Reduktion wegen der Polbewegung und der Differenzen zwischen der astronomisch bestimmten Zeit und der koordinierten Weltzeit mit den vom BIH veröffentlichten Größen erfolgte. Die äußeren mittleren Fehler für die Beobachtung einer Gruppe haben folgende Beträge:

*****	^m [®] ∆u	m'q
1972	0,80125	0,189
1973	0,0185	0,196
1974	0,0184	0,209

Bei Berücksichtigung der lokalen jahreszeitlichen Schwankungen der Ergebnisse, wie sie für die Breitenbestimmungen entsprechend Formel (63) und für die Zeitbestimmungen in analoger Weise erfolgte, verringern sich diese Fehler auf folgende Werte:

ana ana amin'ny fisiana amin'ny fisiana	™∆u	ш _о
1972	0 ^{\$} 0108	0,110
1973	0,0161	0,156
1974	0,0157	0,097

In Abb. 10 sind die Durchschnittswerte dieser Fehler für die Jahre 1972 bis 1974 im Vergleich zu anderen PZT-Stationen dargestellt. Die äußeren mittleren Fehler der anderen Stationen wurden aus den Restfehlern im System des BIH $\sqrt{6}$ 7 für das Jahr 1973 bestimmt. Die Fehler der Zeitbestimmungen wurden für alle Stationen auf den Äquator reduziert und in Bogensekunden umgerechnet. Das Kreuz in Abb. 10 bezeichnet den Mittelwert aus allen Observatorien. Es zeigt sich, daß die Qualität der Potsdamer PZT-Beobachtungen der der anderen PZT-Stationen ebenbürtig ist, wenn die lokalen jahreszeitlichen Schwankungen berücksichtigt werden, wie es in gleicher Weise beim BIH für die übrigen Stationen geschehen ist.

Sämtliche vorstehenden Schätzwerte der mittleren Fehler wurden mit einer so großen Zahl von Freiheitsgraden ermittelt, daß sie als Erwartungswerte angesehen werden können. Eine Angabe von Vertrauensintervallen erübrigt sich daher.

Literatur

- [7] 7 ENGELBRECHT, J.: Das Photo-Zenit-Teleskop (PZT) der Sternwarte Babelsberg (Konstruktion und Funktion). Feingerätetechnik <u>15</u> (1966) 1, S. 8-12
- [2] 7 HØG, E.: The photoelectric meridian circle of Bergedorf/Perth. Astron. and Astrophys. <u>19</u> (1972), S. 27-40
- [3_7 HOHL, R.; SCHOMANN, B.: Geodätisch-astronomische Ortsbestimmung für den Standpunkt des photographischen Zenitteleskops in Babelsberg. Diplomarbeit Techn. Univ. Dresden 1973 (unveröff.)
- <u>7</u> MEINIG, M.: Sternkatalog für das Potsdamer PZT. Veröff. Zentralinst. Physik d. Erde, Potsdam <u>37</u> (1976)
- <u>7</u> STRUVE, H.: Die neue Berliner Sternwarte in Babelsberg. Veröff. Sternwarte Berlin-Babelsberg, Bd. III, H. 1, Berlin 1919
- ∠6_7 Bureau International de l'Heure: Rotation de la Terre. Observations traitées et résidus en 1973.
- <u>77</u>. ... Dritter Katalog der Astronomischen Gesellschaft, Zone +52°. Computerausschrift vom Sterndatenzentrum Straßburg (1972)

Weitere Literatur

- PAUSCHER, H.: Theorie und Reduktionsmethode für das Babelsberger PZT. (unveröff. Manuskript)
- SCHULER, W.: Étude théorique et expérimentale de la lunette zénithale photographique (PZT) de Neuchatel. Genève: Edition Médicine & Hygiène 1967
- TAKAGI, S.: Geometry of the setting errors of the PZT. Publ. internat. Latitude Observ. Mizusawa 3 (1961), S. 137-149
- THOMAS, D.V.: Photographic zenith tube, instrument and method of reduction. Roy. Observ. Bull. No. <u>81</u> (1964)

Anhang: Beobachtungsergebnisse

Spalte 1 laufende Nummer

- 2 Datum: Monat, Tag
- 3 Modifiziertes Julianisches Datum für die Mitte der Beobachtung
- 4 Gruppennummer
- 5 Anzahl der Sterne der Zeitbestimmung
- 6 UTO(PZT) UTC(ZIFE) _0,0001_7
- 7 mittlerer Fehler der Zeitbestimmung 20,00017
- 8 Anzahl der Sterne der Breitenbestimmung
- 9 beobachtete Breite
- 10 mittlerer Fehler der Breite /0,0017

Nr.		D		MJD	Gr	n	ΔU	υΔ ^m	n	φ	m _φ
1		2		3	4	5	6	7	8	9	10
	19	72		And your and an and an					na sakapatén kangangangangan	52°24'	
1	02	02	41	349.83	7	7	-1094	59	7	24"677	28
2	02	02		349.87	8	6	-1206	61	6	24.631	70
3	03	13		389.80	9	9	-2441	58	9	24.623	53
4	03	13		389.86	10	8	-2500	45	8	24.592	53
5	03	13		389.90	11	7	-2492	102	7	24.547	67
6	03	14		390.86	10	6	-2168	52	6	24.496	83
7	03	14		390.90	11	4	-2434	74	4	24.466	84
8	03	14		390.95	12	6	-2555	73	6	24.524	64
9	03	24		400.83	10	7	-2910	93	7	24.500	32
10	03	24		400.88	11	8	-2816	69	8	24.509	47
11	03	24		400.93	12	9	-2656	44	9	24.445	37
12	04	24		431.84	12	11	-3801	77	11	24.357	43
13	04	24		431.96	13	6	-3840	71	6	24.306	66
14	04	25		432.00	14	9	-3890	33	9	24.237	51
15	04	25		432.84	12	10	-3859	51	10	24.365	38
16	04	28		435.83	12	6	-3962	22	6	24.350	70
17	04	30		437.82	12	9	-3713	44	9	24.222	40
18	04	30		437.92	13	8	-3756	66	8	24.216	51
19	04	30		437.98	14	9	-3826	51	9	24.438	47
20	05	05		442.91	13	11	-3786	40	11	24.283	42
21	05	05		442.97	14	10	-3862	21	10	24.382	24
22	05	06		443.02	15	10	-3987	33	10	24.638	56
23	05	07		444.90	13	11	-4225	30	11	24.558	19
24	05	07		444.96	14	11	-4238	29	11	24.496	37
25	05	08		445.01	15	10	-4170	30	10	24.665	45
26	05	08		445.96	14	8	-3989	65	8	24.425	72
27	05	09		446.01	15	8	-3965	52	8	24.400	25
28	05	25		462.92	14	8	-4581	45	8	24.248	52
29	06	20		488.93	16	7	-5663	69	7	24.527	50
30	06	20		488.96	17	5	-5635	79	5	24.560	57
31	06	25		493.92	16	6	-5597	50	6	24.682	73
32	06	25		493.95	17	6	-5495	142	6	24.726	49
33	06	25		493.99	18	6	-5450	95	6	24.674	48
34	06	26		494.92	16	7	-5583	75	7	24.510	67
35	06	26		494.95	17	8	-5651	97	6	24.485	122
36	06	26		494.98	18	6	-5802	39	6	24.861	75
57	07	13		511.90	17	8	+3892	44	8	24.744	39
58	07	13		511.94	18	10	3727	132	10	24.712	34
59	07	13		511.97	19	9	3881	96	9	24.602	36
+0	07	18		516.92	18	9	3864	63	9	24.600	82
41	07	18		516.99	20	12	3809	109	12	24.955	54
42	07	20		518.91	18	7	3599	106	7	24.798	94
43	07	20		518.95	19	6	3739	39	6	24,826	41

Nr.		D	MJD	Gr	n	ΔU	™∆u	n	φ	m _@	
1		2	3	4	5	6	7	8	9	. 10	
	19	72							52°24'		
44	07	20	41 518.98	20	11	+3643	67	11	24 880	64	
45	08	07	536.97	21	8	3269	71	8	24.790	53	
46	09	27	587.86	22	9	1776	79	9	25.224	91	
47	09	27	587.89	23	10	1805	109	10	25.237	78	
48	09	27	587.92	24	9	1744	77	9	25.215	71	
49	10	04	594.84	22	9	1503	44	9	25.127	52	
50	10	04	594.87	23	10	1560	48	10	25.071	31	
51	10	04	594.90	24	10	1565	64	10	24.992	30	
52	10	04	594.94	1	12	1540	78	12	25.016	31	
53	10	05	595.84	22	9	1522	33	8	25.135	74	
54	10	05	595.87	23	10	1623	64	10	25.161	36	
55	10	05	595.90	24	10	1550	26	10	25.189	25	
56	10	05	595.94	1	10	1517	72	10	25.050	56	
57	10	08	598.83	22	9	1567	42	9	25.109	44	
58	10	08	598.86	23	10	1540	54	10	25.063	28	
59	10	08	598.89	24	9	1521	48	10	25.056	42	
60	10	08	598.93	1	10	1448	90	10	25.124	52	
61	10	13	603.88	24	10	1185	82	10	25.170	40	
62	10	13	603,92	1	10	1032	83	10	25.112	48	
63	10	16	606.84	23	7	1220	75	6	25.087	56	
64	10	18	608,86	24	10	1127	69	10	25.018	93	
65	10	18	608,90	1	12	1138	49	12	24.895	89	
66	10	18	608-94	2	9	1152	73	9	25.140	134	
67	11	01	622,83	24	9	0470	61	9	25.183	96	
69	11	01	622-86	1	11	0563	47	11	25.091	46	
60	11	01	622,90	2	. 7	0529	53	7	25.127	87	
70	11	01	622.94	3	6	0584	55	6	25.169	174	
70	11	Ah	625 82	1	12	0276	45	12	25,188	44	
71	11	14	625 87	2	12	0295	27	12	25,166	88	
76	11	All	635 00	2	0	0311	62	9	25.076	31	
12	12	14	662.79	2	11	-0795	4.3	11	24,980	30	
74	40	11	662 93	Z	0	-0892	60	9	24,958	56	
72	12	11	662.09	1	7	-0707	80	7	25,093	48	
70	12	-11	662.00	5	14	-083/4	46	14	24,915	4.9	
77	12	40	667 97	7	0	-0768	54	G	25.000	20	
78	12	12	002.02	2	20	0838	GIL	11	24.954	35	
79	12	12	662.80	9 C	11	-0728	58	14	25.035	53	
80	12	12	002.07	2	14	-0005	60	11	25,225	71	
81	12	16	667.00	Z	10	-1035	67	10	25,292	31	
82	12	16	007.02	2	10	-1000	15	10	25 070	61	
83	12	16	667.85	4	10	-0053	47 5/1	14	25 217	40	
84	12	16	667.88	>	14	-09772	24	14	25 227	75	
85	12	20	671.84	4	11	-1151	57	47	25 220	60	
86	12	20	671.87	5	13	-1189	54	12	25.200	50	
87	12	20	671,91	6	13	-1124	67	13	27.200	22	

- 1		1	1.		
2	7	м	ч	Þ	
	ø		v		

Nr.		D	MJD	Gr	n	ΔΩ	ŪΔ	n	φ	^m ø
1		2	3	4	5	6	7	8	9	10
	19	73							52°24 '	
88	01	02	41 684. 80	4	11	+8537	81	11	25:021	79
89	01	02	684.84	5	10	8444	52	10	25.073	83
90	01	02	684.87	6	8	8378	109	8	25.071	72
91	01	02	684.91	7	12	8274	165	12	25.025	82
92	01	13	695.81	5	11	8124	71	11	25.064	64
93	01	13	695.84	6	13	8312	52	13	25.048	58
94	01	13	695.88	7	12	8184	77	12	25.097	45
95	01	22	704.81	6	11	7815	58	11	24.768	43
96	01	24	706.81	6	7	7830	61	7	24.993	64
97	01	24	706.85	7	11	7667	48	11	24.895	35
98	01	24	706.89	8	5	7822	96	5	24.950	75
99	02	13	726.80	7	10	7108	39	10	24.890	32
100	02	13	726.84	8	9	6934	91	9	24.869	43
101	02	13	726.88	9	9	7116	44	9	24.837	52
102	02	14	727.79	7	11	7130	68	11	24.859	45
103	02	14	727.84	8	10	7101	65	10	24.751	33
104	02	14	727.87	9	9	7005	40	9	24.703	56
105	02	26	739.81	8	9	6726	42	9	24.661	43
106	02	26	739.84	9	9	6727	44	9	24.631	31
107	02	26	739.90	10	10	6708	34	10	24.588	64
108	02	27	740.80	8	10	6563	45	9	24.603	68
109	02	27	740.84	9	8	6561	43	8	24.653	64
110	02	27	740.89	10	10	6620	40	10	24.602	39
111	03	09	750.81	9	9	6342	27	9	24.603	28
112	03	09	750.87	10	7	6266	58	7	24.504	81
113	03	13	754.80	9	9	6148	82	9	24.751	38
114	03	13	754.86	10	8	6126	33	8	24.784	56
115	03	13	754.91	11	10	6061	30	10	24.716	27
116	03	14	755.80	9	9	6061	31	9	24.767	46
117	03	15	756.79	9	9	5998	28	9	24.731	38
118	03	15	756.85	10	6	6025	33	6	24.703	45
119	03	15	756.90	11	10	5948	25	10	24.725	35
120	03	23	764.83	10	10	5790	48	10	24.602	55
121	03	23	764.88	11	10	5734	80	10	24.692	26
122	03	23	764.93	12	11	5881	40	11	24.678	40
123	03	28	769.81	10	6	5506	79	6	24.677	36
124	03	28	769.87	11	10	5580	25	10	24.781	41
125	03	28	769.92	12	11	5659	37	11	24.738	39
126	03	29	770.81	10	10	5570	29	10	24.718	63
127	03	29	770.86	11	10	5485	30	10	24.704	35
128	03	29	770.92	12	10	5614	54	10	24.624	92
129	04	03	775.90	12	10	5377	25	10	24.376	39
130	04	03	775.99	13	4	5328	51	4	24.519	42
		-	112477				-			10.0

-

Nr.		D		MJD	Gr	n	ΔU	™∆U	n	φ	m _φ
1		2		3	4	5	6	7	8	9	10
	19	73								59°24 °	
131	04	08	4	41 780.84	11	9	+5346	46	9	248582	30
132	04	08		780.89	12	11	5297	48	11	24.528	37
133	04	13		785.82	11	10	5111	54	10	24.717	24
134	04	13		785.87	12	11	4966	81	.11	24.608	61
135	04	13		785.97	13	11	5122	37	11	24,622	45
136	04	23		795.84	12	10	4840	17	10	24.512	57
137	04	23		795.94	13	11	4907	41	11	24.478	29
138	05	06		808.92	13	6	4456	63	7	24.760	53
139	05	07		809.02	15	10	4557	77	10	24.683	38
140	05	15		817.89	13	6	3931	59	6	24.518	114
141	05	16		818.88	13	11	4270	56	11	24.560	53
142	05	16		818.94	14	11	4220	44	11	24.684	41
143	05	16		818.99	15	8	4219	41	8	24.730	57
144	05	17		819.03	16	6	4014	108	6	24.785	52
145	05	17		819.94	14	11	4098	45	11	24.617	51
146	05	17		819.98	15	10	4167	60	10	24.751	42
147	05	18		820.03	16	8	3888	33	8	24,955	95
48	05	18		820,93	14	11	4248	30	11	24,722	62
49	05	18		820,98	15	10	4221	39	10	24,945	48
150	05	19		821.02	16	8	4122	40	8	24,782	84
151	05	23		825.92	14	11	4029	48	11	24.414	35
152	05	23		825.97	15	9	4128	53	9	24,694	44
53	05	24		826-01	16	5	3934	60	5	24.847	31
154	05	29		831,90	14	11	4211	34	11	24.642	27
155	05	29		831.95	15	10	4196	33	10	24.747	46
156	05	29		831,99	16	7	3888	42	7	24.801	35
157	06	05		838.93	15	9	3545	50	Q	24 658	55
158	06	06		839.00	17	7	3232	01	7	24 628	58
159	06	14		847.91	15	10	3136	67	10	24 537	33
160	06	14		847.95	16	6	3104	41	6	240JJ7 24 774	93
161	06	16		849,90	15	10	3458	53	10	24.363	46
162	06	16		849.94	16	8	3359	31	8	24.609	94
63	06	16		849.98	10	9	3234	95	G	24.672	63
164	06	47		850 01	18	6	3151	90	6	2/1 600	86
165	00	12		851 03	16	3	2061	26	z	2/1 857	7
66	00	18		851 96	10	2	2901	54	7	24.000	077
67	00	10		852 01	18	5	2009	84	(7	24. 784	27
68	06	10		852 02	16	5	3080	162	5	24 610	QR
160	06	10		852 07	10	2	2000	102	2	2/1 802	115
100	00	20		853 00	17	7	2003	47 07	7	2/1 004	70
170	00	20		95/1 00	10	6	2005	02	6	240701	27
102	00	20		967 06	10	0	2550	00	0	24.072	EG
172	07	04		007.90	18	0	2777 0704	79	0	24.751	20
13	07	04		867.99	19	6	2724	57	6	24,708	68

56

Nr.		D	MJD	Gr	n	ΔU	υΔ ^m	D .	φ	™ φ
1		2	3	4	5	6	7	8	9	10
	19	73			· ·				52°24 '	
174	07	05	41 868.93	17	7	+2716	61	7	24:800	82
175	07	05	868.96	18	4	2810	110	4	24.772	124
176	07	05	868.99	19	7	2690	47	6	24.794	138
177	07	09	872.91	17	8	2463	69	8	24.599	47
178	07	09	872.95	18	5	2484	72	5	24.670	53
179	07	09	872.98	19	7	2454	77	7	24.569	103
180	07	10	873.91	17	7	2724	103	7	24.554	46
181	07	16	879.90	17	7	2359	61	7	24.504	95
182	07	16	879.93	18	8	2348	102	8	24.584	47
183	07	16	879.96	19	8	2334	46	8	24.609	43
184	07	29	892.89	18	6	2159	105	6	24.521	133
185	07	29	892.92	19	6	2052	133	6	24.240	186
186	07	29	892.96	20	9	2143	36	9	23.939	69
187	07	30	893.89	18	6	2156	80	6	24.363	30
188	07	30	893.92	19	7	2147	36	7	24.440	41
189	07	30	893.96	20	11	1981	74	11	24.560	49
190	07	31	894.88	18	6	2091	83	6	24.564	90
191	07	31	894.92	19	7	2009	51	7	24.765	60
192	07	31	894.95	20	11	1964	47	11	24.804	50
193	08	06	900,90	19	4	1962	142	6	24.942	79
194	08	06	900,94	20	9	1921	62	9	25.020	47
195	68	12	906.88	19	7	1759	45	7	25.060	106
196	08	12	906.92	20	11	1707	70	11	25.131	41
497	08	12	906.96	21			-	6	24.946	83
108	08	12	907.88	19	6	1541	112	6	25.013	99
400	00	42	907.95	21	5	1771	100	7	25.143	66
200	08	45	909.88	10	6	1583	77	6	25.135	47
200	02	45	909.00	20	10	1650	26	10	25,190	51
202	00	45	000 05	24	7	1709	88	7	25,139	72
202	00	45	000 08	22		1628	101	46-	25,206	104
203	00	24	045 00	20	44	1447	31	11	25.028	59
204	00	54	912.90	24	6	1358	40	11	24-898	42
207	00	24	912092	22	8	14.38	96	8	24,936	55
200	00	29	046 80	20	11	0953	59	11	25.049	53
207	06	20	910.09	24	6	0857	70	6	24,940	41
208	00	22	710.79	20	44	6010	62	11	25,088	67
209	08	62 37	71/07	24		0874	35	9	25,065	57
210	00	62	717.77	22	5	1200	21	5	25-016	89
277	08	29	917.90	34	10	1116	57	10	24 874	83
212	08	27	927.92	20	10	1110	27	6	24.730	112
213	08	27	927.94	24	-	4/40	140		24.076	82
214	09	04	929.90	21	Ö	1419	140	5	25 027	105
215	09	04	929.92	22	_	4760	20	2	24 042	52
216	09	O.A.	929,95	23	5	1502	20	2.	GTOYIC	26

.

Nr.		D		MJD	Gr	n	ΔU	™∆u	n	φ	mo	
1		2		3	4	5	6	7	8	9	10	
Considerate Consideration of a gra-	19	73								52°24 °		
217	09	10	41	935.87	21	4	+0868	69	5	24.800	40	
218	09	14		939.86	21	10	0719	89	10	25.068	48	
219	09	14		939.93	23	7	0953	68	7	24.981	56	
220	09	15		940.86	21	10	0782	59	9	25.004	44	
221	09	15		940.89	22	10	0850	57	10	24.863	44	
222	09	15		940.92	23	9	0806	33	9	24.971	39	
223	09	16		941.89	22	5	1068	33	5	24.924	65	
224	09	16		941.92	23	8	0995	39	8	25.010	48	
225	10	01		956.85	22	-	-	-	5	25.038	51	
226	10	01		956.88	23	-	-	-	8	24.986	41	۰.
227	10	01		956.91	24	-		-	5	25.123	37	Ч.
228	10	04		959.84	22	8	0541	53	8	25.033	65	
229	10	04		959.90	24	7	0463	55	7	25.006	82	
230	10	04		959.94	1	4	0349	90	5	25.189	71	
231	10	06		961.84	22	7	0490	45	7	25.035	61	
232	10	12		967.84	23	4	-0375	115	4	25.012	59	
233	10	12		967.88	24	5	0004	105	5	24.953	105	
234	10	12		967.92	1	8	0201	83	8	25.164	57	
235	10	28		983.84	24	3	-0600	55	3	25.184	64	
236	10	28		983.90	2	4	-0256	41	4	24.971	60	
237	11	02		988.82	24	8	-0551	65	8	25.169	94	
238	11	02		988.86	1	9	-0650	62	9	25.082	57	
239	11	02		988.90	2	11	-0716	82	11	25.065	63	
240	11	02		988.94	3	6	-0694	49	6	25.065	.74	
241	11	03		989.86	1	11	-0684	69	11	25.119	63	
242	11	03		989.90	2	10	-0613	125	10	24.921	55	
243	11	03		989.93	3	6	-0776	67	6	25.092	65	
244	11	14	42	000.83	1	11	-1102	100	11	25.007	54	
245	11	14		000.87	. 2	10	-0908	70	10	25.086	43	
246	11	14		000.90	3	7	-0932	60	7	25.147	60	
247	11	22	à l	008.85	2	6	-1465	25	6	24.934	82	
248	12	05	. 17	021.84	3	5	-1608	75	5	24.993	57	
249	12	18	1	034.84	4	5	-1890	99	5	25.159	86	
250	12	18		034.88	5	13	-1827	46	13	25.011	54	
251	12	18		034.91	6	12	-1889	50	12	24.902	32	
252	12	19		035.84	4	11	-2042	50	11	25.009	45	
253	12	19		035.91	6	5	-1722	37	5	25.016	75	
254	12	30		046.81	4	-	-		7	24.964	63	

58	

	φ	1	^m φ	
_	9		10	
2	52°24'	2		
1	25"106	5 12	26	
8	24.883	5 1.	15	
8	24.805	5 1	71	
8	24.803	3 4	42	
8	24.875	5 9	92	
8	24.894	+ (67	
6	24.657	7 1	77	
6	24.628	3	93	
6	24.634	+ (78	
7	24.738	3 4	49	
5	24.562	2 /	72	
5	24.537	7 (61	
5	24.559	9 10	03	
6	24.652	2 10	03	
5	24.537	7 1	76	
6	24.644	+ 13	36	
6	24.639	9	59	
6	24.690		76	
6	24.665	5 4	49	
5	24.594	+ (64	
5	24.567	7 1	55	
6	24.610		69	
5	24.543	5 1	59	
7	24.764	+ (62	
5	24.554	+ 4	57	
5	24.547	7 8	84	
3	24.326	5 3	38	
4	24.453	5 4	42	
6	24,601	1 (95	
8	24-819		76	
6	24,664	L (75	
7	24.783	5 1	57	
8	24.834		73	
6	24,603	5	36	
5	24.577	, . , .	53	
2	24,791	, . , .	59	
6	24.627	7 1	45	
7	24.798	3 2	27	
à	24,906	5 (61	
8	24,808	3 1	50	
7	24.797	 7 :	36	
r 8	24,803	5 5	31	
2	24 874		78	
576798788	24.577 24.791 24.627 24.798 24.906 24.808 24.797 24.803 24.874	7 1 7 4 3 6 5 6 7 2 7 2 7 2 7 2 7 2 7 2	554265337	3 9 5 7 1 0 6 1 8

Nr.	99 - 194 (J 1	D	MJD	Gr	n	ΔU	™∆u	n	Ø	m _φ	
1		2	3	4	5	6	7	8	9	10	
	19	74							52°24'		
298	06	15	42 213.94	16	3	+2960	43	3	248971	114	
299	06	15	213.97	17	5	2844	79	5	24.871	114	
300	06	17	215.94	16	5	3008	77	5	25.046	67	
301	06	23	221.92	16	6	2690	38	6	24.655	43	
302	07	02	230.93	17	9	2691	71	9	24.781	51	
303	07	02	230.96	18	-	-	600	8	24.814	140	
304	07	22	250.91	18	9	1946	41	9	24.897	77	
305	07	22	250.94	19	8	1950	56	8	24.966	51	
306	07	22	250,98	20	9	2070	94	9	25.149	56	
307	08	07	266.90	19	9	1706	40	9	25.016	76	
308	08	07	266.93	20	12	1740	79	12	25°035	52	
309	08	07	266.97	21	11	1753	58	11	25.063	57	
310	08	11	270.89	19	9	1659	43	9	24.946	58	
311	08	11	270.92	20	10	1614	103	10	25.033	64	
312	08	11	270.96	21	9	1376	56	9	25.168	39	
313	08	15	274.88	19	9	1366	46	9	24.993	64	
314	08	15	274.91	20	12	1432	93	12	25.179	61	
315	08	15	274.95	21	11	1717	129	12	25.167	65	
316	08	16	275.91	20	12	1524	116	12	25.108	42	
317	08	16	275.95	21	12	1637	69	12	25.126	65	
318	08	16	275.98	22	10	1435	40	10	25.001	54	
319	08	23	282.89	20	12	1301	89	12	24.998	43	
320	08	23	282.93	21	12	1128	55	12	25.030	22	
321	08	23	282.96	22	10	1289	40	10	24.995	38	
322	08	24	283.89	20	12	1335	80	12	25.098	49	
323	08	24	283.92	21	12	1231	29	12	25.002	42	
324	08	24	283.95	22	9	1418	50	9	24.966	39	
325	08	29	288.87	20	12	1233	55	12	25.106	34	
326	08	29	288.91	21	12	1168	39	12	24.998	60	
327	08	29	288.94	22	10	1353	41	10	24.969	34	
328	09	02	292.86	20	12	1172	79	12	25.094	46	
329	09	02	292.90	21	11	1068	56	11	25.125	37	
330	09	02	292.93	22	10	1294	39	10	25.045	26	
331	09	02	292.95	23	6	1228	80	6	25.168	20	
332	09	04	294.89	21	8	1089	44	8	25.220	26	
333	09	20	310.88	22	10	0966	78	10	25.073	57	
334	09	20	310.91	23	11	0880	55	11	25.157	37	
335	09	20	310.94	24	8	0653	46	8	25.151	49	
336	09	25	315.87	22	8	0964	98	8	25.144	100	
337	09	29	319.85	22	6	0612	139	6	25.034	53	
338	09	29	319.88	23	11	0740	62	11	25.352	45	
339	09	29	319.91	24	10	0420	74	10	25.271	63	
340	09	30	320,85	22	10	0539	44	10	25.016	51	

	~		-
	-	.8	
٩		Æ.	-
	-		-

Nr.		D	MJD	Gr	n	ΔIJ	B AU	n	φ	mφ
1		2	3	4	5	6	7	8	9	10
	19	75						a.,	52°24'	
341	09	30	42 320.89	23	5	+0414	147	5	25:062	47
342	09	30	320.92	24	8	0358	23	8	25.090	72
343	10	02	322.88	23	11	0471	36	11	25.212	47
344	10	02	322.90	24	9	0383	36	9	25.108	33
345	10	11	331.85	23	9	0304	60	9	25.075	56
346	10	11	331.88	24	5	0250	89	5	25.057	119
347	11	20	371.86	2	6	-1442	98	6	24.929	109
348	11	20	371.89	3	9	-1411	53	9	24.881	79
349	11	20	371.92	4	10	-1195	157	10	24.843	127
350	12	03	384.85	3	10	-1542	64	10	24.871	73
351	12	03	384.88	4	11	-1432	46	11	24.872	65
352	12	03	384.92	5	13	-1429	66	13	24.814	50
353	12	22	403.83	4	10	-1911	66	10	24.800	60
354	12	23	404.83	4	11	-1911	61	11	24.883	46
355	12	23	404.86	5	14	-1999	63	14	24.910	36
356	12	23	404.90	6	8	-2037	51	8	24.923	55

.